Universidad

ucdm | CarloslIl -Archivo
de Madrid

This is a postprint version of the following published document:

F. Garcia-Carballeira, A. Calderon-Mateos, S. Alonso-
Monsalve and J. Prieto-Cepeda, "WepSIM: An Online
Interactive Educational Simulator Integrating
Microdesign, Microprogramming, and Assembly
Language Programming," in IEEE Transactions on
Learning Technologies, vol. 13, no. 1, pp. 211-218, 1
Jan.-March 2020.

DOI: 10.1109/TLT.2019.2903714

©2020 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

https://doi.org/10.1109/TLT.2019.2903714

Wepsim: an online interactive educational simulator integrating microdesign,
microprogramming, and assembly language programming

Félix Garcia-Carballeira*, Alejandro Calder6n-Mateos*, Sail Alonso-Monsalve*, Javier Prieto—CepedaT

Computer Science and Engineering Department. University Carlos III of Madrid.
Av. Universidad, 30. 28911 Leganés, Madrid, Spain.
* {fgcarbal, acaldero, saualons}@inf.uc3m.es
t {javpriet} @pa.uc3m.es

Abstract—We have three primary goals in our educational
project. First, we want to provide a robust vision of how
hardware and software interplay, by integrating the design
of an instruction set - through microprogramming - and using
this instruction set for assembly programming. Second, we
want to offer a versatile tool where the previous tight vision
could be tested beyond handwritten exercises. This is called
WepSIM and provides an initial elemental processor with a
microprogrammed subset of the MIPS instruction set. Besides,
WepSIM is flexible enough to be adapted to other instruction
sets or hardware components (ARM, x86, etc.). Third, we want
to extend the activities of our University lab lectures (fixed
hours in a fixed place) so that the students could learn using
their mobile device in near any location and any moment of
the day.

This article introduces how WepSIM' has improved the
teaching of the Computer Structure course by empowering stu-
dents with a more dynamic and autonomous learning process.
In this work, we show the results obtained during the first
usage experience - three years - in the Computer Structure
course of the Bachelor’s Degree in Computer Science and
Engineering from the University Carlos III of Madrid.

1. Introduction

There are several interesting simulators used to teach
Computer Structure courses. In general, each simulator is
used to explain a specific topic of the subject so that students
can learn each of the fundamental aspects of the course:
assembly, cache, or CPU, separately. Those tools are specific
to each aspect of the course; there are used using traditional
PCs during fixed lab hours (or event at home).

This diversity does not allow students to have a global
view of the system since they do not study the integration
of all the elements of the computer and their relationship.
Besides, the most realistic simulators are also the most com-
plex. For instance, in our experience, students use to have
many problems to understand how interruptions work. The
teaching of interruptions is essential for Computer Structure,

1. https://wepsim.github.io/, https://wepsim.github.io/wepsim/

critical for Operating systems courses, and it is also is a suit-
able introduction to asynchronous behavior used elsewhere.
It is tremendously difficult to get students to understand
how the hardware generates an interruption, how the CPU
intercepts it, how the CPU searches for the associated han-
dler, how the handler code is executed, and finally how the
execution returns to the line of code previously interrupted.
There is a continuous interplay between the hardware, the
firmware (microcode for example), and the assembly code,
which forces the usage of different simulators to explain
each part, and then to devote a tremendous effort to link all
these concepts. The cost of misunderstanding those ideas
could lead to inherent issues [1] with a high impact on the
students’ learning.

The most popular simulators for educational proposes
were created to perform a specific laboratory assignment,
and they are available only for traditional PCs (laptops or
desktop computers). These conventional PCs usually include
a user manual for help, but their goal is not to be a learning
material (based on use cases). Moreover, current students
spend most of their time using mobile platforms - including
smartphones, tablets, Chromebooks, etc. - and they demand
interactive and online learning tools - that may be used on
a daily basis - rather than the current PC tools.

Given these challenges, our main goal is to provide a
modular and straightforward educational and online simu-
lator for Computer Structure courses that can be used by
both the students - to learn the topics mentioned above
and improve their skills - and the professors - to teach
in a better manner and make their work more accessible.
The simulator may be used to teach microprogramming
and how a simple CPU works, how to use the firmware
- through microcode - to create assembly programs, and
how the assembly code interacts with both the hardware
and the operating system at the same time. We want this
simulator to be intuitive and user-friendly, so students do
not get lost in irrelevant details, but at the same time, to be
very similar to what happens in actual hardware and system
software. We also want this simulator to be portable: to be
used in smartphones, tablets, but also in desktop computers,
and including as much training material as possible.

In this paper, we present WepSIM, an educational and

https://wepsim.github.io/
https://wepsim.github.io/wepsim/

online simulator that we have designed and implemented to
archive the previously commented goals. WepSIM simulates
the circuitry of an elementary processor interactively and
allows the user to both define the microcode of the processor
and to implement programs in assembly code using the
instruction set defined within the microcode. Its circuitry can
be modified or extended; it lets students see how circuitry,
firmware, and assembly interplay, and it allows students to
test paper exercises using both a mobile device or a desktop
computer (and test variations of the tasks in an interactive
way).

We have also used WepSIM in two Teaching Innovation
Projects of our University; in both of them, the students
have demonstrated to work autonomously - without the per-
manent supervision of the professors - and also to verify and
validate the designing and resolution of complex problems.
The results of providing WepSIM to be used in laboratory
classes, and letting students test the exercises they solve
by hand in WepSIM are outstanding: the majority of the
students are more confident to face the final exam, and
they also improve their grades in both the assembly and
microprogramming exercise in that final exam. What is more
astonishing is that we achieved those improvements even
when the ratio ’students per teacher’ was increased.

The rest of the document is organized as follows: Section
2 describes the architecture and the hardware model of the
simulator. Section 3 introduces the elemental processor that
is simulated by using the WepSIM architecture (and the
hardware model previously described). This section also
describes the microcode and the instruction format. Section
4 describes the main aspects of the implementation process
and Section 5 presents the evaluation of the simulator. Sec-
tion 6 reviews the related work. Finally, Section 7 concludes
the paper and presents some future work.

2. The WepSIM Architecture and Hardware
Model

Figure 1 shows the architecture of WepSIM. The starting
point is the hardware model, which describes the processor
to be simulated. It includes the CPU, the main memory,
and some I/O devices: keyboard, screen, and a simple I/O
device. The hardware model describes the global state of
the processor, and it is read by the simulation engine, which
updates the global state of the processor for the next clock
cycle.

The simulated Control Unit stores the control signals
of each cycle in a control memory. These control signals
form all the microprograms for every instruction the CPU
works with; the CPU always fetchs for retrieving the next
instruction from memory and decodes it. The microcode -
the content of the control memory - plus the instruction
format - instruction parts and its length - is described in
a text file. The software model always reads this file and
translates it into the corresponding binary code to be loaded
into the simulated CPU.

The simulated memory stores the instructions and data
values described in a text file with the assembly. The assem-

bly used is the one defined in the microcode format, and the
software model translates the assembly into binary code and
loads it in the main memory by using the microcode loaded
first.

The simulation engine asks the software model subsys-
tem for the microcode, the instruction format description,
and the main memory content. The binaries are loaded
into the hardware model elements, and then the simulation
engine subsystem updates the global state in each clock cy-
cle. The simulation controller subsystem controls when the
clock cycle is updated, and when the global state is shown.
The simulation Ul subsystem updates the user interface and
receives the user requests through the user interface events.
Upon receiving a user request, the simulation Ul subsystem
sends the request to the simulation controller. As it can be
seen, a very simplified Model-View-Controller (MVC) is
used as a base for the WepSIM architecture.

-
@
+ g 5 Simulation Y
w8 | Q
>lsc| ! ul >
Q30| i I °
EIET| | - - Q
alz 2| ! Simulation =
of G controller S (|2
2= oll2
] 5|1
S /11 SIS||a
canner/ | | | software | ,[Simulation|_,| Hardware
¥)
Parser |i| model model motherboard

Figure 1: WepSIM architecture.

2.1. Hardware Model

The Figure 2 introduces the model behind the hardware
model subsystem. Each element of the circuit could be
described as a black box with some possible inputs, some
possible outputs, and some control signals to manage the
potential transformation of the inputs into the outputs. The
hardware model subsystem transforms this black box into
two sets of objects: states and signals. A state has an identifi-
cation (the name), the value (an integer value), and an initial
value (the default value). Each value is an integer within
the associated range, given by the bits this state uses to be
represented. A signal is a particular state that controls the
value of other states or signals. Two additional attributes are
related to signals (and not to states): the type of signal (level
or edge), and the behavior. For each value of the signal,
a string describes in a simple language what the signals
move or transform. This simple language is composed of
instructions that represent elementary operations.

The T4 tristate, for example, has two states: the BUS_IB
and the REG_RT1 states. Both represent the value in
the internal bus (BUS_IB) and inside the register RT1
(REG_RT1). Additionally, a T4 signal controls when the
value inside the register RT1 is sent to the internal bus.
This T4 signal is a level signal (type: L) that on a zero
value its behavior is not doing anything ("NOP”). But if the
T4 signal has a value of 1, the behavior is to copy the value

i name: string

i nbits: integer

i value: integer

i default_value: integer
i ui_data

<—signa| ~ type: L, E

i behavior: integer->string

state

{"name: string
input state - nbits: integer
’i i value: integer
ircui : default_value: integer
—«- control e &
circuit {__m_data
output

Figure 2: How the hardware is modeled.

in the register RT1 into the internal bus, as it is described
by "MV BUS_IB REG_RT1".

For example, register REG_RT1 is similar. It has two
states: the content in the register RT1 and the one in the
internal bus. The signal C4 controls when the value in the
internal bus is loaded into the register RT1. The difference
here is the type of signal: C4 is an edge signal (type: E),
so at the end of the clock cycle (if C4==1) the behavior
is to copy from the bus into the register "MV REG_RT1
BUS_IB”).

3. The WepSIM Elemental Processor

The EP has a memory module, a keyboard and a display
device, and an I/O generic device used for working with
interruptions. Also, a CPU is included, labeled in Figure 3
as Processor. Internally, this CPU has several components at
the same time. It has a register file (with 32 registers) and
two additional registers - - RT1 and RT2 - not visible for
assembly programmers. Values from those registers can be
sent into the ALU, that can perform up to 15 arithmetic and
logic operations (addition, and, or, etc.). The result can be
either stored in a temporary register - RT3 - or sent to the
internal data bus. The State Register (SR) can be updated
with the flags from the last ALU operation (most common
flags are included, such as overflow, negative, zero, etc.).
The reader can find that the PC register has its own ’plus
four’ operator. The IR register has a selector module that lets
us extract a portion of the IR binary content, and this part
could be sent to the internal data bus. The MAR and MBR
registers are used to store the address and the content in this
address from/to memory, respectively. The selection circuit
lets us indicate the portion of the word from/to memory we
want to use. Finally, the Control Unit generates the control
signals for each clock cycle.

o

Control Memory

pAddr

CLK

12 MAddress Winstruction

‘ 80

MADDR

i?—olcls |AOIMR [sein]sei]seic] .- [mc]seicop[Excoae]|
1

IS
&
IS

1/10 Keyboard Display
Memo
g £l]s = % g g =
S BEMRYy R W & 2 3 IORdy IOR IOW INT INTA INTV. 23 I0R 2 35 IR low
I Fre 1] 1
Data Bus 0
Control Bus. b4 ¢
A31-A0 BE3-BEO D31-DO I
2| 3| 0
HEHEEEE
c3 rRlw|S[2| 22| 2| o sr [CIVINE[-THu
ALAOT j 3130 29 28 T
T Control Unit

Control o
Signals CLK

Internal Bus
T9

3
A r

RA 5] 0 00 01 10 11| 2,

RB % Register MA— mux MUX MB

RC5 " File

Lc—

C] Cop A ALU 4
— 0000 |

Figure 3: The proposed Elemental Processor.

By using this simple model, it is possible to define all
the elements of our elemental processor. Figure 3 introduces
the proposed Elemental Processor (named EP hereinafter).
The elements in this EP consist of 53 states and 65 signals,
in a similar way as in the examples discussed before (in fact,
T4 and C4 are included in the 65 signals, and REG_RT1
and BUS_IB are included in the 53 states). The ‘behavior
language’ includes 48 instructions.

Rest of CPU
ontrol signals

RC

Figure 4: The proposed Elemental Processor: the Control Unit.

Figure 4 shows the Control Unit in detail. The signals
for the current clock cycle are stored in the microinstruction
register. The content of this register comes from the control
memory at the address that the microaddress register points
to. This address can be updated with the current address
plus one, an address from the microinstruction (overlapped
with SelA, SelB and partially SelC that can be conditionally
selected with '"MUX C’ and ’MUX B’), the first microad-
dress associated to the operation code field of the instruction
in the IR register, and finally the zero value (the reset/fetch
microroutine address).

3.1. Microcode

Once the proposed hardware model is defined and im-
ported into the simulator, the next step is to define the
microcode that orchestrates it. The instruction format is

defined in a text file along with the associated chronogram.
The listing 1 shows an example of how the “load immediate”
instruction (li) could be defined.

1i reg val {
co=000010,
nwords=1,
reg=reg(25,21),
val=inm(15,0),
{ (SE=0, OFFSET=0, SIZE=10000, T3=1,
LE=1, MR=0, SELE=10101, A0=1, B=1, C=0) }

Listing 1: Example of instruction format and it associated
chronogram (microprogram).

The file with the fetch chronogram and all instruction
chronograms defines the microcode for the WepSIM plat-
form. We introduce the possibility to define different instruc-
tion sets. We started with a subset of the MIPS instruction
list, but instructions from other instruction sets could be
defined too.

.text
main: 1i $t3 8
add $t6 $t3 $t3

Listing 2: Example of assembly source code, using the
instructions described in the microcode.

The ’co’ field identifies the instruction code, and it is
a 6 bits number. This lets us define up to 32 different
instructions. To enhance this number of instructions, 4 bits
from the instruction could be used for the ALU selector
so the arithmetic and logic instructions can share the same
instruction code. Therefore, up to 47 instructions (31 + 16)
could be defined. When the WepSIM loads the microcode,
each instruction code has associated the start address in
the control memory where its chronogram will be stored.
This table with two columns, the instruction code, and the
associated starting address in the control memory is loaded
into the co2pAddr ROM that is shown in Figure 4.

For each instruction field (reg and val in the example of
the listing 1) it is defined the initial bit, the ending bit (both
included), and the type of field (register, immediate value,
absolute address, and relative to PC address).

Once the microcode is loaded into the WepSIM simu-
lator, it is possible to load an assembly file that was built
up from instructions defined on the former microcode. In
listing 2 is shown an example of the assembly source code.
This particular example (listing 2) shows a MIPS-like source
code. The load immediate (li) and the add (add) instructions
were defined in the microcode previously. The WepSIM
simulator can check the syntax errors, and it builds the
binary by filling the fields described in the microcode with
the corresponding binary information. Figure 5 shows an
example of how the ”li $2 5” instruction is translated into
binary.

lireg inm

co reg unused inm

4—6 bits —»4—5 bits —»4—5 bits —»e—— 16 bits ——»

lis25

00010 0 000 0000 0000 0000 0101

| 0000 00

«—6 bits —»i4—5 bits —pie4—5 bits —»4— 16 bits —»

Figure 5: Instruction format described in the microcode and
example of its binary translation.

4. Implementation

There are some dependencies among the hardware ele-
ments so when some state or signal changes, other signals
must be evaluated. In order to deal with the signals-states de-
pendencies, WepSIM tries to reassemble as much as possible
what happens in an actual hardware: signals are treated one
by one, and when some of them change, then the signals that
can be affected are re-evaluated. WepSIM uses a particular
behavior for that: "FIRE <signal>". For example, if a
new value in the internal bus means that some multiplexer
has to check if the new value has to be propagated, we
can use "MV BUS_IB REG_RT1; FIRE M7”, being M7
the control signal that directs the described multiplexer.
WepSIM detects loops while processing dependencies - by
using a stack of dependencies being analyzed - and avoid
the infinite loop.

4.1. Cross-Platform

The prototype introduced in this paper is implemented
in HTMLS, so all platforms with an Internet browser (smart-
phones, tablets, laptops, and desktop computers) can execute
it. WepSIM works thanks to Mozilla Firefox (version 50+),
Google Chrome (version 55+), Microsoft Internet Edge
(version 38+) browsers, or Apple Safari (version 11+).

In order to execute WepSIM even without an Internet
connection, we pack it as a mobile application thanks to
two options: by using the Apache Cordova project, and
more recently thanks to the Progressive Web Apps initiative.
Both options let us to deploy WepSIM for Android, iOS,
Windows, MacOS, etc.

The WepSIM source code is composed (without exter-
nal dependences) of 24 files and it is available at https:
//github.com/acaldero/wepsim. It consists of ~ 10,000 lines
of JavaScript code and ~ 1,700 additional lines of HTML
plus CSS. This source code can be compressed and mini-
mized in about 200.000 bytes in total (around 195 KiB). It
only requires the well-known frameworks/libraries: JQuery,
JQueryUl, JQuery Mobile, KnockOut and BootStrap. It also
uses the glyphicons icon set (thanks to Jan Kovarik for
providing us this free version).

https://github.com/acaldero/wepsim
https://github.com/acaldero/wepsim

4.2. The ‘Test and Learn’ User Interface

The user interface has three views: simulation, micro-
programming view, and assembler view. The three views
are interconnected to allow students to microprogram an
instruction set (MIPS, ARM, Z80, etc.), then program an
assembly application with the defined instruction set, and
finally execute the assembly application.

Each one of the 3 view provides as much feed-back
as possible to students so they can test and learn. For
instance, the circuit cables change its color when they are
used, control signal change its color when they are activated,
and so on. Moreover, each view has a help entry with the
associate explanation, there are 12 examples by default, and
there are 2 initial tutorials that quick cover how the user
interface is used.

Figure 6 shows an example of the assembly debugger
execution, and Figure 7 shows the processor simulator where
by clicking on signal name open a popup where students
access to the associated help, and the form to change the
current value of this signal.

yyyyyyyyy

nnnnn

xxxxx
oxoc 0 b5
0x110 beq $27 50 finl
a4 auts27 0c1000
o526 526 51
;;;;; obs

£ s (526)
beq 327 80 it

out 527 0x1000
add 526 526 81

uuuuu m
oz [
oz by print
oz 1a 26 msgit

nt

nnnnn

Figure 6: Main view of the assembly debugger.

M2 1 bit

They allow you to select which value can be used to update the program counter register
(PC): adding four to the current PC content or the value that comes from the internal data

Internal Bus

Figure 10 Detail of the PC register management options

Figure 7: Help details of the ‘M2’ signal.

5. Evaluation

An important complement to perform exercises by hand
is to provide a way to make these activities to come inter-
active, so students can make changes and study their effect.
WepSIM can help to increase the curiosity of the students all
times, but especially on the first exercises where WepSIM
helps to learn how an elemental processor works. Helping

on the initial exercises empower students to continue with
the exercises proposed in the literature in a better way.

A critical aspect of this first contact with exercises is to
let students make experiments at any moment, not only in
the hours of the day associated with the laboratory work.
WepSIM mobility and portability are essential to provide
a better adjustment of the learning process of the students.
And because WepSIM includes help material and examples,
it can be used as a more autonomous learning tool than
the existing ones (as far as authors know). The following
subsection describes the evaluation of the first WepSIM
experience on that.

5.1. Grade Improvements

We have evaluated the impact of using WepSIM in three
teaching groups of near 100 students in total, and the results
are quite similar in all groups. To be more near to the
students’ point of view, we are going to show the results
for one teaching group in two different courses (Figure 8).

100
80

60 - Y

40 1 —
20 - - j
0

2013 2017

percentage (%)

ﬁﬁ

improvement

took the exam X255 assembly [] microcode

(a) Obtained portion of total grades in the final exams’ exercises of
assembly and microprogramming (2013 vs 2017).

100

80

60

40

percentage (%)

20 1

0

midterm exam final exam improvement

microprogramming 5550 overall [|

(b) Grades comparison between midterm and final exams (both the
microprogramming exercise and the overall grade, 2017).

Figure 8: Comparison of student grades (from 27 students in 2013
to 38 students in 2017).

As it is shown in Figure 8a, in 2013/2014 the WepSIM
teaching utility did not exist, and from 27 total students in
the final exam, only 18 performed the exercises of the exam.
In 2017/2018 our proposed WepSIM utility was used (not
only as lab supporting tool but as a teaching assistant tool
too). From 41 total students in the final exam, 38 performed
the exam’s exercises. By using WepSIM we were able to
empower students to be more confident in its abilities, and
the percentage of student that performed the exam increase
from 66% (18/27) up to 92% (38/41).

On the other hand, Figure 8b shows the grade com-
parison between the midterm and the final exam, taking
into account both the microprogramming exercise and the
overall grade of the 2017/2018 course. As it can be seen,
the same group of students greatly improved their grade
from the midterm exam - without using WepSIM - to the
final exam - after two months of using WepSIM. This
Figure demonstrates that there is not only a significant
improvement among different courses, but also the same
group of students is able to improve their grades after a
WepSIM-based learning.

When the number of students per group increase (from
27 up to 41) with the same amount of teachers, then the time
available per student decreased. Thanks to WepSIM, the
results show that we can improve the learning experience,
and the grades of the students, even with high ’student per
teacher’ ratio.

Only a teaching tool like WepSIM let teachers introduce
the elemental concepts and behaviors, then the students
could review and extend their abilities and knowledge, and
finally, the teachers could solve the students’ doubts (and
perform some more advanced exercises). Not only more
learning tasks are transferred to the student, but also it is
done in a more fun and active way. WepSIM becomes not
only a lab tool, but also a learning tool where students could
test different scenarios.

5
7
2

N

satisfaction

G1-spa G2-spa G3-eng

Ql [N Q2 [~ Q3771 Q4 [N

Figure 9: Poll average results from the students.

5.2. Survey Results

After the microprogramming laboratory based on the
WepSIM simulator, we performed a simple survey to the
students to know some of the learning results achieved with

our proposal. The questions of this poll were: (Q1) I agree
to participate in new teaching proposals. (Q2) I frequently
do hand-made exercises. (Q3) It is better simulator-based
exercises rather than hand-made exercises. (Q4) The sim-
ulator provides a better understanding of how a processor
works.

For each question, the student could rate from 0 up to
5, where 0 means not to agree at all and 5 means totally
agree.

The Figure 9 shows the average results from three stu-
dent groups of forty students each one. The results confirm
that we have accomplished our goal.

5.3. Platforms Where the Simulator Was Used

The first study from the Web Server logs analyzed the
proportions of computer clients requests that came from the
UC3M University or from outside the University. During
the last week for the laboratory dead-line, the WepSIM
simulator has been used a 7% with IP address from the
University,

10000

1000

100

number of users

10

Figure 10: Client operating systems that use WepSIM.

The second study analyzed the previously described logs
to determine the Operating System used by computer clients
(as they identify themselves). We wanted to analyze whether
WepSIM helps students to use any platform of their election.
Results are shown in Figure 10, where the y-axis represents
the number of access and the x-axis the platform from
where the access came. The y-axis uses a logarithmic scale.
The x-axis group on the left the desktop-related operating
system (Linux, Windows-NT, and MacOS), and on the
right group mobile-related platforms (Android, iOS, and
Windows Phone). Results show that students were able to
use different platforms, we achieved the goal we planned.

5.4. Time Instants When WepSIM Was Requested

We have analyzed the Web service logs in order to study
the time instants where the WepSIM has been requested
in 2013. We have focused on the last week before the
deadline for students to finish the work with the WepSIM
simulator. Figure 11 shows the results, where the X-axis
is the hour during the day, and the circles over the X-axis

represent the access at this moment. As can be seen, there is
access beyond the one 100 minutes laboratory class. These
accesses are concentrated from nine o’clock to two o’clock
in the afternoon, and from 15:00 to 23:00. In summary, these
results show that we have facilitated the usage of WepSIM
at any time of day, and from different platforms. For 2017
we used Google Analytics in order to know the platform
used, and the hours and days where WepSIM has been
used. Figure 12 shows the hours and days of the week. The
aggregated result are very similar to the ones from 2013.

D @ @ ®®

0:00 Y5 447 m 935 1059 1423 16:47 19:10 n:34 2358

Figure 11: Moments of the day when WepSIM was used in 2013.

12a.m

Ja.m

da.m
100

]
10p.m
|

ie. sab

75

I [I N N N 102.
1 | | KN
|

1 1 11 |
1 1 I 1] K
1 I 1 1 1 1]

dom. lun. mar. mié. jue. vl

De 5nov. 2017 a 5.dic. 2017

Figure 12: Days and hours when
2017.

o=

g

epSIM has been requested in

6. Related Work

There are several useful tools for Computer Structure
teaching activities although we have not found a tool (like
the one introduced in this paper) that: (a) Providing an inter-
related vision of the microcode and the associated assembly
programming. (b) It allows to define a broad set of machine
instructions, and it is based on a hardware model that can
be extended or modified. (c) Giving students more flexibility
on the platform used (e.g.: mobile devices), and providing
student a learning tool as much self-contained as possible
(it includes associated online help and context-aware help).

Djordjevic et al. [2] propose a non-intuitive Java Ap-
plication: it is not easy to see the relationship between the
microprogramming and the assembly programming level. It
did not include online help, examples, etc. and It is not
ready for mobile devices (we did not find the open repository
where the project is published).

There are two well-known 32-bits MIPS processor sim-
ulators for teaching assembly: SPIM [3], and Mars [4].
Unfortunately, both of them have not an integrated vision for
microcode and assembly, they are not designed for mobile
devices in mind (even the existing un-official version seeks
to resemble the computer version), and is limited to the 32-
bits MIPS instruction set.

Other two important simulators we want to highlight
are the PS8OSOE [5], and the pc88110 [6]. PSOSOE was
designed for teaching assignments in microprogramming,

but it was not intended to be used to teach both microcode
and assembler with the same tool, it has not a portable and
interactive graphical interface, and the microcode does not
include the instruction format so the microprogramming is
done by hand in binary. Although PC88110 simulator inte-
grates the effect of a superscalar processor, microcode is not
integrated, it focuses on a specific architecture (MC88110),
and does not provide support for mobility. Behind this
simulator is a fascinating work described in [7] that includes
the methodology behind the simulator pc88110 to be used
in practical laboratories.

Outside the educational system there are simulators/em-
ulators like OOVPsim [8] or GXemul [9] for working with
different architectures such as ARM, MIPS, PowerPC, etc.
OVPsim has been used for research parallel computing plat-
form [10], hardware/software co-design [11], etc. Although
it is possible to be used for teaching assignments, its level
of detail makes not the best tool to start learning.

7. Conclusion and Future Work

This article has introduced WepSIM, a new intuitive,
portable, online, and extensible educational simulator. Wep-
SIM is based on a simple yet powerful model that tries to
mimic how the hardware elements work. It also provides
an integrated learning experience on microprogramming
and assembly programming because it is possible to define
different instruction sets and to execute source code based
on the defined instruction set.

WepSIM allows the students to understand how a proces-
sor works smoothly. It can be used on a smartphone, tablet,
laptop or desktop computer with a modern Internet browser.
In this way, the students can interact with the simulator
and learn how the typical hardware elements work, and the
mechanism for communicating with the system software.

There are several impressive future works, and we are
already working on them at the moment: (a) We plan to inte-
grate a testing module into WepSIM to check one microcode
with several assembly programs and vice-versa. (b) A tiny
footprint operating system written in assembly is planned
too, so students could learn better how the operating system
interacts with the hardware. (c) More pieces of hardware
can be added, such as the ones to support single-precision
floating point arithmetic. (d) We are studying to integrate
new devices such as a sound card - with DMA - or a cache
memory.

References

[11 S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Moritz lippl, michael schwarz, daniel gruss, thomas prescher 2,
werner haas 2,” arXiv preprint, Computer Science, Cryptography and
Security, 2018.

[2] J. Djordjevic, B. Nikolic, and A. Milenkovic, “Flexible web-based
educational system for teaching computer architecture and organiza-
tion,” IEEE Transactions on Education, vol. 48, no. 2, pp. 264-273,
2005.

[31 J. R. Larus, “SPIM,” Feb. 2016. [Online]. Available: http:
/Ispimsimulator.sourceforge.net/

http://spimsimulator.sourceforge.net/
http://spimsimulator.sourceforge.net/

(4]

(5]

(6]

(71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

P. Sanderson and K. Vollmar, “MARS,” Feb. 2016. [Online].
Auvailable: http://courses.missouristate.edu/kenvollmar/mars/

DATSLFL.UPML.ES, “P808OE,” Apr. 2016. [Online]. Available:
http://www.datsi.fi.upm.es/docencia/Estructura/U_Control/

M. L. Garca, S. Rodrguez, A. Prez, and A. G. Dopico, “p88110:
A graphical simulator for computer architecture and organization
courses.” IEEE Trans. Education, vol. 52, no. 2, pp. 248-256, 2009.

A. G. Dopico, S. R. de la Fuente, and F. J. R. Garca, “Automatizacion
de précticas en entornos masificados,” in Actas de las IX Jornadas
de Enseanza universitaria de la Informdtica, ser. Jenui 2003. Spain:
Thomson-Paraninfo, 2003, pp. 119-126.

1. Software, “Open Virtual Platforms simulator,” Mar. 2016. [Online].
Available: http://www.ovpworld.org/

A. Gavare, “GXemul,” Mar. 2016. [Online]. Available: http:
//gxemul.sourceforge.net/

C. Pinto, S. Raghav, A. Marongiu, M. Ruggiero, D. Atienza,
and L. Benini, “Gpgpu-accelerated parallel and fast simulation of
thousand-core platforms.” in The I1th International Symposium on
Cluster, Cloud and Grid Computing. 1EEE Computer Society, 2011,
pp. 53-62.

I. Nita, V. Lazarescu, and R. Constantinescu, “A new Hw/Sw co-
design method for multiprocessor system on chip applications.” in
Proceedings of the 5th IEEE/ACM International Conference on Hard-
ware/Software Codesign and system Synthesis. 1EEE C.S., 2009, pp.
1-4.

J. Matak, “Assembly Emulator,” Feb. 2016. [Online].
Available: https://play.google.com/store/apps/details?id=gr.ntua.ece.
assembly.emulator

F. G. Carballeira, J. C. Pérez, J. D. G. Sanchez, and D. E. Singh,
Problemas resueltos de estructura de computadores, segunda edicion.
Ediciones Paraninfo, 2015, vol. 1, pp. 1-307.

J. M. Pérez Villadeamigo, S. R. de la Fuente, R. M. Cavanillas,
and M. 1. Garcia Clemente, “The em88110: Emulating a superscalar
processor,” SIGCSE Bull., vol. 29, no. 4, pp. 45-50, Dec. 1997.

S. S. et al, “From NAND to Tetris,” Nov. 2016. [Online]. Available:
http://www.nand2tetris.org/

J. N. et al, “The Megaprocessor,” Nov. 2016. [Online]. Available:
http://www.megaprocessor.com/

http://courses.missouristate.edu/kenvollmar/mars/
http://www.datsi.fi.upm.es/docencia/Estructura/U_Control/
http://www.ovpworld.org/
http://gxemul.sourceforge.net/
http://gxemul.sourceforge.net/
https://play.google.com/store/apps/details?id=gr.ntua.ece.assembly.emulator
https://play.google.com/store/apps/details?id=gr.ntua.ece.assembly.emulator
http://www.nand2tetris.org/
http://www.megaprocessor.com/

	Introduction
	The WepSIM Architecture and Hardware Model
	Hardware Model

	The WepSIM Elemental Processor
	Microcode

	Implementation
	Cross-Platform
	The `Test and Learn' User Interface

	Evaluation
	Grade Improvements
	Survey Results
	Platforms Where the Simulator Was Used
	Time Instants When WepSIM Was Requested

	Related Work
	Conclusion and Future Work
	References

