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Abstract

Consider a switched queueing network with general routing among its queues. The MaxWeight policy
assigns available service by maximizing the objective function

∑
j Qjσj among the different feasible service

options, where Qj denotes queue size and σj denotes the amount of service to be executed at queue j.
MaxWeight is a greedy policy that does not depend on knowledge of arrival rates and is straightforward to
implement. These properties, as well as its simple formulation, suggest MaxWeight as a serious candidate for
implementation in the setting of switched queueing networks; it has been extensively studied in the context
of communication networks. However, a fluid model variant of MaxWeight was shown by Andrews–Zhang
(2003) not to be maximally stable. Here, we prove that MaxWeight itself is not in general maximally stable.
We also prove MaxWeight is maximally stable in a much more restrictive setting, and that a weighted version
of MaxWeight, where the weighting depends on the traffic intensity, is always stable.

1 Introduction.

The MaxWeight policy has been extensively employed for the past two decades in the setting of switched
networks, in particular, for communication networks. It is a discrete time policy that allocates service of jobs at
each time step by maximizing a corresponding objective function over a given set S of feasible service options,
or schedules.

Let J denote the set of queues of the network, which are assumed to be single class; let Qj , j ∈ J , be the
corresponding queue lengths at a given time; and let σj be the nonnegative integer valued amount of service
to be executed at the queue at this time. Then the MaxWeight policy chooses the schedule that solves the
optimization problem

maximize
∑

j∈J
Qjσj over σ ∈ S . (1)

In the case of ties in (1), σ may be chosen arbitrarily (or randomly) among these schedules. We denote
by π(Q) the schedule of the MaxWeight policy for the queue length vector Q := (Qj : j ∈ J ), and denote by
Q = (Q(t) : t ∈ Z+) the associated queueing network process defined by the MaxWeight policy. The queueing
network process is a discrete time countable state space Markov chain satisfying the Strong Markov Property.

For the set S ⊂ Z|J |+ , we will always assume that σ ∈ S implies that σ′ ∈ S, for σ′ ∈ Z|J |+ with σ′ ≤ σ (i.e.,
σ′j ≤ σj for j ∈ J ). Here, as in the remainder of the paper, Z+ := {0, 1, 2, . . .}, whereas N := {1, 2, . . .}.

The MaxWeight policy has the virtues of being simple to formulate and of its implementation not depending
on knowledge of the arrival rates of jobs into the network. We also note that the Longest-Queue-First-Served
(LQFS) policy is a special case of MaxWeight.

Rigorous results in the MaxWeight literature typically are for single-hop networks, that is, networks where
each job leaves the network immediately after its service at any queue. The seminal paper of Tassiulas and
Ephremedes [20] showed that MaxWeight is maximally stable for single-hop networks. That is, the associated
queueing network process Q is positive recurrent whenever the traffic intensity vector ρ is contained in the
interior of the convex hull of S.

MaxWeight was studied for single-hop networks in Tassiulas and Ephremedes [21] in the context of wireless
networks and in McKeown et al. [13] in the context of internet router design. Since these works, MaxWeight
and its generalizations have been extensively studied in the context of single-hop switched networks. We refer
the reader to the following surveys and books [9, 10, 11, 14, 19], which provide a broad review of the analysis,
extensions and applications of MaxWeight.
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In the multihop setting, that is, where jobs completing service at a queue can be routed to another queue,
there is little literature for the MaxWeight policy. However, there is considerable literature for the somewhat
related BackPressure policy. As its name suggests, the BackPressure policy chooses the schedule σ ∈ S where
the sum of the difference in queue lengths between consecutive queues is maximized; the policy is designed to
balance the lengths among different queues. It was shown in [20] that BackPressure is maximally stable. This
result in fact includes the multiclass setting as well as the single class setting, when the BackPressure algorithm
is applied to individual classes, rather than to entire queues. Other literature on BackPressure includes [9] and
[18]. We note that BackPressure requires knowledge of the routing probabilities between queues.

In contrast to the BackPressure policy, rigorous stability results are lacking for MaxWeight in the multihop
setting. Authors of the current paper were approached on more than one occasion about this stability, of which
we were at the time ignorant.

However, in a relatively unknown paper, Andrews and Zhang [1] studied the fluid model analog of a variant
of MaxWeight for a switched network possessing state-dependent arrivals, and showed that this fluid model is
not maximally stable. (The modulated arrival rate is employed to produce instability.) The paper also provided
simulations indicating similar unstable behavior for stationary arrivals in its switched network analog.

In the current paper, we will prove that the MaxWeight policy itself is not maximally stable for multihop
single class switched networks. This is the first mathematical proof of transience of MaxWeight under subcritical
arrival rates. A counterexample is given by Theorem 1 later in the introduction; the detailed argument will
be given in Section 3, after certain definitions are presented in Section 2. Since Section 3 is quite involved,
we recommend that the reader skip it on a first reading. The argument follows in spirit the constructions in
Lu–Kumar [12] and Rybko–Stolyar [17].

Positive recurrence of subcritical multihop networks with the Longest-Queue-First-Served policy is demon-
strated in the literature in specific situations (see [15, 8, 2], and the included references). In Appendix D, we
reinterpret the LQFS policy as a special case of MaxWeight, and present an example that is transient; the
argument is analogous to that of the above counterexample for MaxWeight.

Although it seems that general stability results for MaxWeight are the exception rather than the rule for
switched networks, we will show that MaxWeight is maximally stable in the restrictive setting of a tandem
single class switched network with equal mean service times at different queues. This result follows from the
more general result that, for any single class switched network, an appropriately weighted version of MaxWeight
will always be stable, with the weighting at each queue depending on the traffic intensity at the queue. This
weighting reflects the underlying structure of the MaxWeight policy and provides insight as to why unweighted
MaxWeight is itself not the mathematically correct structure to ensure positive recurrence of the associated
queueing network process. These results are summarized in Theorems 2 and 3 later in the introduction, with
more detail being given in Section 4. These results are proved by using fluid models and constructing appropriate
Lyapunov functions for these fluid models. The required fluid model machinery is summarized in the Appendix.

So far, we have considered only the stability of switched queueing networks that are single class. In Section
5, we briefly discuss the stability of multiclass switched networks that are FIFO within each queue. Conditions
for stability of multiclass switched networks are more elusive than those in the single class setting. We simulate
a queueing network that is unstable, although it is of Kelly type (i.e., the mean service rates at all classes within
a queue are equal). We do not provide the proof, which is a more lengthy version of that of Theorem 1. We then
show that a modification of the Lyapunov function from the single class setting implies stability of multiclass
switched networks for a particular variant of MaxWeight.

In Section 6, we will briefly compare the stability of the MaxWeight policy for multiclass switched networks
with that of the ProportionalScheduler, where the terms Qjσj in (1) are replaced by Qj log σj . As shown in
Bramson et al. [5], the ProportionalScheduler is maximally stable for all multiclass multihop switched networks
that are of Kelly type (and hence is automatically maximally stable for all single class multihop switched
networks). We will give elementary heuristic reasoning why the term log σj produces a more stable policy than
does σj .

In the remainder of the introduction, we present Theorems 1–3.

An example showing the instability of MaxWeight.

In Section 3, we will prove instability for multihop switch networks with the MaxWeight policy. We now state
this result, Theorem 1. We refer the reader to Section 2 for certain precise definitions and conditions that are
required for the theorem.

The traffic intensity ρ = (ρj : j ∈ J ) of a switched network is a fundamental concept in queueing theory
and gives the long-run average rate at which work destined for each queue arrives in a network; it is defined
in Section 2. In order for work not to accumulate somewhere in the network, ρ must also equal the long-term
average service rates attained by applying schedules in S to the queueing network process Q. The subcritical
region C is the interior of the convex hull < S > of S, and a fixed policy is defined to be maximally stable if the
queueing network process Q is positive recurrent whenever ρ ∈ C.
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Figure 1: On the left, the switched network in Theorem 1 with parameters a and J . On the right is the
projection of the set < S > on the space (σA0

,
∑
j≥1 σAj ) ∈ R2.

In Theorem 1, we employ the single class switched network depicted in Figure 1. For given J ∈ Z+, there
are two sets of queues, {A1, ...,AJ} and {B1, ...,BJ}, with arrivals occurring at each end of the network, at
rate a, that choose randomly between the corresponding J queues. We assume that, over each time unit, there
is at most 1 external arrival at each queue, and that arrivals are i.i.d. at different times. There are also two
queues A0 and B0 that receive jobs after their service is completed at the respective queues {B1, ...,BJ} and
{A1, ...,AJ}. For convenience, we denote by A and B the components consisting of the unions of all queues of
the form Aj and Bj , j = 0, ..., J , respectively.

We assume that jobs are unit sized, and so the traffic intensity ρ is given by

ρA0
= ρB0

= a, and ρAj = ρBj =
a

J
, j = 1, ..., J . (2)

For given ν ∈ N, we specify the set of feasible schedules S in (1) by the conditions on A and B,

σA0
+

1

ν

J∑

j=1

σAj ≤ 1 and σB0
+

1

ν

J∑

j=1

σBj ≤ 1 . (3)

In other words, during each time unit, at each nonempty component either up to ν jobs are served from queues
containing jobs that arrive from outside the network or a single job is served from the queue serving jobs that
arrive internally. It follows from displays (2) and (3) that ρ ∈ C whenever

rρ := a

(
1 +

1

ν

)
< 1 . (4)

Theorem 1 provides conditions on the parameters a, ν, and J such that the queueing network processes for
the switched networks in Figure 1 are subcritical but transient under the MaxWeight policy.

Theorem 1. Consider the MaxWeight policy for the single class multihop switched network represented by
Figure 1 and with S given by (3). Assume that (4) is satisfied and that

1 < ν < J and
J

2J − ν < a < 1− (J + ν)(J + ν2)

ν(J2 + J + ν2)
. (5)

Then ρ ∈ C and the associated queueing network process Q is transient.

It is easy to choose a, ν, and J so that both (4) and (5) are satisfied. For instance, one can choose a = 7/12,
ν = 6, and J = 30. (A simulation under these parameters is provided in Figure 2.) It follows that the
MaxWeight policy is not in general maximally stable for single class multihop switched networks. This result
is proved in Section 3.

Conditions under which MaxWeight and weighted MaxWeight are stable.

The example in Theorem 1 shows that MaxWeight is not in general maximally stable for single class multihop
switched networks. Nevertheless, it is maximally stable in certain more restrictive settings, such as for tandem
single class switched networks. This result is a consequence of Theorem 2, which is a stability result for networks
with general routing. Here, the MaxWeight policy is replaced by a weighted MaxWeight policy whose weighting
at each queue is given by the traffic intensity at that queue.
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Figure 2: A simulation of the network described in Theorem 1, for parameters a = 7/12, ν = 6, and J = 30.
The initial value is QA0

(0) = 1722, with all other queues empty. The rectangular box in the figure outlines a
region that is presented in detail in Figure 3.

For this weighted MaxWeight policy, the optimization problem in (1) is replaced by the optimization problem

maximize
∑

j∈J
Qj

σj
ρj

over σ ∈ S . (6)

The network is assumed to be an open network, with arbitrary mean routing matrix P = (Pij : i, j ∈ J ). (More
detail will be given in Section 2.)

Theorem 2. Consider the weighted MaxWeight policy given by (6), for a single class switched network with
an arbitrary set of schedules S and arbitrary mean routing matrix P. If ρ ∈ C, then the associated queueing
network process Q is positive recurrent.

The dependence of the objective function in (6) on ρ restricts the applicability of this weighted version of
MaxWeight unless ρ is first sampled or known. For this reason, weighted MaxWeight is not maximally stable in
a true sense. Nonetheless, the weighting in (6) corresponds naturally to the underlying structure of MaxWeight
and so indicates why unweighted MaxWeight is not in general the correct condition to ensure maximal stability.

Suppose now that the network is a tandem network, i.e., all jobs enter the network at a single queue, where
Pj,j+1 = 1 for all 1 ≤ j < |J |, and all jobs leave the network after completing service at the queue |J |.
Also, assume that the mean amount of work m required to successfully serve a job at a queue is the same for
all queues. Then the traffic intensity ρj is constant over all queues (irrespective of the choice of S) and so
the optimization problem in (6) reduces to the unweighted MaxWeight optimization problem in (1). A direct
application of Theorem 2 therefore implies the following result.

Theorem 3. Consider a tandem switched network with an arbitrary set of schedules S and the same mean work
per job required at each queue. Then the MaxWeight policy given by (1) is maximally stable for this switched
network.

Since Theorem 3 is easier to understand than Theorem 2, we will first prove it directly and then prove
Theorem 2. Both results are proved in Section 4.

Theorem 2 can be applied to the MaxWeight policy for general network topologies when the traffic intensity
at all queues is the same. The MaxWeight policy is maximally stable in certain other settings as well. An
elementary case is when the network consists of parallel sequences of queues in tandem that do not interact, if
one assumes that the mean required work is constant over queues along individual sequences. Switched networks
whose topology allows branching of routes (but no merging) are more significant examples and are considered
at the end of Section 4.

We point out that, although tandem networks are not reasonable models for communication networks, they
are often applied in operations research to analyze production systems, such as silicon chip manufacturing.
Also, routes with branching occur in distribution networks.

2 Additional Notation and Model Description.

Here, we introduce further notation needed to describe single class switched queueing networks. We specify the
queueing network equations, define the arrival rates λ and traffic intensities ρ, and briefly discuss the subcritical
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region C. (Multiclass networks, which are networks where jobs at a queue can have statistically non-identical
routing behavior, are described in Section 5.)

We first specify the processes that describe how jobs arrive and are processed through a network. The number
of external arrivals at different queues are assumed to be independent of each other, and IID at different times
at each queue j, with mean aj ∈ R+. The size of each job at queue j is assumed to be geometrically distributed
with parameter pj : for each unit of work assigned at a given time to queue j by the schedule S, a job has
probability pj of its service being completed; when this occurs, the remaining work at the queue is devoted to
the next job at the queue whereas, if service is not completed by the assigned work, service of the job resumes
at the next unit of time according to the allocation by the schedule at that time. (An important special case,
which we consider in our counterexamples, is where each job has unit size, i.e., pj = 1.)

After being served at queue j, a job moves to queue j′ with probability Pjj′ and, with probability Pjω, the
job will leave the network, i.e., Pjω = 1−∑j′∈J Pjj′ , j ∈ J . The matrix P = (Pjj′ : j, j′ ∈ J ) denotes the mean
routing matrix ; we assume that (I − P ) is invertible, i.e., the network is open. A switched queueing network is
a single-hop network if each job leaves the network immediately after completing service, i.e., Pjω = 1 for all j;
otherwise, it is a multihop network. In this paper we will be principally interested in multihop networks.

The queue size process Q = (Q(t) : t ∈ Z+), with Q(t) = (Qj(t) : j ∈ J ), evolves according to the following
queueing network equations. For t ∈ N and j ∈ J ,

Qj(t) = Qj(0) +Aj(t)−Dj(t) , (7a)

Aj(t) = Ej(t) +
∑

j′∈J
Φj′j(Dj′(t)) , (7b)

Dj(t) = Sj(Πj(t)) . (7c)

In the above equations, Aj(t) is the cumulative number of arrivals at queue j (both external and internal), with
the cumulative number of external arrivals at queue j, Ej(t), being the sum of the first t external arrivals at
j, and Φjj′(d) being the cumulative number of jobs routed from queue j to j′ after d departures from queue
j. It is assumed that (Φjj′(d) − Φjj′(d − 1) : j′ ∈ J ∪ {ω}), d ∈ N, are IID zero-one random vectors with
the j′th-coordinate taking value 1 with probability Pjj′ for j′ ∈ J ∪ {ω}. The random variable Dj(t) is the
cumulative number of departures from queue j. One has Aj(0) = Ej(0) = Dj(0) = 0. The cumulative service
scheduled at queue j,

Πj(t) :=
t−1∑

τ=1

(
πj(Q(τ))∧Qj(τ)

)
, (8)

where π(Q(τ)) depends on the policy. For instance, π(Q) might be given by the MaxWeight schedule defined in
(1) or the weighted MaxWeight schedule defined in (6). The random variable Sj(u) is the cumulative number of
jobs served after u ∈ Z+ units of service are devoted to queue j. Since jobs sizes are geometrically distributed,
Sj(u) is a discrete time renewal process whose inter-increment times are geometrically distributed with mean
1/pj .

The equation (7a) states that the queue size is given by the arrivals minus the departures, (7b) states that
Aj is the sum of both external and internal arrivals, and (7c) states that Dj is the number of jobs Sj with
completed service at j after the amount of service Πj .

When considering the counterexample in Figure 1, we will denote the total queue size at each of the two
components by

QΣ
A(t) =

J∑

j=0

QAj (t) and QΣ
B(t) =

J∑

j=0

QBj (t) .

The order in which jobs arrive and jobs are served over a given time unit needs to be specified. In order
to rule out instantaneous service of jobs, we assume that jobs initially present are first served, after which jobs
arrive at their new queues. The allocation of service at time t is governed by Q(t − 1) for the policies we will
consider.

Under the above assumptions, the queue size process Q is a discrete time countable state space Markov
chain. This paper investigates the positive recurrence and transience of this Markov chain.

The total arrival rate λ = (λj : j ∈ J ) is given by

λ = a+ aP + aP 2 + ... = a(I − P )−1

or, alternatively, is the solution of the traffic equations

λj = aj +
∑

j′∈J
λj′Pj′j , j ∈ J . (9)
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Because the mean service time for each arrival is p−1
j , the traffic intensity at queue j is

ρj :=
λj
pj
. (10)

The traffic intensity (i.e., nominal load) ρ = (ρj : j ∈ J ) gives the long-term rate at which work destined for
each queue arrives in the queueing network.

We recall from the introduction that S ⊂ Z|J |+ denotes the set of feasible schedules and < S > denotes the
convex closure of the set S. The subcritical region C denotes the interior of the set < S >, and a policy is
maximally stable if the queue size process Q is positive recurrent whenever ρ ∈ C.

We briefly motivate the definition of maximally stable as follows: For any ρ ∈ C, there exists a randomized
policy whose mean service rate π̄ satisfies ρ < π̄ and whose corresponding switched queueing network is positive
recurrent. So, stability is possible for a given switched queueing network policy when ρ ∈ C. On the other hand,
whenever ρ lies strictly outside C, the total workload in the network must increase linearly over time, and so
the switched queueing network must be transient.

3 Proof of Theorem 1.

In this section, we prove Theorem 1. Since the proof is somewhat involved, we recommend that on a first
reading the reader skip this section and continue to Section 4.

3.1 Main Setup.

To prove Theorem 1, we employ Lemma 1 and Proposition 1, which are stated below. The lemma is an elemen-
tary large deviations estimate; most of the work in this section will consist of demonstrating the proposition.
Assuming both the lemma and proposition, we demonstrate Theorem 1 in this subsection, postponing until
Subsection 3.2 the proofs of Lemma 1 and Proposition 1. We first introduce terminology.

Whenever (5) is satisfied, γ can be chosen so that

1 < γ <
a

1− a+ aν/J
. (11)

(Note that the bound J/(2J − ν) < a in (5) implies 1 < a/(1− a+ aν/J) .) For a, J , ν, and γ fixed, we choose
ε ∈ (0, ε0), where ε0 is a small positive constant. We choose M so that

M ≥ L/ε , (12)

where L is a large positive constant. In the proofs below, we will also introduce positive constants κ1, ..., κ4;
the constants ε0, L, κ1, ..., κ4 will depend only on the parameters a, J , ν, and γ.

We assume the following conditions on the initial queue lengths Q(0):

QΣ
B(0) = M , (13a)

QΣ
A(0) ≤ εM/ν , (13b)

∣∣QB0
(0)− νQBj (0)

∣∣ ≤ εM , for j = 1, ..., J , (13c)

The displays in (13) state that there are initially M jobs at Component B and comparatively few jobs at
Component A, with the queues at Component B being approximately “balanced” (that is, by (3), any of the
queues of Component B might receive immediate service).

Lemma 1 states that the numbers of arrivals at different queues are approximately deterministic over longer
intervals of time.

Lemma 1. For any δ > 0, there exist η > 0 and a constant C such that, for all T ≥ C,

P

(
sup

0≤s≤t≤T

∣∣∣Aj(t)−Aj(s)−
a

J
(t− s)

∣∣∣ ≤ δT
)
≥ 1− e−ηT ,

for j ∈ {A1, ...,AJ ,B1, ...,BJ}.

To prove Theorem 1, we set
T = 2M/(1− a)(1− rρ) (14)
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and M ′ = γM , where γ is assumed to satisfy (11), and assume M to be sufficiently large so that T ≥ C, where C
is as in Lemma 1. We designate by GM the non-exceptional set in Lemma 1 over all j ∈ {A1, ...,AJ ,B1, ...,BJ},
with δ replaced by εb:

GM =

{
sup

j∈{A1,...,AJ ,B1,...,BJ}
sup

0≤s≤t≤T

∣∣∣Aj(t)−Aj(s)−
a

J
(t− s)

∣∣∣ ≤ ε b T
}
, (15)

where b = (γ−1)(1−a)(1−rρ)/6νJ . (b is chosen for convenience, but needs to be small.) It follows immediately
from Lemma 1 that

P(GM ) ≥ 1− e−ηT , (16)

for a new choice of η > 0.
Proposition 1 states that, on GM , there exists a stopping time V ≤ T such that, at V , an approximate

analog of the initial condition (13) holds, but with M replaced by M ′ and the roles of the components A and B
reversed. In particular, the amount of work in the queueing network has increased by a multiplicative factor γ.

Proposition 1. Assume (4) and (5), and assume (13) with M satisfying (12). Then, on the event GM ,

QΣ
A(V ) ≥M ′, (17a)

QΣ
B(V ) ≤ εM ′/ν, (17b)

∣∣QA0
(V )− νQAj (V )

∣∣ ≤ εM ′, (17c)

for j = 1, ..., J , where V is a stopping time satisfying 0 < V ≤ T that will be defined in (21), and M ′ = γM is
defined above. Moreover, for all times 0 ≤ t ≤ V ,

QΣ
A(t) +QΣ

B(t) ≥ 1

2

a

a+ ν
M. (18)

Both Lemma 1 and Proposition 1 are proved in Subsection 3.2.
The proof of Theorem 1 is a straightforward consequence of (16) and Proposition 1.

Proof of Theorem 1. ρ ∈ C follows from (4).
To show Q(t) is transient, note that, since a, ν and J satisfy (5), γ can be selected so that (11) holds. The

constants a, ν, J and γ determine ε0, L, and κ1, ..., κ4, and ε and M are selected so that ε ∈ (0, ε0) and M ≥ L/ε.
Denote by IM and IM ′ the sets of vectors with queue lengths satisfying (13) and (17), respectively. By

(16) and Proposition 1, for any initial state Q0 := (QA0
(0), ..., QAJ (0), QB0

(0), ..., QBJ (0)) ∈ IM , there exists a
stopping time V ≤ T with

PQ0

(
(QA(V ), QB(V )) ∈ IM ′ , min

0≤t≤V

{
QΣ
A(t) +QΣ

B(t)
}
≥ 1

2

a

a+ ν
M

)
≥ 1− e−ηT .

Iteration using the Strong Markov property implies that

PQ0

(
QΣ
A(t) +QΣ

B(t) <
1

2

a

a+ ν
M for some t ≥ 0

)
≤
∞∑

k=0

e−ηγ
kT .

(More careful iteration in fact shows that QΣ
A(t) +QΣ

B(t)→∞ as t→∞ off of the above exceptional set.)
Since the right-hand side of the last inequality is less than 1 for sufficiently large M , there is positive

probability that the queueing system is never empty when starting from any state in IM , such as in (13). Since
all states communicate, this implies the process Q(t) is transient.

3.2 Proofs of Lemma 1 and Proposition 1.

The proof of Lemma 1 employs elementary large deviation bounds.

Proof of Lemma 1. For any j ∈ {A1, ...,AJ ,B1, ...,BJ},

P
(

sup
0≤s≤t≤T

∣∣∣Aj(t)−Aj(s)−
a

J
(t− s)

∣∣∣ > δT

)
≤ P

(
sup

0≤t≤T

∣∣∣Aj(t)−
a

J
t
∣∣∣ > δT/2

)

≤
T∑

t=0

P
(∣∣∣Aj(t)−

a

J
t
∣∣∣ > δT/2

)
. (19)

7



Each term Aj(t)−at/J is the sum of t i.i.d. random variables Xi, i = 1, . . . , t, with mean 0 and EeθXi <∞,
for θ > 0. Setting Λ(θ) = logE[exp{θX}], we note that Λ(0) = 0 and Λ′(0) = EX = 0. So, α := δθ/2−Λ(θ) > 0
for small enough θ > 0. Choosing one such value of θ and using Markov’s Inequality, it follows that

P

(
t∑

i=0

Xi > δT/2

)
≤ eδθ(t−T )/2E exp

{
θ

t∑

i=0

(Xi − δ/2)

}

= eδθ(t−T )/2
(
Eeθ(X1−δ/2)

)t
= eδθ(t−T )/2e−αt ≤ e−ηT (20)

for η = min{δθ/2, α} > 0. The same argument and (20) continue to hold when Xi is replaced by −Xi. Applying
these two bounds to each term on the right-hand side of (19), it follows that the left-hand side of (19) is at most
2Te−ηT , and the lemma follows with a new choice of η.

We now begin the demonstration of Proposition 1. Set

U = min
{
t ≥ 0 : QΣ

B(t) ≤ ν2
}
∧ T , V = min

{
t ≥ U : QA0

(t) ≤ ν max
j=1,...,J

QAj (t)
}
∧ T , (21)

where T is chosen as above. The stopping time U can be thought of the first time at which Component B “is
almost empty”; V is the first time after this that a queue, other than A0, might be served at Component A.

The demonstration of (17a)–(17c) and (18) of Proposition 1 employs six lemmas that track the flow of jobs
through the network over the time interval [0, V ], on the event GM . The main steps are as follows.

• U < T (Lemma 2): The number of jobs in Component B at any time is bounded above by the sum of
the number of jobs originally in Component B and Queues Aj , j = 1, . . . , J , together with the number
of arrivals in Aj , j = 1, . . . , J , up to this time, less the number of departures from B by then. Since the
component B is subcritical, U must occur by a computable time before T .

• Up until time U , jobs arrive at Queue A0 from Queues Bj , j = 1, . . . , J , at a rapid linear rate (Lemma
3): Because Component B is initially balanced and, by the MaxWeight policy, remains balanced, a fixed
fraction of the service at Component B occurs at the “quick service” Queues Bj , j = 1, . . . , J .

• For appropriate κ2 > 0, QA0(t) > νmaxj=1,...,J QAj (t) on [U ∧ εκ2M,V ) (Lemma 4): The inequality is
immediate on [U, V ) from the definition of V , but we require the stronger lower bound. This part employs
Lemma 3, together with the lower rate at which jobs arrive at Aj , j = 1, . . . , J , from outside the network.
Note that the MaxWeight policy, together with the above inequality, implies that, on (U ∧ εκ2M,V ], the
Queues Aj , j = 1, . . . , J do not receive service.

• For all t ∈ [0, T ] and j, j′ = 1, . . . , J , |QAj (t) − QAj′ (t)| is small (Lemma 5): This is an elementary
consequence of the MaxWeight policy.

• During [U, V ], there are few jobs in Component B (Lemma 6): This is the case at time U . Because of
the MaxWeight policy and Lemma 4, there are no arrivals at Queue B0 over (U, V ]. Moreover, the “quick
service” queues Bj , j = 1, . . . , J , serve jobs much faster than they arrive. Note that (17b) of Proposition
1 is an immediate consequence of Lemma 6.

• V < T ((40) of Lemma 7): On (U, V ], Queue A0 receives all of the service at Component A, which is
greater than the rate at which jobs arrive along the route leading to A0. But the number of jobs at the
other queues in A is increasing linearly because of external arrivals. Comparison gives an explicit upper
bound on V that implies V < T . Note that |QA0

(V ) − νmaxj=1,...,J QAj (V )| ≤ ν is immediate from
V < T and the definition of V . It follows from this and Lemma 5 that (17c) of Proposition 1 is satisfied.

• QΣ
A(V ) ≥ M ′, where M ′ is as in Proposition 1 ((41) of Lemma 7): One can show that the above upper

bound on V is also the lower bound, up to a lower order term. The linear growth in the number of jobs
at the Queues Aj , j = 1. . . . , J , over times t ∈ (εκ2M,V ], together with QA0(V ) = νmaxj=1,...,J QAj (V ),
implies QΣ

A(V ) ≥M ′, which is the claim in (17a) of Proposition 1.

• For all t ∈ [0, V ], the number of jobs in the network is at least aM/2(a + ν), i.e., (18) of Proposition 1
holds (proof of Proposition 1): The number of jobs at the Queues Aj , j = 1, . . . , J increases linearly over
(εκ2M,V ]. But the number of jobs at Component B does not decrease from its initial value M at more
than an explicit linear rate. The minimum of the sum will be at least aM/2(a+ ν).
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Figure 3: A snapshot of the network simulated in Figure 2 (with parameters a = 7/12, ν = 6, and J = 30),
starting at time 138, 934 and labeled by 0 at the top of the diagram. The stopping times U and V , in Proposition
1 and the accompanying outline of its proof, correspond to times 142, 305 and 153, 446 in the simulation in Figure
2. Note that, by (11), Proposition 1 is valid for γ ∈ (1, 35/32), and the growth in the total number of jobs from
time 138, 934 to time 153, 446 in Figure 2 and the diagram is relatively small.

Figure 3 illustrates the evolution over a single cycle of the switched queueing network in Figure 2. The
relative sizes of the queues at and between times 0, U , and V can be compared with the bounds given in the
above outline.

We first demonstrate Lemma 2.

Lemma 2. Assume (4), and assume (13) with M satisfying (12). On the event GM ,

U ≤ 2M

1− a(1 + 1/ν)
. (22)

In particular, U < T .

Proof. On t ≤ U , QΣ
B(t) > 0, and so DB0

(t) + 1
ν

∑J
j=1DBj (t) = t. On the other hand, arrivals at Queue B0 are

due to departures from the Queues Aj , and so

AB0(t) =

J∑

j=1

DAj (t) ≤
J∑

j=1

QAj (0) +

J∑

j=1

AAj (t) ≤ ε
M

ν
+ at+ εbJT on GM , (23)

with (13b) and (15) being employed in (23). It follows from (13) and the above two inequalities that, on GM ,
for t ≤ U ,

1

ν
QΣ
B(t) ≤ QB0(t) +

1

ν

J∑

j=1

QBj (t) ≤M +AB0(t) +
1

ν

J∑

j=1

ABj (t)− t

≤M +
(
at+ εbJT

)
+
J

ν

( a
J
t+ εbT

)
− t . (24)

Setting t = U and noting that QΣ
B(U) ≥ 0, it follows from (24) that

U ≤ (1 + ε/ν)M + (1 + 1/ν)εbJT

1− a(1 + 1/ν)
(25)

since, by (4), a(1 + 1/ν) < 1. For small enough ε > 0, the numerator of (25) is less that 2M , which implies
(22). Also by (4), the denominator equals 1− rρ > 0, and so U < T follows from T = 2M/(1− a)(1− rρ).

Lemma 3 shows that, for t ≤ U , the number of arrivals at Queue A0 is bounded below by (1− a)νt, up to
smaller order terms.

Lemma 3. Assume (4), and assume (13) with M satisfying (12). On the event GM , there exists a constant
κ1 > 0 such that, for t ≤ U ,

AA0(t) ≥ ν(1− a)

(
1− ν2

ν2 + J

)
t− εκ1M . (26)

Proof. We first demonstrate the inequalities (27), (29), and (30), which will be used to show (31). The inequality
(31) will then be rearranged to complete the proof.

9



We note that, since Component B is not empty over [0, U ] and the departure of a job at any Queue B1, ...,BJ
corresponds to an arrival at Queue A0,

DB0
(t) +

1

ν
AA0

(t) = DB0
(t) +

1

ν

J∑

j=1

DBj (t) = t , for t ≤ U . (27)

Let S be the last time up to time t at which the Queue B0 is served, that is, S = max{u ≤ t : DB0
(u+ 1) =

1 +DB0
(u)}. By the MaxWeight policy,

max
j=1,...,J

νQBj (S) ≤ QB0
(S) ≤ QB0

(S + 1) + 1 ≤ QB0
(t) + 1 , (28)

with the last inequality following from the definition of S. Consequently,

∆ := min
j=1,...,J

QBj (0)− max
j=1,...,J

QBj (S) ≥ min
j=1,...,J

QBj (0)− 1

ν
(QB0(t) + 1) . (29)

The inequality

AB0(t) =
J∑

j=1

DAj (t) ≤ QΣ
A(0) +

J∑

j=1

AAj (t) ≤ ε
M

ν
+ at+ εbJT (30)

follows by applying (7a), and then the initial condition (13b) together with our restriction to the event GM .
Employing the above inequalities, we obtain

AA0
(t) ≥ J∆

≥ J

ν

[
min

j=1,...,J
νQBj (0)−QB0(0) +QB0(0)−QB0(t)− 1

]

≥ J

ν

[
− εM −AB0

(t) +DB0
(t)− 1

]

≥ J

ν

[
− εM −

(
ε
M

ν
+ at+ εbJT

)
+

(
t− AA0

(t)

ν

)
− 1

]
. (31)

The first inequality in (31) follows from the observation that at least ∆ jobs have been served by time S ≤ t
at each of the J queues in Component B, the second inequality follows from (29), the third inequality follows
from (7a) and (13c), and the fourth inequality follows from (27) and (30).

Notice by together collecting smaller order terms, we can write (31) as a follows

AA0
(t) ≥ J

ν

[
(1− a)t− AA0

(t)

ν
− εκM

]
,

where κ > 0 is a constant that does not depend on ε or M . (Recall that T = 2M/(1− a)(1− rρ).) Combining
the terms for AA0(t) gives

AA0
(t) ≥ νJ

ν2 + J
[(1− a)t− εκM ]

= ν(1− a)t

(
1− ν2

ν2 + J

)
− εκ1M ,

where κ1 = νJκ/(ν2 + J). This gives the required bound in AA0(t).

The following lemma asserts that, over a time interval of interest to us, only QueueA0 is served at Component
A.

Lemma 4. Assume (4) and (5), and assume (13) with M satisfying (12). On the event GM , there exists a
sufficiently large κ2 such that, for t ∈ [U ∧ εκ2M,V ),

QA0
(t) > ν max

j=1,...,J
QAj (t) . (32)

In particular, on (U ∧ εκ2M,V ], only Queue A0 is served at Component A.

Recall that service at time t is governed by Q(t− 1).
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Proof of Lemma 4. The last statement in the lemma follows from (32) and the MaxWeight policy.
To prove (32), note that (32) follows automatically from the definition of V for t ∈ [U, V ), and so it suffices

to demonstrate (32) for t ∈ [εκ2M,U). First note that, by Lemma 3,

AA0(t) ≥ ν(1− a)

(
1− ν2

ν2 + J

)
t− εκ1M for all t ≤ U .

Since DA0
(t) ≤ t , it follows that

QA0(t) = QA0(0) +AA0(t)−DA0(t) ≥
(
ν(1− a)− ν(1− a)

ν2

ν2 + J
− 1

)
t− εκ1M , (33)

for all t ≤ U . On the other hand, by (13b), on the event GM ,

νQAj (t) ≤ (aν/J)t+ ε(M + bνT ) , (34)

for j = 1, ..., J and t ≤ T .
To demonstrate (32), it therefore suffices to show that the right-hand side of (33) is greater than the right-

hand side of (34) for t ∈ [εκ2M,U), for κ2 chosen sufficiently large. It suffices to compare the coefficients of t
in these two expressions, that is, to show

ν(1− a)− ν(1− a)
ν2

ν2 + J
− 1 >

aν

J
. (35)

After some calculation, one can check that (35) is equivalent to the upper bound for a in (5), which completes
the proof of the lemma. (With additional work, one can show that εκ2M ≤ U on GM , by properly quantifying
κ, κ1, and κ2.)

Lemma 5 bounds the queue size differences for A1,...,AJ up to time V . Because of the MaxWeight opti-
mization, this difference will be bounded above by the corresponding difference in arrivals, which is elementary
to bound.

Lemma 5. Assume (13). On the event GM ,

max
j,j′=1,...,J

max
0≤t≤T

|QAj (t)−QAj′ (t)| ≤ εM/ν + 3εbT .

Proof. We show that the above bound holds at any time t and any pair of queues, Aj and Aj′ . Without loss of
generality, assume QAj (t) > QAj′ (t). Let τ denote the last time before time t such that QAj (τ) ≤ QAj′ (τ); if
no such time exists, set τ = 0. Then

QAj (τ + 1)−QAj′ (τ + 1) ≤ ν + 1 + εM/ν , (36)

where the term εM/ν is due to the initial condition (13b), for the case where τ = 0.
From time τ + 1 until time t, Queue Aj has strictly more jobs than Aj′ , and so only Queue Aj can receive

service. Therefore,

QAj (t) ≤ QAj (τ + 1) +AAj (t)−AAj (τ + 1) , (37)

QAj′ (t) = QAj′ (τ + 1) +AAj′ (t)−AAj′ (τ + 1) .

Applying (15), (36), and (37), it follows that

∣∣∣QAj (t)−QAj′ (t)
∣∣∣

≤ QAj (τ + 1)−QAj′ (τ + 1) +
∣∣∣AAj (t)−AAj (τ + 1)

∣∣∣+
∣∣∣AAj′ (t)−AAj′ (τ + 1)

∣∣∣

≤ ν + 1 + εM/ν + 2εbT ≤ εM/ν + 3εbT

for large T , from which the lemma follows.

Lemma 6 shows that Component B is approximately empty for t ∈ [U, V ].

Lemma 6. Assume (4) and (5), and assume (13) with M satisfying (12). On the event GM ,

QΣ
B(t) ≤ ν3 + εbJT for t ∈ [U, V ] . (38)
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Proof. By definition, QB0(U) ≤ QΣ
B(U) ≤ ν2. On the other hand, by Lemma 4, Queues A1, ...,AJ receive no

service over the time interval (εκ2M,V ], and so Queue B0 has no arrivals then. Hence, with the exception of at
most ν2 units of service at Queue B0, all service at component B over (εκ2M,V ] is devoted to Queues B1, ...,BJ .

Suppose that QΣ
B(u) ≤ ν2 at a given time u ∈ [εκ2M,V ). On GM , the arrivals to Queues B1, ...,BJ are

bounded as in (15), and jobs are served at rate ν there. Together with the previous paragraph, this implies
that, for any s ≤ V − u chosen so that QΣ

B(t) ≥ ν for all t ∈ [u, u+ s),

QΣ
B(u+ s) ≤ ν2 + (a− ν)s+ (ν − 1)ν2 + εbJT ≤ ν3 + εbJT , (39)

since a < ν. (The (ν−1)ν2 term accounts for the at most ν2 units of service that are devoted to serving Queue B0

rather than Queues B1, ...,BJ .) Since QΣ
B(U) ≤ ν2, (38) follows by applying (39) whenever QΣ

B(u) ∈ (ν(ν−1), ν2]
occurs.

Lemma 7 provides explicit upper and lower bounds on the time V and a lower bound on the total queue
size at Component A. The upper bound on V implies that V < T .

Lemma 7. Assume (4) and (5), and assume (13) with M satisfying (12). On the event GM , there exist
constants κ3 > 0 and κ4 > 0 satisfying

∣∣∣∣V −
JM

J + ν
· 1

1− a+ aν/J

∣∣∣∣ ≤ εκ3M , (40)

QΣ
A(V ) ≥ aM

1− a+ aν/J
− εκ4M . (41)

By (40), V < T for sufficiently small ε > 0.

We remark that V < T , with Lemma 4, implies that |QA0
(V )− νmaxj=1,...,J QAj (V )| ≤ ν.

Proof of Lemma 7. We first demonstrate (40), which requires most of the work. Since all arrivals at Queue A0

are from Queues B1, ...,BJ , QA0
(t) = QA0

(0) +
∑J
j=1DBj (t)−DA0

(t), and consequently,

QA0(t) = QA0(0) +

J∑

j=1

QBj (0)−
J∑

j=1

QBj (t) +

J∑

j=1

ABj (t)−DA0(t) . (42)

We proceed to bound the five terms on the right-hand side of (42). By (13b), QA0
(0) ≤ εM/ν, and by (13a)

and (13c),
∣∣∣
J∑

j=1

QBj (0)− JM/(J + ν)
∣∣∣ ≤ εJM .

By Lemma 6 and (15), respectively, on GM ,

J∑

j=1

QBj (t) ≤ ν3 + εbJT ,
∣∣∣
J∑

j=1

ABj (t)− at
∣∣∣ ≤ εbJT for t ∈ [U, V ] .

Also, by Lemma 4, all service at Component A over (U ∧ εκ2M,V ] occurs at Queue A0, and so

t− εκ2M ≤ DA0(t) ≤ t for t ∈ [U, V ] .

Applying the above inequalities to (42) implies the following bounds on QA0
(t), for t ∈ [U, V ]:

QA0(t) ≤ εM/ν + [JM/(J + ν) + εJM ]− 0 + [at+ εbJT ]− [t− εκ2M ] , (43)

and
QA0

(t) ≥ 0 + [JM/(J + ν)− εJM ]− [ν3 + εbJT ] + [at− εbJT ]− t . (44)

On the other hand, by Lemma 4, the Queues A1, ...,AJ will not be served over (εκ2M,V ], and so DAj (t) ≤
ενκ2M for t ∈ [U ∧ εκ2M,V ]. Together with (13) and (15), this implies that, on GM ,

[at/J − εbT ]− ενκ2M ≤ QAj (t) = QAj (0) +AAj (t)−DAj (t) ≤ εM/ν + [at/J + εbT ] . (45)

for t ∈ [U, V ] and j = 1, ..., J .
Comparison of the upper and lower bounds in (43)–(44) with those of (45) (after multiplying the latter by

ν) provides upper and lower bounds on V : For any t > U at which the bound in (43) is at most the left-hand
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bound in (45), V ≤ t must hold. Similarly, at the last t > U at which the bound in (44) is at least the right-hand
side of (45), V ≥ t. Combining these upper and lower bounds for V , it is easy to check that

V ∈
[
JM

J + ν
· 1

1− a+ aν/J
− εκ3M,

JM

J + ν
· 1

1− a+ aν/J
+ εκ3M

]
(46)

for large M , where κ3 > 0 does not depend on ε or M . This implies (40). Since T > M/(1− a), V < T follows
immediately from the upper bound in (46), for sufficiently small ε > 0.

The inequality (41) will now follow quickly. By Lemma 4, all service at any Queue Aj , j = 1, . . . , J , by time
V must occur by time εκ2M , which implies at most ενκ2M jobs can be served at any such queue by time V .
On the other hand, denoting by t∗ the lower bound in (46) and applying (15), at least at∗/J − εbT jobs arrive
at each such queue by time V . It follows from this and the definition of V that

QΣ
A(V ) ≥

(
J + ν

)
min

j=1,...,J
QAj (V ) ≥

(
J + ν

)[
at∗/J − εbT − ενκ2M

]
≥ aM

1− a+ aν/J
− εκ4M ,

where κ4 > 0 is defined in terms of κ2 and κ3.

Employing Lemmas 4–7, we now demonstrate Proposition 1.

Proof of Proposition 1. We need to show that, at time V , the conditions (17a)-(17c) and (18) hold.
Since M ′ := γM , with 1 < γ < a/(1 − a + aν/J), (17a) follows immediately from (41) of Lemma 7, for

ε > 0 chosen sufficiently small.
To show (17b) and (17c), we recall that b = (γ − 1)(1− a)(1− rρ)/6νJ . Hence, by Lemma 6,

QΣ
B(V ) ≤ ν3 + εbJT ≤ εγM (47)

for large M , and so (17b) holds. By the remark below Lemma 7, |QA0
(V ) − νmaxj=1,...,J QAj (V )| ≤ ν. It

follows from this, Lemma 5, and the definition of b that

max
j=1,...,J

∣∣QA0(V )− νQAj (V )
∣∣ ≤ εM + 3εbνT + ν ≤ εγM

for large M , and so (17c) holds.
We still need to show (18). By Lemma 4, Queues Aj , j = 1, . . . , J , are not served over times t ∈ (εκ2M,V ]

and so, on GM ,

QΣ
A(t) ≥

J∑

j=1

QAj (t) ≥
J∑

j=1

(
AAj (t)−AAj (εκ2M)

)
≥ a(t− εκ2M)− εbJT for t ≤ V .

Since Component B, serves at most ν jobs per unit of time, QΣ
B(t) ≥M − tν for all t.

These two inequalities imply that, for t ≤ V ,

QΣ
A(t) +QΣ

B(t) ≥ [a(t− εκ2M)− εbJT ] ∨ [M − tν] (48)

≥ aM

a+ ν
− εν(κ2aM + bJT )

a+ ν
,

where the right-hand side of (48) follows by weighting the terms on either side of ∨ by ν/(a+ ν) and a/(a+ ν),
respectively. Condition (18) follows by choosing ε > 0 sufficently small.

4 Stability Results.

Our main result in this section is Theorem 2, which states that the queueing network process associated with
the weighted MaxWeight optimization (6) is positive recurrent under ρ ∈ C.

The proof of Theorem 2 employs the standard tool of fluid models. In Subsection 4.1, we present a set of
fluid model equations that are deterministic analogs of the queueing network equations corresponding to the
switched network. Using the Lyapunov function

h(t) := max
σ∈S

J∑

j=1

Qj(t)

(
σj
ρj
− 1

)
=
∑

j∈J
Qj(t)

(
D′j(t)

λj
− 1

)
, (49)

we show that, for ρ ∈ C, the fluid model is stable. We then follow standard reasoning to show that the positive
recurrence of the queueing network process follows from the stability of the fluid model. Details of the reasoning
are given in the Appendix.

Since the proof of maximum stability is easier for the queueing network process associated with the MaxWeight
optimization in the setting of tandem networks with constant mean work rates, we first prove the corresponding
Theorem 3 in Subsection 4.2. We also state the analogous result, Theorem 4, for networks with only branching,
which is proved in the Appendix. In Subsection 4.3, we prove Theorem 2.
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4.1 Fluid Model.

We employ here the fluid model equations

Q̄j(t) = Q̄j(0) + Āj(t)− D̄j(t) , (50a)

Āj(t) = ajt+
∑

j′∈J
D̄j′(t)Pj′j , (50b)

D̄j(t) = pjΠ̄j(t) (50c)

for t ∈ R+, j, j′ ∈ J , where aj and pj are as in Section 2 . We denote the corresponding fluid model solutions
by (Q̄(t), Ā(t), D̄(t), Π̄(t) : t ≥ 0), where the components are the vectors corresponding to the terms in (50).

As in Section 2, one can interpret Q̄j(t) as the queue size of Queue j, Āj(t) as the cumulative number of
arrivals, D̄j(t) as the cumulative number of departures, and Π̄j(t) as the cumulative amount of service scheduled
at Queue j by time t. One requires that Q̄j(t) be non-negative, that Āj(t), D̄j(t) and Π̄j(t) be non-decreasing
and non-negative, and that Π̄j(t) be Lipschitz continuous; the last implies that D̄j(t), Āj(t) and Q̄j(t) are also
Lipschitz continuous. Lipschitz continuity implies these functions are almost everywhere differentiable.

We further assume Π̄(t) satisfies the weighted MaxWeight optimization

Π̄′(t) ∈ argmax
σ∈S

∑

j∈J
Q̄j(t)

σj
ρj

(51)

corresponding to (6).
We say that a set of fluid model equations is stable if there exists a time t0 > 0 such that, for all initial

states Q̄(0) with |Q̄(0)| ≤ 1, all solutions of the fluid model equations satisfy

Q̄(t) = 0, ∀ t ≥ t0 .

It has been well-known since Dai [7] (see also [4]) that, under appropriate conditions, the stability of a fluid
model will imply positive recurrence of the associated queueing network. In our case, we employ the following
proposition, whose proof is given in Section B of the Appendix.

Proposition 2. Suppose that the weighted MaxWeight fluid model (50)–(51) is stable. Then the corresponding
weighted MaxWeight queueing network given in (6)–(8) is positive recurrent.

In this subsection, we have used the bar superscript to distinguish the fluid model from its associated
queueing model; in the remainder of Section 4, we will remove this superscript from the notation and work
exclusively with the fluid model.

4.2 Stability in Tandem Switched Networks.

A tandem network is a queueing network with a single route, with each queue having a single class (see Figure 4).
Tandem networks are often used as models for manufacturing systems. Theorem 3 shows that, when the mean
work per job required at each queue (i.e., mean job size) is the same at all queues, MaxWeight is maximally
stable.

· · ·a

Figure 4: A typical tandem network with external arrival rate a.

Proof of Theorem 3. The topology of the network and the unit size of the jobs imply, by (10), that ρj = a for
all 1 ≤ j ≤ J ; the condition a < ν is therefore equivalent to assuming ρ ∈ C. To analyze the fluid model defined
in (50)–(51), we employ the Lyapunov function

h(t) =
J∑

j=1

Qj(t)

(
D′j(t)

a
− 1

)
, (52)

which is the restriction of h(t) in (49) under ρj = a, for all 1 ≤ j ≤ J .
Since ρ ∈ C, h(t) is non-negative and is zero only when Q(t) = 0. It follows from the definition of h(t) in

(49) and the Lipschitz continuity of Q(t) that h(t) is also Lipschitz continuous, and is thus almost everywhere
differentiable.
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Most of the proof of the theorem consists of obtaining the upper bound (55) on the left derivative of h′(t)
(which equals the derivative almost everywhere). It follows from (55) that h(t) = 0 for t ≥ Ch(0) for some
constant C. Since h(0) ≤ C ′

∑
j Qj(0) for appropriate C ′, this implies that the fluid model is stable. It then

follows from Proposition 2 that the queueing network is positive recurrent.
To bound the left derivative of h(t), we first observe that, for δ < 0,

h(t+ δ)− h(t)

δ
≤ 1

δ




J∑

j=1

Qj(t+ δ)

(
D′j(t)

a
− 1

)
−

J∑

j=1

Qj(t)

(
D′j(t)

a
− 1

)


=
J∑

j=1

Qj(t+ δ)−Qj(t)
δ

(
D′j(t)

a
− 1

)
.

The above inequality follows from the optimality for MaxWeight of (D′j(t + δ) : 1 ≤ j ≤ J) for queue sizes
(Qj(t+ δ) : 1 ≤ j ≤ J), and the suboptimality of (D′j(t) : 1 ≤ j ≤ J). Taking limits implies that

h′(t) = lim
δ↗0

h(t+ δ)− h(t)

δ
≤ lim
δ↗0

J∑

j=1

Qj(t+ δ)−Qj(t)
δ

(
D′j(t)

a
− 1

)

=
J∑

j=1

Q′j(t)

(
D′j(t)

a
− 1

)
.

Expanding the last term in the above display implies

h′(t) ≤
J∑

j=1

Q′j(t)

(
D′j(t)

a
− 1

)
=

J∑

j=1

Q′j(t)
D′j(t)

a
− (a−D′J(t))

=

J+1∑

j=1

(
D′j−1(t)−D′j(t)

)D′j(t)
a

= −1

a

J+1∑

j=1

[
1

2
D′j(t)

2 −D′j(t)D′j−1(t) +
1

2
D′j−1(t)2

]

= − 1

2a

J+1∑

j=1

(
D′j−1(t)−D′j(t)

)2

, (53)

where we are setting D′0(t) = a and D′J+1(t) = a. The first equality in (53) holds since
∑
j Q
′
j(t) telescopes,

and the third equality employs the identity

J+1∑

j=1

D′j(t)
2 =

J+1∑

j=1

[
1

2
D′j(t)

2 +
1

2
D′j−1(t)2

]
.

To bound the last term in (53), we employ ρ = (a, ..., a) ∈ C and D′(t) ∈ ∂C, which state that the traffic
intensity lies in the interior of the stability region, and that the departure rate vector lies on its boundary
whenever queue sizes are non-zero. In particular, there exists a constant ε > 0, not depending on time, such
that |a−D′j0(t)| ≥ ε for some j0 ∈ {1, . . . , J}, whenever Q(t) 6= 0. It follows that

J+1∑

j=1

(
D′j−1(t)−D′j(t)

)2

≥
j0∑

j=1

(
D′j−1(t)−D′j(t)

)2

≥ ε2

j2
0

≥ ε2

J2
, (54)

since at least one of the differences must be at least ε/j0.
When Q(t) 6= 0, (53) and (54) imply that

h′(t) ≤ − ε2

2aJ2
. (55)

It follows that h(t) = 0 for all t > t0 := 2aJ2h(0)/ε2, which implies that Q(t) = 0 for all t ≥ t0, as desired.

Generalizations of Theorem 3 hold for certain other networks, such as switched networks consisting of parallel
sequences of queues in tandem that do not interact, if one assumes that the mean required work is constant over
queues along individual sequences. Maximum stability of the MaxWeight policy for such switched networks is
a simple application of Theorem 2, since scaling the required work along different sequences does not affect the
associated queueing network.

More significant examples are pure branching switched networks, i.e., open switched networks with a single
arrival stream at each queue. An example is given in Figure 5. As before, the mean job sizes at different queues
are assumed to be equal. The stability result for pure branching networks is stated in Theorem 4 and its proof
is given in the Appendix. Interestingly, the result cannot be derived from Theorem 2.
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a

Figure 5: A pure branching network with external arrival rate a.

Theorem 4. For a pure branching switched network with ρ ∈ C and the same mean work per job required at
each queue, the associated queueing network process Q is positive recurrent under the MaxWeight policy.

4.3 Stability of Weighted MaxWeight.

We now consider the stability of the weighted MaxWeight policy in (6). Since the scheduling policy depends on
ρ, weighted MaxWeight is less applicable in practice than is MaxWeight. Theorem 2 shows, however, that the
queueing network process associated with the weighted MaxWeight policy is positive recurrent under ρ ∈ C,
without any restriction on the network topology or mean workload. The main tool in the proof of Theorem 2 will
be the Lyapunov function h(t) defined in (49), which indicates why the weighting by ρ is needed mathematically
to stabilize MaxWeight in multihop networks.

Much of the work needed for Theorem 2 is done in the following lemma. We write h(t) = f(t) − g(t), and
analyze the two parts separately.

Lemma 8. Define the functions f(t), g(t) and h(t) by

f(t) =
∑

j∈J
Qj(t)

D′j(t)

λj
, g(t) =

∑

j∈J
Qj(t) , and h(t) = f(t)− g(t) .

Then

h′(t) ≤ −1

2

∑

j,j′∈J
λjPjj′

(
D′j(t)

λj
−
D′j′(t)

λj′

)2

− 1

2

∑

j∈J
aj

(
D′j(t)

λj
− 1

)2

− 1

2

∑

j∈J
λjPjω

(
D′j(t)

λj
− 1

)2

.

Proof. Using reasoning similar to that in the proof of Theorem 3, we bound the left derivative of f(t) from
above by first observing that, for δ < 0,

f(t+ δ)− f(t)

δ
≤
∑

j∈J

Qj(t+ δ)−Qj(t)
δ

·
D′j(t)

λj
,

which follows from the optimality for weighted MaxWeight of (D′j(t+δ) : j ∈ J ) for queue sizes (Qj(t+δ) :∈ J )
and the suboptimality of (D′j(t) : j ∈ J ). Taking limits implies that

f ′(t) = lim
δ↗0

f(t+ δ)− f(t)

δ
≤ lim

δ↗0

∑

j∈J

Qj(t+ δ)−Qj(t)
δ

·
D′j(t)

λj
=
∑

j∈J
Q′j(t)

D′j(t)

λj
.

Rewriting this upper bound, we obtain

f ′(t) ≤
∑

j∈J

(
aj +

∑

j′∈J
D′j′(t)Pj′j −D′j(t)

)D′j(t)
λj

=
∑

j∈J
aj
D′j(t)

λj
−
∑

j∈J
λj

(
D′j(t)

λj

)2

+
∑

j,j′∈J
λjPjj′

[
D′j(t)

λj
·
D′j′(t)

λj′

]

=
∑

j∈J
aj
D′j(t)

λj
−
∑

j∈J
λj

(
D′j(t)

λj

)2

+
∑

j,j′∈J
λjPjj′

[
−1

2

(
D′j(t)

λj
−
D′j′(t)

λj′

)2

+
1

2

(
D′j(t)

λj

)2

+
1

2

(
D′j′(t)

λj′

)2
]
. (56)
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The inequality is obtained by applying the identities (50a) and (50b) to the right-hand side of the previous
display, and the two equalities follow by rearranging the terms and applying the identity x y = [x2 + y2 − (x−
y)2]/2 with x = D′j(t)/λj and y = D′j′(t)/λj′ .

We sum the second term in brackets over j′ by introducing Pjω := 1 − ∑j′∈J Pjj′ , then adding and

subtracting the quantity 1
2

∑
j∈J aj

(
D′j(t)/λj

)2
, and relabeling the indexes (j, j′) as (j′, j) in the last term in

the brackets to obtain

f ′(t) ≤
∑

j∈J
aj
D′j(t)

λj
− 1

2

∑

j,j′∈J
λjPjj′

(
D′j(t)

λj
−
D′j′(t)

λj′

)2

− 1

2

∑

j∈J
aj

(
D′j(t)

λj

)2

− 1

2

∑

j∈J
λjPjω

(
D′j(t)

λj

)2

+
1

2

∑

j∈J



−λj +

∑

j′∈J
λj′Pj′j + aj





(
D′j(t)

λj

)2

=
∑

j∈J
aj
D′j(t)

λj
− 1

2

∑

j,j′∈J
λjPjj′

(
D′j(t)

λj
−
D′j′(t)

λj′

)2

− 1

2

∑

j∈J
aj

(
D′j(t)

λj

)2

− 1

2

∑

j∈J
λjPjω

(
D′j(t)

λj

)2

. (57)

For the equality, we note that the term in braces is zero due the traffic equations (9).
On the other hand, since

∑
j′∈J Pjj′ = 1− Pjω,

g′(t) =
∑

j∈J
Q′j(t) =

∑

j∈J

(
aj +

∑

j′∈J
D′j′(t)Pj′j −D′j(t)

)
=
∑

j∈J
aj −

∑

j∈J
D′j(t)Pjω . (58)

Combining (57) with (58) implies that

h′(t) = f ′(t)− g′(t)

≤
∑

j∈J
aj
D′j(t)

λj
− 1

2

∑

j,j′∈J
λjPjj′

(
D′j(t)

λj
−
D′j′(t)

λj′

)2

− 1

2

∑

j∈J
aj

(
D′j(t)

λj

)2

− 1

2

∑

j∈J
λjPjω

(
D′j(t)

λj

)2

−
∑

j∈J
aj +

∑

j∈J
D′j(t)Pjω

=− 1

2

∑

j,j′∈J
λjPjj′

(
D′j(t)

λj
−
D′j′(t)

λj′

)2

− 1

2

∑

j∈J
aj

(
D′j(t)

λj
− 1

)2

− 1

2

∑

j∈J
λjPjω

(
D′j(t)

λj
− 1

)2

;

the equality uses
∑
j∈J aj =

∑
j∈J λjPjω, which is obtained by summing (9) over j. This gives the desired

expression.

We now prove Theorem 2. The proof is similar to that of Theorem 3.

Proof of Theorem 2. We define h(t) as in (49) and Lemma 8. Provided Q(t) 6= 0, the weighted MaxWeight
schedule (σj : j ∈ J ) belongs to the boundary of the set < S >, whereas the vector ρ does not. Therefore,
h(t) > 0 whenever Q(t) 6= 0 and, for some fixed ε (depending only on ρ and S), there exists j∗ such that

D′j∗(t)

λj∗
− 1 > ε . (59)

There exists a path j1, . . . , jL = j∗, with L ≤ |J | and satisfying aj1 > 0 and Pj`j`+1
> 0 for ` = 1, . . . L− 1.

Consequently, by (59),

either

∣∣∣∣∣
D′j`∗−1

(t)

λj`∗−1

−
D′j`∗ (t)

λj`∗

∣∣∣∣∣ >
ε

|J | for some `∗ ∈ [2, j∗] , or

∣∣∣∣
D′j1(t)

λj1
− 1

∣∣∣∣ >
ε

|J | . (60)

Together with Lemma 8, (60) implies that, for appropriate c > 0 and all t satisfying Q(t) 6= 0,

h′(t) ≤ −c ε2

|J |2 . (61)
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Figure 6: A multiclass switched queueing network. On the right is the projection on the space (σA0
, σA1

) ∈ R2

of the set < S > given in (62).

Recall that h(t) ≥ 0, since ρ ∈ C, and h′(t) ≤ 0 by Lemma 8. Moreover, h(0) is uniformly bounded for
all Q(0) satisfying

∑
j Qj(0) = 1. For such Q(0), (61) implies a uniform bound t0 exists with h(t) = 0 for all

t ≥ t0. Consequently, Q(t) = 0 for all t ≥ t0. By Proposition 2, the weighted MaxWeight queueing network is
therefore positive recurrent.

5 Stability and Instability in Multiclass Switched Networks.

The networks that we have considered so far have been single class. In this section, we discuss results on the
stability of MaxWeight for multiclass switched queueing networks.

A multiclass queueing network is a network that permits more than one class of job at a queue; we label the
set of classes belonging to a queue j by Cl(j) and by K the set of all classes of jobs. Different classes at a queue
can differ in the service times of their jobs and in the routes the jobs might take after service is completed at
the queue.

Employing definitions and notation that are analogous to those in Section 2, we assume that the number of
external arrivals of class k at each time are independent identically distributed random variables with mean ak.
A class k job has a size that is geometrically distributed on Z+ with parameter pk. (After receiving one unit
of service at queue j, a class k job, k ∈ Cl(j), has probability of departure pk.) When a class k job is served,
the job is routed to class k′ with probability Pkk′ and otherwise leaves the network. The total arrival rate λk
of jobs at class k is given by the solution to the traffic equations

λk = ak +
∑

k′∈K
λk′Pk′k , k ∈ K .

The traffic intensity is ρ = (ρj : j ∈ J ), where ρj =
∑
k∈Cl(j) ρ̃k and ρ̃k = λk/pk. The scheduling set

S ⊂ Z|J |+ is defined as in Section 1, with the subcritical region C being the interior of < S > and the associated
switched queueing network process Q(t) being subcritical if ρ ∈ C. The MaxWeight policy is again given in
display (1), where Qj =

∑
k∈Cl(j) Q̃k is the total number of jobs at queue j, with Q̃k being the number of jobs

in class k, and σj =
∑
k∈Cl(j) σ̃k is the work devoted to queue j, with σ̃k being the work devoted to class k.

Unlike single class switched queueing networks, the order of service of jobs in a queue can influence the
stability of a multiclass switched network. In Subsection 5.1, we will assume the policy is first-in, first-out
(FIFO), with jobs being served at a queue in the order of their arrival at their current class. We will furthermore
assume that the switched queueing network processes are of Kelly type, i.e., the mean service times satisfy
mk = mk′ for all classes k, k′ ∈ Cl(j), j ∈ J . We present an example (without proof) of such a subcritical
switched queueing network for which the associated queueing network process is transient. This behavior is
distinct from that for the ProportionalScheduler policy in Section 6 and for queueing network processes without
switching, where subcritical FIFO queueing networks of Kelly type must be positive recurrent. The example is
depicted in Figure 6.

In Subsection 5.2, we will consider the policy that discriminates between job classes within a queue by first
serving the class with the greatest weighted number of jobs. Reasoning similar to that in the proof of Theorem
2 shows that the subcritical switched queueing network process for this non-FIFO policy is always positive
recurrent.

5.1 A Family of Unstable Multiclass Switched Queueing Networks of Kelly Type.

For the multiclass switched queueing network in Figure 6, jobs arrive at rate 1 at the single class queues A0

and B0, and require 1 unit of service at each of these queues and 1 unit of service at each of the K classes
of the queues A1 and B1. So, the corresponding switched queueing network process Q(t) is of Kelly type;
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moreover, ρ̃k = 1 for all k. We choose ε > 0 so that K = (1− 2ε)/ε2 and denote the K classes at A1 and B1 by

A(1)
1 , . . . ,A(K)

1 and B(1)
1 , . . . ,B(K)

1 , respectively.
The set S of feasible service options is defined by

εσA0
+ ε2σA1

≤ 1 and εσB0
+ ε2σB1

≤ 1 . (62)

It is easy to check that ρ ∈ C for the above switched network. On the other hand, for ε close to 0, the process
Q(t) will be transient. We do not prove this assertion here, but the proof is similar to that for the family of
networks in Theorem 1.

REMARKS. The networks in Figure 1 and Figure 6 are both modeled after the Rybko–Stolyar network; the
Lu–Kumar reentrant line could be employed in an analogous manner in each case. An example of a subcritical
single class switched queueing network that is unstable is obtained by modifying Figure 6 by “collapsing” the
K classes in A1 and B1 into single classes having geometric service times with mean m = (1 − 2ε)/ε2, with S
again being given by (62). The queueing network in Figure 6 and its collapsed analog will evolve similarly.

Figure 7: A simulation of the net-
work depicted in Figure 6 for parame-
ters a = 1, ε = 0.1791 and K = 20.
The initial value is QA0

(0) = 55, with all other
queues empty.

Figure 8: A simulation of the “collapsed” analog of
the network simulated in Figure 7 for the same pa-
rameters, with m = 20 (= K). The initial value is
the same, with QA0(0) = 55 and all other queues
empty.

Figure 7 shows a simulation for the switched queueing network in Figure 6. The simulation is given for
parameters a = 1, ε = 0.1791 and K = 20. These simulations strongly suggest that the queueing network is
unstable.

Figure 8 shows the evolution of the collapsed analog of the network simulated in Figure 7. The mean service
times in A1 and B1 are equal to m = 20. In this case as well, simulations strongly suggest that the single class
switched queueing network is unstable.

For the reader interested in more carefully comparing Figure 7 and Figure 8, note that the vertical scale in
Figure 7 is approximately double that in Figure 8, and consequently the loss of jobs from the A1 and B1 queues
past their peak sizes during a cycle is also approximately twice as quick. Both are due to the much shorter
amount of service required by a job for individual classes of the A1 and B1 queues in the multiclass network
relative to the service required by a job of the A1 and B1 queues in the collapsed analog (1 unit of time versus
(1 − 2ε)/ε2 units of time). This makes it possible for large numbers of partially served jobs in the multiclass
network to quickly complete their service at the A1 and B1 queues.

5.2 A Family of Non-FIFO Stable Multiclass Switched Networks.

In this subsection, we show positive recurrence for multiclass switched networks under a modification of the
weighted MaxWeight policy. A severe drawback of this approach is that knowledge of the number of jobs in
each class, rather than in each queue, is required.

The largest-class weighted MaxWeight optimization problem is given by:

maximize
∑

j∈J
Q∗jσj over σ ∈ S , (63)

where
Q∗j := max

k∈Cl(j)
Q̃k/ρ̃k . (64)

This optimization maximizes the objective function with respective to the weighted largest class Q∗j at queue j,
rather than with respect to Qj . The entire work at queue j is then devoted to jobs of the class k ∈ Cl(j) where

Q̃k/ρ̃k is maximized.
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Theorem 5. Consider the largest-class weighted MaxWeight policy for a multiclass switched network. If ρ ∈ C,
then the associated queueing network process Q is positive recurrent.

Proof. The result is an elementary consequence of Theorem 2. Reinterpret each class k, k ∈ K, as an individual
queue within a single class switched queueing network. The routing of jobs is given, as before, by the matrix
(Pk1k2)k1,k2∈K. The set of feasible schedules is given by σ̃ ∈ S̃, σ̃ = (σ̃1, . . . , σ̃K), where σ̃k is constrained by
σj ∈ S, with S is as in (63), and by σj =

∑
k∈Cl(j) σ̃k.

The weighted MaxWeight policy (6) for this single class switched queueing network is the same as the policy
(63)–(64) for the original multiclass switched queueing network, and therefore the two policies generate the same
queueing network process, after the above reinterpretation of classes as queues. The desired result therefore
follows by applying Theorem 2.

6 Comparison of MaxWeight with the ProportionalScheduler Pol-
icy.

The ProportionalScheduler Policy is defined in the same way as MaxWeight, but with the optimization problem
(1) replaced by

maximize
∑

j∈J
Qj log σj over σ ∈< S > , (65)

where < S > is the convex hull of S. When such a solution is a weighted average of schedules in S, a schedule is
chosen at random according to these weights. It was shown in [5] that the ProportionalScheduler is maximally
stable for multiclass multi-hop switched queueing networks of Kelly type; it is consequently also maximally
stable for single class multi-hop switched queueing networks.

Why is maximum stability so much more robust for the ProportionalScheduler than for MaxWeight? This
can be paraphrased as asking why no terms corresponding to ρj in the weighted MaxWeight optimization (6)
are needed in the ProportionalScheduler setting (65) for general mean service times mj for fixed λj .

To explain why the terms ρj are not needed in (65), we will consider why the ProportionalScheduler is
maximally stable for arbitrary choices of mj , given that it is maximally stable for mj ≡ 1. For this, we compare
the optimization problem for mj ≡ 1 on < S >, with the optimization problem for arbitrary mj on < Sm >,
where

Sm := {(m1σ1, . . . ,m|J |σ|J |) : σ ∈ S} for σ = (σ1, . . . , σ|J |) , (66)

i.e., S is stretched by the factor mj in each coordinate j. Since, for σmj := mjσj ,

∑

j∈J
Qj log σmj =

∑

j∈J
Qj log σj +Q(m) ,

where Q(m) :=
∑
j∈J Qj logmj does not depend on σ, it is easy to check that σ̂m = (σ̂m1 , . . . , σ̂

m
J ) maximizes∑

j∈J Qj log σmj over σm ∈< Sm > exactly when σ̂ = (σ̂1, . . . , σ̂J ) maximizes
∑
j∈J Qj log σj over σ ∈< S >.

On the other hand, service at each queue j is completed at rate 1/mj , per unit work, for the queueing
network process Qm(t). Since σ̂mj /σ̂j = mj , the queueing network processes Q(t) and Qm(t) complete service
at the same rate. Consequently, Q(t) and Qm(t) will have the same evolution, except for the presumably minor
difference due to the different discretizations needed for choosing a schedule on Sm as opposed to S, and hence
both or neither process should be positive recurrent. So, maximal stability in the mj ≡ 1 setting should imply
maximal stability for arbitrary mj .

In contrast, the positive recurrence of a subcritical switched queueing network process under MaxWeight
depends on the choice of mj . For example, the switched queueing network in Theorem 1 satisfying (4) and
(5) is transient. Applying (66) to scale the set S and mean service times mj , so that ρj ≡ 1, now produces
a switched queueing network process that is positive recurrent under MaxWeight, by Theorem 2. This scaling
also explains the role the terms ρj play in the weighted MaxWeight optimization (6), since scaling both S and
the objective function by ρj produces the same solutions for the optimization problem as without this scaling.
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A Convergence to Fluid Models.

In Proposition 3, we derive the fluid model equations, given in (50)–(51) of Section 4.1, from scaled limits of the
queueing network equations of switched queueing networks, operating under the weighted MaxWeight policy.
Our approach follows the standard fluid limit approach in [4] and [7], and is similar to that in Appendix C of
[5].

Let Qc = (Qc(t) : t ∈ Z+), c ∈ N, be a sequence of weighted MaxWeight queueing network processes;
we employ notation Acj , D

c
j , E

c
j , Q

c
j , S

c
j , Φcjj′ and Πc

j , for j, j′ ∈ J , analogous to that introduced in Section
2. The evolution of the processes is assumed to be identical, except for their initial states, which satisfy
c = |Qc(0)| = ∑j∈J Q

c
j(0), and the processes are coupled on the same probability space, with external arrival,

job size, and routing processes each being the same for different c:

Ecj (t) = Ej(t), Scj (t) = Sj(t), and Φcjj′(t) = Φjj′(t), j, j′ ∈ J , c ∈ N .

For j, j′ ∈ J , we introduce the scaled processes

Ācj(t) =Acj(ct)/c, D̄c
j(t) = Dc

j(ct)/c, Ēcj (t) = Ecj (ct)/c, Q̄cj(t) = Qcj(ct)/c , (67a)

S̄cj (t) = Scj (ct)/c, Φ̄cjj′(t) = Φcjj′(ct)/c, Π̄c
j(t) = Πc

j(ct)/c, (67b)

for t ∈ {0, c−1, 2c−1, 3c−1, ...}, and we interpolate linearly for other values of t ∈ R+.
As c→∞, these scaled processes converge to the fluid model equations (50)–(51) in the following sense:

Proposition 3. There exists a set G with P(G) = 1 such that, for all ω ∈ G, any scaled subsequence
(Ācij , D̄

ci
j , Ē

ci
j , Q̄

ci
j , S̄

ci
j , Φ̄

ci
jj′ , Π̄

ci
j : j, j′ ∈ J ), c1 < c2 < . . ., of switched networks under the weighted MaxWeight

policy, contains a further subsequence that converges uniformly on compact time intervals. Moreover, any such
limit (Āj , D̄j , Ēj , Q̄j , S̄j , Φ̄jj′ , Π̄j : j, j′ ∈ J ) is a Lipschitz continuous process satisfying the weighted MaxWeight
fluid model equations (50)–(51).

Note that, since almost sure convergence implies convergence in distribution, Proposition 3 implies tight-
ness/relative compactness and characterizes the weak convergent limits of the sequence {(Ācj , D̄c

j , Ē
c
j , Q̄

c
j , S̄

c
j , Φ̄

c
jj′ , Π̄

c
j :

j, j′ ∈ J )}c∈N.
The proof of Proposition 3 is straightforward with the exception of showing the subsequential limits of

(Π̄c, Q̄c) satisfy (51), which is rather tedious.

Proof of Proposition 3. In order to demonstrate Proposition 3, we recall that, for each j, j′ ∈ J ,

(Ej(t)− Ej(t− 1) : t ∈ N), (Sj(t)− Sj(t− 1) : t ∈ N) , and (Φjj′(t)− Φjj′(t− 1) : t ∈ N)

are collections of i.i.d. random variables with respective means aj , p
−1
j and Pjj′ . Therefore, by the (Functional)

Strong Law of Large Numbers, on a set G1 with P(G1) = 1,

Ēcj (t)→ ajt , S̄cj (t)→ pjt , and Φ̄cjj′(t)→ Pjj′t (68)

as c→∞, for j, j′ ∈ J , with convergence being uniform on compact time intervals.
By the Arzelà-Ascoli Theorem (cf. [3]), any sequence of equicontinuous functions X̄ci(t) on [0, T ], T ∈ (0,∞),

with supci |X̄ci(0)| < ∞, has a converging subsequence with respect to the uniform norm. We will show that
the sequences {(Ācj , D̄c

j , Ē
c
j , Q̄

c
j , S̄

c
j , Φ̄

c
jj′ , Π̄

c
j : j, j′ ∈ J )}c∈N satisfy both conditions for any ω ∈ G1.

Since |Q̄ci(0)| = 1 and the other functions are initially 0, the supremum is clearly bounded. In order to
show equicontinuity, we first note that the sequences Ēcj , S̄

c
j , Φ̄cjj′ convergence uniformly on compact sets by

the Functional Strong Law, and so these functions are equicontinuous.
To show equicontinuity for the remaining functions, note that Dc

j and Πc
j both have bounded increments, and

so their rescaled analogs are uniformly Lipschitz continuous; this implies equicontinuity of the corresponding
sequences. Since Q̄cj and Ācj are the sum of a bounded number of such equicontinuous functions, they too
are equicontinuous. Therefore, since the conditions of the Arzelà-Ascoli Theorem are met for ω ∈ G1, every
subsequence {(Ācij , D̄ci

j , Ē
ci
j , Q̄

ci
j , S̄

ci
j , Φ̄

ci
jj′ , Π̄

ci
j : j, j′ ∈ J )}c has a further subsequence that converges uniformly

on [0, T ]. Moreover, since these sequences of functions are uniformly Lipschitz, so are their limits.
We need to show that the fluid model equations in (50)–(51) are satisfied for all such limits. The equations

in (50) follow directly from the queueing network equations in (7) and from (68). So, it remains to show that
(51) holds.

For ω ∈ G1, consider a sequence (Π̄ci , Q̄ci) that converges uniformly on compact sets to (Π̄, Q̄). In order

to show (Π̄, Q̄) satisfies (51), we first introduce Π̂c
j(t), where Π̂c

j(i/c) = 1
c

∑i
`=1 σj(Q

c(`)), for i ∈ Z+, and

interpolate for other values of t. We note that, for t > s, Π̄c
j(t) − Π̄c

j(s) ≤ Π̂c
j(t) − Π̂c

j(s), with the difference
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only being nonzero due to underutilization of work capacity at j, which can only occur when Q̄cj(u) < σmax for
some u ∈ [s− 1/c, t], where σmax is the maximal value attainable by any coordinate of σ in S. We will find it

more convenient to work with Π̂ than with Π̄.
It follows from the definition of Π̂c that (Π̂c(t)−Π̂c(s))/(t−s) ∈< S̄ >. Since Π̄c(t)−Π̄c(s) ≤ Π̂c(t)−Π̂c(s),

the above limit Π̄ satisfies
Π̄(t)− Π̄(s)

t− s ∈< S̄ > for any t > s.

So, Π̄′(t) ∈< S̄ > wherever the derivative exists.
We still need to show that Π̄′(t) solves the MaxWeight optimization over < S̄ >. We will employ the limit

∫ t

s

Q̄c(u)

ρ
· Π̂c(du)−

∫ t

s

Q̄c(u)

ρ
· Π̄c(du) −−−→

c→∞
0 for any t > s , (69)

where Q
ρ :=

(
Qj
ρj

: j ∈ J
)

. In order to show (69), we observe that

0 ≤
∫ t

s

Q̄cj(u)Π̂c
j(du)−

∫ t

s

Q̄cj(u)Π̄c
j(du)

≤ 1

c2

dcte∑

i=1

[
Qcj(i) + aj + |J |σmax

]
σj(Q

c(i))− 1

c2

dcte∑

i=1

Qcj(i)
[
σj(Q

c(i)) ∧Qcj(i)
]

≤ 1

c2

dcte∑

i=1

Qcj(i)
[
σj(Q

c(i))−Qcj(i)
]
I[Qcj(i) < σj(Q

c(i))] + (ajσmax + |J |σ2
max)2t/c

≤ (σ2
max + ajσmax + |J |σ2

max)2t/c −−−→
c→∞

0 ,

from which (69) follows. The quantity aj + |J |σmax on the second line is due to the linear interpolation used
to define Q̄cj(u), and the first term on the last line includes a factor σmax that bounds Qcj(i) on the indicator
set of the previous line.

By the optimality of the weighted MaxWeight policy, for any policy σ̄ ∈ S and t > s,

∫ t

s

Q̄c(u)

ρ
· Π̂c(du) ≥ 1

c2

bctc∑

i=bcsc+1

Qc(i)

ρ
· σ(Qc(i))− βs,t

c
≥ 1

c2

bctc∑

i=bcsc+1

Qc(i)

ρ
· σ̄ − βs,t

c
; (70)

the term βs,t := |J |σ2
max(t− s)/ρmin is due to linear interpolation, where ρmin := minj∈J ρj . We claim that

∫ t

s

Q̄c(u)

ρ
· Π̂c(du) −−−→

c→∞

∫ t

s

Q̄(u)

ρ
· Π̄(du) (71)

and

1

c2

bctc∑

i=bcsc+1

Qc(i)

ρ
· σ̄ −−−→

c→∞

∫ t

s

Q̄(u)

ρ
· σ̄ du . (72)

The limit (72) follows immediately from the uniform convergence of Q̄c to Q̄ on compact sets. To show (71),
we note that, by the uniform convergence on compact sets of Q̄c to Q̄ and Π̄c

j to Π̄j ,

∣∣∣∣
∫ t

s

[Q̄c(u)

ρ
− Q̄(u)

ρ

]
· Π̄c(du)

∣∣∣∣ ≤
|J |σmax

ρmin
||Q̄c − Q̄||∞(t− s) −−−→

c→∞
0 (73)

and ∫ t

s

Q̄(u)

ρ
· Π̄c(du) −−−→

c→∞

∫ t

s

Q̄(u)

ρ
· Π̄(du) , (74)

where || · ||∞ denotes the uniform norm over all coordinates. The limit (71) is an immediate consequence of
(69), (73), and (74).

It follows immediately from (70)–(72) that, for any policy σ̄ ∈ S and t > s,

∫ t

s

Q̄(u)

ρ
· σ̄du ≤

∫ t

s

Q̄(u)

ρ
· Π̄(du) . (75)

Differentiating both sides of (75) with respect to t implies that Q̄(t)
ρ · σ̄ ≤ Q̄(t)

ρ · Π̄′(t), wherever Π̄′(t) exists.

Since Π̄′(t) ∈< S >, it follows that Π̄′(t) ∈ argmaxσ∈S
∑
j∈J Q̄j(t)σj/ρj , as desired.
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B Fluid Stability Implies Positive Recurrence.

Here, we demonstrate Proposition 2 of Section 4.1. As mentioned in that subsection, the use of fluid stability
is a standard approach for showing positive recurrence of queueing networks.

Proof of Proposition 2. One can check that, for each t ≥ 0, the sequence of queue sizes {|Q̄c(t)|}c∈N of the
scaled proportional switched networks in Proposition 3 is uniformly integrable. This follows quickly from the
inequality

|Q̄c(t)| =
∑

j∈J
Q̄cj(t) ≤

∑

j∈J

Qcj(0)

c
+
∑

j∈J

Ecj (t)

c
, (76)

since Ecj (t) is a sum of i.i.d. random variables with finite mean (see, e.g., [4, Lemma 4.13, (4.81)]).

On the other hand, by Proposition 3, on a set G with P (G) = 1, every subsequence of Q̄c(t) has a further
subsequence that converges uniformly on compact time intervals to a fluid model solution Q(t) of (50)–(51),
with |Q(0)| = 1. Since the fluid model is assumed to be stable, all fluid model solutions with |Q(0)| = 1 satisfy
|Q(t)| = 0 for t ≥ t0, with t0 not depending on the particular fluid model solution. Reapplying this reasoning
along any subsequence of |Q̄c(t0)| shows that, in fact, |Q̄c(t0)| converges to 0 along the entire sequence.

By the above uniform integrability and almost sure convergence results on |Q̄c(t0)|, it follows that

lim
c→∞

E|Q̄c(t0)| = 0 ,

which implies E|Qc(ct0)| ≤ c/2 for large enough c. Since the set of values in the state space satisfying {Q0 :
|Q0| ≤ c} is finite for all c, one can apply a generalized version of Foster’s criterion to conclude that the process
Q(t) is positive recurrent. (See Robert [16, Theorem 8.6]; or, in the more general continuous time setting, [4,
Proposition 4.5].) This concludes the proof of Proposition 2.

C Positive Recurrence in Switched Networks with Pure Branching.

Here, we prove Theorem 4, which demonstrates positive recurrence for switched networks with pure branching.
The proof employs fluid models, as well as a Lyapunov function g(t) that is similar to the Lyapunov function
h(t) of Theorems 2 and 3. Interestingly, this choice of Lyapunov function does not work for general network
topologies, unlike the Lyapunov function h(t) (although it is equivalent to h(t) in the restricted setting of
tandem networks in Theorem 3). Conversely, the Lyapunov function h(t) cannot be employed for Theorem 4.

In the proof of the theorem, b(j) ∈ J denotes the queue preceding the queue j, provided such a queue exists,
and J b ⊂ J denotes those queues j for which b(j) exists.

Proof of Theorem 4. We define the following Lyapunov function

g(t) := max
σ∈S

∑

j∈J
Qj(t) (σj − ρj) =

∑

j∈J
Qj(t)

(
D′j(t)− λj

)
,

where ρj is the traffic intensity at queue j, λj is the total arrival rate there, and Qj(t) and Dj(t) satisfy the
fluid model equations (50)–(51). Because ρ ∈ C is assumed, g(t) > 0 when Q(t) 6= 0.

As in Theorems 2 and 3, one can show that

g′(t) ≤
∑

j∈J
Q′j(t)

(
D′j(t)− λj

)
. (77)

The right-hand side of (77) can be bounded as follows:

∑

j∈J
Q′j(t)

(
D′j(t)− λj

)
=
∑

j∈J

(
A′j(t)−D′j(t)

)(
D′j(t)−A′j(t) +A′j(t)− λj

)

=− 1

2

∑

j∈J

(
A′j(t)−D′j(t)

)2

− 1

2

∑

j∈J

(
D′j(t)− λj

)2

+
1

2

∑

j∈J

(
A′j(t)− λj

)2

=− 1

2

∑

j∈J

(
A′j(t)−D′j(t)

)2

− 1

2

∑

j∈J

(
D′j(t)− λj

)2

+
1

2

∑

j∈J b
P 2
b(j)j

(
D′b(j)(t)− λb(j)

)2

=− 1

2

∑

j∈J

(
A′j(t)−D′j(t)

)2

− 1

2

∑

j∈J

[
1−

∑

j′:b(j′)=j

P 2
jj′

](
D′j(t)− λj

)2

≤− 1

2

∑

j∈J

(
A′j(t)−D′j(t)

)2

.
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In the preceding display, the first equality follows from the definition of Qj and the third equality employs

A′j(t) = D′b(j)(t)Pb(j)j , λj = λb(j)Pb(j)j ;

note that, if no queue precedes j, then j instead has exogenous arrivals, and so A′j(t) = λj . Combining the
above inequalities yields the bound

g′(t) ≤ −1

2

∑

j∈J

(
A′j(t)−D′j(t)

)2

. (78)

The remainder of the argument proceeds similarly to that for Theorem 3. We first note that, if |A′j(t) −
D′j(t)| ≤ ε for all j ∈ J , then |D′j(t) − λj | ≤ |J |ε for all j, since there is a sequence of queues at most |J |
long connecting any queue with the external arrival stream. On the other hand, (D′j(t) : j ∈ J ) belongs to the
boundary of the set < S >, whereas ρ does not. So |D′j(t) − λj | > |J |ε for some ε > 0. Therefore, for some
j ∈ J ,

|A′j(t)−D′j(t)| > ε. (79)

Together with (78), (79) implies that, for all times t with Q(t) 6= 0,

g′(t) ≤ −1

2
ε2.

It immediately follows that, for t ≥ t0 := 2|J |g(0)/ε2, g(t) = 0. HenceQ(t) = 0, which implies the corresponding
fluid model is stable. By Proposition 2, the switched queueing network is therefore positive recurrent.

D Transience of a Subcritical LQFS Multiclass Queueing Network.

A multiclass queueing network is a network that permits more than one class of job at a station; this terminology
was popularized by Harrison and is now standard in the literature (see, e.g., [4]). In the present context, we
equate “class” with “queue” and “station” with “component”, and employ terminology associated with queue
and component that has been used throughout this paper.

Here, we briefly discuss the instability of multiclass queueing networks with the Longest-Queue-First-Served
(LQFS) policy. As the name suggests, over each unit of time, the policy selects the longest queue at each station
and devotes the maximal allowed amount of service to these queues. (In the case of a tie among classes, any of
these classes may be chosen.)

The LQFS policy can be rephrased in terms of the MaxWeight optimization problem,

maximize
J∑

j=1

Qjσj over σ ∈ S , (80)

where the set of feasible schedules σ ∈ S is given by
∑J
j=1 σj ≤ 1, with σj being the amount of work that

can be applied at class j. The LQFS policy can therefore be investigated within the framework of the current
paper; for example, Theorems 2 and 3 can be applied.

We present here a subcritical, but transient, LQFS queueing network whose behavior mimics that of the
example in Figure 1 and Theorem 1 of a subcritical transient switched network. For our example, we assume
batch service, with νj ∈ Z+ class j jobs capable of being served in unit time. Rescaling the amount of work
required for each job by νj , so that each job now requires one unit of service, the LQFS policy solves the
optimization problem

maximize
J∑

j=1

Qj
σj
νj

over σ ∈ S ′ , (81)

where the set of feasible schedules σ ∈ S ′ is now given by
∑J
j=1 σj/νj ≤ 1. The policy in (81) is a weighted

MaxWeight policy, although with different weighting than in (6).
Our example adopts the framework of Figure 1, with components A and B, queues Aj and Bj , j = 0, . . . , J ,

and parameters a, ν, and J that satisfy all of the assumptions in the paragraph containing (2)–(4) and in its
preceding paragraph. In particular, (81) in this framework becomes

maximize QA0
σA0

+
1

ν

J∑

j=1

QAjσAj and QB0
σB0

+
1

ν

J∑

j=1

QBjσBj , (82)

where the set S ′ of feasible schedules now satisfies (3). The condition (4) implies that the traffic intensity
ρ ∈ C, and also that the corresponding LQFS queueing network is subcritical in the standard sense of multiclass
queueing networks (i.e., the traffic intensity at each station is < 1).

Theorem 6 is the analog of Theorem 1.
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Theorem 6. Consider the switched network represented by Figure 1 that solves the optimization problem in
(82) and (3). Assume that (4) is satisfied and that

1 < ν < J, and
J

2J − 1
< a < 1− (J + 1)(J + ν)

νJ2 + J + ν
. (83)

Then ρ ∈ C and the associated queueing network process Q is transient. It follows immediately that the
corresponding multiclass LQFS queueing network is both subcritical and transient.

It is easy to choose a, ν, and J so that both (4) and (5) are satisfied. For instance, one can choose a = 7/12,
ν = 6, and J = 30, as below Theorem 1.

We note the following comparison of the lower bound for a given by (83) with that of (5) of Theorem 1, for
ν = 6 and J = 30. The lower bound in (83) is 30/59, whereas the corresponding lower bound in (5) is 30/54.
This lower value of the bound in (83), as compared with that in (5), is not surprising since, according to Theorem
2 and (6), the “correct” denominators ρj for σAj and σBj , for maximal stability, are ρ0 = 1 and ρj = 1/30,
for j = 1, . . . , 30 (after factoring out a), whereas the corresponding denominators in the MaxWeight setting (1)
are both 1, and the corresponding denominators in (82) are 1 and 6. Hence, the ratios of the denominators for
the terms with j = 0 and j 6= 0 in the three cases are 30, 1, and 1/6, i.e., the choice of denominators in (82) is
further than in (1) from the correct choice, and so one should expect the lowest value of a at which transience
of the corresponding process occurs to be less than in (1).

The proof of Theorem 6 is essentially identical to that of Theorem 1. One employs Lemma 1 and Proposition
D (below), which replaces Proposition 1. The statements in Propositions 1 and D are the same except for minor
changes. In Proposition D, in lieu of (13), we will employ (13′),

QΣ
B(0) = M , (13a′)

QΣ
A(0) ≤ εM/ν , (13b′)

∣∣QB0(0)−QBj (0)
∣∣ ≤ εM , for j = 1, ..., J . (13c′)

(The balancing condition (13c′) replaces that in (13c).) In Proposition D, in lieu of (11), we will employ (11′),

1 < γ <
a

1− a+ a/J
, (11′)

and will again set M ′ = γM . The stopping time U is again defined as in (21), but V is modified:

U = min
{
t ≥ 0 : QΣ

B(t) ≤ ν2
}
∧ T , V = min

{
t ≥ U : QA0

(t) ≤ max
j=1,...,J

QAj (t)
}
∧ T , (21′)

where T is given by (14).
Proposition 1′. Assume (4) and (83), and assume (13 ′) with M satisfying (12). Then, on the event GM ,

QΣ
A(V ) ≥M ′, (17a′)

QΣ
B(V ) ≤ εM ′/ν, (17b′)

∣∣QA0
(V )−QAj (V )

∣∣ ≤ εM ′, (17c′)

for j = 1, ..., J . Moreover, for all times 0 ≤ t ≤ V ,

QΣ
A(t) +QΣ

B(t) ≥ 1

2

a

a+ ν
M. (18′)

Given Lemma 1 and Proposition D, the proof of Theorem 6 is identical to that of Theorem 1.
The demonstration of Proposition D is very similar to that of Proposition 1, and employs a sequence of

lemmas that are nearly identical to Lemma 2 – Lemma 7, which we label here as Lemma 2′ – Lemma 7′. The
statement of each of the new lemmas is identical to that of the corresponding lemma employed for Proposition
1, with the exception of Lemmas 3′, 4′, and 7′, where the conditions (26), (32), and (40)–(41) are replaced by

AA0
(t) ≥ ν(1− a)

(
1− ν

ν + J

)
t− εκ1M , (26′)

QA0(t) > max
j=1,...,J

QAj (t) , (32′)

and
∣∣∣∣V −

JM

J + 1
· 1

1− a+ a/J

∣∣∣∣ ≤ εκ3M , (40′)

QΣ
A(V ) ≥ aM

1− a+ a/J
− εκ4M . (41′)
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The proof of Lemma 6′ and the completion of the proof of Proposition D differ slightly, although their statements
are the same as for the corresponding results in Section 3. The statements and proofs of the other lemmas are
identical to those of their corresponding lemmas in Section 3. The statements and proofs of all of the lemmas
are given in detail in [6].
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Addendum to “Stability and Instability of the MaxWeight Policy”

Bramson, D’Auria, Walton

January 20, 2021

In the paper “Stability and Instability of the MaxWeight Policy” [BDW19], we stated and proved Theorem
6, which provides an example of a multiclass queueing network with the Longest-Queue First-Served (LQFS)
policy that is both subcritically loaded and transient. The proof required only minor modification from the
proof of Theorem 1 in that paper, and the necessary modifications for LQFS were given in Appendix D. Here,
we present additional details to the proof of Theorem 6, including spelling out the statements and proofs of
Lemmas 3′, 4′, 6′, 7′, and Proposition 1′ of that paper. As mentioned in [BDW19], these proofs are very
similar to those of the corresponding Lemmas 3, 4, 6, 7, and Proposition 1. We omit here the statements and
proofs of Lemmas 2′ and 5′, which are identical to those of Lemmas 2 and 5.

All display numbers that are presented here without a prime (′) refer to displays contained in [BDW19],
whereas displays with a prime either refer to displays within Appendix D of [BDW19] or are the analogs of
corresponding displays in [BDW19] without the primes.

For the convenience of the reader, we recall the following displays from Appendix D:

1 < γ <
a

1− a+ a/J
, (11′)

QΣ
B(0) = M , (13a′)

QΣ
A(0) ≤ εM/ν , (13b′)

∣∣QB0
(0)−QBj

(0)
∣∣ ≤ εM , for j = 1, ..., J , (13c′)

U = min
{
t ≥ 0 : QΣ

B(t) ≤ ν2
}
∧ T , V = min

{
t ≥ U : QA0

(t) ≤ max
j=1,...,J

QAj
(t)
}
∧ T . (21′)

We first restate Proposition 1′, and then state and proof Lemmas 3′, 4′, 6′ and 7′, as well as the conclusion
to the proof of Proposition 1′.

Proposition 1′. Assume (4) and (83), and assume (13 ′) with M satisfying (12). Then, on the event GM ,

QΣ
A(V ) ≥M ′, (17a′)

QΣ
B(V ) ≤ εM ′/ν, (17b′)

∣∣QA0(V )−QAj (V )
∣∣ ≤ εM ′, (17c′)

for j = 1, ..., J . Moreover, for all times 0 ≤ t ≤ V ,

QΣ
A(t) +QΣ

B(t) ≥ 1

2

a

a+ ν
M. (18′)

Lemma 3′. Assume (4), and assume (13 ′) with M satisfying (12). On the event GM , there exists a constant
κ1 > 0 such that, for t ≤ U ,

AA0(t) ≥ ν(1− a)

(
1− ν

ν + J

)
t− εκ1M .

Proof. We first demonstrate the inequalities (1′), (3′), and (4′), which will be used to show (5′). The inequality
(5′) will then be rearranged to complete to proof.

We note that, since Component B is not empty over [0, U ] and the departure of a job at any Queue B1, ...,BJ
corresponds to an arrival at Queue A0,

DB0
(t) +

1

ν
AA0

(t) = DB0
(t) +

1

ν

J∑

j=1

DBj
(t) = t , for t ≤ U . (1′)
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Let S be the last time up to time t at which the Queue B0 is served, that is, S = max{u ≤ t : DB0(u+ 1) =
1 +DB0

(u)}. By the LQFS policy,

max
j=1,...,J

QBj (S) ≤ QB0(S) ≤ QB0(S + 1) + 1 ≤ QB0(t) + 1 , (2′)

with the last inequality following from the definition of S. Consequently,

∆ := min
j=1,...,J

QBj
(0)− max

j=1,...,J
QBj

(S) ≥ min
j=1,...,J

QBj
(0)− (QB0

(t) + 1) . (3′)

The inequality

AB0
(t) =

J∑

j=1

DAj
(t) ≤ QΣ

A(0) +
J∑

j=1

AAj
(t) ≤ εM

ν
+ at+ εbJT. (4′)

follows by applying (7a), and then the initial condition (13b′) together with our restriction to the event GM .
Employing the above inequalities, we obtain

AA0(t) ≥ J∆

≥ J
[

min
j=1,...,J

QBj
(0)−QB0

(0) +QB0
(0)−QB0

(t)− 1
]

≥ J
[
− εM −AB0(t) +DB0(t)− 1

]

≥ J
[
− εM −

(
εM + at+ εbJT

)
+

(
t− AA0

(t)

ν

)
− 1

]
. (5′)

The first inequality in (5′) follows from the observation that at least ∆ jobs have been served by time S ≤ t at
each of the J queues in Component B, the second inequality follows from (3′), the third inequality follows from
(7a) and (13c′), and the fourth inequality follows from (1′) and (4′).

Notice by together collecting smaller order terms, we can write (5′) as a follows

AA0
(t) ≥ J

[
(1− a)t− AA0

(t)

ν
− εκM

]
,

where κ > 0 is a constant that does not depend on ε or M . (Recall that T = 2M/(1− a)(1− rρ).) Combining
the terms for AA0(t) gives

AA0
(t) ≥ νJ

ν + J
[(1− a)t− εκM ]

= ν(1− a)t

(
1− ν

ν + J

)
− εκ1M ,

where κ1 = νJκ/(ν + J). This gives the required bound in AA0(t).

Lemma 4′. Assume (4) and (83), and assume (13′) with M satisfying (12). On the event GM , there exists a
sufficiently large κ2 such that, for t ∈ [U ∧ εκ2M,V ),

QA0
(t) > max

j=1,...,J
QAj

(t) . (6′)

In particular, on (U ∧ εκ2M,V ], only Queue A0 is served at Component A.

Proof of Lemma 4′. The last statement in the lemma follows from (6′) and the LQFS policy.
To prove (6′), note that (6′) follows automatically from the definition of V for t ∈ [U, V ), and so it suffices

to demonstrate (6′) for t ∈ [εκ2M,U). First note that, by Lemma 3′,

AA0
(t) ≥ ν(1− a)

(
1− ν

ν + J

)
t− εκ1M for all t ≤ U .

Since DA0(t) ≤ t , it follows that

QA0
(t) = QA0

(0) +AA0
(t)−DA0

(t) ≥
(
ν(1− a)− ν(1− a)

ν

ν + J
− 1

)
t− εκ1M (7′)
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for all t ≤ U . On the other hand, by (13b′), on the event GM ,

νQAj (t) ≤ (aν/J)t+ ε(M + bνT ) , (8′)

for j = 1, ..., J and t ≤ T .
To demonstrate (6′), it therefore suffices to show that the right-hand side of (7′) is greater than the right-

hand side of (8′) for t ∈ [εκ2M,U), for κ2 chosen sufficiently large. It suffices to compare the coefficients of t in
these two expressions, that is,

ν(1− a)− ν(1− a)
ν

ν + J
− 1 >

aν

J
. (9′)

After some calculation, one can check that (9′) is equivalent to the upper bound for a in (83), which completes
the proof of the lemma. (With additional work, one can show that εκ2M ≤ U on GM , by properly quantifying
κ, κ1, and κ2.)

Lemma 6′. Assume (4) and (83), and assume (13′) with M satisfying (12). On the event GM ,

QΣ
B(t) ≤ ν3 + εbJT for t ∈ [U, V ] . (10′)

Proof. By definition, QB0(U) ≤ QΣ
B(U) ≤ ν2. On the other hand, by Lemma 4′, Queues A1, ...,AJ receive no

service over the time interval (εκ2M,V ], and so Queue B0 has no arrivals then. Hence, with the exception of at
most ν2 units of service at Queue B0, all service at component B over (εκ2M,V ] is devoted to Queues B1, ...,BJ .

Suppose that QΣ
B(u) ≤ ν2 at a given time u ∈ [εκ2M,V ). On GM , the arrivals to Queues B1, ...,BJ are

bounded as in (15), and jobs are served at rate ν there. Together with the previous paragraph, this implies
that, for any s ≤ V − u chosen so that QΣ

B(t) ≥ ν for all t ∈ [u, u+ s),

QΣ
B(u+ s) ≤ ν2 + (a− ν)s+ (ν − 1)ν2 + εbJT ≤ ν3 + εbJT , (12′)

since a < ν. (The (ν − 1)ν2 term accounts for the at most ν2 units of service that are devoted to serving
Queue B0 rather than Queues B1, ...,BJ .) Since QΣ

B(U) ≤ ν2, (10′) follows by applying (12′) whenever QΣ
B(u) ∈

(ν(ν − 1), ν2] occurs.

Lemma 7′. Assume (4) and (83), and assume (13′) with M satisfying (12). On the event GM , there exist
constants κ3 > 0 and κ4 > 0 satisfying

∣∣∣∣V −
JM

J + 1
· 1

1− a+ a/J

∣∣∣∣ ≤ εκ3M , (14′)

QΣ
A(V ) ≥ aM

1− a+ a/J
− εκ4M . (15′)

By (14′), V < T for sufficiently small ε > 0.

We remark that V < T , with Lemma 4′, implies that |QA0
(V )−maxj=1,...,J QAj

(V )| ≤ 1.

Proof of Lemma 7′. We first demonstrate (14′), which requires most of the work. Since all arrivals at Queue

A0 are from Queues B1, ...,BJ , QA0
(t) = QA0

(0) +
∑J

j=1DBj
(t)−DA0

(t), and consequently,

QA0(t) = QA0(0) +
J∑

j=1

QBj (0)−
J∑

j=1

QBj (t) +
J∑

j=1

ABj (t)−DA0(t) . (16′)

We proceed to bound the five terms on the right-hand side of (16′). By (13b′), QA0
(0) ≤ εM/ν, and by

(13a′) and (13c′),
∣∣∣

J∑

j=1

QBj
(0)− JM/(J + 1)

∣∣∣ ≤ εJM .

By Lemma 6′ and (15), respectively, on GM ,

J∑

j=1

QBj (t) ≤ ν3 + εbJT ,
∣∣∣

J∑

j=1

ABj (t)− at
∣∣∣ ≤ εbJT for t ∈ [U, V ] .
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Also, by Lemma 4′, all service at Component A over (U ∧ εκ2M,V ] occurs at Queue A0, and so

t− εκ2M ≤ DA0
(t) ≤ t for t ∈ [U, V ] .

Applying the above inequalities to (16′) implies the following bounds on QA0
(t), for t ∈ [U, V ]:

QA0
(t) ≤ εM/ν + [JM/(J + 1) + εJM ]− 0 + [at+ εbJT ]− [t− εκ2M ] , (19′)

and
QA0(t) ≥ 0 + [JM/(J + 1)− εJM ]− [ν3 + εbJT ] + [at− εbJT ]− t . (20′)

On the other hand, by Lemma 4′, the Queues A1, ...,AJ will not be served over (εκ2M,V ], and so DAj (t) ≤
ενκ2M for t ∈ [U ∧ εκ2M,V ]. Together with (13a′) and (15), this implies that, on GM ,

[at/J − εbT ]− ενκ2M ≤ QAj
(t) = QAj

(0) +AAj
(t)−DAj

(t) ≤ εM/ν + [at/J + εbT ] . (22′)

for t ∈ [U, V ] and j = 1, ..., J .
Comparison of the upper and lower bounds in (19′)–(20′) with those of (22′) provides upper and lower

bounds on V : For any t > U at which the bound in (19′) at most the left-hand bound in (22′), V ≤ t must
hold. Similarly, at the last t > U at which the bound in (20′) is at least the right-hand side of (22′), V ≥ t.
Combining these upper and lower bounds for V , it is easy to check that

V ∈
(
JM

J + 1
· 1

1− a+ a/J
− εκ3M,

JM

J + 1
· 1

1− a+ a/J
+ εκ3M

)
(23′)

for large M , where κ3 > 0 does not depend on ε or M . This implies (14′). Since T > M/(1− a), V < T follows
immediately from the upper bound in (23′), for sufficiently small ε > 0.

The inequality (15′) will now follow quickly. By Lemma 4′, all service at any Queue Aj , j = 1, . . . , J , by
time V must occur by time εκ2M , which implies at most ενκ2M jobs can be served at any such queue by time
V . On the other hand, denoting by t∗ the lower bound in (23′) and applying (15), at least at∗/J − εbT jobs
arrive at each such queue by time V . It follows from this and the definition of V that

QΣ
A(V ) ≥

(
J + 1

)
min

j=1,...,J
QAj (V ) ≥

(
J + 1

)[
at∗/J − εbT − ενκ2M

]
≥ aM

1− a+ a/J
− εκ4M ,

where κ4 > 0 is defined in terms of κ2 and κ3.

Proof of Proposition 1′. We need to show that, at time V , the conditions (17a′)-(17c′) and (18′) hold.
Since M ′ := γM , with 1 < γ < a/(1 − a + a/J), (17a′) follows immediately from (15′) of Lemma 7′, for

ε > 0 chosen sufficiently small.
To show (17b′) and (17c′), we recall that b = (γ − 1)(1− a)(1− rρ)/6νJ . Hence, by Lemma 6′,

QΣ
B(V ) ≤ ν3 + εbJT ≤ εγM

for large M , and so (17b′) holds. By the remark below Lemma 7′, QA0
(V ) is equal to either maxj=1,...,J QAj

(V )
or maxj=1,...,J QAj (V )− 1. It follows from this, Lemma 5, and the definition of b that

max
j=1,...,J

∣∣QA0(V )−QAj (V )
∣∣ ≤ εM + 3εbT + 1 ≤ εγM

for large M , and so (17c′) holds.
We still need to show (18′). By Lemma 4′, Queues Aj , j = 1, . . . , J , are not served over times t ∈ (εκ2M,V ]

and so, on GM ,

QΣ
A(t) ≥

J∑

j=1

QAj (t) ≥
J∑

j=1

(
AAj (t)−AAj (εκ2M)

)
≥ a(t− εκ2M)− εbJT for t ≤ V .

Since Component B, serves at most ν jobs per unit of time, QΣ
B(t) ≥M − tν for all t.

These two inequalities imply that, for t ≤ V ,

QΣ
A(t) +QΣ

B(t) ≥ [a(t− εκ2M)− εbJT ] ∨ [M − tν] (24′)

≥ aM

a+ ν
− εν(κ2aM + bJT )

a+ ν
,

where the right-hand side of (24′) follows by weighting the terms on either side of ∨ by ν/(a+ν) and a/(a+ν),
respectively. Condition (18′) follows by choosing ε > 0 sufficently small.
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