
 
 

 

 

 

 

 

 

 

 
 

This is the Accepted Manuscript version of the article 

accepted for publication: 

Zhou, J., Pérez-Grande, D., Fajardo, P., Ahedo, E., (2019), 

Plasma Sources Science and Technology, Volume 28, 

Number 11 (115004). 

 

 

 
 

IOP Publishing Ltd is not responsible for any errors or 

omissions in this version of the manuscript or any version 

derived from it. The Version of Record is available online at 

https://doi.org/10.1088/1361-6595/ab4bd3 

 

 

 
© 2019 IOP Publishing Ltd. 

https://doi.org/10.1088/1361-6595/ab4bd3


Plasma Sources Science and Technology

ACCEPTED MANUSCRIPT

Numerical treatment of a magnetized electron fluid model within an
electromagnetic plasma thruster simulation code
To cite this article before publication: Jiewei Zhou et al 2019 Plasma Sources Sci. Technol. in press https://doi.org/10.1088/1361-6595/ab4bd3

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process,
and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted
Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2019 IOP Publishing Ltd.

 

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully
protected by copyright and cannot be reused or reposted elsewhere.
As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse
under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they
adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content
within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this
article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions will likely be
required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.

This content was downloaded from IP address 150.145.83.231 on 08/10/2019 at 16:16

https://doi.org/10.1088/1361-6595/ab4bd3
https://creativecommons.org/licences/by-nc-nd/3.0
https://doi.org/10.1088/1361-6595/ab4bd3


Numerical treatment of a magnetized electron fluid model within an

electromagnetic plasma thruster simulation code
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Abstract

Plasma discharges in electromagnetic thrusters often operate with weakly-collisional, magnetized
electrons. Macroscopic models of electrons provide affordable simulation times but require to be solved
in magnetically aligned meshes so that large numerical diffusion does not ruin the solution. This
works discusses suitable numerical schemes to solve the axisymmetric equations for the electric current
continuity and the tensorial Ohm’s law in such meshes, when bounded by the thruster cylindrical or
annular chamber. A finite volume method is appropriate for the current continuity equation, even
when meshes present singular magnetic points. Finite differences and weighted least squares methods
are compared for the Ohm‘s law. The last method is more prone to producing numerical diffusion
and should be used only in the boundary cells and requires a special formulation in the boundary
faces. In addition, the use of the thermalized potential is suggested for an accurate computation of
parallel electron current densities for very high conductivity. The numerical algorithms are tested in a
hybrid (particle/fluid) simulation code of a helicon plasma thruster, for different magnetic fields, mesh
refinement, and plume lengths. The different contributions to the electric current density are assessed
and the formation and relevance of longitudinal electric current loops is discussed.

1 Introduction

The Hall Effect Thruster (HET), the High Efficient Multistage Plasma Thruster (HEMPT), the Applied-
Field MagnetoPlasmaDynamic Thruster (AFMPDT), the Helicon Plasma Thruster (HPT) and the grid-
less Electron Cyclotron Resonance Thruster (ECRT) constitute a family of in-space electric propulsion
(EP) technologies, characterized by (i) an axisymmetric geometry, (ii) a weakly-collisional plasma dis-
charge, and (iii) the application of a stationary magnetic field to produce thrust through electromagnetic
forces. In all of them the magnetic field guides the electrons and, in combination with the ambipolar
electric field, creates Hall-effect azimuthal plasma currents, which produce thrust by interacting with the
currents on the external magnetic circuit (made of circular coils, for instance). In addition, the magnetic
field confines partially the plasma flow away from the thruster walls and, in the case of magnetic nozzle
configurations, is responsible for guiding the plasma flow and partakes in its axial acceleration.

Particle-in-cell (PIC) formulations [1, 2], complemented with Monte Carlo Collisions (MCC) methods
[3, 4], are very appropriate for the numerical modeling of the rarefied plasma beam [5, 6, 7, 8]. However,
the enormous difference in the particle mass of electrons and ions (typically, constituted of heavy xenon
atoms) means that full PIC simulations of the stationary plasma response require very large simulation
times, often unsuitable for research and development studies. On the contrary, hybrid simulation codes
relying on a PIC-MCC formulation for heavy species and a fluid formulation for electrons present an
attractive trade-off between simulation cost and reliability of results [9, 10, 11, 12, 13].
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Fife, Parra, and coworkers [5, 14] developed the hybrid codes HPHALL and HPHALL-2 for HETs,
which have been much used afterwards [15, 16]. These codes were designed only for ‘regular’ magnetic
topologies, that is with magnetic streamlines connecting inner and outer walls of an annular HET chamber
and without singular magnetic points. Nowadays, most new thrusters present more complex magnetic
topologies [17, 18, 19], which do not fit within the capabilities of HPHALL-2 or its posterior versions.
In particular: modern HET designs tend to implement magnetic shielding of chamber walls [20, 21]; the
HEMPT relies on magnetic topologies with several singular points and cusp-type topologies; and the
HPT and the ECRT present magnetic nozzles with magnetic lines closing far away from the thruster
main chamber [22].

Mikellides et al. [23, 24, 25] have developed Hall2De, a full-fluid axisymmetric code for HETs, which
has been useful in analyzing the plasma response in magnetically shielded HETs such as the Aerojet
Rocketdyne XR-5 (previously BPT-4000), or the HERMeS thruster [20, 26]. Hall2De implements a
fully 2D treatment of the electron fluid equations on a magnetic field aligned mesh (MFAM or magnetic
mesh for short) and is applicable to any axisymmetric magnetic topology. At large values of the Hall
parameter, the use of a magnetic mesh is almost mandatory to avoid the strong numerical diffusion
between the directions parallel and perpendicular to the magnetic field [27, 28]. [Incidentally, in order to
prevent the PIC-related statistical noise, Hall2De opted also for a fluid treatment of heavy species.]

Within the frame of different research projects, our group is developing HYPHEN, an axisymmetric
hybrid multi-thruster simulation tool, with potential application to the family of the five EP technologies
cited before. As HPHALL-2, HYPHEN continues relying on a PIC-MCC formulation for ions and neu-
trals, which is found much more versatile than the fluid one, taking into account the existence of several
heavy species populations(slow and fast ions of charge numbers 0, 1, and 2, at least) and the lack of
local thermodynamic equilibrium at low plasma collisionality. For the magnetized electrons, HYPHEN,
as Hall2De, attempts to rely on a 2D magnetized fluid formulation implemented on a MFAM.

As long as the Debye length is the smallest length of the plasma, and plasma quasineutrality holds
except in thin Debye sheaths around surfaces, hybrid codes benefit from quasineutrality being easily im-
plemented. HYPHEN is thus organized in three main modules: the Ion(I)-module, solving the dynamics
of the various ions and neutral species [29, 30, 31], the Electron(E)-module solving the electron response,
and the Sheath(S)-module solving the plasma interaction with different types of surfaces (dielectric,
metallic,...) [32, 33]. A fourth Wave(W)-module, solving the plasma-wave interaction and energy deposi-
tion, is added for thrusters relying on plasma production and heating through electromagnetic emission,
such as the HPT and the ECRT [34, 35].

The goal of this paper is to analyze the numerical algorithms used to solve the electron continuity
and momentum equations of the electron fluid on a given MFAM. The strategies for the generation
of a suitable 2D magnetic mesh, based on geometric quality indicators, were already discussed in Ref.
[28, 33]. The challenges here to obtain accurate numerical algorithms come from several sides: (1) the
high irregularity of the cells; (2) the large anisotropy in electron conductivity caused by the magnetic
field; (3) the treatment of non-magnetically aligned boundary cells, and (4) the presence of null singular
points. Finite volume, finite difference, and least square methods will be proposed for each specific case.
Unfortunately, we are not aware of publications on the numerical algorithms on electron equations in
Hall2De, which could allow us a comparison with ours.

The electron continuity and momentum equations are here closed with a polytropic state equation
relating pressure and density. To illustrate the electron response with the proposed numerical algorithms
a HPT configuration will be used. This will allow to compare the present approach with the simpler one
by Ahedo and Navarro [36], where local current ambipolarity is imposed (and ions are treated as a fluid).

The rest of the paper is organized as follows. Sec. 2 presents the thruster and magnetic geometries
that will be simulated and the electron fluid model. Sec. 3 discusses the numerical treatment of these
equations. Sec. 4 assesses the previous numerical algorithms treatment with simulations of an HPT
plasma discharge. Sec. 5 summarizes the conclusions of this work.
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2 Problem formulation

2.1 Geometric and magnetic topologies

a)

Figure 1: (a) Scheme of the mini-HPT plasma domain to be simulated. The vessel length and
radius are 3 cm and 1 cm, respectively. The injector radius is 0.75cm. (b) Conventional magnetic
field to be used in cases C1A (and in case C1B with double strength). (c) Magnetic field with
a null point used in case C2.

Figure 1(a) presents a sketch of the plasma domain to be simulated, which is similar (but shorter)
to the one used in previous HPT studies [34, 36]. The vessel length and radius are L=3cm and R=1cm.
The injector of xenon occupies a circle of radius Rinj=0.75cm at the back of the chamber. The rest of the
vessel wall is made of a dielectric material. An external helical antenna around the vessel emits RF energy
inside, which is absorbed by the plasma. External coils with independent electric currents generate an
applied magnetic field B. Magnetic topology and strength depend on the values and directions of these
currents.

Figure 1(b) and 1(c) depict the streamlines and the equipotential lines (surfaces of revolution, indeed)
for two magnetic topologies. Figure 1(b) shows the conventional one for a HPT, with quasi-axial magnetic
lines inside the vessel (to accomplish good magnetic confinement at the lateral walls), and divergent
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magnetic lines outside (to form the magnetic nozzle that accelerates supersonically the plasma beam
and generates magnetic thrust [37, 38]). The topology of Fig. 1(c), bearing a singular magnetic point,
has been used in some prototypes [39] and has been selected here mainly to assess the capability of the
numerical scheme to deal with a null point.

Two coordinates systems are used: first, the natural cylindrical reference frame {1z,1r,1θ}, with
coordinates (z, r, θ); and, second, the ’magnetic’ reference frame constituted by {1⊥,1‖,1θ}, with 1‖ =
B/B and 1⊥ = 1‖×1θ and coordinates (λ, σ, θ). The orthogonal magnetic coordinates λ(z, r) and σ(z, r)
arise from the solenoidal and irrotational equations for the axisymmetric magnetic field, ∇ ·B = 0 and
∇×B = 0, in an axisymmetric geometry:

∂λ

∂z
= rBr,

∂λ

∂r
= −rBz, (1)

∂σ

∂z
= Bz,

∂σ

∂r
= Br. (2)

The isolines are obtained by numerical integration of these equations and the unit derivatives satisfy

∂

∂1⊥
= rB

∂

∂λ
,

∂

∂1‖
≡ B ∂

∂σ
. (3)

The selection of a magnetic mesh with a suitable distribution of isolines is a hard task, since the rates
of change of λ and σ depend on the local strength of the magnetic field. Hence, the distances between
the surfaces defined by two given values of one curvilinear coordinate depend on the field intensity, and
can vary widely over the simulation domain. Ref. [28] discussed strategies for meshing definition with a
given number of isolines.

2.2 Electron fluid model

According to the sequential and time-marching solving of the models for heavy species and electrons,
at each timestep iteration, the I-module delivers 2D maps of densities and fluxes of the different heavy
species. This data is implemented into the electron fluid model we describe next, which delivers back the
2D maps of electric potential φ, electron current density je, and electron temperature Te.

Let ns, Zs, and us be the density, charge number, and macroscopic velocity of any independent
species s (i.e. electrons and different heavy species). Since the plasma is quasineutral, the electron
density satisfies

ne '
∑
s6=e

Zsns, (4)

and is thus known from the I-module. The ion and electron current densities are ji = e
∑

s6=e Zsnsus
and je = −eneue. The first one is computed by the I-module, the second one will be obtained from the
continuity equation

∇ · j = 0, (5)

for the electric current density, j = ji +je. For these current density vectors, we will distinguish between
the azimuthal and longitudinal current densities, that is, for instance, jθe = je · 1θ and ̃e = je − jθe1θ.

The electron momentum equation is expressed as

0 = −∇(neTe) + ene∇φ+ je ×B + Fres, (6)

where the total resistive force, Fres, is modelled as

Fres = −
∑
s6=e

νesmene(ue − us) ≡
ene
σe

(je + jc), (7)
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with: νes the collision frequency with species s; σe = e2ne/meνe the scalar (or parallel) conductivity;
νe =

∑
s6=e νes the effective electron momentum collision frequency; and

jc = ene
∑
s6=e

(νes/νe)us (8)

the heavy species contribution to electron resistivity, expressed, for convenience, in terms of an equivalent
current. Just for illustration, if the heavy species in the plasma are reduced to neutrals and singly-charged
ions, it is jc ' ji for νei � νen, and jc − ji ' ene(un − ui) for νei � νen.

Finally a polytropic state equation is postulated for Te:

Te = Te0 (ne/ne0)γ−1 , (9)

where γ is the polytropic coefficient and ne0 and Te0 are two constants. This allows to define the barotropy
function

he =
γ(Te − Te0)

e(γ − 1)
, (10)

(expressed in the units of φ), which satisfies ∇he = ∇(neTe)/ene = γ(Te/e)∇ lnne. [For the isothermal
case γ = 1, it is he = (Te0/e) ln(ne/ne0).]

Hence, the momentum equation reads

0 = ene(∇φ−∇he) + je ×B + (ene/σe)(je + jc). (11)

which is indeed a tensorial Ohm’s law for je. Defining the Hall parameter χ = ωce/νe and setting
∂/∂θ = 0, the three scalar momentum equations in the magnetic frame can be written as

j‖e = σe

(
∂he
∂1‖
− ∂φ

∂1‖

)
− j‖c (12)

j⊥e =
σe

1 + χ2

(
∂he
∂1⊥

− ∂φ

∂1⊥

)
− j⊥c + jθcχ

1 + χ2
(13)

jθe = −j⊥eχ− jθc. (14)

Equations (12) and (13) set relation between the electron current density components and φ; the rest of
contributions are known from the I-module. Equation (14) does not include φ and thus is uncoupled of
the other two.

In general it is Lνe(me/mi)�
√
Te/mi with L the typical chamber dimension. This implies that

∂φ

∂1‖
≈ ∂he
∂1‖
�

j‖e + j‖c

σe
(15)

and Eq. (12) is ill-conditioned numerically to determine j‖e. This issue is ameliorated by using, instead
of φ, the thermalized potential Φ, defined as the correction to the polytropic Boltzmann relation for
electrons:

Φ = φ− he(ne). (16)

[Ref. [40] used the Bernoulli function He = −eΦ instead of Φ.] However, in Eq. (13) and for χ� 1, we
expect

∂φ

∂1⊥
∼ ∂he
∂1⊥

≤ O
(
j⊥eχ

2

σe

)
, (17)

so operating with Φ or φ is indifferent when solving for j⊥e.
Regarding boundary conditions for the electron model, in general, they are set on the current per-

pendicular to the wall, jn = j · n, where n is the boundary normal unit vector pointing outwards. In
particular jn = 0 is imposed at the chamber dielectric walls and at the axis. Since there are no sources of
electric current inside the domain, the total current through the free-space boundary is zero. Two limit
cases to accomplish this condition are either to take the free-space boundary as ‘dielectric’ (i.e. jn = 0)
or as ‘conductor’ (i.e. φ=const). In addition, φ = 0 is set at an arbitrary reference point.
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Figure 2: Sketch of cells and faces in a MFAM. The three crosses (×) are examples of the three
types of faces. For each one, the circles surrounding them constitute the stencil considered for
gradient reconstruction. The FDM is considered for an inner face. The WLSM is used for the
non-inner faces with stencils constituted by two levels of adjacency.

3 Numerical treatment

3.1 Problem discretization

The electron fluid equations will be solved in the magnetic meshes of Fig. 1. A Finite Volume Method
(FVM) is chosen to solve the current continuity equation while a Gradient Reconstruction Method (GRM)
is used to discretize the Ohm’s law for electrons. The cells of the magnetic mesh are divided in two types,
sketched in Fig. 2: inner cells, enclosed by two pairs of faces that are magnetic lines, and boundary cells,
with at least one face corresponding to a domain boundary which is not a magnetic line; boundary cells
can have a number of faces different from 4. The cell center is the magnetic center for the inner cells and
the geometric center for the rest of cells. The faces of the magnetic mesh are classified in three types:
inner faces, separating two inner cells; boundary faces, corresponding to the plasma domain boundary;
and near-boundary faces, which correspond to boundary cells and are not boundary faces. The face center
is determined by the magnetic center or the geometric center when the former one is not available.

Applying the FVM to the electric current continuity equation on any cell yields

0 =

∫
Ω
dΩ ∇ · j ≈

∑
m

Smjnm, jnm ≡ jm · nm, (18)

where Ω is the cell volume, index m applies to all the cell faces, nm is the face unit normal pointing
outwards, Sm is the area of the cone frustum face (in the 3D axisymmetric space), and jm is computed at
the center of the face. Except for boundary faces, jnm is either ±j‖ or ±j⊥ at the face, while for boundary
faces jnm is assumed known (the extension of the numerical method to other boundary conditions is not
treated in this work).

GRMs, which are discussed in detail in the next subsection, discretize the derivatives at a face center
m of a given function, say the thermalized potential Φ, along a generic direction 1, as a linear combination
of the function at several centers of surrounding cells. That is

∂Φ

∂1

∣∣∣∣
m

=
∑
l

gmlΦl, (19)
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where l is the index of the cell centers involved, Φl are the values at those points, and gml are the geometric
factors of cell l with respect to face m. Using Eqs. (12) and (13) and GRMs, the parallel electric current
density at the center of a σ=const face m satisfies

j‖m = −σem
∑
l

gmlΦl + j′‖m, j′‖m = j‖im − j‖cm, (20)

and the perpendicular electric current density at the center of a λ=const face m is

j⊥m = − σe
1 + χ2

∣∣∣∣
m

∑
l

gmlΦl + j′⊥m, j′⊥m =

(
j⊥i −

j⊥c + jθcχ

1 + χ2

)∣∣∣∣
m

, (21)

where current densities related to heavy species and provided by the I-module are included in j′m.
Acting on all the mesh cells, Eq. (18) leads to the non-square matrix relation

A1 · {jnm∗} = B1, (22)

with: {jnm∗} grouping all current densities perpendicular to non-boundary faces m∗, A1 collecting the
areas of these faces; and B1 grouping all the information at boundary faces (B1 = 0 if all electric current
at the boundaries are zero). Then, applying Eqs. (20) and (21) yields

{jnm∗} = A2 · {Φl}+B2, (23)

with {Φl} grouping Φ for all cells, B2 collecting the information on currents ji and jc from the I-module,
and A2 containing plasma and geometric information at non-boundary faces. Eliminating {jnm∗} between
the two matrix equations yields

A · {Φl} = B, (24)

with A = A1A2 and B = B1 − A1B2. Since A is a square matrix, Eq. (24) is the matrix equation
to be solved for the thermalized potential. HYPHEN employs the PARDISO [41, 42] direct solver for
parallelized computation of the solution, although other solvers could be implemented (e.g., LIS [43]).

If the problem was to be solved directly for φ instead of Φ, the equation to consider would be

A · {φl} = B′, B′ ≡ B +A · {he}, (25)

with B′ known from the I-module.

3.2 Gradient reconstruction methods

A Finite Difference Method (FDM) is a simple and well-known method that allows a good accuracy in
the numerical evaluation of gradients. The order of accuracy achievable by the FDM and the required
discrete positions at which the differentiable function must be evaluated are well-defined. The drawback
is that the FDM is devised for structured meshes and is unsuitable for unstructured ones. In the present
case of an MFAM, the inner cells constitute a structured mesh in the magnetic coordinates but boundary
cells (with boundary faces not magnetically aligned) must be treated as in an unstructured mesh and
require other GRMs.

The most extended GRMs on unstructured meshes, which are to be used here for non-inner faces, are
the Weighted Least Squares Method (WLSM) and the Green-Gauss Method (GGM) [44, 45, 46]. The
GGM is based on applying the divergence theorem on a finite volume to establish the relation between
the gradient within the said volume with the function values at its edges. Since in our problem derivatives
need to be obtained at the cell faces, the application of this method is not direct and a dual mesh of
finite volumes or an interpolation scheme must be introduced. This would add unnecessary complexity
and unknowns, since the definition of the numerical artifices required for the GGM is not obvious. These
reasons ruled out to use the GGM here.
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On the other hand, the WLSM is built on Taylor’s expansions around a point (a face center here) and
it relates the gradients at that point with the values of the variable at a set of surrounding points (cell
centers in our case), called the stencil. The number of points of the stencil (number of Taylor’s expansions
and equations) is generally larger than the number of derivatives to be computed; thus a weighted linear
regression is introduced to obtain the solution. The WLSM can be applied straightforwardly to our
boundary cells but poses two issues. First, the optimal number and location of stencil points is case-
dependent and requires some trials and estimations. Second, since derivatives at different directions are
obtained simultaneously, the method is prone to cause numerical diffusion in an anisotropic problem, as
it is shown in Appendix A. This last issue explains that, although the WLSM could be applied to all
faces within the domain, it has been limited to non-inner faces.

The first-order Taylor’s expansion (say for Φ) around face m reads

Φl ' Φm +
∂Φ

∂1‖

∣∣∣∣
m

∆s‖ml +
∂Φ

∂1⊥

∣∣∣∣
m

∆s⊥ml, (26)

where: Φl applies to cells l adjacent to face m, ∆s⊥ml and ∆s‖ml are arc lengths from face m to cell center
l. In the FDM, the stencil of points is selected so that they are aligned along one magnetic coordinate,
and thus arc lengths along the second coordinate are zero. Here, on an inner face m, a 2-point stencil is
used by taking the two inner cells adjacent to said face. The above Taylor’s expansion allows to compute
Φ and its derivative perpendicular to the face. The associated coefficients gml in Eq. (19) are ±∆s−1

‖ml or

±∆s−1
⊥ml.

On near-boundary faces the WLSM is applied on a stencil that extends until the second level of
adjacency; the first level being the cells directly adjacent to the face, and the second level being the cells
adjacent to those. This typically means 5-6 cells as it is illustrated in Fig. 2. If the above first-order
Taylor expansion with 3 unknowns is considered, the set of equations for the stencil is overdetermined
and the WLSM must be applied.

The linear system in Eq. (26) can be formally expressed as

{Φlk} = C · xm, xm = (Φ, ∂Φ/∂1‖, ∂Φ/∂1⊥)m (27)

with {Φlk} extended to the k adjacent cells and C a matrix of geometric coefficients. The WLSM function
F to be minimized is

F (x) = [({Φlk} − Cxm)]T ·W · [({Φlk} − Cxm)], (28)

where superindex T is for the transposed matrix and the elements of the diagonal weighting matrix W
have been chosen as Wll = (∆s2

⊥ml + ∆s2
‖ml)

−1, i.e., the relative weight of each cell is proportional to the
inverse of the squared distance to the face. Other weighting methods are possible and have been proposed
in the literature; however the inverse square distance allows us to construct gradients that are biased to
over-represent local information, which we have found to work best with functions in which large spatial
gradients are expected. The solution of the WLSM for x is

xm = G · {Φlk}, G = (CTWC)−1CTW, (29)

and one column of G includes the coefficient gml needed in Eq. (19).

3.3 Magnitudes at the boundary faces

The above GRM yields Φ at all cell centers and the derivatives of φ at all non-boundary faces. Interpo-
lating appropriately that data, a complete 2D picture of Φ and je is obtained (for instance at the regular
mesh nodes of the I-module), except for the values at the domain boundaries. There, the main difficulty
is that data extrapolation in an irregular mesh can yield large errors, as we show next. [Hereafter in this
subsection and for sake of illustration we assume jnm = 0 at any boundary.]
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A first way of determining xm = (Φ, ∂Φ/∂1‖, ∂Φ/∂1⊥)m at a boundary face is just applying the
previous WLSM using two-adjacency level stencils, resulting of course in Eq. (29). Then, Eqs. (20) and
(21) yield the electric current densities at the boundaries as

jnm = −σe,m
(

cosα
∂Φ

∂1‖
− sinα

1 + χ2

∂Φ

∂1⊥

)∣∣∣∣
m

+ j′nm, (30)

with: j′nm = j′‖m cosα − j′⊥m sinα, and α=angle(nm,1‖m). The accuracy of this standard WLSM at a

boundary face [called WLSM(1)] is very poor due to the combination of large magnetic anisotropy and
mesh irregularity. This is illustrated in Fig. 3(a), which plots, for a particular simulation, the relative

error
∣∣∣j(1)
nm/ji,nm

∣∣∣, where j
(1)
nm is the perpendicular current density provided by the WLSM(1) and ji,nm is

the perpendicular ion current density at the boundary.

0

2.5

5

0 2 4 6 8
0

0.25

0.5

Figure 3: Relative errors in computing magnitudes at the boundary faces with WLSM(1) and
WLSM(2). The coordinate l is an arc length parameter that begins at point (0, 0) and increases
clockwise along the boundary walls W1, W2, and W3.

A second way of determining xm is a modified WLSM [called WLSM(2)], which assures the fulfillment
of jnm = 0 in Eq. (30). The linear system from Eq. (27) is now expressed as

{Φlk − Φm} = C1 · x′m, x′m = (∂Φ/∂1‖, ∂Φ/∂1⊥)m. (31)

The solution of this WLSM(2) is

x′m = G1 · {Φlk − Φm}, G1 = (CT1 WC1)−1CT1 W. (32)

Substituting the derivatives of Φ from Eq. (32) into Eq. (30) with jnm = 0, yields Φ at the boundary
face,

Φm =
n′ ·G1 · {Φlk} − j′nm/σe,m

n′ ·G1 · {1}
, (33)

with n′ =
(
cosα,−(1 + χ2

m)−1 sinα
)

and {1} a vector of ones.

Figure 3(b) plots the relative difference in Φm between the two previous schemes, δΦm = Φ
(1)
m −Φ

(2)
m ,

with superscripts (1) and (2) corresponding to WLSM(1) and WLSM(2), respectively. Since changes of

eΦ across the plasma domain are going to be O(Te0), the error on Φ
(1)
m is significant. Furthermore, the

error becomes strongly amplified when deriving Φ and multiplying by σe, as Fig. 3(a) for the electric
current densities have shown.
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4 Simulation results

The numerical schemes of Sec. 3 for integrating the electron fluid equations in the MFAM of the E-
Module have been tested through several simulations of the mini HPT sketched at Fig. 1. The solutions
shown here correspond to run sequentially the E-module and the I-module until a stationary discharge
is reached. Simulations with three magnetic fields B are run: case C1A, with the magnetic field of Fig.
1(b); case C1B, identical to C1A but with double strength of B; and case C2, with the magnetic field
of Fig. 1(c). In the 3 cases the injector delivers a xenon mass flow rate of ṁ=0.1mg/s (equivalent to an
electric current of eṁ/mi=73mA) with a mean injection velocity of uinj=300m/s and a temperature of
Tinj=0.01eV. Based on experimental data [47, 48], a polytropic coefficient γ = 1.2 is used. The reference
temperature is Te0=8eV and is assigned (arbitrarily) to point (z, r)=(1.4cm, 0.4cm). Chamber walls, W1
and W2, are dielectric and the condition jn = 0 is imposed at them. For magnetically guided plasmas,
appropriate local boundary conditions at the downstream free-loss boundary W3, where the total electric
current is zero, are a matter of present debate (see for instance [49] and references therein). For the
purposes of the present paper we will just take jn = 0 at W3. Notice that consequently the plasma plume
leaving the domain downstream is current-free.

The assessment of the previous numerical algorithms on the electron fluid model is carried out in
several ways. First, the thrusting performances of the three simulated cases will be briefly analyzed
with the aim of understanding particle and energy balances and checking the physical consistency of the
solution. Second, the 2D (z, r) maps of main plasma magnitudes will be discussed, checking again for
physical reliability of results. Third, a study of the contributions of the different terms of the electron
momentum equation in both magnetically-parallel and perpendicular directions will allow us to better
estimate dominant and marginal contributions and thus identify the best numerical treatment. And
fourth, the effects of cell size and plume extension will be assessed briefly.

4.1 Performances

Thruster performances, parametric analysis, and design optimization are not direct goals of this paper.
Nonetheless, a succinct analysis of the performances of the 3 HPT simulations is still useful for interpre-
tation of the results. Appendix B defines main thruster performance indicators and Table 1 shows them
for the 3 simulation cases. A very low thrust efficiency, ηF , is observed in all of them, coming from the
very low energy efficiency, ηene (4-14%). Most of the absorbed power is spent in the walls (about 56-61%)
and inelastic collisions (35-38%). Poor magnetic confinement explains directly wall losses but also the
large inelastic collisions since neutrals are ionized twice, on average. This multiple ionization is evident
when observing that the propellant utilization ηu is just moderate (13-60%) while the ratio of the total
ion mass production rate versus the injected mass flow rate, ṁi,total/ṁ ≡ ηu/ηprod is 144-231%, and we
remind that inelastic losses are proportional to ṁi,total.

The relevance of magnetic confinement is clear when comparing case C1A to C1B and C2. Doubling
the magnetic field from C1A to C1B, implies a better magnetic confinement as confirmed by performances:
there is a moderate reduction of energy losses at the walls and a large increase of ηu. This agrees with
theoretical and experimental evidence [50, 36, 51, 52, 53]. Furthermore, in configurations C1A and C1B,
the lateral wall is partially shielded magnetically but not the back wall. As a consequence, while the
dielectric-to-injector surface ratio is 11.4 the dielectric-to-injector energy losses are about 4.6, 2.0 and 5.8
for cases C1A, C1B, and C2, respectively. Confinement of the lateral wall improves from C2 to C1A and
C1B, and this is reflected in the relative amount of energy losses at wall W2. Regarding wall W1, there
is an increase on losses in case C1B, which seems to be due to the maximum plasma density being placed
more upstream. Finally, plume efficiency, ηplu, is high in all cases, which means that the magnetic nozzle
performs correctly. In fact, the plume divergence semi-angle defined as arccos

√
ηplu is moderate, about

24-26 deg.
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Pa [W ] F [mN ] ηu ηene ηplu ηF ηprod εinel εwall

C1A 8.36 0.166 0.25 0.07 0.83 0.016 0.14 0.37 0.56 = 0.10 + 0.46

C1B 10.57 0.365 0.60 0.14 0.83 0.063 0.26 0.38 0.48 = 0.16 + 0.32

C2 7.56 0.108 0.13 0.04 0.80 0.008 0.09 0.35 0.61 = 0.09 + 0.52

Table 1: Performance indicators. The two terms in the sums of the last column are the contri-
butions of walls W1 (first term) and W2 (second one).

a) b)

c) d)

e) f)

Figure 4: 2D maps of main plasma magnitudes for case C1A. The electron fluid model algorithms
are responsible of determining φ and je. The I-module provides ne and ji. Plots of plasma
properties in this and subsequent figures correspond to a time average of the last 100 timesteps
(which correspond to 5µs with the time step used) of the stationary solution.
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a) b)

c) d)

e) f)

Figure 5: Same than Fig. 4 for case C1B.
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a) b)

c) d)

e) f)

Figure 6: Same than Fig. 4 for case C2. The null magnetic point is indicated with a white dot.

4.2 2D plasma profiles

Figure 4 shows the 2D maps of main plasma magnitudes for case C1A. The map of ne [subplot 4(a)]
comes from the I-module via the quasineutrality condition. Subplot 4(c) for the longitudinal current
density ̃i is provided by the I-module too. The electron current density vector and the (thermalized)
electric potential are the outputs of the present electron fluid model. The reference values used for the
dimensionless parameters are

j0 =
ṁ

miπR2
= 234 A/m2, cs0 =

√
Te0
mi

= 2.43 km/s, n0 =
j0
ecs0

= 6.02 · 1017 m−3.

The ionization rate is maximum around the maximum of ne (i.e. close to z=0.5cm and the axis).
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This explains also the behavior of the ion current streamlines ̃i. The location of the maximum ionization
rate near the back of the chamber is going to imply that many ion and electron streamlines end at the
chamber walls, explaining the large energy losses and plasma recombination there. Ions move guided
by the electric potential φ [subplot 4(b)] which satisfies Eq. (16). Since the thermalized potential turns
out to be much smaller than the electric potential [see Fig. 7(d) below], φ satisfies approximately a
‘polytropic Boltzmann’ relation with the plasma density φ ' he(ne).

The wall-normal electric current density jn has been taken zero at all domain boundaries. This
explains that the maps of ̃e(z, r) and ̃i(z, r) [Fig. 4(c) and 4(d)] are similar but not identical: a nonzero
longitudinal electric current density ̃ [Fig. 4(e)] develops. This feature will be further discussed in a
later subsection.

Since ions have a negligible azimuthal motion, the map of jθe [Fig. 4(f)] corresponds to the azimuthal
electric current density created in the plasma. These circular loops have an intensity proportional to the
Hall parameter times j⊥e and a diamagnetic character (i.e. the electric current runs in opposite direction
to the coil currents creating B) [50, 22]. Their interaction with the electric currents in the coils leads to
action-reaction axial forces: the loops located in the magnetic nozzle constitute the source of magnetic
thrust [22] while those inside the chamber do not contribute practically to thrust.

Figure 5 illustrates the electron fluid behavior for case C1B, where the magnetic strength has been
doubled compared to C1A. Although performances improve much, only mild differences are appreciated in
the 2D maps. Since the propellant utilization is larger, the plasma density is larger and, as a consequence,
all the current densities are larger too. The maximum plasma density is shifted a bit upstream, possibly
due to the higher ionization. The topology of current streamlines is very similar to C1A except for mild
differences near the chamber walls due to better confinement.

Figure 6 corresponds to case C2. Comparing it with case C1A, the lower propellant utilization leads to
a lower plasma density but its general 2D shape is similar; some differences are observed in the profiles of
the electric potential inside the chamber. Current densities are naturally lower than in C1A, but the most
interesting feature are the differences in the longitudinal currents: observe the three ̃-loops, the larger
twisting of ̃ lines, and the changes of signs of jθe (around the separatrixes departing from the singular
null point). In addition, the gentle behavior of the electric potential and the electron current density
around the singular magnetic point (where the electron fluid becomes locally unmagnetized) confirms the
capability of the numerical scheme to deal correctly with such points.

4.3 Assessment of the momentum equation terms

The different terms of the electron momentum equations are evaluated in Fig. 7 for case C1A. Panel 7(a)
shows that the contribution of heavy species to j‖e through j‖c, Eq. (12), is significant in certain regions
of the plasma domain. On the contrary, the contribution of heavy species to the perpendicular electron
current density, Eq. (13), is totally negligible: j⊥c/[(1 + χ2)j⊥e] < 10−4 in case C1A.

Panel 7(b) compares the electric current density to the ion and electron current densities, showing that
|̃| � |̃e|+ |̃i| in most parts of the domain, but not everywhere (specially near some boundaries). Then,
panel 7(c) compares the parallel and perpendicular electron current densities, showing that they are of
the same order inside the chamber (where boundary conditions have a stronger effect), contrary to the
naive idea that the anisotropic conductivity leads necessarily to j⊥e � j‖e. In the magnetic nozzle region,
the higher Hall parameter and the smaller effect of domain boundaries do lead to the parallel current to
dominate. Panel 7(d) plots the map of the thermalized potential Φ. This has variations of about 10%
of φ variations, which confirms that the electric potential follows approximately a polytropic Boltzmann
relation, φ(ne). However, this small Φ is crucial to determine the parallel electron current density in a
weakly-collisional electron fluid, both in the present magnetized case and in the unmagnetized one [54].
In the magnetized case, Φ is practically constant along the magnetic lines with ∂Φ/∂1‖ � ∂Φ/∂1⊥,
which makes more challenging the accurate computation of Φ and j‖e (this one is the product of the
small ∂Φ/∂1‖ times the very large parallel conductivity σe).
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a) b)

c) d)

Figure 7: Additional 2D maps of case C1A for the analysis of the terms in the electron momentum
equation. Upper and lower bounds have been imposed to the color scale to highlight main
features.

A reliable computation of Φ and j‖e was the reason to work on the highly irregular MFAM and to use
algorithms discretizing j‖e and j⊥e independently. Figure 8 compares the electric current densities inside
the chamber for C2 when using for inner faces either (a) the FDM or (b) the WLSM; in both simulations,
the WLSM is used in non-inner faces. The differences are very noticeable, particularly near the singular
point, where the WLSM is unable to reproduce well the two current loops and yields too large values of
the electric current density.

Finally, Fig. 9 compares results on the electric current density inside the chamber when either Φ
[Eq. (24)] or φ [Eq. (25)] are used as main variable in the numerical algorithms. In this comparison,
the differences are noticeable, the use of Φ leads to better-defined current streamlines and lower noise in
the values of the electric current. It must be mentioned that the temperature Te0 was doubled in this
simulation to increase the effect of the electron pressure and thus the difference φ− Φ = he ∝ Te0.

4.4 On current ambipolarity and plume extension

In previous subsections, we have found that longitudinal electric currents develop in the otherwise current-
free plasma beam. These currents form several loops, which are framed by the boundaries of the simulation
domain, due to the condition jn = 0 applied there.

This issue of current ambipolarity (i.e. ̃ = 0) in a current-free plasma beam was carefully studied
by Ahedo and Merino [22, 55, 56] in the context of a divergent magnetic nozzle (i.e. the plume region
in the present case). They showed that fulfillment of current ambipolarity in the divergent nozzle was
only achievable if ions (and thus electrons) are fully-magnetized, a too ideal case. For the case of inter-
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a) FDM b) WLSM

Figure 8: Electric current densities inside the chamber for case C2: (a) the FDM is used in inner
faces, (b) the WLSM is used in all faces. The white dot indicates the location of the magnetic
null point.

a) Φ as unknown b) φ as unknown

Figure 9: Electric current densities inside the chamber for same magnetic field than case C1A but
with Te0 = 16eV (i.e. doubling the Te map). Numerical algorithms on the electron momentum
equation are applied directly on (a) Φ or (b) φ.

est of partially-magnetized (or unmagnetized) ions, current ambipolarity cannot be achieved (except at
particular surfaces) and its failure is linked to the detachment of ions from magnetic lines [22]. In the
present case, which includes thruster chamber and nozzle, we find that longitudinal current loops develop
inside the chamber too. This implies that the simplified 2D fluid model (with the magnetic field purely
cylindrical) of Ahedo and Navarro [36] for a helicon plasma thruster, which assumed current ambipolarity
inside the thruster chamber, was incorrect in that postulate.

However, although the formation of longitudinal currents in the thruster chamber and nozzle is an
interesting physical feature, Ahedo and Merino [22, 56] concluded that these currents have almost no
relevance on the thruster performances. On the one side, these longitudinal currents induce an azimuthal
magnetic field much smaller than the longitudinal field induced by the much higher azimuthal currents
[Fig. 4(f) for instance], and even this last induced field is negligible for the plasma densities considered
here. On the other side and more relevant for the present discussion, Ahedo and Merino found that, in the
collisionless limit, u‖e (and therefore j‖e) is a plasma variable uncoupled from the rest. As a consequence,
changes of jn at the downstream boundary, for instance, are mainly managed by j‖e, affecting minimally
the rest of the plasma response.

In order to verify that this behavior continues to apply in the present, more general model, simulations
of case C1A with plume axial lengths from 3 cm (in the nominal case of Fig. 4) to 4.5 cm and 6 cm have
been run. As the condition jn,W3 = 0 is moved downstream with the plume length, the most downward
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longitudinal current loop changes length and topology. Figure 10 (a) and (b) show the ion and electric
current densities for the 4.5cm-plume (i.e. 7.5 cm of total domain extension); plots have been restricted
to z ≤ 6 cm in order to compare them easily with Fig. 4 (c) and (e). Differences are observed in ̃, but
there are practically no changes on j̃i, and the same is true for ne and φ (not shown in the figure). Also,
thruster performance indicators remain basically the same for the three plume lengths, with differences
about 1-2% (which, in fact, is about the level of noise of PIC simulations). Fig. 10(c) shows, at the mean
radius for each z = constant section, the 1D profiles of |̃i|, j⊥e, and j‖e for the three plume lengths.
Observe that differences are only relevant on j‖e and even these tend to fade out if the plume is long
enough. This completes the confirmation of the validity, in this more general case, of Ahedo and Merino’s
conclusions relative to the relevance of longitudinal electric currents in a magnetically guided plasma
beam.

Finally, the preceding analysis allows us also to assess the effects of simulating a truncated plasma
plume on the plasma/thruster response. As long as this length is not too short, the effects turn out to
be rather marginal. Furthermore, Ahedo and Merino’s theory and the present analysis suggest that the
conditions set at the downstream boundary W3 (either jn = 0 or a different one on the electric current
or potential) seem to be scarcely relevant on the plasma response, except for the parallel electron current
and the related longitudinal electric currents.

a) b)

0 2 4 6 8 10
-0.5

-0.25

0

0.25

0.5

c)

Figure 10: Panels (a) and (b) show ion and electric current densities for a case identical to C1A
except that the plume axial length is 4.5cm instead of 3cm. For easier comparison with same
currents in Fig. 4, plots have been restricted to z ≤ 6cm. Panel (c) compares ion and electron
currents for plume axial lengths of 3cm, 4.5cm and 6cm, at the mean r of each z = constant
section.

4.5 Effects of mesh refinement

Simulations so far have been run on a MFAM (for the electrons) and a structured mesh (for the I-Module)
of about 1200 cells each. To assess the solution sensitivity to mesh spacing, the case C1A with Te0 = 16eV
has been calculated with about 1200, 2400, and 4800 cells in each mesh. Increasing the number of cells
is a costly process, since the time step has to be reduced as well to fulfill numerical stability; this makes
the simulation time to increase nearly quadratically. To have an idea of the computational cost here, the
base simulation of Fig. 4 with 1200 cells takes already about 12 hours in a machine with 12 cores (i.e. 6
days-core) to simulate 2.5ms.

Results of the mesh size sensitivity analysis are shown in Fig. 11. Figures 11(a) and 11(b) plot the
electric current density in the case of 4800 cells for the two numerical choices on computing φ and must
be compared with those of Fig. 9. As expected, smoother 2D maps are obtained as the mesh is refined.
When algorithms work directly with Φ [subplot 11(a)], the differences on the current lines are small but
the spatial irregularities on |̃| of Fig. 9(a) have nearly disappeared. On the other hand, when working
directly with φ [subplot 11(b)], irregularities decrease but still persist and there are still differences with
subplot 11(a).
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Figure 11(c) provides a more detailed evaluation of these results. It plots |̃| at the exit section of
the thruster (z=3cm) for the three mesh sizes and the two numerical strategies on computing φ. The
convergence with the mesh size is observable and also the larger noise found when working directly with
φ. A quantitative assessment of the differences among the curves is obtained taking first the case with
4800 cells and Φ as unknown as our ‘best (numerical) solution’. Then, calling |̃|ref (r) the curve for that

case, the mean deviation of the rest of curves is defined as δ = 1/R
∫ R

0

∣∣|̃|/|̃|ref − 1
∣∣ dr with R =1 cm.

Values of this deviation (or apparent error) are given in the inserts of the two panels of Fig. 11(c). It is
worth to notice that there is still a deviation of 9.3% with 4800 cells when working with φ, larger than
in the case of 2400 cells and working with Φ.

a) Φ as unknown b) φ as unknown

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

c) Profiles at z =3cm

Figure 11: Panels (a) and (b) correspond to the same cases than Fig. 9 but using 4800 cells/mesh
instead of 1200 in the simulations. Panel (c) plots the cuts of the electric current density at
the chamber exit section, z =3cm, for the 1200, 2400 and 4800 cells/mesh cases and the two
numerical strategies followed to compute φ. The percentages shown in the inserts of panel (c)
correspond to the mean deviation δ (defined in the main text) with respect to |̃| for 4800 cells
and Φ as unknown.

5 Conclusions

The solution of a weakly-collisional, magnetized electron fluid model in a 2D axisymmetric geometry
presents important challenges on magnitudes such as the electron current density, the ambipolar electric
field, and the resulting electric potential map. These are caused by the large anisotropy between the
directions parallel and perpendicular to the magnetic field, which can cause strong numerical diffusion
ruining the accuracy of the results.

The first action for designing a reliable numerical treatment of that model is to operate on a magnet-
ically aligned mesh, although this yields a large cell inhomogeneity in terms of size and aspect ratio. The
second main action is to use a finite difference method for gradient reconstruction, whenever possible,
which here means in all inner faces (i.e. those unrelated to boundary cells). It has been proven that
weighted least squares methods, beyond presenting some arbitrariness on stencil and weight selection, can
lead to numerical diffusion. Therefore, their use must be limited to the faces of the irregular boundary
cells. Still, the computation of magnitudes in the boundary faces have required special modalities of the
WLSM and there is still room for further improvements. Additionally, the use of a finite volume method
for the electric current conservation equation has allowed to deal easily with the cells around singular
null-points of the magnetic field.

The numerical methods on the electron model have been tested successfully by implementing them
into the E-module of the HYPHEN code and simulating the plasma discharge in a HPT. The numerical
benefits of using the thermalized potential instead of the natural electric potential, when solving the
parallel Ohm’s law under large magnetization and low collisionality, have been assessed too. Variations
of the thermalized potential are much lower than those of the electric potential, which allows to conclude
(when a barotropy function exists) that the electric potential follows approximately a Boltzmann-type
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relation with the plasma density. However, those variations are crucial in determining the parallel electron
current density. Indeed, this current component has a central role in the formation of longitudinal electric
current loops but these are shown to have a marginal effect on the rest of the plasma response. Related
to this, it is also shown that the response is rather insensitive to the plume axial extension included in
the simulation. Finally, the reliability of the solution against the number of cells used in the simulation,
specially important in the case of an irregular magnetic mesh, has been checked positively.

The finite volume and gradient reconstruction methods on a MFAM have been analyzed here on a
simplified polytropic electron model. The first next step is to add the electron energy and heat flux
equations and to apply the algorithms developed here to them. The second next step is to match this
electron transport model to the wave-plasma model and thus have a physically complete discharge in a
HPT. Performances and optimization studies of HPTs will then be meaningful. In a parallel research line
the application of this electron model and the HYPHEN code to Hall Effect Thruster discharges is also
in progress [31].
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Appendix A Testing gradient reconstruction methods

The accuracy of the FDM and the WLSM for gradient reconstruction of Φ is tested here using the simple
trial function

ψ(x‖, x⊥) = exp (−x‖/χ2) exp (−x⊥), (34)

where x‖ and x⊥ replicate the coordinates parallel and perpendicular to the magnetic field, the constant
χ replicates the Hall parameter and therefore controls the anisotropy level. The tests are performed at
x‖ = x⊥ = 0 on the vertical face shown in Fig. 12 and compare the numerical and analytical values of
∂ψ/∂x‖ there. Left and right sketches in Fig. 12 show the stencils used for the FDM and the WLSM,
respectively. The error on the numerical derivative (with subscript num) is

ε‖ =
∣∣χ2(∂ψ/∂x‖)num + 1

∣∣ . (35)

For the FDM two configurations of a 2-point stencil are used. In scheme FA, the cells are squares and
identical with length ∆x‖ = ∆x⊥ = 0.5. In scheme FB, the left cell increases ∆x‖ by a 10% compared
to FA. The relative error ε‖ is shown in Fig. 12(left). Both in schemes FA and FB, the error decreases
as ∼ χ−2 with χ increasing. This means an excellent performance of the FDM, with the error being
proportional to the second derivative of ψ. The higher error with the nonuniform FB is natural too. At
very large χ the error on FA reaches the machine precision.

Four schemes are used for assessing the relative error when using the WLSM. In scheme WA, an
8-point stencil with identical cells is used. In schemes WB and WC, the left cell changes ∆x‖ by a 10%
and a 1%, respectively. In scheme WD, the two upper cells change ∆x⊥ by a 10%. The relative error
ε‖ is shown in Fig. 12(right). Scheme WA behaves very well for any χ, but not as well as scheme FA.
Scheme WD behaves exactly as WA, meaning that nonuniformities in the perpendicular direction do not
matter. However, schemes WB and WC warn that nonuniformities in the parallel direction can lead to
large errors at large χ. This is the numerical diffusion effect. Since the MFAM of our problem is highly
nonuniform, it is concluded that the FDM must be used whenever it is possible.
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Figure 12: Scheme of the stencils used by each GRM when testing with the analytical function.
Panel (left) corresponds to FDM and (right) to WLSM. GRM is done for a particular face of a
hypothetical MFAM, which is represented by a cross and located at (x‖, x⊥). The surrounding
cells, whose centers are marked by a circle, constitute the stencils. The main text explains the
different configurations of the stencils.

Appendix B Performance indicators

The thrust produced by the plasma beam satisfies

F =

∫
W3

∑
s

(nsmsuzsus · n + nsTs1z · n) dS (36)

with n the external normal to surface W3. This thrust, with dynamic and static components, includes
the contribution of both the heavy species (obtained through the I-module) and the electrons. The heavy
species contribution to thrust is obtained from the I-module and is computed directly with the particle
formulation and not with the above fluid one. Notice that if the simulated plume length is too short, the
plasma beam acceleration would be incomplete and the thrust would be slightly underestimated.

The overall thrust efficiency is defined as

ηF =
F 2

2ṁPabs
, (37)

where Pabs is the power absorbed by the plasma. There are several partial contributions to ηF , that are
defined next. A steady-state discharge is assumed implicitly.

Let ṁi,W1, ṁi,W2, and ṁi,W3 be the mass flows of ions (of different electric charges) toward the
surfaces W1, W2 and W3 of Fig. 1, and ṁi,total = ṁi,W1 + ṁi,W2 + ṁi,W3 the total ion flow produced
by the thruster. The downstream ion flow ṁi,W3 is considered the useful one for thrust (except for
fast neutrals). The quality of the plasma production in the chamber is characterized by the propellant
utilization and the production efficiency, defined respectively as, [36]

ηu =
ṁi,W3

ṁ
, ηprod =

ṁi,W3

ṁi,total
. (38)

The production efficiency measures the percentage of the total plasma production useful for thrust; the
rest of plasma production is just recombined at the walls.
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In order to estimate a power budget and the power efficiency for this discharge, the energy balance
of the whole plasma must be considered. Adding for all plasma species, the total energy equation can be
expressed as

∇ ·
∑
s

[(
5

2
nsTs +

1

2
nsmsu

2
s

)
us + qs

]
= −∇φ · j +Qabs −Qion −Qexc, (39)

where: Qabs is the density of power deposited; and Qion and Qexc the power spent in ionization and
excitation (inelastic collisions) per unit volume. Integrating the equation over the whole domain, the
power balance is

Pabs = Pion + Pexc + PW1 + PW2 + PW3, (40)

where Pabs, Pion and Pexc are the volumetric integrals of Qabs, Qion and Qexc, respectively, and the three
other integrals are energy flows through the different domain boundaries,

PW1 =

∫
W1

∑
s

[(
5

2
Ts +

1

2
msu

2
s

)
nsus + qs

]
· ndS, (41)

and identical expressions for walls W2 and W3. Equation (40) does not include the total work of the
electric field on the domain since it is zero. This comes out from∫

V
∇φ · jdV ≡

∫
W1+W2+W3

φj · ndS −
∫
V
φ∇ · jdV, (42)

where: the first term at the right-hand side is zero if jn = 0 at all surfaces, and the second term is zero
since there are no sources of current inside the domain [Eq. (5)].

In the complete model of a HPT discharge, Qabs(z, r) will be determined from a wave-plasma sub-
model, such as the one developed in [34]. Then, Eq. (39) would determine the 2D map of electron
temperature. Here, since Te(z, r) has been prescribed through a polytropic relation with ne, Eq. (39) is
not used and, indeed, the power Pabs required to sustain that Te(z, r) is derived from Eq. (40).

Based on the useful power PW3, the energy (or power) efficiency is defined as

ηene = PW3/Pabs. (43)

The energy ’inefficiency’ is evaluated through

εinel =
Pion + Pexc

Pabs
, εwall =

PW1 + PW2

Pabs
, (44)

which measure inelastic and wall losses, respectively.
Finally, there is the plume efficiency, measuring the effect of plume divergence. Here, this is defined

as

ηplu =
Pzi,W3

Pi,W3
, (45)

where Pzi,W3 and Pi,W3 are the flows of, respectively, axial and total energy of ions. Combining partial
efficiencies, one has ηF ≈ ηuηeneηplu.
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