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Abstract—Weconsiderthe demand-privatecodedcaching
probleminanoiselessbroadcastnetwork.Itisknownfrom
past worksthatademand-privateschemeforN filesandK
userscanbeobtainedfromanon-privateschemeforN files
andNK users. Wefirstproposeaschemethatimprovesonthis
ideabyremovingsomeredundanttransmissions.The memory-
ratetrade-offachievedusingthisschemeisshowntobewithin
a multiplicativefactorof3fromtheoptimalforallthe memory
regimeswhenK <N. Wefurthershowthatademand-private
schemeforN filesandK userscanbeobtainedfromaparticular
knownnon-privateschemeforN filesandNK K +1 users.
Finally, wegivetheexact memory-ratetrade-offfordemand-
privatecodedcachingproblemswithN > K =2.

I.INTRODUCTION

Intheseminalwork[1], Maddah-AliandNiesenanalyzed
thefundamentallimitsofcachinginanerror-freebroadcast
networkfromaninformation-theoreticperspective. Aserver
hasN files.ThereareK users,eachequippedwithacache
thatcanstoreM files.Intheplacementphase,thecacheof
eachuserispopulated withsomefunctionsofthefiles.In
thedeliveryphase,eachuserrequestsoneoftheN files,and
theserverbroadcastsa messagetoservethedemandsofthe
users.Thegoalofthecodedcachingproblemistoreducethe
rateoftransmissionfromtheserverforagivencachesizeM.
Forthesuccessfuldecodingofthefiles,theschemeproposed
in[1]requiresthedemandvectortobeknownglobally.

Inthispaper,weconsiderthecodedcachingproblemwith
anextraconstraintthateachusershouldnotlearnanyinfor-
mationaboutthedemandsofotherusers.Codedcachingunder
demandprivacy wasstudiedfromaninformation-theoretic
frameworkin[2]–[6].The works[2],[3]demonstratedthat
ademand-privateschemeforN filesandK userscanbe
obtainedfromanon-privateschemeforN filesandNK
users.Anewdemand-privateschemewasconstructedin[4]
andcombinedwithpreviousresults,theachievableratewas
showntobe withinaconstantfactoroftheinformation-
theoreticoptimal.Infact[4]showedthattheadditionalcost
ofprivacyisboundedinthesensethattheoptimalrates
withandwithoutdemandprivacyarewithinaconstant mul-
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tiplicativefactor.Furthermore,theexactmemory-ratetrade-
offforN = K =2 wasalsoobtainedin[4].In[5],the
authorsfocusedonobtainingdemand-privateschemesthat
achieveaweakerprivacyconditionsuchthatoneusershould
notgetanyinformationaboutthedemandofanotheruser,
but maygainsomeinformationaboutthedemandvector.
They mainlyaddressedthesubpacketizationrequirementfor
N = K =2. Demandprivacyagainstcolludingusers was
studiedfordevice-to-devicenetworkin[7] whereatrusted
serverhelpstoco-ordinateamongtheuserstoachievea
demand-privatescheme.Thecaseofcolludingusersforthe
codedcachingproblemwasconsideredin[6].Sincetheusers
maycollude,theprivacyconditionin[6]wassuchthatone
usershouldnotlearnanyinformationaboutthedemandsof
otherusersevenifsheisgivenallthefiles.

Ravindrakumaretal.[8]investigatedtheprivacyoffiles
forthecodedcachingproblem,i.e.,eachusershouldnotget
anyinformationaboutanyfileotherthantherequestedone.A
privateschemewasproposedusingthetechniquesfromsecret
sharing.Senguptaetal.[9]investigatedtheprivacyoffiles
againstaneavesdropperwhohasaccesstothebroadcastlink.

Inthispaper, westudydemand-privatecaching,i.e.,the
demandsoftheotherusersremaininformation-theoretically
privatefromeachuser.In[4],itwasshownthatonecanobtain
ademand-privateschemeforN filesandK usersfromanon-
privateschemeforN filesandNK userswhichservesonlya
subsetofdemandvectors. Wefirstproposeascheme(Scheme
A)thatbuildsonthisfact. Memory-ratepairsachievableusing
SchemeAaregiveninTheorem1.Thememory-ratepairsin
Theorem1areshowntobewithina multiplicativegapof3
fromtheoptimalforK<N (Theorem2).Thisimprovesstate
oftheartonorderoptimalityresultfrom[4]whereagapof
8wasshown.

Weconstructademand-privatescheme(SchemeB)for N
filesandK usersfromthenon-privateschemeforN filesand
NK−K +1 usersproposedin[10](whichwerefertoas
theYMAscheme).TheachievableratesusingSchemeBare
betterthantheonesachievableusingSchemeAforN ≤K,
whereastheoppositeistrueforN >K.

Oneclassofinstancesforwhichtheexacttrade-offisknown
fornon-privateschemes[1],[11]iswhenK =2andN ≥2.
Theexact memory-ratetrade-offunderdemandprivacyfor
N = K =2 wascharacterizedin[4].InTheorem4, we
characterizetheexacttrade-offunderdemandprivacyforN >



2 and K = 2. To this end, we present two novel achievability
schemes. Then, by generalizing the converse bound presented
in [4], we demonstrate that the achievable region given by
these schemes is in fact the exact memory-rate trade-off.

The rest of the paper is organized as follows. In Section II,
we give our problem formulation. We present Scheme A and
Scheme B in Section III. Finally, in Section IV, we give the
exact trade-off for N > 2 and K = 2.

Notations: We denote the set {0, 1, . . . , N−1} by1 [N ], the
cardinality of a set A by |A|, and the closed interval between
two real numbers a and b by [a, b]. For a positive integer `, if
π denotes a permutation of [`], and Y = (Y0, Y1, · · · , Y`−1),
with abuse of notation, we define π(Y ) =

(
Yπ−1(i)

)
i∈[`]. We

denote random variables by upper case letters (e.g. X) and
their alphabets by calligraphic letters (e.g. X ). For a random
variable/vector B, len(B) denotes log2 |B|.

II. PROBLEM FORMULATION AND DEFINITIONS

Consider one server connected to K users through a
noiseless broadcast link. The server has access to N in-
dependent files of F bits each. These files are denoted as
(W0,W1, · · · ,WN−1) and each file is uniformly distributed
in {0, 1}F . Each user has a cache of size MF bits. The coded
caching problem has two phases: prefetching and delivery. In
the prefetching phase, the server places at most MF bits in
the cache of each user. The cache content of user k ∈ [K] is
denoted by Zk. In the delivery phase, each user demands one
of the N files from the server and this demand is conveyed
secretly to the server. Let the demand of user k be denoted
by Dk ∈ [N ]. We define D̄ = (D0, D1, · · · , DK−1). D̄ is
independent of the files Wi; i ∈ [N ] and caches Zk; k ∈ [K],
and is uniformly distributed in [N ]K .

In the delivery phase, the server broadcasts a message
X to all the K users such that user k ∈ [K] can de-
code file WDk

using X and Zk. If message X consists of
RF bits, then R is said to be the rate of transmission. In
addition to the decodability of the demanded file, demand-
privacy imposes another constraint that the demands of all
other users should remain perfectly secret to each of the
K users. To ensure demand-privacy the server can share
some randomness denoted by Sk with user k ∈ [K] in the
prefetching phase. This shared randomness is of negligible
size and hence, it is not included in the memory size. We
define S = (S0, S1, · · · , SK−1). The server also has access to
some private randomness which we denote by P . The random
variables S, P, {Wi|i ∈ [N ]}, {Dk|k ∈ [K]} are independent
of each other.

Any (N,K,M,R) demand-private coded caching scheme
consists of broadcast encoding functions E and J , and a cache
encoding function Ck and a decoding function Gk for each
user k ∈ [K]. The cache encoding function

Ck : [2F ]N × Sk × P → [2MF ]

1This notation is different from the more commonly used notation, where
[N ] denotes the set {1, 2, 3, . . . , N}.

gives the cache content Zk = (Ck(W̄ , Sk, P ), Sk). The
broadcast encoding functions

E : [2F ]N ×D0 ×D1 × · · · × DN−1 × S × P → [2RF ],

and J : D0 × D1 × · · · × DN−1 × S × P → J output
the broadcasted message X = (E(W̄ , D̄, S, P ), J(D̄, S, P )).
The auxiliary transmission J(D̄, S, P )) is chosen such that
log2 |J | is o(F ). Thus, the size of J(D̄, S, P ) is negligible
and does not contribute to the rate. The decoding function

Gk : [2MF ]× Sk ×Dk × J × [2RF ]→ [2F ]

decodes WDk
at user k, i.e.,

WDk
= Gk(Zk, X,Dk) (1)

which holds for all realizations of D̄, W̄ , S and P . Along with
decodability, the following privacy constraint must be satisfied
for any (N,K,M,R) demand-private scheme:

I(D̄k̃;Zk, Dk, X) = 0 (2)

where D̄k̃ = (D0, · · · , Dk−1, Dk+1, · · · , DK−1). The opti-
mal rate for a demand-private coded caching problem of N
files, K users and memory M is denoted by R∗pN,K(M) and
defined as

R∗pN,K(M) = inf{R : there exitsts an (N,K,M,R)

demand-private scheme}.

For a given M , the pair (M,R∗pN,K(M)) is called the exact
memory-rate trade-off under demand privacy.

An (N,K,M,R) non-private scheme is defined similarly.
We do not need shared randomness and private randomness,
i.e., Sk = φ, k ∈ [K] and P = φ. The auxiliary transmission is
simply the demand vector, i.e., J = D̄. The privacy condition
is absent in the non-private scheme and we only have the
decodability condition (1). The optimal rate for a non-private
scheme is denoted by R∗N,K(M) and can be defined similarly
as R∗pN,K(M). More details on the definition of a non-private
coded caching scheme can be found in [4].

III. ACHIEVABILITY SCHEMES AND THEIR PERFORMANCE

In this section, we propose two novel demand-private
schemes, Scheme A and Scheme B. Scheme A outperforms
Scheme B for K < N , and vice-versa for N ≤ K. Also
as shown in Theorem 2, using Scheme A the known order
optimality factor for K < N is improved.

A. Achievable Memory-Rate Pairs using Scheme A

As shown in prior works [2]–[4], an (N,K)-private scheme
can be obtained from an (N,NK)-non-private scheme. We
build on the ideas in these schemes and propose Scheme A.
The memory-rate pairs achievable using Scheme A is given
in (3) and (4) in Theorem 1. Furthermore, the achievability
of memory-rate pairs (0,K) and (N, 0) with demand privacy
was shown in [4]. Thus, we have the following theorem.



Theorem 1 There exist (N,K,M,R)-private schemes
achieving the memory-rate pairs (0,K), (N, 0) and also
(M,R) pairs with

M =
N
∑NK−1
s=t

(
NK−1
s−1

)
rNK−s−1∑NK−1

s=t

(
NK
s

)
rNK−s−1

, (3)

R =

∑NK
s=t+1[

(
NK
s

)
−
(
NK−K

s

)
]rNK−s∑NK−1

s=t

(
NK
s

)
rNK−s−1

, (4)

for t = {1, . . . , NK − 1}, r ∈ [1, N − 1].

Note that for the non-zero memory-rate pairs in Theorem 1,
we have 2 free parameters t and r. By fixing the value of r,
one can obtain a memory-rate curve by varying the value of t.
We have observed through simulations that the memory-rate
curve achieved for r = r1 is better than that for r = r2 if
r1 > r2. The memory-rate curve for r < N − 1, although
empirically suboptimal compared to r = N − 1, is useful in
obtaining the result on order optimality in Theorem 2. In the
next subsection, we illustrate the scheme which achieves the
non-zero memory-rate pairs in Theorem 1 using an example.
The general scheme can be found in the extended version [12].

B. An Example of Scheme A for (N,K,M) = (3, 2, 195116 )

Now we illustrate the scheme that achieves the non-zero
memory-rate pairs in Theorem 1 for N = 3,K = 2. Let us
consider the demand-private coded caching problem for 3 files
and 2 users. By choosing r = 2 and t = 3 in the expression for
(M,R) in Theorem 1, we get M = 195

116 and R = 69
116 . Next we

describe the scheme which achieves this memory-rate pair with
F = 116l for some positive integer l. We partition each file
Wi, i ∈ [3] into

∑NK−1
j=t

(
NK
j

)
=
∑5
j=3

(
6
j

)
= 41 segments

of three different sizes. These segments are grouped into three
groups such that all segments in one group have the same
size. The segments are labelled by some subsets of [NK] =
[6]. The segments of Wi are Wi,R; R ⊂ [6], |R| = 3, 4, 5.
These segments are of different sizes, and these are grouped
into 3 groups as

T ij = (Wi,R)R⊂[6],|R|=j , for j = 3, 4, 5.

The size of segment Wi,R, i ∈ [3] is len(Wi,R)

= r|R|−NK+1l = r|R|−5l. Thus, each segment in T i5, T
i
4 and

T i3 has respectively l, 2l and 4l bits. Then, we have

len(Wi) = (|T i5|+ |T
i
4| × r + |T i3| × r2)l

= (6 + 15× 2 + 20× 4)l = 116l, ∀i ∈ [3].

Caching: The cache content of user k ∈ [2] is determined
by the key Sk, k ∈ [2] which is shared only between the
server and user k. Shared key Sk, k ∈ [2] is distributed
as Sk ∼ unif{[N ]} = unif{[3]}. The cache contents of
each user is grouped into three parts. The jth, j = 1, 2, 3
part of user k ∈ [2] is denoted by Gk,j and shown in
Table I. Thus, the number of bits stored at one user is
given by 3

((
5
4

)
+ 2×

(
5
3

)
+ 4×

(
5
2

))
l = 195l. Thus, we have

M = 195
116 . Other than Sk the server also places some additional

random keys of negligible size in the cache of user k ∈ [2].
These will be used as one-time pads in the delivery phase.

Gk,1 (Wi,R|Wi,R ∈ T
i
5 and Sk + 3k ∈ R)i=0,1,2

Gk,2 (Wi,R|Wi,R ∈ T
i
4 and Sk + 3k ∈ R)i=0,1,2

Gk,3 (Wi,R|Wi,R ∈ T
i
3 and Sk + 3k ∈ R)i=0,1,2

TABLE I: Cache contents of user k, k = 0, 1

Delivery: In the delivery phase, for given demands
(D0, D1), we first construct an expanded demand vector d̄
of length 6 such that d̄ = (d̄(0), d̄(1)), where d̄(k), k = 0, 1 is
obtained by applying Sk 	Dk right cyclic shift to the vector
(0, 1, 2), where 	 denotes modulo 3 subtraction. That is, for
k = 0, 1, d(k)i = i − (Sk − Dk) mod 3. We now define
symbols YR for R ⊂ [6] and |R| = 4, 5, 6 as follows

YR =
⊕
u∈R

Wdu,R\{u}

where du is the u+ 1-th item in d̄.
Symbol Y[6] as defined above is a part of the main payload

in the broadcast transmission which needs l bits. To give the
other parts of the broadcast, we define symbols WR and VR
for R ⊂ [6] and |R| = 4, 5 as follows

WR = (W0,R ⊕W1,R,W1,R ⊕W2,R), VR = YR ⊕WR.

Note that for |R| = 4,WR has two parts, each of length 2l
bits. YR also has a length of 4l bits. We further define sets
V4 and V5 as follows:

Vi = {VR|R ∩ {S0, S1 + 3} 6= φ, |R| = i}, for i = 4, 5.

Observe that V4 and V5 contain 14 symbols each of size 4l
and 6 symbols each of size 2l, respectively. The server picks
permutations π4 and π5 uniformly at random from respectively
the symmetric group of permutations of [14] and [6] and
includes π4(V4) and π5(V5) in the broadcast. The server does
not fully reveal these permutations with any of the users. The
position of any symbol VR ∈ Vi, i = 4, 5 in πi(Vi) is privately
transmitted to user k, if and only if Sk + 3k ∈ R. This
private transmission of positions is achieved using one-time
pad whose keys are deployed in the caches of respective users
in the caching phase. The main payload, X ′ is given as

X ′ = (X0, X1, X2) = (Y[6], π4(V4), π5(V5)).

Thus, the total number of bits transmitted are (1+6×2+14×
4)l = 69l. So, the rate of transmission is 69

116 . Along with the
main payload X ′, the server also broadcasts some auxiliary
transmission J = (S0 	 D0, S1 	 D1, J

′) = (S̄ 	 D̄, J ′).
Here, J ′ contains the positions of various symbols in X1 and
X2 encoded using one-time pad as discussed above. Thus, the
complete broadcast transmission is X = (X ′, J).

Decoding: For user k ∈ [2], let us first consider the recovery
of segments belonging to T Dk

i , i = 3, 4. This is done using
symbols from X1 and X2. All symbols WDk,R ∈ T

Dk
i where

Sk+3k ∈ R, i.e., all symbols in set Gk,6−i are cached at user



k. User k decodes the remaining symbols in T Dk
i , i.e., WDk,R

such that |R| = i, Sk + 3k /∈ R and R ⊂ [6] as follows

ŴDk,R = VR+ ⊕WR+ ⊕

⊕
u∈R

W
du,R+\{u}

 (5)

whereR+ = {Sk+3k}∪R. Here, VR+ is a part of πi+1(Vi+1)
and its position in πi+1(Vi+1) has been revealed to user k since
Sk + 3k ∈ R+. The symbols WR+ and W

du,R+\{u} in (5)
can be recovered from her cache. Substituting for VR+ in (5),

ŴDk,R = YR+ ⊕WR+ ⊕WR+ ⊕

⊕
u∈R

W
du,R+\{u}


=
⊕
u∈R+

W
du,R+\{u} ⊕

⊕
u∈R

W
du,R+\{u}


= WdSk+3k,R = WDk,R. (6)

Now that user k has all segments in T Dk
3 and T Dk

4 , we look
at the recovery of symbols in T Dk

5 . In the first part Gk,1 of
cache, user k does not have one segment of T Dk

5 , namely
WDk,[6]\{Sk+3k} . User k decodes this segment as

ŴDk,[6]\{Sk+3k} = Y[6] ⊕

 ⊕
u∈[6]\{Sk+3k}

Wdu,[6]\{u}

 .

Observe that Y[6] is broadcasted by the server while each
symbol Wdu,[6]\{u} is a part of Gk,1, and hence a part of the
cache of user k. Thus, user k can compute ŴDk,[6]\{Sk+3k}.
Using ideas from (6), it can be shown that ŴDk,[6]\{Sk+3k} =
WDk,[6]\{Sk+3k}(see details in [12]). Thus, user k can retrieve
all symbols belonging to each of the three groups of file WDk

and she can recover this file by concatenating these symbols.
Privacy: To show the demand-privacy for user k ∈ [2], we

first define k̃ = (k+ 1) mod 2. Since I(Dk̃;Zk, Dk) = 0, the
privacy condition I(Dk̃;X,Zk, Dk) = 0 follows by showing
that I(X;Dk̃|Zk, Dk) = 0. To that end, we divide all symbols
in X ′ into two sets, X ′k and X̃ ′k which are defined as follows:

X ′k = {Y[NK]} ∪ {VR|Sk + 3k ∈ R, VR ∈ X
′},

X̃ ′k = X ′ \X ′k.

Note, that the positions in X ′ of all symbols belonging to X ′k
is known to user k while the positions of symbols belonging
to X̃ ′k is not known. It can be shown that all symbols in
X̃ ′k appear like a sequence of random bits to user k. This is
because for some set R, R ⊂ [6], |R| = 4, 5 we broadcast VR
instead of YR. The symbol WR essentially hides the message
YR from all users that do not belong to set R. Further, it can
be also shown that

H(X ′k|WDk
, Zk, S̄ 	 D̄) = 0. (7)

It is easy to see that, (WDk
, Zk, S̄ 	 D̄) does not reveal any

information about Dk̃ which in combination with (7) ensures
privacy. A rigorous and detailed proof can be found in the
extended version [12].

C. Tightness of the achievable memory-rate pairs for K < N

We compare the memory-rate pairs achievable using
Scheme A with lower bounds on the optimal rates for non-
private schemes. Let RAN,K(M) denote the lower convex
envelope of the memory-rate pairs in Theorem 1.

Theorem 2 The lower convex envelope of memory-rate pairs
in Theorem 1 and the optimal rates without privacy for K < N
always satisfy the following:

RAN,K(M)

R∗N,K(M)
≤

{
3 if M < N

2

2 if M ≥ N
2 .

Since RAN,K(M) ≥ R∗pN,K(M) ≥ R∗N,K(M), the same upper

bounds also hold for the ratios
RA

N,K(M)

R∗p
N,K(M)

and
R∗p

N,K(M)

R∗
N,K(M) .

The proof of Theorem 2 is given in the extended version [12].
The above result shows that the rates achieved in Theorem 1
are within a multplicative factor of 3 from the optimal for K <
N . This gives an improvement on the known multiplicative
factor of 8 from [4, Theorem 3]. Furthermore, also note that
the optimal rates with and without demand privacy are always
within a multiplicative factor of 3 for K < N .

D. Scheme B

Construction of an (N,K,M,R) demand-private scheme
using an (N,NK,M,R) non-private scheme as blackbox has
been discussed in [2], [3]. Moreover, it was shown in [4,
Theorem 4] that the (N,NK,M,R) non-private scheme needs
to serve only a restricted demand type. We construct a novel
(N,NK,M,R) non-private scheme which exploits the idea
of satisfying only a subset of the general demand set to
obtain an improved memory-rate tradeoff for this blackbox.
The construction of this scheme is based on the non-private
YMA scheme [10] for N files and NK −K + 1 users, hence
the memory-rate tradeoff achieved by this scheme is same
as the (N,NK −K + 1,M,R) YMA scheme. The memory-
rate tradeoff achieved by the proposed non-private scheme and
thus the corresponding (N,K,M,R) demand-private scheme
is given by the following theorem.

Theorem 3 There exists an (N,K,M,R)-private scheme
with the following memory-rate pairs:

(M,R) =

(
Nr

NK −K + 1
,

(
NK−K+1

r+1

)
−
(
NK−K−N+1

r+1

)(
NK−K+1

r

) )
where r ∈ [NK −K + 1].

The details of the scheme which achieves the memory-rate
pairs in Theorem 3 are delegated to the extended version [12].

As noted before, Scheme B outperforms Scheme A when
N ≤ K. Since the YMA scheme is optimal among all coded
caching schemes with uncoded prefetching, the rates achieved
by Scheme B will be better than the rates obtained using any
(N,NK)-non-private scheme with uncoded prefetching as a
blackbox. However, it is not clear whether Scheme B leads to
any improvement on the order optimality when N ≤ K.



IV. EXACT TRADE-OFF FOR N > 2 AND K = 2

For N = K = 2, the exact trade-off for private coded
caching was characterized in [4]. In the following theorem,
we characterize the exact trade-off for N > 2 and K = 2
under demand privacy.

Theorem 4 Any memory-rate pair (M,R) is achievable with
demand privacy for N > 2 and K = 2 if and only if

3M +NR ≥ 2N, 3M + (N + 1)R ≥ 2N + 1,

M +NR ≥ N. (8)

For N > 2 and K = 2, any feasible (M,R) pair is required
to satisfy the first and third inequalities in (8) even for
non-private schemes [11]. The necessity of the second line
is shown by generalizing the converse bound given in [4],
and the details are delegated to the extended version [12].
The corner points of the memory-rate curve given by (8)
are (0, 2), (N3 , 1), ( N2

2N−1 ,
N−1
2N−1 ) and (N, 0). The achievabil-

ity of (0, 2) and (N, 0) follows from [4, Theorem 2]. We
propose two schemes, Scheme C and Scheme D, which
achieve memory-rate pairs (N3 , 1) and ( N2

2N−1 ,
N−1
2N−1 ), respec-

tively. Scheme C achieves memory-rate pair (N3 , 1) using
uncoded prefetching while Scheme D achieves memory-rate
pair ( N2

2N−1 ,
N−1
2N−1 ) using coded prefetching. Next we illustrate

Scheme C for N = 3, K = 2. General versions of Schemes
C and D can be found in the extended version [12].

A. An Example of Scheme C for (N,K,M) = (3, 2, N3 )

We describe Scheme C for N = 3 and K = 2 which
achieves rate 1 for M = N

3 = 1. File Wi, i ∈ [3] is divided into
3 disjoint parts of equal size, i.e., Wi = (Wi,0,Wi,1,Wi,2).

Caching: The server picks 2 independent permutations π0
and π1 uniformly at random from the symmetric group of
permutations of [3]. The server places π0(W0,0,W1,0,W2,0)
and π1(W0,1,W1,1,W2,1) in the caches of user 0 and user 1,
respectively. Each of these permutation functions π0 and π1
are unknown to both the users. Some additional random bits
are shared with each user through the cache.

Delivery: The server picks permutation π2 uniformly at
random from the symmetric group of permutations of [3]
independent of π0, π1. The main payload, X ′ is given by

X ′ =


π2(WD0,1 ⊕WD1,0,WD0,2,WD1,2) if D0 6= D1

π2(WD0,1 ⊕Wm,0,WD0,2,WD1,0 ⊕Wm,1)

if D0 = D1

where m = (D0 + 1) mod 3. To enable decoding at each
user, the server also transmits some auxiliary transmission
J = (J1, J2, J3) of negligible rate. Each Jj , j = 1, 2, 3 can
be further divided into 2 parts, i.e., Jj = (Jj,0, Jj,1), where
Jj,k, k ∈ [2] is meant for user k. Using a one-time pad which
uses the pre-shared random bits, the server ensures that Jj,k
can be decoded only by user k and it is kept secret from the
other user. These parts are used as follows:

1) J1,k conveys the position of WDk,k in user k’s cache.

2) J2,k gives the positions of the coded and uncoded parts
of X ′ involving WDk

to user k. Specifically, J2,k reveals
the positions of WD0,1 ⊕ WD1,0 and WDk,2 to user k
when D0 6= D1, and the positions of WDk,k̃

⊕Wm,k and
WDk,2 when D0 = D1, where k̃ = (k + 1) mod 2.

3) J3,k discloses the position of WDk̃,k
if D0 6= D1 and

Wm,k if D0 = D1 in her cache to user k.
Decoding: User k decodes WDk

as follows. WDk,k can be
obtained from the cache since she knows its position from
J1,k. User k recovers WDk,2 from the delivery since she knows
its position in X ′ from J2,k. The remaining segment WDk,k̃

is available in coded form in X ′. The segment that WDk,k̃

is XOR-ed with, is available in the cache of user k, and its
position in the cache is revealed by J3,k. Thus, user k retrieves
all three segments of file WDk

.
Privacy: Now we describe how D1 remains private to user 0.

From the transmission, we can observe that for both the cases,
i.e., D0 6= D1 and D0 = D1, user 0 receives WD0,2 in the
uncoded form and WD0,1 coded with another symbol. Also,
in both the cases, the remaining symbol is like a sequence of
F
3 random bits to user 0. This symmetry helps in achieving
privacy. Further, given J1,0, any of the remaining 2 symbols
can occupy the remaining 2 positions in the cache with equal
likelihood. Thus, although user 0 can use one of these symbols,
i.e., the symbol XOR-ed with WD0,1, for decoding using J3,0,
the symbol’s identity is unknown because J3,0 only discloses
the symbol’s position in user 0’s cache. Due to the symmetry
of the scheme, similar privacy arguments apply for user 1.
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