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Abstract—We consider the demand-private coded caching
problem in a noiseless broadcast network. It is known from
past works that a demand-private scheme for N files and K
users can be obtained from a non-private scheme for N files
and N K users. We first propose a scheme that improves on this
idea by removing some redundant transmissions. The memory-
rate trade-off achieved using this scheme is shown to be within
a multiplicative factor of 3 from the optimal for all the memory
regimes when K < N. We further show that a demand-private
scheme for N files and K users can be obtained from a particular
known non-private scheme for N files and NK K + 1 users.
Finally, we give the exact memory-rate trade-off for demand-
private coded caching problems with N > K = 2.

I. INTRODUCTION

In the seminal work [1], Maddah-Ali and Niesen analyzed
the fundamental limits of caching in an error-free broadcast
network from an information-theoretic perspective. A server
has N files. There are K users, each equipped with a cache
that can store M files. In the placement phase, the cache of
each user is populated with some functions of the files. In
the delivery phase, each user requests one of the N files, and
the server broadcasts a message to serve the demands of the
users. The goal of the coded caching problem is to reduce the
rate of transmission from the server for a given cache size M.
For the successful decoding of the files, the scheme proposed
in [1] requires the demand vector to be known globally.

In this paper, we consider the coded caching problem with
an extra constraint that each user should not learn any infor-
mation about the demands of other users. Coded caching under
demand privacy was studied from an information-theoretic
framework in [2]-[6]. The works [2], [3] demonstrated that
a demand-private scheme for N files and K users can be
obtained from a non-private scheme for N files and NK
users. A new demand-private scheme was constructed in [4]
and combined with previous results, the achievable rate was
shown to be within a constant factor of the information-
theoretic optimal. In fact [4] showed that the additional cost
of privacy is bounded in the sense that the optimal rates
with and without demand privacy are within a constant mul-
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tiplicative factor. Furthermore, the exact memory-rate trade-
off for N = K = 2 was also obtained in [4]. In [5], the
authors focused on obtaining demand-private schemes that
achieve a weaker privacy condition such that one user should
not get any information about the demand of another user,
but may gain some information about the demand vector.
They mainly addressed the subpacketization requirement for
N = K = 2. Demand privacy against colluding users was
studied for device-to-device network in [7] where a trusted
server helps to co-ordinate among the users to achieve a
demand-private scheme. The case of colluding users for the
coded caching problem was considered in [6]. Since the users
may collude, the privacy condition in [6] was such that one
user should not learn any information about the demands of
other users even if she is given all the files.

Ravindrakumar et al. [8] investigated the privacy of files
for the coded caching problem, i.e., each user should not get
any information about any file other than the requested one. A
private scheme was proposed using the techniques from secret
sharing. Sengupta et al. [9] investigated the privacy of files
against an eavesdropper who has access to the broadcast link.

In this paper, we study demand-private caching, i.e., the
demands of the other users remain information-theoretically
private from each user. In [4], it was shown that one can obtain
a demand-private scheme for N files and K users from a non-
private scheme for N files and N K users which serves only a
subset of demand vectors. We first propose a scheme (Scheme
A) that builds on this fact. Memory-rate pairs achievable using
Scheme A are given in Theorem 1. The memory-rate pairs in
Theorem 1 are shown to be within a multiplicative gap of 3
from the optimal for K < N (Theorem 2). This improves state
of the art on order optimality result from [4] where a gap of
8 was shown.

We construct a demand-private scheme (Scheme B) for N
files and K users from the non-private scheme for NV files and
NK — K + 1 users proposed in [10] (which we refer to as
the YMA scheme). The achievable rates using Scheme B are
better than the ones achievable using Scheme A for N < K,
whereas the opposite is true for N > K.

One class of instances for which the exact trade-off is known
for non-private schemes [1], [11] is when K =2 and N > 2.
The exact memory-rate trade-off under demand privacy for
N = K = 2 was characterized in [4]. In Theorem 4, we
characterize the exact trade-off under demand privacy for N >



2 and K = 2. To this end, we present two novel achievability
schemes. Then, by generalizing the converse bound presented
in [4], we demonstrate that the achievable region given by
these schemes is in fact the exact memory-rate trade-off.

The rest of the paper is organized as follows. In Section II,
we give our problem formulation. We present Scheme A and
Scheme B in Section III. Finally, in Section IV, we give the
exact trade-off for N > 2 and K = 2.

Notations: We denote the set {0,1,..., N—1} by! [N], the
cardinality of a set .A by |.A|, and the closed interval between
two real numbers a and b by [a, b]. For a positive integer ¢, if
7 denotes a permutation of [¢], and Y = (Yo, Yl,- Y, 1)
with abuse of notation, we define 7(Y) = 1(Z ic
denote random variables by upper case letters (e.g. /% % and
their alphabets by calligraphic letters (e.g. X’). For a random
variable/vector B, len(B) denotes log, | B|.

II. PROBLEM FORMULATION AND DEFINITIONS

Consider one server connected to K users through a
noiseless broadcast link. The server has access to N in-
dependent files of F' bits each. These files are denoted as
(Wo,W1,--- ,Wx_1) and each file is uniformly distributed
in {0, 1}¥". Each user has a cache of size M F bits. The coded
caching problem has two phases: prefetching and delivery. In
the prefetching phase, the server places at most M F' bits in
the cache of each user. The cache content of user k € [K] is
denoted by Zj. In the delivery phase, each user demands one
of the N files from the server and this demand is conveyed
secretly to the server. Let the demand of user k£ be denoted
by Dy € [N]. We define D = (Do, Dy,---,Di_1). D is
independent of the files W;;¢ € [IN] and caches Zy; k € [K],
and is uniformly distributed in [N]%.

In the delivery phase, the server broadcasts a message
X to all the K users such that user & € [K]| can de-
code file Wp, using X and Z. If message X consists of
RF bits, then R is said to be the rate of transmission. In
addition to the decodability of the demanded file, demand-
privacy imposes another constraint that the demands of all
other users should remain perfectly secret to each of the
K users. To ensure demand-privacy the server can share
some randomness denoted by S with user k& € [K] in the
prefetching phase. This shared randomness is of negligible
size and hence, it is not included in the memory size. We
define S = (Sy, S1,- -+ ,SK—1). The server also has access to
some private randomness which we denote by P. The random
variables S, P, {W;|i € [N]},{Dx|k € [K]} are independent
of each other.

Any (N, K, M, R) demand-private coded caching scheme
consists of broadcast encoding functions E and J, and a cache
encoding function C} and a decoding function Gy for each
user k € [K]. The cache encoding function

Ck . [2F]N 2MF]

XSkX'P—>[

IThis notation is different from the more commonly used notation, where
[N] denotes the set {1,2,3,...,N}.

gives the cache content Z; = (Ck(W,Sk,
broadcast encoding functions

E:[2FN

P), Sk) The

X Dy XDy X --- X Dy_1 xS x P — [28F],

and J : Dy X D1 X -+ Xx Dy_1 x § x P — J output
the broadcasted message X = (E(W,D, S, P), J(D, S, P)).
The auxiliary transmission J(D,S, P)) is chosen such that
log, | J| is o(F). Thus, the size of J(D, S, P) is negligible
and does not contribute to the rate. The decoding function

Gy : [2MF} X S X D, x J % [2RF] — [2F]

decodes Wp, at user k, i.e.,
Wp, = Gr(Zk, X, Dy,) (D

which holds for all realizations of D, W, S and P. Along with
decodability, the following privacy constraint must be satisfied
for any (N, K, M, R) demand-private scheme:

I(Dy; Zk, Dy, X) =0 (2)

where D/} = (Do,+-+ yDg—1,Dg41, -+ ,Dk_1). The opti-
mal rate for a demand-private coded caching problem of N
files, K users and memory M is denoted by R}“\ﬁ (M) and
defined as

Ry (M) = inf{R: there exitsts an (N, K, M, R)

demand-private scheme}.

For a given M, the pair (M, R} ;(M)) is called the exact
memory-rate trade-off under demand privacy.

An (N, K, M, R) non-private scheme is defined similarly.
We do not need shared randomness and private randomness,
ie., Sg = ¢,k € [K] and P = ¢. The auxiliary transmission is
simply the demand vector, i.e., J = D. The privacy condition
is absent in the non-private scheme and we only have the
decodability condition (1). The optimal rate for a non-private
scheme is denoted by R} ; (M) and can be defined similarly
as Ry -(M). More details on the definition of a non-private
coded 7caching scheme can be found in [4].

III. ACHIEVABILITY SCHEMES AND THEIR PERFORMANCE

In this section, we propose two novel demand-private
schemes, Scheme A and Scheme B. Scheme A outperforms
Scheme B for K < N, and vice-versa for N < K. Also
as shown in Theorem 2, using Scheme A the known order
optimality factor for K < IV is improved.

A. Achievable Memory-Rate Pairs using Scheme A

As shown in prior works [2]-[4], an (N, K )-private scheme
can be obtained from an (N, N K)-non-private scheme. We
build on the ideas in these schemes and propose Scheme A.
The memory-rate pairs achievable using Scheme A is given
in (3) and (4) in Theorem 1. Furthermore, the achievability
of memory-rate pairs (0, K') and (N, 0) with demand privacy
was shown in [4]. Thus, we have the following theorem.



Theorem 1 There exist (N,K,M,R)-private schemes
achieving the memory-rate pairs (0,K), (N,0) and also
(M, R) pairs with

NZNK 1 (Nslizl)TNKfsfl

ZNK 1(NK)TNK7571 ) 3)
s=t s
R= Zivzit{qu[(NsK) B (NI(S_K)] NH=s (4)
S (e
fort={1,..., NK -1}, r € [1, N —1].

Note that for the non-zero memory-rate pairs in Theorem 1,
we have 2 free parameters ¢ and r. By fixing the value of r,
one can obtain a memory-rate curve by varying the value of ¢.
We have observed through simulations that the memory-rate
curve achieved for r = 7y is better than that for r = ro if
r1 > r3. The memory-rate curve for » < N — 1, although
empirically suboptimal compared to r = N — 1, is useful in
obtaining the result on order optimality in Theorem 2. In the
next subsection, we illustrate the scheme which achieves the
non-zero memory-rate pairs in Theorem 1 using an example.
The general scheme can be found in the extended version [12].
B. An Example of Scheme A for (N,K, M) = (3,2, %)

Now we illustrate the scheme that achieves the non-zero
memory-rate pairs in Theorem 1 for N = 3, K = 2. Let us
consider the demand-private coded caching problem for 3 files
and 2 users. By choosing » = 2 and ¢ = 3 in the expression for
(M, R) in Theorem 1, we get M = 192 and R = 2% Next we
describe the scheme which achieves this memory-rate pair with
F = 116! for some Nposmve integer lrWe partition each file
W;,i € [3] into Zj R J =3 3( ) = 41 segments
of three different sizes. These segments are grouped into three
groups such that all segments in one group have the same
size. The segments are labelled by some subsets of [NK] =
[6]. The segments of W; are W, iR R C [6],|R| = 3,4,5.
These segments are of different sizes, and these are grouped
into 3 groups as

T = Wi R)IRcieRi=j» ford =345

The size of segment W, p,i € [3] is len(W, )
:'T|R|_NK+1I = rIRI=5]. Thus, each segment in 7%, 7% and
T has respectively [, 2 and 4 bits. Then, we have

len(Wi) = (T3] + [ T4l x r+ |T| x r2)i

= (6415 % 2+20 x 4)l = 1161, Vi € [3].

Caching: The cache content of user k € [2] is determined
by the key S,k € [2] which is shared only between the
server and user k. Shared key Si,k € [2] is distributed
as Sk ~ unif{[N]} = unif{[3]}. The cache contents of
each user is grouped into three parts. The ;" j = 1,2,3
part of user £k € [2] is denoted by G ; and shown in
Table I. Thus, the number of bits stored at one user is
given by 3 ((3) +2 x (3) +4 x (3)) I = 195l. Thus, we have

M = 1?2 Other than .S, the server also places some additional

random keys of negligible size in the cache of user k € [2].
These will be used as one-time pads in the delivery phase.

gk’l (WZ ’R'Wz R € 7—25 and Si + 3k € ’R)i:(),lg

gk’g (W R|WRETI aI'lClSk—Q—?)k67—\’,)Z 0,1,2

gk,B ( 1R| RGTZandSk+31€ER)1 0,1,2
TABLE I: Cache contents of user k,k =0, 1

Delivery: In the delivery phase, for given demands
(Do, Dy), we first construct an expanded demand vector d
of length 6 such that d = (d©,d")), where d*), k = 0,1 is
obtained by applying Sy © Dy, right cyclic shift to the vector
(0,1,2), where © denotes modulo 3 subtraction. That is, for
k = 0,1, dgk) = i — (Sg — Di) mod 3. We now define
symbols Y7 for R C [6] and [R| = 4,5,6 as follows

YR=DW,

uER

w R\ {u}

where d,, is the u + 1-th item in d.

Symbol Y[ as defined above is a part of the main payload
in the broadcast transmission which needs [ bits. To give the
other parts of the broadcast, we define symbols WR and VR
for R C [6] and |R| = 4,5 as follows
R)’ VR = YR S>) WR'

Wr=W,geW, g W,ge&W,

Note that for |R| = 4, Wy has two parts, each of length 21
bits. Y7o also has a length of 4/ bits. We further define sets
V4 and V5 as follows:

Vi = {(VRIR N {S0, 81 +3} # ¢, |R| =i}, fori=4,5.

Observe that V; and V5 contain 14 symbols each of size 4/
and 6 symbols each of size 2, respectively. The server picks
permutations 74 and 75 uniformly at random from respectively
the symmetric group of permutations of [14] and [6] and
includes m4(Vy) and 75(Vs) in the broadcast. The server does
not fully reveal these permutations with any of the users. The
position of any symbol Vi € V;, i = 4,5 in m;(V;) is privately
transmitted to user k, if and only if Sy + 3k € R. This
private transmission of positions is achieved using one-time
pad whose keys are deployed in the caches of respective users
in the caching phase. The main payload, X’ is given as

(Y[G]77T4(V4),7T5(V5))'

Thus, the total number of bits transmitted are (146 x 2+ 14 x
4)1 = 691. So, the rate of transmission is 16—196. Along with the
main payload X', the server also broadcasts some auxiliary
transmission J = (S © Dy, S; © D1,J') = (S & D,J").
Here, J’ contains the positions of various symbols in X; and
X5 encoded using one-time pad as discussed above. Thus, the
complete broadcast transmission is X = (X', J).

Decoding: For user k € [2], let us first consider the recovery
of segments belonging to TZ-D k 4 = 3,4. This is done using
symbols from X; and X». All symbols W, 1o € TPx

X'= (X0, X1, X0) =

* where
Sk+3k € R, i.e., all symbols in set Gy _; are cached at user



k. User k decodes the remaining symbols in TZD ko le., WDk R
such that [R| =4, S; + 3k ¢ R and R C [6] as follows

WD;CR Vp+ @Wp=a [ W, du, R \{u} )
UGR

where R = {S+3k}UR. Here, Vyp+ isapartof w1 (Vit1)
and its position in ;41 (V;+1) has been revealed to user k since
Sy + 3k € RT. The symbols WR* and W, R+ in (5)
can be recovered from her cache. Substltutmg ‘for ‘>R+ in (5),

WDk,R YR+ D WR+ D WR+ (&) @ du,R+\{'tL}

uER
=D W du R\fuy P @ du, R\ {u}
ueR
= stk+3k,R - WDk,R (6)

Now that user k has all segments in 7'3D’“ and TP* we look
at the recovery of symbols in T? *. In the first part G 1 of
cache, user k£ does not have one segment of 7'5D ¥ namely
W, [6)\{Sx+3k} - User k decodes this segment as

D wa,

u€[6]\{Sk+3k}

Wo, [6)\(si+3k) = Vo] © [6\{uu}
Observe that Yjg is broadcasted by the server while each

symbol Wy, 16)\{u} is a part of Gy 1, and hence a part of the
cache of user k. Thus, user k can compute /WDky[ﬁ]\{ska}.
Using ideas from (6), it can be shown that WDk’[(;]\{SH;jk} =
Wp, 6]\ {S,+3k} (see details in [12]). Thus, user k can retrieve
all symbols belonging to each of the three groups of file Wp,
and she can recover this file by concatenating these symbols.

Privacy: To show the demand-privacy for user k € [2], we
first define k = (k + 1) mod 2. Since I(Dy; Zx, Dy,) = 0, the
privacy condition I(D;; X, Zi, D) = 0 follows by showing
that 1(X; D; | Zy, D) = 0. To that end, we divide all symbols
in X’ into two sets, X}, and X ;. which are defined as follows:

Xp = {Ving)} U{VR|Sk + 3k € R,V € X'},

X, =X\ X;.
Note, that the positions in X’ of all symbols belonging to X,
is known to user £ while the positions of symbols belonging
to X}, is not known. It can be shown that all symbols in
X, appear like a sequence of random bits to user k. This is
because for some set R, R C [6], |R| = 4,5 we broadcast Vi
instead of Y75. The symbol W, essentially hides the message

YR from all users that do not belong to set R. Further, it can
be also shown that

H(X]/C‘WD“Z;C,S@D):O @)

It is easy to see that, (Wp,, Zx, S © D) does not reveal any
information about Dj; which in combination with (7) ensures
privacy. A rigorous and detailed proof can be found in the
extended version [12].

C. Tightness of the achievable memory-rate pairs for K < N

We compare the memory-rate pairs achievable using
Scheme A with lower bounds on the optimal rates for non-
private schemes. Let Rf\‘,) k(M) denote the lower convex
envelope of the memory-rate pairs in Theorem 1.

Theorem 2 The lower convex envelope of memory-rate pairs
in Theorem 1 and the optimal rates without privacy for K < N
always satisfy the following:

Ryx(M) _[3 ifM<
Ry k(M) = |2 ifM>

vl 2]z

Since Ry (M) > Ry 1o (M) > RNK(M), the same upper
' ’ RiP (M)

Ry 5 (M)
d .
Ry, k(M)

R (M)

bounds also hold for the ratios

The proof of Theorem 2 is given in the extended version [12].
The above result shows that the rates achieved in Theorem 1
are within a multplicative factor of 3 from the optimal for K <
N. This gives an improvement on the known multiplicative
factor of 8 from [4, Theorem 3]. Furthermore, also note that
the optimal rates with and without demand privacy are always
within a multiplicative factor of 3 for K < IV .

D. Scheme B

Construction of an (N, K, M, R) demand-private scheme
using an (N, NK, M, R) non-private scheme as blackbox has
been discussed in [2], [3]. Moreover, it was shown in [4,
Theorem 4] that the (N, N K, M, R) non-private scheme needs
to serve only a restricted demand type. We construct a novel
(N, NK, M, R) non-private scheme which exploits the idea
of satisfying only a subset of the general demand set to
obtain an improved memory-rate tradeoff for this blackbox.
The construction of this scheme is based on the non-private
YMA scheme [10] for N files and NK — K + 1 users, hence
the memory-rate tradeoff achieved by this scheme is same
as the (N, NK — K+ 1, M, R) YMA scheme. The memory-
rate tradeoff achieved by the proposed non-private scheme and
thus the corresponding (N, K, M, R) demand-private scheme
is given by the following theorem.

Theorem 3 There exists an (N, K, M, R)-private scheme
with the following memory-rate pairs:

Ne o (T - (T
(MJQ_<NKK+r

(VE-KH)
where r € [NK — K + 1].

r

The details of the scheme which achieves the memory-rate
pairs in Theorem 3 are delegated to the extended version [12].

As noted before, Scheme B outperforms Scheme A when
N < K. Since the YMA scheme is optimal among all coded
caching schemes with uncoded prefetching, the rates achieved
by Scheme B will be better than the rates obtained using any
(N, NK)-non-private scheme with uncoded prefetching as a
blackbox. However, it is not clear whether Scheme B leads to
any improvement on the order optimality when N < K.



IV. EXACT TRADE-OFF FOR N > 2 AND K = 2

For N = K = 2, the exact trade-off for private coded
caching was characterized in [4]. In the following theorem,
we characterize the exact trade-off for N > 2 and K = 2
under demand privacy.

Theorem 4 Any memory-rate pair (M, R) is achievable with
demand privacy for N > 2 and K = 2 if and only if

3M + NR>2N, 3M+ (N+1)R>2N +1,
M+ NR>N. (8)

For N > 2 and K = 2, any feasible (M, R) pair is required
to satisfy the first and third inequalities in (8) even for
non-private schemes [11]. The necessity of the second line
is shown by generalizing the converse bound given in [4],
and the details are delegated to the extended version [12].
The corner points of the memory-rate curve given by (8)
are (0, 2), (%, 1), (%, A=) and (N,0). The achievabil-
ity of (0,2) and (NV,0) follows from [4, Theorem 2]. We
propose two schemes, Scheme C and Scheme D, which

. . 2 —
achieve memory-rate pairs (4, 1) and (55—, 27— ), respec-

tively. Scheme C achieves memory-rate pair (%, 1) using
uncoded prefetching while Scheme D achieves memory-rate

. 2 . . .
pair (%, %) using coded prefetching. Next we illustrate

Scheme C for N = 3, K = 2. General versions of Schemes
C and D can be found in the extended version [12].

A. An Example of Scheme C for (N, K, M) = (3,2, %)

We describe Scheme C for N = 3 and K = 2 which
achieves rate 1 for M = & = 1. File W, i € [3] is divided into
3 disjoint parts of equal size, i.e., W; = (W, o, W, 1, Wi 2).

Caching: The server picks 2 independent permutations 7
and 7 uniformly at random from the symmetric group of
permutations of [3]. The server places mo(Wo.0, W10, Wa o)
and 71 (Wp 1, W11, Wa 1) in the caches of user 0 and user 1,
respectively. Each of these permutation functions 7y and 7y
are unknown to both the users. Some additional random bits
are shared with each user through the cache.

Delivery: The server picks permutation 7o uniformly at
random from the symmetric group of permutations of [3]
independent of 7y, 1. The main payload, X’ is given by

72(Wpo1 © Wp, 0, Wpy 2, Wp, 2) if Do # Dy
X' = m(Wpy1 @ Wino0, Wpy,2: Wp, 0 ® Win 1)
if Dy = Dy
where m = (D + 1) mod 3. To enable decoding at each

user, the server also transmits some auxiliary transmission
J = (J1,J2,J3) of negligible rate. Each J;,j = 1,2,3 can
be further divided into 2 parts, i.e., J; = (Jj,0,J;,1), where
Jj i,k € [2] is meant for user k. Using a one-time pad which
uses the pre-shared random bits, the server ensures that J; i
can be decoded only by user k and it is kept secret from the
other user. These parts are used as follows:

1) Ji, conveys the position of Wp, j, in user k’s cache.

2) Joi, gives the positions of the coded and uncoded parts
of X' involving Wp, to user k. Specifically, .J; j reveals
the positions of Wp, 1 @& Wp, o and Wp, o to user k
when Dy # D, and the positions of WDk’,; @ Wi,k and
Whp, 2 when Dy = Dy, where k= (k4 1) mod 2.

3) Js3 1 discloses the position of Wwak if Dy # D; and
Wk if Do = D; in her cache to user k.

Decoding: User k decodes Wp, as follows. Wp, ; can be
obtained from the cache since she knows its position from
J1,i. User k recovers Wp, o from the delivery since she knows
its position in X’ from J; ;. The remaining segment Wp, i
is available in coded form in X’. The segment that Wp, i
is XOR-ed with, is available in the cache of user k, and its
position in the cache is revealed by J3 ;. Thus, user k retrieves
all three segments of file Wp, .

Privacy: Now we describe how D; remains private to user 0.
From the transmission, we can observe that for both the cases,
i.e.,, Dy # D; and Dy = Dy, user 0 receives Wp, o in the
uncoded form and Wp, 1 coded with another symbol. Also,

in both the cases, the remaining symbol is like a sequence of

% random bits to user 0. This symmetry helps in achieving

privacy. Further, given J; o, any of the remaining 2 symbols
can occupy the remaining 2 positions in the cache with equal
likelihood. Thus, although user O can use one of these symbols,
i.e., the symbol XOR-ed with Wp, 1, for decoding using J3 g,
the symbol’s identity is unknown because J3 o only discloses
the symbol’s position in user (0’s cache. Due to the symmetry
of the scheme, similar privacy arguments apply for user 1.
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