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Abstract

A linear stability analysis of the thermoconvective problem of a thin liquid
film contained in an annular domain has been conducted. The influence of
the horizontal aspect ratio on the solution has been considered by keeping
a fixed external wall while the internal radius of the annular domain was
modified. The parameter used in the study, Γh, has been defined as the ratio
of the internal radius to the domain depth. The other control parameter of
the study is the Prandtl number ranging from 0.7 to 50, i.e. characteristic of
fluids as air to n−butanol. The study has been performed for different Bond
(Bo) regimes ranging from 0.0 for surface tension dominated flows to 67 for
buoyancy dominated ones. Three different kind of bifurcations are found in
the Γh − Pr plane for large Bonds, while for low Bonds only two of them
appear. In the case of pure buoyancy or surface tension flows, for every Γh
there exists a Prandtl number such that oscillatory and stationary coexist
in a co-dimension two bifurcation point. These transitions show a strong
dependency with the Bond number. Indeed, the lower transition disappears
for low Bo and the upper one disappears with intermediate Bo values. Fur-
thermore, there is a non-linear dependency of the number of structures of
the growing bifurcation with Γh. These co-dimension two lines show a strong
dependency with Bo. Firstly, looking at the frontier between HWI and LR
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regions, for large Bo numbers, Pr increases with Γh, while for low Bo the
trend is reversed. Additionally, this transition only appears in the extreme
Bo cases, for the central values of the considered, no transition is found.
Similarly, the second transition found only appears for Bo larger than 30.

Keywords: Thermocapillary convection, Linear stability, Flow
perturbations, Bond number

1. Introduction

The topic of thermoconvective flows driven by surface heat dissipation
has been widely studied [1, 2, 3] for more than a century. It is well-known
that thermoconvective instabilities in fluid layers are caused by two effects:
gravity and capillarity forces. Bénard-Marangoni (BM) problem, is the one
in which buoyancy does not play a significant role, while when buoyancy
is dominant the problem is known as Rayleigh-Benard. If both effects are
important, the problem is a hybrid buoyancy-thermocapillary convection.
The practical importance of these problems is nowadays widely recognized
since it appears in a great variety of processes as: the flow inside distillation
columns, crystal growth, film coating processes or droplet and liquid film
evaporation [4].

In the most classical BM problem [3], heat is uniformly applied from
the bottom wall leading to the emergence of a multicellular pattern. Such
flow instabilities were verified experimentally already in 1956 by Block [5],
demonstrating the role of surface tension in the formation of this type of flow.
If the temperature gradient is parallel to the free interface, then the flow is
generally referred to as Marangoni or thermocapillary convection. For these
cases, for a relatively small temperature gradient, the flow is two-dimensional
(2D) axisymmetric and steady. If the temperature difference is sufficiently
increased, however, a flow instability can occur and produce transition to 3D
oscillatory states.

A general description of this problem can be found in several works ap-
pearing in the literature. Gollub and Benson [6] reported four different tran-
sition mechanisms by using Laser Doppler Velocimetry. Smith and Davis [7]
predicted, using linear stability analysis, the appearance of the hydrothermal
wave instability in an infinite fluid layer in micro-gravity. Latter, Smith also
analyzed the influence on the Prandtl number (Pr), reporting two different
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instability mechanisms corresponding to spanwise (for low Pr) or streamwise
(for larger Pr) traveling hydrothermal wave (HW) [8].

The instabilities can be triggered, among other processes, by including
the effect of a rotation domain [2, 9, 10], flow mixtures with Soret effect
[11] or phase change [12]. Imposing a basic dynamic flow through horizontal
temperature gradients [13, 14, 15, 16] is one of the most studied effects. The
present work is focused in this last aspect.

The onset of instabilities in thermoconvective problems has been analyzed
considering a rectangular domain [17], annular geometries [11, 18], of infinite
liquid films [19]. There has been some initiatives to develop a theoretical
framework of the problem, see[20] and references therein, but for the moment
it seems that more effort is needed to develop more powerful mathematical
tools to fully understand the process.

In the case of annular pools, Zhang et al. [1, 21, 22] developed a series
of three-dimensional simulations to assess the effect of surface heat dissipa-
tion on the flow convection on a shallow annular pool fluid at a moderate
Prandtl number. The problem has been also studied in an annular geometry
but neglecting the heat transfer between the fluid and the atmosphere and
considering conduction through the lateral walls of the cylinder [4, 23, 24].
There are also works dealing with localized heating [25], or containers heated
by a non-uniform flux [26]. Zhu et al. [27] discussed the relationship between
oscillatory frequency and Marangoni number. The effects of gravitation in
thermoconvective instabilities has been studied by several authors [28, 29, 30].

The problem considered in the present work is a hybrid buoyancy-thermocapillary
convection induced by an inclined temperature gradient. Note that, even if
the flow is heated from the bottom wall, it is considered inclined due to the
heat exchange between the liquid and the external gas at the free surface.
The computational method used is similar to the one described in [31] and is
capable of assessing fluids with Prandtl numbers close to unity. The method
was validated by comparing the numerical results with the experimental re-
sults by Garnier et al. [16]. In [32], the authors studied the appearance of
co-dimension three bifurcations in the Prandtl-Biot plane and predicted a
new kind of instability, the hydrothermal wave of second kind (HWII).

As previously mentioned, depending on the symmetries of the growing
perturbation, up to six different competing solutions for the different wave
numbers have been identified, namely:

• stationary rolls (SR), similar to the ones of the basic state [7],
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• hydrothermal wave of the first kind or oblique traveling waves (HWI)
[7],

• longitudinal rolls (LR) [15],

• standing hydrothermal wave of second class or flower-like wave (HWII)
[16, 33],

• two new kinds of hydrothermal waves recently reported by Hoyas et al.
[34] for deeper annular domains.

The effect of the domain depth to horizontal dimension ratio (Γ) on the
onset of the flow motion and the dynamics of the different bifurcations ap-
pearing has been studied in [34, 35]. However, to the knowledge of the au-
thors, there has not been any study assessing the influence of the horizontal
aspect ratio of the annular domain on the development of flow instabilities,
and thus it is the main focus of the present work. The study is performed
by varying the internal radio of the cylinder.

The understanding of this flow behavior will contribute to control these
instabilities. To achieve this goal, a linear stability analysis, similar to the
one in [15], will be performed, but focusing on understanding the effect of
the domain horizontal geometry, characterized by the horizontal aspect ra-
tio. This study will be performed in a broad range of Bond numbers, from
buoyancy dominant ones to thermocapilary flows.

This manuscript is structured as follows: first a description of the govern-
ing equation and the main parameters of the problem are introduced. Then,
the problem formulation and the computational domain are presented. The
numerical method is described in the third section, and in the fourth one the
results are discussed. Finally, the conclusions are presented.

2. Problem formulation and computational domain

A sketch of the physical domain modeled in this work is presented in
Figure 1. Briefly, the flow is contained in an annular horizontal domain of
depth d along the axial coordinate, z, and inner and outer radii a and a+ δ
(in the r coordinate).

The bottom surface of the annular domain is considered to be rigid and it
is heated with a linearly decreasing (with the radius) temperature distribu-
tion. The horizontal temperature difference has a value of TG = 2 K, which
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Figure 1: Sketch of the geometry. Lateral walls are considered adiabatic. The fluid is
heated from below and the top surface is open to the atmosphere
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is kept constant throughout the study. The two lateral walls of the cylinder
are considered rigid and adiabatic. Finally, the top surface of the annular
domain is open to the atmosphere. There, the heat transfer between the fluid
and the atmosphere (imposed to be at T0) is modeled through the Biot num-
ber, defined in the following section. For the simulations presented in this
work the domain depth, d, has been set to 2.5 · 10−3m, the external radius,
δ, to 2.0 · 10−2m and the internal radius, a is varied in the range 1 · 10−4m
to 1.99 · 10−2m. In previous works by the authors as [30, 32], the horizontal
aspect ratio, Γh = a/d, was set to 4, and the depth aspect ratio Γ = δ/d was
set to 8. In [34], the influence of the aspect ratio was assessed sweeping Γ
in the range 1-8, and keeping Γ = 2 · Γh, but, as previously mentioned, no
study of the horizontal aspect ratio is found. In the present work, the value
of Γh ranges between 0.04 to 7.95.

The fluid layer evolves as described with the flow continuity, momentum
and energy conservation equations. The equations are non-dimensionalized
as in [13]. The set of parameters used are κ, which is the flow thermal diffu-
sivity, d the characteristic length, d2/κ the characteristic time and ∆T the
characteristic temperature, defined as the temperature difference between the
bottom plate and the atmosphere. ∆T is also used as reference temperature
in the definition of the Rayleigh and Marangoni numbers. The equations
become, respectively

∇ · u = 0, (1)

∂tu + (u · ∇)u = Pr
(
−∇p+∇2u + RaΘez

)
, (2)

∂tΘ + u · ∇Θ = ∇2Θ. (3)

In this sort of buoyancy-driven flow problems, the Boussinesq approxi-
mation [36] is generally used, as shown in the last term of equation (2). The
approximation considers only vertical changes in density affects the move-
ment of the flow, while the effect of small horizontal changes in density can
be neglected. Boundary conditions (BCs) are similar to those of references
[32, 34]. They are summarized in Table 1. As a summary, the bottom plate
and the lateral walls are considered as non-slip, i.e. zero velocity. As pre-
viously described, the top surface is open to the atmosphere, and thus the
thermocapillarity forces are modeled trough the Marangoni condition [13],
whereas the heat exchange to the atmosphere is modeled using the Biot
number.
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Table 1: Boundary conditions.

z = 0 z = d r = a, δ

ur = 0 ∂zur + Ma∂rΘ = 0 ur = 0
uφ = 0 r∂zuφ + Ma∂φΘ = 0 uφ = 0
uz = 0 uz = 0 uz = 0
Θ = ∆T − (TG/δ) r ∂zΘ + Θ = 0 ∂nΘ = 0

In the previous set of equations (1), (2), and (3) are expressed in cylin-
drical coordinates and ez is the unit vector in the axial (z) direction. The
variables ur, uθ and uz are the non-dimensionalized velocity components, Θ is
the non-dimensionalized temperature, and p is the pressure. In the previous
equations and BCs described in Table 1, the following set of dimensionless
numbers are used:

1. The Prandtl number, Pr, is the ratio of momentum to thermal diffu-
sivity: Pr = ν/κ. In this paper, the Pr number is varied in the range
0.7-50.

2. The Biot Number, Bi, accounting the heat exchange between the fluid
and the atmosphere. This number has been fixed to 0.7 in this study.

3. The Marangoni number, Ma, models the surface tension effects in the
top open surface: Ma = γT∆Td/ρκν

4. The Rayleigh number, Ra, is representative of the buoyancy effect and
it is the control parameter used in this work to trigger the instabilities:
Ra = gα∆Td3/κν

5. The Bond number, Bo, defined as the ratio of Rayleigh to Marangoni
numbers, and thus represents the buoyancy against surface tension
(thermocapillarity) effects: Bo = ρgαd2

γT
.

In the previous definitions, γT represents the rate of change of surface ten-
sion with temperature; ρ, α, and ν, are the density, the thermal expansion
coefficient, and the kinematic viscosity of the considered fluid, respectively.
Finally, g is the gravitational acceleration. It is necessary to clarify to avoid
confusions that the Bond number used here is the thermal Bond number de-
fined as the ratio between thermogravitational effects and thermocapillarity
effects, and not the Bond number used in colloids, bubbles, and other inter-
facial systems. Eleven different equispaced Bond numbers are used, ranging
from buoyancy dominant flows, Bo = 67 to thermocapilary ones, Bo = 0.
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2.1. Numerical method

The code used in the present work was implemented in Fortran90, and it is
based on a earlier implementation developed by Hoyas et al.[13] for Pr =∞.
The numerical procedure was validated by comparison against experiments
in [15]. The generalization to Pr < 50 was validated in [31], using the same
procedure as in [14], and thus ensuring the validity of the results.

As soon as a temperature gradient is imposed, the fluid evolves reaching
a non-time dependent convective motion state known a basic state. Since
the domain is cylindrical and the flow is in laminar regime, the solution is
basically 2D axisymmetric, and all the derivatives with the angular coordi-
nate, φ, can be neglected. Therefore, the previous equations in cylindrical
coordinates become:

r−1∂r (rur) + ∂zuz = 0, (4)

Pr−1 (ur∂rur + uz∂zur) = −∂rp+ ∆cur −
ur
r2
, (5)

Pr−1 (ur∂ruz + uz∂zuz) = −∂zp+ ∆cuz + RaΘ, (6)

ur∂rΘ + uz∂zΘ = ∆cΘ, (7)

where ∆c = r−1∂r (r∂r) + ∂2z is the cylindrical Laplacian operator applied to
the axisymmetric domain. The solution of equations (4-7) with the boundary
conditions presented in Table 1 can be obtained through different methods,
been one of the more used the collocation spectral method [37]. To apply
this procedure, a Chebyshev expansion of all the flow variables is performed
as:

X i (r, z) '
N∑
n=0

M∑
m=0

ainmTn (r)Tm (z) (8)

where X i, with i = 1, . . . , 4 represent the four different flow variables, i.e.,
p, ur, uθ and Θ, respectively, and Tj(x) are the Chebyshev polynomial of the
first kind of degree j. In this formulation, the coefficients of the expansion
ainm define the value of the flow variable and are now the unknowns of the
problem.

The system of equations to solve for the ainm coefficients is obtained by
expanding the flow variables, using Eq. (8), in the flow equations (4-7) and in
the boundary conditions of Table 1; and evaluation the resultant expression
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in the Chebyshev-Gauss-Lobatto (CGL) points [38]. These CGL points are
of interest in boundary problems since they tend to concentrate there, thus
improving the accuracy of the method. The order of the method corresponds
to the number of points in radial and axial direction correspondingly.

Several authors as [39] have reported the arising of spurious modes due
to an improper setting of the boundary condition of pressure. Mancho et al.
[40] proposed a procedure based on projecting the equations on the direction
normal to the boundaries. The pressure field is then defined except for an
arbitrary selected additive constant fixed in a boundary point.

The non-linear terms of the problem are solved by using an iterative
Newton-like procedure. As starting solution either a known basic state
“close” to the new one or the solution of the linearized set of equations
(neglecting the non-linearity in Eq. (5) and Eq. (6)) can be used. In the
simulations in the present work, convergence was found in less than 20 iter-
ations.

In the numerical simulations performed in this work, the basic state is
stable for low Ra. As Ra is increased the basic state becomes unstable and
different bifurcations arise. The shape and type of the appearing solution is
complex, and all the parameters of the problem play a determinant role, but
in some cases a relationship has been found.

The linear stability analysis is used to determine the threshold for critical
parameters of the problem and to identify the type of the growing instabili-
ties. The procedure to perform the stability analysis consists on perturbing
the basic state solution with 3D perturbation fields. Since the problem is
axisymmetric, and thus periodic in the φ direction, the flow magnitudes of
the perturbation field can be expanded in Fourier modes in the azimuthal
direction as:

X(r, φ, z, t) = Xb(r, z) +Xp(r, z)eikφ+λt (9)

where the subscripts b and p denote the basic state and the induced pertur-
bation fields, respectively. Note again that the basic state does not depend
on φ. In the exponential from eq. (9), the wave number of the perturbation
is k ≥ 0 is the wave number, and i =

√
−1 is the imaginary unit.

The stability or eigenvalue problem is solved by introducing the Fourier
expansion of the flow variables (eq. (9)) into the general flow equations.
The eigenfunction of the problem are determined by the coefficients ainm.
After using this procedure, the system of equations is linearized by neglecting

9



(a) (b)

Figure 2: Three-dimensional plot of the temperature fields of the growing perturbation
for Γh = 0.1 and Bo = 0: hydrothermal waves of first class HWI (a) and longitudinal rolls
(b)

the non-linear terms, and thus, a generalized eigenvalue problem is found:
[A] X̄ = λ [B] X̄. Due to the boundary conditions, the matrix [B] becomes
singular, and thus some of the eigenvalues are infinite. To solve this issue, a
transformation proposed by Navarro et al. [41] is used.

The real part of the eigenvalue, λ, characterizes the instability as it rep-
resents the evolution of the perturbation with time. The perturbation de-
creases, and thus the solution is stable, for negative values of the eigenvalue,
λ < 0, and the solution is unstable in any other situation. In this latter
case, the imaginary part determines whether the bifurcation is stationary
(Imag(λ) = 0) as the one shown in Fig. 2a, or oscillatory (Imag(λ) 6= 0) as
the one of Fig. 2b.

2.2. Description of the simulations performed

The main parameters of the present study, describes before, are summa-
rized in the following Table 2.

For each of the simulations presented in this work, Bo, Pr and Γh are fixed
to some values. Γh has been discretized using 170 equispaced points in the
range, while 11 values have been used to discretize the Bond number. The
discretization of the Pr follows roughly an exponential or geometric growing
using 60 points, to ensure a large concentration of points for small and large
values of this parameter. Once the Bond number is fixed, both Rayleigh
and Maragoni number grow at the same pace. The algorithm used is able to
compute the critical Rayleigh (or equivalently the critical Marangoni number)
in a few iterations without human interaction. Usually 4 or 5 iterations is
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Table 2: Parameters of the study

Parameter Value

Γh 0.04 - 7.95
Γ 8
Pr 0.7-50
Bi 50
Bo 0-67
Ra 0-3000
Ma 0-270

enough to obtain it.
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3. Results and discussion

The variation of neither Bo nor Pr affects the shape of the basic state
significantly, being Γh the most influencing parameter due to the adaptation
of the flow regime to the shape of the container. In Fig. 3, the temperature
profiles and velocity diagrams for two cases at Bo = 67 (Fig. 3a) and Bo = 0
(Fig. 3b) are shown. Figure 3a (Bo = 67) is similar to those previously
reported for Pr = ∞ both experimentally and numerically [15, 30, 34, 42]
and qualitatively similar to those obtained by Riley and Neitzel [20]. The
main difference in the velocity diagram between both cases of Fig. 3 is
that it presents one (for Bo = 67) to three long rolls (Bo = 0). The large roll
obtained in the Bo = 67 case distribute the heat in convective way, supported
by the coupling between the energy and momentum equation trough the
Rayleigh term (last term of equation (2)). For Bo = 0 convective terms
are not longer important, and Marangoni effects are dominant, thus the
temperature profile becomes almost horizontal. This has an influence in the
velocity field, and the long roll is splitted into three smaller ones. On the
contrary, in the Bo = 67 case, the temperature profile is largest in the bottom
left corner, decreasing to the upper right one. However, return flow regime,
characterized by a change in sign in the temperature gradient, as the one
described in [34], has not been found in the present study for any combination
of parameters. This basic state showed a great influence in the shape of
the growing perturbations. That regime is characterized by the presence of
strong negative vertical temperature gradients caused by thermocapillarity,
and changing completely the shape of the growing perturbation. At the
view of these results, we can safely state that the perturbations described
hereinafter do not show any clear dependence coming from the basic state.

For every combination of parameters, horizontal aspect ratio Γh, and
Bond and Prantdl numbers, the fluid is heated from below until the flow
becomes unstable and different bifurcations arise. A mesh size convergence
study has been performed to ensure that the number of points used to dis-
cretize the computational domain was enough. Figure 4 shows the results
of the problem for one of the considered cases for different grid sizes. The
number of points in r, Nr is varied from 21 to 41 and Nz from 13 to 25. The
figure shows how all the curves collapse into a single curve and the error is
smaller than the fourth decimal position. Therefore, the mesh used has 13
points in z and 27 points in r.

The type of the growing perturbation can be seen in Fig. 5, where the
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(a)

(b)

Figure 3: Temperature profile and velocity diagram of the basic state at their relative
critical Rayleigh number for (a) Bo = 67 and (b) Bo = 0

different regions found in the Γh−Pr plane are presented. The plots include
also the value of the critical wave number k of the perturbation. As it
was previously stated, the study has been performed for a range of Γh =
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Figure 4: Results of the grid independence study in the results of the problem. All the
curves collapse into a single one. Stars represent an oscillatory bifurcation while empty
dots do for a stationary one

0.04 − 7.95. The curves separating these regions, indicated with black dots
in the figure, are made up of codimension-two points. These points are
characterized for having two competing perturbation types, i.e. two critical
wave numbers, for the same value of the parameters. Figure 5a shows that
three different regimes appear for the largest Bond number studied, Bo = 67.
The bottom region (marked with a I) corresponds to k = 0. This region
presents stationary rolls (SR) with azimuthal symmetry. The boundary of
this region appears as an almost horizontal line at approximately Pr = 1.2 for
all the range of Γh studied. The second region (II) corresponds to cases with
complex eigenvalues (oscillatory bifurcation), presenting hydrothermal waves
of first class (HWI). Finally, the top region (III) corresponds to cases where a
real critical eigenvalue is obtained (stationary bifurcation), i.e. longitudinal
rolls. The co-dimension two boundary between these two regions is less well-
defined, featuring a kind of sawtooth like behaviour. This can be related to
the adaptation of the rolls to the geometry of the container, as it has been
recently seen in thermal turbulent Couette flow [43].

Longitudinal rolls (region I) are lost when thermocapilarity is the domi-
nant effect, Fig. 5b, and only regions II and III are found. Transition between
these two regions appear for a lower value of Prandtl number in this case.
Also, the Pr value for the co-dimension two line tends to increase with Γh in
5a, while in Fig. 5b it decreases. Furthermore, buoyancy and thermocapi-
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(a) (b)

Figure 5: Critical wavenumber k in the Γh-Pr plane for (left) buoyancy, Bo = 67, and
(right) thermocapillarity dominant flows Bo = 0. The curves are made up of codimension-
two points, separating regions with different kinds of growing perturbations

larity favor different effects for the extreme values of Γh. The effects in the
shape of the growing perturbation for both regimes can be seen in Fig. 6
and Fig. 7, respectively.

Representative top r−φ plane isotherms for Bo = 67, corresponding to the
three regions of the Γh-Prandt plane of Fig. 5a, are shown in Fig. 6. These
plots are indicative of the shape of the growing perturbation. In every row the
diameter of the inner cylinder, and thus Γh, is fixed (the two extreme values
have been considered) and the Pr is modified along the different columns.
This means that along the column, we move through vertical lines in Fig.
5a. The first column shows representative examples of the stationary rolls
of region I in the figure, with a wave number equal to 0. The second and
third columns show examples of the hydrothermal waves (HWI) appearing in
region II, between Pr 1.2 and approximately 6 (for low Γh). Finally, in the last
column the longitudinal rolls (LR) of region III are shown. The scale of the
isotherms of Fig. 6 is normalized using the highest absolute temperature as
reference value. Lighter colors indicate hot spots while darker ones represent
regions with lower temperature.

Similarly, in Fig. 7 for Bo = 0.0, the representative isotherms from the
top are now examples of the perturbation that appear in each region of Fig.
5b. The left column show representative HWI for different values of Γh, while
in the right column different longitudinal rolls are shown. Once again the
rows correspond to the two extreme values of Γh considered in the study.
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Figure 6: Representative top r − φ plane isotherms corresponding to the tree regions of
Figure 5a. In every row the diameter of the inner cylinder is fixed. The first column
shows example of stationary roll. The hydrothermal waves appearing between Pr 1 and
6 appear in the second and third column. Finally, the longitudinal rolls are shown in the
last column.

Figure 7: Representative top r − φ plane isotherms corresponding to the two regions of
figure 5b for low (top) and large values of Γh. In every row the diameter of the inner
cylinder is fixed. The first column shows the different hydrothermal waves. Stationary
rolls are shown in the last column
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A comparison between Figure 5a and Figure 5b shows that both co-
dimension two curves have a strong dependency on the Bond number. Indeed,
the curve I-II totally disappears for Bo = 0. As previously said, for each of
the Bo values of Figure 8, nd = 170 points of Γh are considered. For each Bo,
and every value of Γh, i.e. vertical lines in Fig. 5, we can define the following
density function:

ρcaseBo (Γh) =

{
1 if there is a codimension 2 point,
0 if there is not a codimension 2 point,

where case can be either the transition I-II or II-III. As there only one co-
dimension point for both types of boundaries, the sum of all cases for a given
Bo is

nd∑
j=1

ρcaseBo (Γh(j)) ≤ nd,

and thus, we can define the function

Λcase(Bo) =

∑nd

j=1 ρ
case
Bo (Γh(j))

nd
≤ 1. (10)

This function can be thought as a measure of the number of codimension
two points for a particular Bo. A value of Λcase(Bo) = 1 means that a co-
dimension two point of the considered case (either I-II or II-III) is always
found for the considered Bo. The curves obtained for ΛI−II (blue empty
dots) and ΛII−III (green dots) are presented in figure 8. For every Bo, the
Pr ranges from 0.7 to 50. The blue curve is 1 for any Bo larger than 35.
That is, for all the values of Γh considered there is a transition from SR
(region I) to HWI (region II) depending on the Prandtl number. However,
as Bo is reduced, this transition disappears (Bo < 20) and thus the value of
Λ becomes zero, meaning that no co-dimensión two points are found for the
different Γh and Pr cases. Thus the existence of stationary rolls is totally
linked to convective effects (large Bo). This is similar to the results obtained
in reference [30], where the stationary rolls were not seen for Bo < 30.

The green curve in Fig. 8 indicates the transition between hydrothermal
waves of the first kind (region II), for small values of Pr, to longitudinal
rolls (III), for large values of Pr. In the central region of the figure, i.e.
central values of the considered Bo range, the density is almost zero, indi-
cating that there is no transition (or co-dimension two point) and for every
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Figure 8: Density of codimension two points as defined in eq. (10), for Pr beween 0.7 and
50. Blue empty circles, stand for ΛI−II . Green dots stand for ΛII−III

Prandtl number and domain aspect ratios, all the bifurcations are originated
by a hydrothermal wave (only region II exists in the Γh-Pr plane). For the
longitudinal rolls region to exist for every Γh, it is necessary that the flow
would be either thermocapilar (low Bo) or convective (large Bo), but not in
a mixed regime. Furthermore, the growing perturbations in both cases are
alike, as it can be notice by comparing the second and fourth columns of Fig.
6 with the columns of Fig. 7. This result, together with the ones presented in
reference [30] point out at the Biot number as the most important parameter
controlling the shape of the growing perturbation, since the main effect of
Γh is the change of the number of structures of the growing perturbation.

4. Conclusions

In the present work, the influence of the cylindrical domain geometry, in
particular the horizontal aspect ratio Γh, on the onset of thermoconvective
instabilities in a Bernard-Marangoni convection problem is analyzed. In this
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problem, the flow is heated from below with a constant linearly decreasing
temperature profile with 2K difference between the external and the internal
walls. The flow evolves due to this heating until it reaches a basic stationary
state.

The control parameters used in this work have been the horizontal as-
pect ratio, Γh and the Prandtl number. The study has been performed a
range of Bond numbers covering the different regimes, i.e., from large Bond,
namely Bo = 67, in which the flow is dominated by the buoyancy (Rayleigh
number); to Bo = 0.0 when the problem is dominated by the surface tension
(Marangoni number). Two different basic states have been obtained: the
first one (for low Bo) presenting several (three) co-rotating rolls and a quasi-
horizontal temperature gradient, and the second one (for large Bo) featuring
a single recirculation in the domain, inducing a condition in which the flow
in the central plane is mainly horizontal.

Starting from the basic state, a linear stability analysis is performed to
obtain the type and shape of the dominant perturbations. It is concluded
that the basic state will not affect the shape of the perturbations. Up to
three different perturbations (LR, HWI and SR) have been found in the
Γh-Prandtl plane for Bo = 67 and the two transition curves, formed of co-
dimension two points, have been obtained. The boundary between the LR
and HWI is a horizontal line for Pr ≈ 1.2, while the frontier between HWI
and SR presents a sawtooth like behavior with the Pr tending to increase with
Γh. The critical wave number is 0 for all the values of Γh and low Pr (SR
region) and it increases towards the large Γh and large Pr (north-east) corner.
Notice that trying to reproduce this results experimentally requires using
different fluids to cover a wide range of Prandtl numbers assessed (from 0.7-
50), and each experiment would need a typical stabilization time of several
hours which makes it almost unaffordable. On the contrary, for the Bo = 0
case, the critical wave number lines are almost vertical lines. Concerning the
perturbations, the region with SR disappears now, and we only find HWI
and LR.

The most interesting result is the strong dependency of this transitions
(co-dimension two points) with the Bond number. This can be first seen
by comparing the trends found in the frontier between HWI and LR in the
Γh-Pr planes from Fig. 5. While for the larger Bond the Pr tends to increase
with Γh, for the lower Bond one the behavior is the opposite. However, the
influence is even larger. Figure 8 shows that the transition between regions I-
II appears for any domain shape (Γh) for Bo larger than 30, but it completely
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disappears (density of co-dimension two points is almost zero) for Bo smaller
than 20. The transition be between HWI (region II) to LR (region III) only
appears for all the (Γh) in the extreme Bo cases, for the central values of
the considered Bo range, the density is almost zero, indicating that there
is no transition (or co-dimension two point). This means that for the LR
perturbation to exists it requires that the flow is either thermocapilar (low
Bo) or convective (large Bo). Another interesting fact is that the growing
perturbations in these two cases are quite similar. The results obtained in the
present study indicate that the Biot number is the most important parameter
affecting the shape of the growing perturbations, while Γh basically modifies
the number of structures appearing in the perturbations and thus the value
of the critical wave number shown in Fig. 5.
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