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Abstract: This paper proposes different classification algorithms—logistic regression, support vector
machine, K-nearest neighbors, and random forest—in order to identify which candidates are likely
to default for a credit scoring model. Three different feature selection methods are used in order to
mitigate the overfitting in the curse of dimensionality of these classification algorithms: one filter
method (Chi-squared test and correlation coefficients) and two wrapper methods (forward stepwise
selection and backward stepwise selection). The performances of these three methods are discussed
using two measures, the mean absolute error and the number of selected features. The methodology
is applied for a valuable database of Taiwan. The results suggest that forward stepwise selection
yields superior performance in each one of the classification algorithms used. The conclusions
obtained are related to those in the literature, and their managerial implications are analyzed.

Keywords: operational research in banking; machine learning; credit scoring; classification
algorithms; feature selection methods

1. Introduction

The primary function of banks and financial institutions is to concede credits and loans
to households and firms that need funds. Thus, credit risk becomes their most important
issue since lending money involves plenty of uncertainties derived from asymmetric
information. The credit scoring model, as a form of credit risk management, helps to
reduce those uncertainties by evaluating, among other things, the possibility of default
when such loans and credits are given. This evaluation process requires a set of features
that are necessary to get to know the borrowers better, enabling banks to predict the level
of credit risk. However, due to the rapid growth of new technologies and the creation of
a vast amount of data on a per-second basis, the need for filtering out irrelevant features
to the risk level has increased in recent years. The concept of feature selection, therefore,
under these circumstances, has grown in importance to identify a set of significant variables
relevant to determine the credit risk of borrowers.

The biggest challenge of building credit scoring models could be to decide which
are the most relevant features to be selected for the task. In practice, the data used for
the models may be collected from various sources, and sometimes the size of the data
is small in relation to the number of features considered, which gives rise to a typical
overfitting example. In addition, there might be some features in the data, which may not
be significant to credit risk, or some of them may be correlated with each other. Thus, these
data issues might result in a misleading interpretation of the credit scoring model and a
very poor performance of it.

The feature selection process as a solution to these issues could be considered as a
complicated, arbitrary, and unsystematic task since there is no specific theory and the task
works differently on different data. Thus, some researchers have come up with several
ways that could help sort this ambiguity. For example, some tried univariate analysis [1],
such as studying the statistical significance of the predictors on the response variable
independently or computing correlation coefficients that determine whether there is a linear
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dependence between features or not. On top of that, there are classification algorithms that
carry out the feature selection process, for example, logistic regression has a parameter
called “penalty” to prevent the algorithm from having too many variables included in the
model. Other selection methods work in tandem with nonlinear classification algorithms-K-
nearest neighbors, support machine vectors, or random forests, such as stepwise selection
procedures.

This paper presents a methodology for the selection of the key variables in order to
establish a credit scoring model. Different classification algorithms—logistic regression,
support vector machine, K-nearest neighbors (KNN), and random forest—are proposed in
order to separate data into two classes and identify which candidates are likely to default
for this credit scoring. It uses three different feature selection methods in order to mitigate
the overfitting in the curse of dimensionality of these classification algorithms, specifically
the one filter method (Chi-squared test and correlation coefficients) and two wrapper
methods (forward stepwise selection and backward stepwise selection). The performances
of these three methods are discussed using two measures, the mean absolute error and the
number of selected features. The methodology is applied for a valuable database of Taiwan
obtained from Chung Hua University. The results suggest that forward stepwise selection
yields superior performance in each one of the classification algorithms used. These results
are related and compared to those in the literature, and their managerial implications are
analyzed.

The rest of the paper is organized as follows. Section 2 describes the theoretical
framework, introducing the concept of credit risk management and including a literature
review of the different machine learning techniques used for credit scoring. Section 3
details the methodology proposed to evaluate credit applicants, both the classification
algorithms that allow identifying the key features for credit scoring and the different
methods used to mitigate the overfitting problem in the practical implementation of
these classification algorithms. Section 4 refers to the empirical analysis, describing the
sample data and variables used, and analyzing the empirical results obtained from the
methodology proposed. Section 5 sums up the conclusions and the implications of the
findings.

2. Materials and Methods
2.1. Credit Risk Management

Credit risk can be defined as the possibility that a borrower fails to meet financial
obligations. Since on most occasions the main business of banks and other financial
institutions involves credits as mentioned before, credit risk management became a crucial
tool to alleviate default risk, which allows them to understand sources of the risk. This, in
turn, enabled banks to measure the level of risk and to maximize ultimately their rates of
return from granting credits. In the last years, there have been different default examples
due to poor credit quality of loans and credits conceded by many banks, such as the savings
and loan crisis in the late 1980s, crises in countries such as Argentina, Brazil, Russia, and
South Korea in the late 1990s, or more recently the subprime crisis that activated the Great
Recession [2].

These incidents, therefore, led to various methods for measuring credit risk being
developed. Primarily, many financial institutions had been using models that took only
into account qualitative factors of borrowers, such as, reputation, leverage, the volatility
of earnings, or collateral, and market-specific factors such as the business cycle, currency
exchange rates, or interest rates. However, due to the increasing complexity of banking
activities, those traditional models were no longer very effective. Quantitative models then
started coming to the fore; logit model, methods that use risk premium, Altman’s linear
discriminant model, etc. Later, the quantitative models backed up with new technologies,
allowed higher-performance credit scoring models that lowered the cost of credit analysis in
terms of time and effort and better decision making when granting credits [3]. These recent
credit scoring models usually have a form of separating consumers who want to borrow
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money into two categories (low risk and high risk of default), using various characteristics
of the applicants, such as demographic characteristics, economic and financial conditions,
etc. The models estimate statistically as close as possible to the current credit risk level.
Some popular examples are logistic regression, discriminant analysis, factor analysis, and
probit regression and artificial intelligence approaches such as an expert system, neural
networks, or support vector machine [4].

2.2. Machine Learning and Credit Scoring: A Review of Literature

Alpaydin [5] defined machine learning as a tool using past data to program com-
puters in order to solve a given problem. Thanks to these advantages machine learning
has achieved a dominant position in handling various issues: recognizing speech and
handwriting, analyzing past sales data to improve customer relationships, or analyzing
the data of clients by financial institutions to predict credit risks. Much literature has been
done and is still ongoing about machine learning on credit scoring models out there. Many
quantitative techniques have been used in different research to examine the predictive
power in credit scoring, from single classifiers (logistic regression, neural networks, K-
nearest neighbors, support vector machines, classification trees, etc.) to ensemble methods
(random forest, bagging, boosting, etc.). One example of ensemble methods’ development
and application is [6]. For an update of the classification algorithms’ research for credit
scoring see [7]. Most of these studies rely on a single accuracy or performance measure,
or on several measures of the same type. These accuracy measures may split into three
general types [7]: those based on a threshold metric (classification error, MAE, etc.), those
that assess the discriminatory ability of the scorecard (area under the curve or AUC), and
finally those based on a statistical hypothesis testing (paired t-test, Friedman test, analysis
of variance, etc.).

Baesens et al. [8] evaluated several single classifiers, compared their performances,
and found out that logistic regression and linear discriminant analysis exhibited more
outstanding performances in predicting credit risk than the others which were also tested
in the paper. Ref. [9] explored eight different machine learning classification algorithms on
various real-world datasets and concluded that random forests and logistic regression were
the algorithms that had the highest prediction accuracies. However, they emphasized that
the details of the problem, the data structure, and the number of features also play a key role
in determining the best classifier. On the other hand, ref. [10], their research showed that
the combinations of single classification algorithms, that is, ensemble methods, did a better
job than single algorithms. Ref. [11] also went through seventy-four studies on statistical
and machine learning models for credit scoring to identify the best performing model and
found that an ensemble of classifiers had superior performance to single ones. By extension,
ref. [12] conducted a feature selection process as a step before implementing classification
algorithms. They concluded that after trying four different selection methods—“wrapper”,
“consistency-based”, “relieF”, and “correlation-based”—the performance of the K-nearest-
neighbors classifier, not the others, improved, no matter which feature selection method
was used but especially with the wrapper and consistency-based ones although the KNN
was still not the best performing classifier compared to the other algorithms. Tripathi
et al. [13] used the ensemble feature selection approach on datasets to which in the next
stage a multilayer ensemble classifier was applied to enhance the performance for scoring
credit risks. Zhang et al. [14] employed, in order to extract main features, first gradient
boosting decision trees (GBDT) for feature transformation and one-hot encoding and then
Chi-square statistics to calculate the correlation between features and to select the main
ones.

Table 1 illustrates empirical literature that measures credit risk using different classifi-
cation algorithms that employ different evaluation criteria.
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Table 1. Machine learning in credit scoring: classification algorithms and evaluation criteria used.

Evaluation Criteria

Threshold Metrics Statistical Hypothesis Testing Area under the Curve

Classifier

Logistic regression [7,12,15] [9] [7,16,17]
Decision tree [12,15,18] [9,18]

Support vector machine (SVM) [7,8,15] [8,9] [7,8,17]
Artificial neural networks (ANN) [7,8,12,15] [8,9] [7,8]

Bayesian model [7] [9] [7]
CART [7] [7,16]

Extreme learning machine (ELM) [7] [7]
K-nearest neighbor (KNN) [7,12] [9] [7]
Rule induction algorithms [9]

Discriminant analysis [7] [7]
Voted perceptron (VP) [7] [7]

Naïve Bayes (NB) [7] [7]
J4.8 [7] [7]

Fuzzy logic [18] [18]
Ensemble classifier [6,7,13–15] [9,10,14] [6,7,14,16,17]

3. Methods and Materials

This section presents the methodology proposed to evaluate credit applicants, see
Figure 1. Different classification algorithms—logistic regression (LR), support vector
machine (SVM), K-nearest neighbors (KNN), and one embedded method, random forest
(RF)—were used in order to separate data into two classes and identify which candidates
are likely to default for this credit scoring. These classification algorithms were trained
with different feature selection methods in order to mitigate the overfitting in the curse of
dimensionality of them. Specifically, one filter method (Chi-squared test and correlation
coefficients) and two wrapper methods (forward stepwise selection and backward stepwise
selection) are used. Then, two performance measures, model simplicity (the number of
selected features), and model accuracy (the MAE) were used to see the effects of feature
selection by comparing the performance measures before and after the selection process. A
resampling method, K-fold cross-validation, is applied to obtain additional information
about the fitted model because there is no test data set on which the model can be tested out.

3.1. Classification Algorithms

Next, some of the most representative current mathematical models for implement-
ing credit scoring will be introduced, most of them included within automatic learning
techniques.

3.1.1. Logistic Regression

Logistic regression is a particular kind of generalized linear model (GLM) which is a
generalization of the concepts of regular linear models. Therefore, logistic regression is not
much different from linear regression, but it is used for a classification problem as the one
in this analysis.

Y(response) = 0 if a borrower defaults or 1 otherwise (1)

Logistic regression provides the probability that Y belongs to a specific category so for
a binary dependent variable such as this one, the simple linear model using ordinary least
squares regression does not make sense since the probability cannot exceed the interval
[0, 1]. Instead, the logistic function is used to model the relationship between the response
and independent variables. For instance, the probability of Y belonging to class 1 can be
written as follows:

Pr(Y = 1|X) = p(X) =
eβ0+β1X1+···+βpXp

1 + eβ0+β1X1+···+βpXp
(2)
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Figure 1. The methodology proposed for credit scoring: classification algorithms used (LR, SVM, KNN, RF) trained with
different feature selection methods.

Since p(X) provides the probability that the response variable is 1, a threshold must
exist that classifies data into two or more categories; the default threshold is 0.5, and if
a sample whose value of p(X) is equal to or greater than 0.5, it is classified as 1 and 0
otherwise. The logistic function is estimated using the maximum likelihood method and
this method finds the coefficients such that plugging these estimated parameters into the
model p(X) yields the lowest classification errors.

Although logistic regression cannot yield high accuracy when variables are non-
linearly related, it has been commonly used for credit scoring models [19–22].

3.1.2. Support Vector Machines

Support vector machines (SVM) aim to figure out the best way to separate the classes
of data. Observations called support vectors determine the decision boundaries by affecting
their positions and maximizing the margins which are the distance between them and
the boundaries. To accommodate the non-linearity of boundaries, SVM uses a kernel that
generalizes the inner products of the observations and it quantifies the similarity of two
observations. A kernel can be denoted as:

K(xi, xi′) =

(
1 +

p

∑
j=1

xijxi′ j

)d

(3)

where d is a degree of the polynomial. According to [23], a very popular choice of the
kernel is the radial kernel, and it takes the form:

K(xi, xi′) = exp(−γ
p

∑
j=1

(
xij − xi′ j

)2
). (4)
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where γ is a positive constant. The radial kernel has a local behavior because only observa-
tions near a new one affect the class category of the test one. The SVM, combined with a
support vector classifier and a non-linear kernel, has the form

f (x) = β0 + ∑
i∈S

αiK(x, xi), (5)

where S is the collection of indices of support vectors, αi is non-zero if a training observation
is a support vector.

Thanks to its ability for superior learning and high flexibility, SVM has been frequently
used for many real-life problems such as credit scoring [24–27], pattern recognition [28],
disease diagnosis [29,30], and financial time series forecasting [31,32].

3.1.3. K-Nearest Neighbors

K-nearest neighbors (KNN) classifier works based on an assumption that similar
inputs have similar outputs. Given a positive integer K and a test observation x0, this
classifier first identifies K points that are closest to x0 in the training data set represented
by N0. Then, it estimates the conditional probability for class j as the proportion of points
in N0 whose response values are equal to j:

Pr(Y = j|X = x0) =
1
K ∑

i∈N0

I(yi = j), (6)

where I(yi = j) is a variable that corresponds to 1 if yi = j and 0 if yi 6= j. Finally, KNN
classifies the test observation x0 to the class that has the highest probability. This simple
approach to classifying and its significant performance made the KNN very popular and
widely used in data mining and statistics [33–36].

An important consideration when using the KNN classifier is to determine the value
K, the number of nearest neighbors. A small K could lead the classifier to overfit causing
higher variance and a large value may cause high bias, making the performance worse.
Therefore, there are many pieces of research regarding finding the optimal K-value for
test data [35]. For example, ref. [37] asserted for all new observations, the optimal K-value
should be n0.5, where n is the number of training samples whereas [38] suggested finding
the best K through a 10-fold cross-validation method.

3.1.4. Random Forest

A random forest is a classification algorithm used commonly in both regression
and classification problems given the easy interpretation and good reflection on human
decision-making [39]. Thanks to those attributes, the random forest has been applied
for the development of credit scoring models [21,40–42], and in financial excess returns
forecasting and optimal investor portfolios [43].

The random forest, as an extension of decision trees and addresses the issue of high
bias. They are usually constructed using a resampling method called bootstrapping. Boot-
strapping creates various training data from data allowing the replacement of observations.
Then, when the model considers the predictors to choose one that is optimal at each step
of the trees, it ends up having a similar structure in each sample. Therefore, the resulting
decision trees are not too variable, and they carry out classification poorly. Random forests
solve this problem, only allowing each tree to capture m = p0.5 from p predictors. To con-
struct a forest, recursive binary splitting is a general approach, which is a top-down, greedy
approach. They consider all available predictors and possible cutting points for each of
them, choosing cutting points with which the resulting tree has the lowest classification
error rate.
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3.2. Curse of Dimensionality

The curse of dimensionality happens when data space grows at a very fast speed
as the number of dimensions, or features, grows. When data dimensionality increase
is represented in dimensions, the observations are located distantly from each other. In
other words, they do not fill up the growing data space. Hughes phenomenon (or peaking
phenomena) states that ceteris paribus, the predictive power of a classifier or a regressor,
increases with the number of features but decreases after the number reaches a critical
point [44]. Considering an excessive number of features could also cause other problems
than reducing the performance of the model. Models with many features tend to be
complex, which makes them harder to interpret than models with a small number of
predictors [45]. The sophisticated models also require more time for fitting the data and
they tend to have a higher variance, in other words, they tend to overfit [46]. This occurs
when a machine learning algorithm fits too close to the training data set but performs
poorly on the test data set [47]. However, there are ways to alleviate this curse by reducing
the number of features when the size of data is relatively small. Three main feature
selection methods exist to pick a subset of features based on different evaluation metrics;
the wrapper, filter, and embedded methods.

3.2.1. Wrapper Methods

Wrapper methods require a regressor or classifier for feature selection. They try
different combinations of features and score each subset by testing the model on a holdout
set not used for fitting. There are several measures to estimate the accuracy of the predictive
model and depending on each model different performance measures may be needed.
Although wrapper methods usually provide the best performing subset of features, they
could be in general computationally expensive. For example, the best subset selection
method, which is one of the wrappers, considers every possible combination of features. If
the data has p features, best subset selection tries out 2p models to find the optimal subset.
Thus, in this paper, two of the wrapper methods were used; forward stepwise selection
and backward stepwise selection. They are seen as locally optimal versions of best subset
selection as they are less computationally intensive and they update the active model by
adding or removing one variable at each step, instead of re-optimizing over all possible
subsets [48].

(1) Forward stepwise selection

Forward stepwise selection is an alternative to the best subset selection method as this
selection process is less computationally expensive compared to the latter. This method
begins with a predictive model with no variable, tries a variable at a time, and then observes
how the accuracy of the model changes. If the addition of a feature brings about higher
model accuracy, it stays in the model and if not, it is deleted. This process continues until
there is no improvement in model performance. To detect the subset that allows the model
to have the highest accuracy, various ways are available, such as mean absolute error,
cross-validated prediction error, AIC, BIC, etc.

(2) Backward stepwise selection

Backward stepwise selection, as with forward stepwise selection, is another alternative
to the best subset selection method and its selection process is similar to the one of forward
stepwise selection. However, instead of starting with a model with no predictors, this one
starts from the model having all features. Then, at each step, the model deletes the feature
whose elimination helps to have the largest improvement in its performance. Even if this
approach is simple if the data set has many features and if its number is greater than the
number of observations, this method is not preferred [49].
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3.2.2. Filter Methods

Filter methods use a statistical proxy measure that detects the features that have more
predictive power on the target variable. Most filters study a feature at a time, looking at its
relationship with other remaining variables so they are also known as univariate analysis.
Therefore, filter methods could yield worse prediction performances than wrapper methods
because the interaction among the features is not taken into account and any predictive
model is not needed for the selection process so the selected attributes are not specifically
chosen for the model [50]. Therefore, in general, these methods are preferred as a step
before using other selection methods. Since the data set in this paper has both categorical
and numerical features, two filter methods were used to handle both types of data.

(1) Chi-squared test

A Chi-squared test is applied to determine the dependence of two variables, normally,
the relationship between the independent categorical variable and the dependent categori-
cal variable. The test aims to select the significant features of the response variable under a
null hypothesis that the independent one has a statistically insignificant influence on the re-
sponse one. Among all Chi-squared tests, Pearson’s Chi-squared (χ2) test is the most often
used tool for categorical data. According to [51], this test creates first a contingency table,
which shows the distribution of an independent variable in columns and the dependent
one in rows, thus finding the Chi-square value. If the Chi-square probability (p-value) of
the statistic is less than or equal to a certain threshold (in general, 0.05 is used), the null
hypothesis is rejected concluding that the explanatory variable is statistically significant.

(2) Correlation coefficient

The correlation coefficient measures the degree of the statistical linear relationship
between two numerical variables. The most known measure of dependence is the Pearson’s
correlation coefficient. The value of a correlation coefficient could be any value between
−1 and 1, a perfect negative linear relationship, and a perfect positive linear relationship,
respectively. A coefficient close to 0 means that the two variables are not linearly correlated.
A coefficient matrix, therefore, which is a matrix that shows the correlation coefficients
among numerical variables, allows us to detect multicollinearity. Multicollinearity is a
phenomenon in which two or more variables are highly correlated and can cause some
problems in a regression or classification setting: the impact of a variable on the dependent
variable cannot be measured precisely while the other independent variables remain fixed
because a change in the variable also makes the correlated variables change as well [52].
As a result, inaccurate estimates of the independent variable will yield also inaccurate
predictions on out-of-sample data [53]. For feature selection, the correlated features from
the correlation coefficient matrix, except the one that is more significant than the others,
can be excluded for building models.

3.2.3. Embedded Methods

Embedded methods carry out feature selection during model training from which
its name was derived. The general approach of these methods is to give a penalty for
having many features by making some unimportant variables shrink towards zero. The
most popular methods are lasso, ridge regression, and elastic net regularization. Lasso and
ridge regression have a similar approach, but lasso is considered stricter because it makes
insignificant features exactly zero whereas ridge regression makes those coefficients close to
zero but not zero exactly. Although Lasso was originally aimed for the least square models,
its use has been extended to a wider range of statistical models including generalized linear
models, generalized estimating equations, etc. [54]. Due to the limited application, in this
study, none of the embedded methods were used since the classification algorithms used
in this paper are not considered generalized linear models.
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3.3. Resampling

Resampling methods are useful instruments to obtain additional information about
the fitted model when there is no test data set on which the model can be tested out by
repeatedly extracting samples from the training dataset and fitting the model on each
sample. There are various resampling methods and a K-fold cross-validation approach
is used in [38]. K-fold cross-validation divides the data set into K parts, fits a predictive
model on K-1 parts, and tests the model on the part not used for fitting. Then, this process
is repeated K times until all the K parts are used for testing. Finally, an estimated error rate
is obtained by averaging the K different error rates and can be written as:

CVK =
1
K

K

∑
i=1

Classi f ication error ratei (7)

There are other resampling methods, for example, the validation set approach and
leave-one-out cross-validation (LOOCV). On one hand, the validation set approach divides
the training data only into two parts, causing the error rates to be very sensitive to the way
the data is divided. On the other hand, LOOCV only leaves one observation for the test data
so it is a very computationally intensive process although the error rates are very stable.
Thus, K-fold cross-validation is the in-between method that handles the disadvantages of
the other approaches; it provides relatively stable results, and it is computationally cheaper.
For the value of K, in general, 5 and 10 are preferred since they both yield a relatively
stable classification error rate. In this dissertation, five-fold cross-validation was mostly
implemented because stepwise selection methods were taking a lot of time selecting the
features and fitting the model with the ones before chosen. See Figure 2.

Figure 2. The resampling method used: five-fold cross-validation.

4. Empirical Analysis
4.1. Sample Data and Variables

The data were obtained from Chung Hua University in Taiwan. The data set contains
30,000 observations with 25 different columns, which are both categorical and numerical
variables. The categorical variables give some qualitative characteristics about each client,
such as gender, education, and marital status. On the other hand, the numerical variables
represent the age of the clients, the amount of credit granted, the payment status, the
number of bills, and the amount of payment for six months from April 2005 to September
2005. Lastly, the variable of interest illustrates the status of default of each customer in the
following month; 1 for those who defaulted and 0 otherwise. Table 2 provides a detailed
description of the data. An example of practical implementation of this data set for credit
scoring can be found in [55].
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Table 2. The description of the database variables.

Variables Description Values

ID ID of each client

LIMIT_BAL Amount of the credit that each client has

SEX Gender 1 = male, 2 = female

EDUCATION Education 1 = graduate school, 2 = university,
3 = high school, 4 = others

MARRIAGE Marital status 1 = married, 2 = single, 3 = others

AGE Age

PAY_1 Repayment status in September, 2005
−1 = if paid in time, 1 = if delayed
for one month, . . . , 9 = if delayed

for nine months or more.

PAY_2 Repayment status in August, 2005 Same

PAY_3 Repayment status in July, 2005 Same

PAY_4 Repayment status in June, 2005 Same

PAY_5 Repayment status in May, 2005 Same

PAY_6 Repayment status in April, 2005 Same

BILL_AMT1 Amount of bill in September 2005

BILL_AMT2 Amount of bill in August, 2005

BILL_AMT3 Amount of bill in July, 2005

BILL_AMT4 Amount of bill in June, 2005

BILL_AMT5 Amount of bill in May, 2005

BILL_AMT6 Amount of bill in April, 2005

PAY_AMT1 Amount paid in September, 2005

PAY_AMT2 Amount paid in August, 2005

PAY_AMT3 Amount paid in July, 2005

PAY_AMT4 Amount paid in June, 2005

PAY_AMT5 Amount paid in May, 2005

PAY_AMT6 Amount paid in April, 2005

DEFAULT Default status 1 = yes, 0 = no
Notes: the variables that represent amounts are expressed in Taiwanese dollars. The age variable is in years.

4.2. The Determination of Model Parameters for the KNN-Algorithm

Before the feature selection process, the parameter “number of neighbors” for the
KNN algorithm is determined. Depending on the K parameter, the performance of the
algorithm can differ considerably; as discussed earlier, a small number of neighbors (K)
makes the model overfit, leading the test error rate to be large and the model tends to
perform poorly with a large K. Therefore, it is important to have an appropriate value
of K so that the classifier has the lowest test error rate. According to [56], in general, the
parameter is chosen empirically by trying different numbers of neighbors so for this study
as well, a range of values of K was tried for each feature selection method to find one with
which the KNN had the lowest classification error rate.

Figure 3 shows the changes in mean absolute error (MAE) as the classification error
rate with different Ks when different feature selection methods were used in the KNN
model. The range of Ks tried here was from 50 to 100 because there were too many possible
values (from 0 to 30,000) to be considered so it was too computationally intensive to try
all those values. According to Figure 4, the Chi-squared test and correlation coefficient
provide the value of K as 81 with the lowest MAE of 22.07 percent. Regarding the other
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methods, the forward stepwise selection method required the KNN to consider 54 nearest
neighbors for each test data observation for classification so that the algorithm has the
lowest MAE of 17.88 percent. Lastly, backward stepwise selection provided the optimal Ks
of 94 that yielded an MAE of 21.82 percent.

Figure 3. The selection of parameter K for the KNN classifier.

Figure 4. The number of nearest neighbors and mean absolute error.

4.3. Empirical Results and Discussion

The classification algorithms were trained with the selected features. Then, two perfor-
mance measures, model simplicity (the number of selected features) and model accuracy
(the MAE) were used to see the effects of feature selection by comparing the performance
measures before and after the selection process. Measuring the performance with the mean
absolute error, although having some disadvantages, simplifies the considerations. Addi-
tionally, stepwise selection has two primary faults. On the one hand, false-positive findings.
In this case, the corresponding p-values are unadjusted, leading to an over-selection of
features (i.e., false-positive findings). This problem is exacerbated when highly correlated
predictors are present. On the other hand, model overfitting: the resulting statistics are
highly optimistic since they do not consider the selection process, so we have used the two
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performance measures that reinforce each other, the number of selected features and the
MAE.

Before anything else, the performances of the models without feature selection are
shown in Table 3. The models without feature selection used all the features for fitting
so they scored the same model simplicity (no change in the number of selected features).
When it comes to MAEs without feature selection, however, we could detect gaps among
the classifiers; the random forest classifier was the one that registered the highest MAE rate
of 25.27 percent, meaning that it had the worst model accuracy. The other classifiers had
similar error rates but the KNN with K equal to 73 yielded the lowest rate of 22.06 percent.

Table 3. Models without feature selection.

Models No. of Features Mean Absolute Error (%)

Logistic regression 24 22.120
KNN (K = 73) 24 22.057

SVM 24 22.120
Random forests 24 25.267

Figures 5 and 6 illustrate the number of selected features for each of the classification
algorithms using feature selection methods and the changes in model simplicity after
it. The models with all 24 features are used as the criterion for the comparison. The
most significant reduction in the number of features was made in the logistic regression,
and only two features were chosen by the backward stepwise selection method, and six
features by the forward stepwise selection. The reduction was also comparable for the
KNN classifier as both forward and backward stepwise selection methods selected seven
features. For SVM and random forest, the forward stepwise selection method helped to
achieve a substantial decrease in features (five and four, respectively), whereas the features
by the backward stepwise selection method only reduced by seven and one, respectively.

Table 4 provides the features or variables selected by the Chi-squared test and corre-
lation coefficient method for the different models used. Tables 5 and 6 show the features
selected by forward and backward stepwise selection methods, respectively, for the differ-
ent classification algorithms.

Figure 5. The number of selected features.
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Figure 6. The change in the model simplicity (no. of features).

Table 4. The features selected by the Chi-squared test and correlation coefficient.

Models/Feature Selection Chi2 and Corr

Logistic regression

(‘SEX’, ‘MARRIAGE’, ‘EDUCATION’, ‘LIMIT_BAL’, ‘PAY_1’,
‘PAY_2’, ‘PAY_3’, ‘PAY_4’, ‘PAY_5’, ‘PAY_6’, ‘BILL_AMT1’,
‘BILL_AMT3’, ‘PAY_AMT1’, ‘PAY_AMT2’, ‘PAY_AMT3’,

‘PAY_AMT4’, ‘PAY_AMT5’, ‘PAY_AMT6’)

KNN Same

SVM Same

Random forests Same

Table 5. The features selected by forward stepwise method.

Models/Feature Selection Forward Stepwise Selection

Logistic regression (‘SEX’, ‘EDUCATION’, ‘AGE’, ‘PAY_1’, ‘PAY_5’, ‘PAY_6’)

KNN (‘SEX’, ‘EDUCATION’, ‘MARRIAGE’, ‘PAY_1’, ‘PAY_3’,
‘PAY_5’, ‘PAY_6’)

SVM (‘EDUCATION’, ‘PAY_1’, ‘PAY_4’, ‘PAY_5’, ‘PAY_6’)

Random forests (‘EDUCATION’, ‘MARRIAGE’, ‘PAY_1’, ‘PAY_2’)

Table 6. The features selected by backward stepwise selection.

Models/Feature Selection Backward Stepwise Selection

Logistic regression (‘SEX’, ‘PAY_1’)

KNN (‘BILL_AMT3’, ‘BILL_AMT6’, ‘PAY_AMT1’, ‘PAY_AMT2’,
‘PAY_AMT3’, ‘PAY_AMT4’, ‘PAY_AMT5’)

SVM
(‘SEX’, ‘EDUCATION’, ‘MARRIAGE’, ‘AGE’, ‘PAY_1’, ‘PAY_2’,

‘PAY_3’, ‘PAY_4’, ‘PAY_5’, ‘PAY_6’, ‘BILL_AMT1’, ‘BILL_AMT2’,
‘BILL_AMT3’, ‘BILL_AMT4’, ‘BILL_AMT6’, ‘PAY_AMT1’)

Random forests

(‘LIMIT_BAL’, ‘SEX’, ‘EDUCATION’, ‘MARRIAGE’, ‘AGE’,
‘PAY_1’, ‘PAY_2’, ‘PAY_3’, ‘PAY_5’, ‘PAY_6’, ‘BILL_AMT1’,
‘BILL_AMT2’, ‘BILL_AMT3’, ‘BILL_AMT4’, ‘BILL_AMT5’,
‘BILL_AMT6’, ‘PAY_AMT1’, ‘PAY_AMT2’, ‘PAY_AMT3’,

‘PAY_AMT4’, ‘PAY_AMT5’, ‘PAY_AMT6’)



Mathematics 2021, 9, 746 14 of 22

The changes in model accuracy are shown in Figure 7. The random forest showed the
largest improvement in MAE after feature selection, even if there was not much reduction
in the number of selected features, compared to the other models as mentioned earlier.
Next, the logistic regression could be able to perform better by on average 12.6% and most
of the improvement came from the forward and backward stepwise selection methods. On
the contrary, for the KNN and SVM, it is clearly seen that the Chi-squared and correlation
coefficient test and backward stepwise selection were not very helpful for the models to
cut down MAE as the changes were close to 0.

Figure 7. The change in MAE after feature selection.

Among the three feature selection methods, the forward stepwise selection method
performed relatively superior to the other two methods concerning model simplicity and
model accuracy. As we can see in Table 7, the classification algorithms using the forward
stepwise selection were simpler, that is, the models had fewer features, which made them
easier to be interpreted. Besides, the classifiers using this selection method obtained the
greatest reduction in MAE rates.

Table 7. The comparison of the results across all the experiments.

Models/Feature Selection Chi2 and Corr Forward Stepwise Backward Stepwise

Logistic regression (1) −5
(2) +0.0904%

(1) −18
(2) −19.2736%

(1) −22
(2) −18.4449%

KNN (1) −5
(2) 0.0603%

(1) −17
(2) −18.9362%

(1) −17
(2) −1.0577%

SVM (1) −5
(2) 0%

(1) −19
(2) −19.3491%

(1) −7
(2) −0.0601%

Random forests (1) −5
(2) −12.3084%

(1) −20
(2) −28.8259%

(1) −1
(2) −27.6121%

(1) Change in model simplicity (in the number of features), (2) change in model accuracy (+: increase, −: decrease,
0: no change).

In addition, the features selected seemed more relevant to the response variable (“DE-
FAULT”) than those selected by the other selection methods according to Tables 3–5. For
example, all the classification algorithms generated by the Chi-squared test and correlation
coefficient, and the SVM and random forest classifier by backward stepwise selection
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included an “ID” feature for generating the models. However, this feature, in context, only
represents the id of the clients so it can be said that this variable does not have anything to
do with the level of credit risk. That is why it is not included.

It is also shown that the Chi-squared test and correlation coefficient have an inferior
performance compared to the others. Even if the number of selected features decreased by
five, the changes in MAE were not very much significant. The MAE for the random forest
classifier, for instance, decreased by more than around 12 percent but the improvement
was relatively small in comparison with the cases when the other selection methods were
used. This inferior performance might be due to the characteristic of the filter methods;
since they do not need any predictive model for feature selection, the subset of chosen
features is the same for all the classifiers so it is likely that the models cannot make the
most use of the chosen subset of features.

More studies would have to be done in order to draw more generalized conclusions.
Specifically, other real data sets for different countries would be needed to consolidate the
conclusions obtained, and other feature selection methods and classification algorithms
could be included for future research. It would also be interesting to study the impacts
of the wrapper or embedded methods after using filter methods as the preliminary step.
Additionally, there are other important factors other than the MAE and the number of
selected features when choosing a model in practice, such as the change in time of training
models. However, it could be surely said that the data mining feature selection method is a
great tool for picking out the most significant features from many through which it could
become the key to effective credit scoring models.

4.3.1. Comparison of Findings with Existing Literature—Managerial Implications

The results obtained in this study suggest that the feature selection process helped
credit scoring models to be simpler, making them more understandable and having lower
classification error rates as measured in MAE. These merits might provide some of the rea-
sons to carry out necessary feature selection processes in financial institutions. Ben David
and Frank [57] concluded that for classification problems, machine learning models do not
surpass hand-crafted models when prediction accuracy is considered most times. However,
most of the studies comparing the predictive power of credit scoring models based on
machine learning techniques with that of traditional loss and default models concluded
the models using machine learning were better at predicting losses and defaults [17,58].
This performance would be further improved using feature selection methods.

From a managerial point of view, our results in addition to the huge machine learning
literature base applied to credit scoring, reinforce the main conclusion that [4] obtained in
their seminal paper, that is: improving a credit scoring model that detects applicants with
bad credit, even by one percent, could lead to a significant decrease in the loss for financial
institutions. Additionally, managers might be reluctant to implement advanced machine
learning applications given that they require much expertise to handle. Ref. [7] addressed
this issue by emphasizing that more accurate prediction could be achieved as the credit
scoring models do not require any human intervention, creating a trend for managers
to make decisions based on current data, thus convincing others to adopt these scoring
methods more and more. Therefore, even if managers have to bear some costs of investing
in sophisticated scoring methods, in the end, the investment will lead to a great pay-off
when its benefits, such as saving time and effort or decreasing financial losses, accumulate
over time.

4.3.2. Revisiting Credit Scoring Models: From Altman Z-Score to Machine Learning with
Feature Selection Methods

Everyone in finance is familiar with the Altman Z-Score. Many analysts use it despite
data not meeting their very restrictive assumptions. Altman (1968) applied a multivariate
discriminant analysis (MDA) in connection with a prediction of bankruptcies, creating a
model called the Z-score model. This method produces a score. An observation of the
data is classified into a group, depending on the score relative to an arbitrary cut-off value.
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The method is based on the minimization of the variance among observations of the same
group and the maximization of the distance between observations of different groups [59].
The restrictive assumptions of MDA, such as requiring normally distributed variables
and sensitivity to outliers, could induce relevant mistakes if previously the analysis about
bankruptcy did not try to test if the used data filled these assumptions [60–63]. Therefore,
researchers and practitioners have sought to improve bankruptcy-forecasting models using
alternative quantitative approaches.

Logistic regression (LR) was the first candidate as a multivariate model for application
scoring and, subsequently, for credit risks modeling [64]. Not only are the assumptions less
restrictive, but LR also produces a result in the [0, 1] interval that can be interpreted as the
probability of a given observation being a member of a specific group [65]. Nevertheless,
since credit risk analysis is similar to pattern-recognition problems, algorithms began to be
used to classify the creditworthiness of counterparties [66,67], improving traditional models
based on simpler multivariate statistical techniques such as discriminate analysis and
logistic regression. This favored the use and extension of machine learning techniques in
bankruptcy analysis because they assess patterns in observations of the same classification
and identify features that differentiate the observations of different groups. In Section 2.2
we review the literature of machine learning and credit scoring, including support vector
machine, K-nearest neighbors (KNN), and random forest as used in this work. Table 8
shows the general advantages and disadvantages of the revisiting of credit scoring models
from Altman Z-score to Machine Learning with Feature Selection Methods.

Table 8. Advantages and disadvantages of credit scoring models: form Altman Z-score to machine learning with feature
selection methods.

Models Advantages Disadvantages

Multivariate Discriminant
Analysis

(1) First model to predict bankruptcy
(2) Simplicity: easy to interpret

(1) Required normally distributed variables
(2) Sensitivity to outliers
(3) It does not include nonlinearities
(4) It does not offer a non-parametric
approach

Logistic Regression

(1) Assumptions are less restrictive
(2) It produces a [0, 1] interval result that
can be interpreted as a probability of a
given observation being a member of a
specific group
(3) Good interpretability and
simple explanation

(1) Assumes a logistic regression: it is
limited to additive form of the model
(2) Assumes linearity in the covariances
(3) It does not include nonlinearities
(4) It does not offer a non-parametric
approach

Machine Learning without
Features Selection

(1) Credit risk analysis is similar to pattern
recognition problems
(2) It improves traditional models based on
a simple multivariate statistical technique
(3) It includes nonlinearities
(4) It offers non-parametric approaches

(1) Sometimes complex models harder
to interpret
(2) High variance and overfitting in the
curse of dimensionality
(3) Excessive variety of possible models
and combined techniques

Machine Learning with
Features Selection

(1) Credit risk analysis is similar to pattern
recognition problems
(2) It improves traditional models based on
a simple multivariate statistical technique
(3) It includes nonlinearities
(4) It offers non-parametric approaches
(5) Simpler models easy to interpret
(6) No overfitting

(1) Excessive variety of possible models
and combined techniques
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This paper has presented a methodology for the selection of the key variables in
order to establish a credit scoring. Logistic regression, support vector machine, K-nearest
neighbors (KNN), and random forest are proposed in order to separate data into two classes
and identify which candidates are likely to default for this credit scoring. Furthermore, this
work has introduced an additional step, the use of three different feature selection methods
in order to mitigate the overfitting in the curse of dimensionality of these classification
algorithms. The performances of these three methods are discussed using two measures, the
mean absolute error and the number of selected features. Our results suggest that forward
stepwise selection yields superior performance in each of the classification algorithms
used. Although the final model performance will depend on the specific characteristics of
the classification problem and on the data structure [68], our results pointed out that the
feature selection process helped credit scoring models to be simpler, making them more
understandable and to have lower classification error rates as measured in MAE. Therefore,
as an important conclusion, financial institutions in credit risk analysis necessarily must
incorporate feature selection processes.

In summary, from the seminal Altman Z-Score model and the use of multivariate
statistical techniques, such as discriminate analysis and logistic regression to assess credit
risk, academics and practitioners, amid advances in computer technology, began to explore
and use artificial intelligence and machine learning tools to classify the creditworthiness
of counterparties. Moreover, different feature selection methods have been incorporated
in order to mitigate the overfitting in the curse of dimensionality of these classification
algorithms. The progress that has been made in credit risk analysis has been impressive,
and even though it should be further investigated, questions about which tools and theories
are most appropriate for such analyses are beginning to close.

4.3.3. Limitations and Future Research

The main goal of our methodology was to get a robust but easy to implement approach
about the default ability of the risks in a portfolio. It is worth highlighting the existing
alternatives in the different phases of our methodology, summarized in Figure 1, for future
research. The aim would be to determine which tools, in the different phases, are the most
appropriate regarding credit risk analysis. Therefore, in this section, future lines of research
are detailed.

First, this paper classifies borrowers into two categories. It is just a simplified assump-
tion. In future research, the aim will be to classify borrowers into more rating categories.
Second, most studies on credit scoring rely on a single performance measure or measures
of the same type. In general, performance measures were split into three types. Those
that assess the discriminatory ability of the scorecard, those that assess the accuracy of the
scorecard’s probability predictions, and those that assess the correctness of the scorecard’s
categorical predictions [7]. Different types of indicators embody a different notion of clas-
sifier performance. Few studies mix evaluation measures from different categories. This
paper uses MAE, which is one of the most common accurate measures. However, there
are other discrimination measures in credit scoring, such as the area under the receiver
operating characteristics curve (AUC), H-measure, pairwise comparison (e.g., paired t-test),
analysis of variance, Friedman test, or Friedman test together with post-hoc test, Press’s
Q statistic, and Cohen’s Kappa statistic [7,57]. Future research should include mixed
evaluation measures from different categories.

Stepwise selection has two primary faults. On the one hand, false-positive findings.
In this case, the corresponding p-values are unadjusted, leading to an over-selection of
features. This problem is exacerbated when highly correlated predictors are present.
On the other hand, model overfitting: the resulting statistics are highly optimistic since
they do not consider the selection process. So, we have used two performance measures
that reinforce each other, model simplicity (the number of selected features) and model
accuracy (the MAE). In future research, we will include a threshold statistic, a p-value
testing improvement, in order to measure the model quality.
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In addition, some of the used classification algorithms will be expanded. For instance,
it should use in addition to K-nearest neighbors, other more advanced methods such
as Kernel K-Means. The same respect SVM method, including a multi-kernel SVM, or
the kernel family (nested kernels, hierarchical kernels, mixture kernels, or ARD kernels).
Finally, other real data sets for different countries would be needed to consolidate the
conclusions obtained, including longer time windows. Table 9 sums-up the benefits of our
methodology and future lines of research.

Table 9. Benefits and future lines of research methodology proposed.

Benefits Future Lines of Research

(1) Main concern is the practical use of models
(2) Designed research is clear
(3) Different classification algorithms are used
(4) Performance measures used, model simplicity (number of
selected features), and model accuracy (MAE) avoid false-positive
findings, over-selection of features and model overfitting
(5) Either the attributes selected or the number of them is indicated

(1) Combined techniques
(2) Include change and/or growth variables.
(3) Comparison with other performance measures
(4) Classify borrowers in more than two variables
(5) Other real data set for other countries would be needed

5. Conclusions and Discussion

The restrictive assumptions of Altman Z-Score multivariate discriminant analysis
(MDA) prompted researchers and practitioners to improve bankruptcy-forecasting models
using alternative quantitative approaches. Since credit risk analysis is similar to pattern-
recognition problems, algorithms began to be used to classify the creditworthiness of
counterparties [65,66], improving traditional models based on simpler multivariate statisti-
cal techniques such as discriminate analysis and logistic regression. That favored the use
and extension of machine learning techniques in bankruptcy analysis because they assess
patterns in observations of the same classification and identify features that differentiate
the observations of different groups.

This work is a research paper based on a review of the literature of machine learning
and credit scoring, including support vector machine, K-nearest neighbors (KNN), and
random forest used in this work. Logistic regression, support vector machine, K-nearest
neighbors (KNN), and random forest were proposed in order to separate data into two
classes and identify which candidates were likely to default for this credit scoring. Fur-
thermore, this work has introduced an additional step, the use of three different feature
selection methods in order to mitigate the overfitting in the curse of dimensionality of these
classification algorithms. Therefore, there is a review of the feature selection methods used
in the literature to reduce the curse of dimensionality. In this context, we introduce and
develop a methodology for the selection of the key variables in order to establish a credit
scoring, presented in Figure 1. Therefore, above all, this is a research paper.

The primary activity of commercial banks and other financial institutions is the grant-
ing of loans and credits to households and businesses. That is why analyzing the credit
risk and trying to avoid defaults on loans and credits granted has become a key task
of the financial institutions’ risk department. One of the most widely used techniques
is credit scoring models. However, reality has demonstrated in different economic and
financial crises, the latest example being the subprime crisis of 2008, the huge problems
that the design and implementation of these credit scoring models present when it comes
to identifying ex ante which candidates are likely to end up in default.

The growing availability of an enormous amount of data by financial institutions on
their customers and the rapid development of artificial intelligence has allowed the use of
classification algorithms and automatic learning techniques with the aim of separating and
classifying these customers, identifying those who may default. However, the application
of artificial intelligence presents several statistical problems, from the stability of the
estimations as the sample size increases to the curse of dimensionality. The latter happens
when data space grows at a very rapid speed as the number of dimensions, or features,
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grows. The predictive power of a classifier or a regressor increases with the number of
features but decreases after the number reaches a critical point. Considering an excessive
number of features could also cause other problems than reducing the performance of
the model. Models with many features tend to be complex, which makes them harder to
interpret than models with a small number of predictors. The sophisticated models also
require more time for fitting data, and they tend to have a higher variance; in other words,
they tend to overfit. Overfitting occurs when a machine-learning algorithm fits too close to
the training data set but performs poorly on the test data set. However, there are ways to
alleviate this curse by reducing the number of features when the size of data is relatively
small. In the academic research, we can find different feature selection methods that allow
picking a subset of features based on different evaluation metrics, the most relevant being
the wrapper, filter, and embedded methods.

This paper presents a methodology for the selection of the key variables in order to
establish a credit scoring. Different classification algorithms—logistic regression, support
vector machine, K-nearest neighbors (KNN), and random forest—are proposed in order
to separate data into two classes and identify which candidates are likely to default for
this credit scoring. Three different feature selection methods are used in order to mitigate
the overfitting in the curse of dimensionality of these classification algorithms, specifically
one filter method (Chi-squared test and correlation coefficients) and two wrapper methods
(forward stepwise selection and backward stepwise selection). The performances of these
three methods are discussed using two measures, the mean absolute error and the number
of selected features. The methodology is applied for a valuable database of Taiwan obtained
from Chung Hua University. The results suggest that forward stepwise selection yields
superior performance in each one of the classification algorithms used. The feature selection
process helped credit-scoring models to be simpler making them more understandable, and
having lower classification error rates as measured in MAE. These merits might give some
of the reasons to carry out the feature selection process necessarily by financial institutions.

The classification algorithms and feature selection methods used in the paper are well-
known and widely used. However, the main novelty and advantage of our methodology
was to get a robust but easy to implement approach about the default ability of the risks in
a portfolio. Stepwise selection has two primary faults. On one hand, false-positive findings.
In this case, the corresponding p-values are unadjusted, leading to an over-selection of
features. This problem is exacerbated when highly correlated predictors are present. On
the other hand, model overfitting: the resulting statistics are highly optimistic since they
do not consider the selection process; given this, we have used two performance measures
that reinforce each other: model simplicity (the number of selected features), and model
accuracy (the MAE). Both of them avoid these problems.

Future research would have to be done in order to draw more generalized conclusions.
Specifically, other real data sets for different countries would be needed to consolidate the
conclusions obtained, and other feature selection methods and classification algorithms
could be included. It would also be interesting to study the impacts of the wrapper or
embedded methods after using filter methods as the preliminary step. In addition, apart
from the MAE and the number of features selected when choosing a model in practice,
other factors can be used such as the change in time of the training models. Finally, the goal
of scoring models will not be to classify borrowers only into two categories but commonly
into more rating categories. Surely, what must be clear is that the data mining feature
selection method is a great tool for picking out the most significant features from many,
through which it could become the key to effective credit scoring models.

Author Contributions: Conceptualization, J.L. and S.R.; methodology, J.L. and S.R.; software, J.L.
and S.R.; validation, J.L. and S.R.; formal analysis, J.L. and S.R.; investigation, J.L. and S.R.; resources,
J.L. and S.R.; data curation, S.R.; writing—original draft preparation, S.R.; writing—review and
editing, J.L.; visualization, J.L. and S.R.; supervision, J.L. and S.R.; project administration, J.L. and
S.R.; funding acquisition, J.L. Both authors have contributed equally. Both authors have read and
agreed to the published version of the manuscript.



Mathematics 2021, 9, 746 20 of 22

Funding: This research received no specific grant from any funding agency in the public, commercial,
or not-for-profit sectors.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors certify that they have no conflict of interest.

References
1. Jacobson, T.; Roszbach, K. Bank lending policy, credit scoring and value-at-risk. J. Bank. Financ. 2003, 27, 615–633. [CrossRef]
2. Saunders, A.; Cornett, M.M. Financial Institutions Management: A Risk Management Approach; McGraw-Hill Education: New York,

NY, USA, 2017; pp. 1–912.
3. Ong, C.-S.; Huang, J.-J.; Tzeng, G.-H. Building credit scoring models using genetic programming. Expert Syst. Appl. 2005, 29,

41–47. [CrossRef]
4. Hand, D.J.; Henley, W.E. Statistical Classification Methods in Consumer Credit Scoring: A Review. J. R. Stat. Soc. Ser. A Stat. Soc.

1997, 160, 523–541. [CrossRef]
5. Alpaydin, E. Introduction to Machine Learning, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2010; pp. 1–579.
6. Abellán, J.; Castellano, J.G. A comparative study on base classifiers in ensemble methods for credit scoring. Expert Syst. Appl.

2017, 73, 1–10. [CrossRef]
7. Lessmann, S.; Baesens, B.; Seow, H.-V.; Thomas, L.C. Benchmarking state-of-the-art classification algorithms for credit scoring:

An update of research. Eur. J. Oper. Res. 2015, 247, 124–136. [CrossRef]
8. Baesens, B.; Van Gestel, T.; Viaene, S.; Stepanova, M.; Suykens, J.; Vanthienen, J. Benchmarking state-of-the-art classification

algorithms for credit scoring. J. Oper. Res. Soc. 2003, 54, 627–635. [CrossRef]
9. Garcia, V.; Marqués, A.I.; Sánchez, J.S.; Garreta, J.S.S. Non-parametric Statistical Analysis of Machine Learning Methods for

Credit Scoring. Adv. Intell. Syst. Comput. 2012, 171, 263–272. [CrossRef]
10. Hung, C.; Chen, J.-H. A selective ensemble based on expected probabilities for bankruptcy prediction. Expert Syst. Appl. 2009, 36,

5297–5303. [CrossRef]
11. Dastile, X.; Celik, T.; Potsane, M. Statistical and machine learning models in credit scoring: A systematic literature survey. Appl.

Soft Comput. 2020, 91, 106263. [CrossRef]
12. Liu, Y.; Schumann, M. Data mining feature selection for credit scoring models. J. Oper. Res. Soc. 2005, 56, 1099–1108. [CrossRef]
13. Tripathi, D.; Edla, D.R.; Cheruku, R.; Kuppili, V. A novel hybrid credit scoring model based on ensemble feature selection and

multilayer ensemble classification. Comput. Intell. 2019, 35, 371–394. [CrossRef]
14. Zhang, W.; Yang, D.; Zhang, S.; Ablanedo-Rosas, J.H.; Wu, X.; Lou, Y. A novel multi-stage ensemble model with enhanced outlier

adaptation for credit scoring. Expert Syst. Appl. 2021, 165, 113872. [CrossRef]
15. Wang, T.; Qin, Z.; Zhang, S.; Zhang, C. Cost-sensitive classification with inadequate labeled data. Inf. Syst. 2012, 37, 508–516.

[CrossRef]
16. Kraus, A. Recent Methods from Statistics and Machine Learning for Credit Scoring. Ph.D. Thesis, Fakultät für Math-Ematik,

Informatik und Statistik, Ludwig-Maximilians-Universit at Munchen, München, Germany, 2014.
17. Munkhdalai, L.; Munkhdalai, T.; Namsrai, O.-E.; Lee, J.Y.; Ryu, K.H. An Empirical Comparison of Machine-Learning Methods on

Bank Client Credit Assessments. Sustainability 2019, 11, 699. [CrossRef]
18. Teles, G.; Rodrigues, J.J.P.C.; Saleem, K.; Kozlov, S.; Rabêlo, R.A.L. Machine learning and decision support system on credit

scoring. Neural Comput. Appl. 2020, 32, 9809–9826. [CrossRef]
19. Akkoç, S. An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro

Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish credit card data. Eur. J. Oper. Res. 2012,
222, 168–178. [CrossRef]

20. Lee, T.H.; Sung-Chang, J. Forecasting creditworthiness: Logistic vs. artificial neural network. J. Bus. Fore-Cast. Methods Syst. 2000,
18, 28–30.

21. Nie, G.; Rowe, W.; Zhang, L.; Tian, Y.; Shi, Y. Credit card churn forecasting by logistic regression and decision tree. Expert Syst.
Appl. 2011, 38, 15273–15285. [CrossRef]

22. Srinivasan, V.; Kim, Y.H. Credit Granting: A Comparative Analysis of Classification Procedures. J. Financ. 1987, 42, 665–681.
[CrossRef]

23. Shin, K.-S.; Lee, T.S.; Kim, H.-J. An application of support vector machines in bankruptcy prediction model. Expert Syst. Appl.
2005, 28, 127–135. [CrossRef]

24. Bellotti, T.; Crook, J. Support vector machines for credit scoring and discovery of significant features. Expert Syst. Appl. 2009, 36,
3302–3308. [CrossRef]

25. Danenas, P.; Garsva, G.; Gudas, S. Credit Risk Evaluation Model Development Using Support Vector Based Classifiers. Procedia
Comput. Sci. 2011, 4, 1699–1707. [CrossRef]

http://doi.org/10.1016/S0378-4266(01)00254-0
http://doi.org/10.1016/j.eswa.2005.01.003
http://doi.org/10.1111/j.1467-985X.1997.00078.x
http://doi.org/10.1016/j.eswa.2016.12.020
http://doi.org/10.1016/j.ejor.2015.05.030
http://doi.org/10.1057/palgrave.jors.2601545
http://doi.org/10.1007/978-3-642-30864-2_25
http://doi.org/10.1016/j.eswa.2008.06.068
http://doi.org/10.1016/j.asoc.2020.106263
http://doi.org/10.1057/palgrave.jors.2601976
http://doi.org/10.1111/coin.12200
http://doi.org/10.1016/j.eswa.2020.113872
http://doi.org/10.1016/j.is.2011.10.009
http://doi.org/10.3390/su11030699
http://doi.org/10.1007/s00521-019-04537-7
http://doi.org/10.1016/j.ejor.2012.04.009
http://doi.org/10.1016/j.eswa.2011.06.028
http://doi.org/10.1111/j.1540-6261.1987.tb04576.x
http://doi.org/10.1016/j.eswa.2004.08.009
http://doi.org/10.1016/j.eswa.2008.01.005
http://doi.org/10.1016/j.procs.2011.04.184


Mathematics 2021, 9, 746 21 of 22

26. Kim, H.S.; Sohn, S.Y. Support vector machines for default prediction of SMEs based on technology credit. Eur. J. Oper. Res. 2010,
201, 838–846. [CrossRef]

27. Martens, D.; Baesens, B.; Van Gestel, T.; Vanthienen, J. Comprehensible credit scoring models using rule extraction from support
vector machines. Eur. J. Oper. Res. 2007, 183, 1466–1476. [CrossRef]

28. Camastra, F. A SVM-based cursive character recognizer. Pattern Recognit. 2007, 40, 3721–3727. [CrossRef]
29. Lu, C.; Van Gestel, T.; Suykens, J.; Van Huffel, S.; Vergote, I.; Timmerman, D. Preoperative prediction of malignancy of ovarian

tumors using least squares support vector machines. Artif. Intell. Med. 2003, 28, 281–306. [CrossRef]
30. Akay, M.F. Support vector machines combined with feature selection for breast cancer diagnosis. Expert Syst. Appl. 2009, 36,

3240–3247. [CrossRef]
31. Tay, F.E.; Cao, L. Application of support vector machines in financial time series forecasting. Omega 2001, 29, 309–317. [CrossRef]
32. Kim, K.-J. Financial time series forecasting using support vector machines. Neurocomputing 2003, 55, 307–319. [CrossRef]
33. Safavian, S.R.; Landgrebe, D. A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 1991, 21, 660–674.

[CrossRef]
34. Wang, G.; Hao, J.; Ma, J.; Jiang, H. A comparative assessment of ensemble learning for credit scoring. Expert Syst. Appl. 2011, 38,

223–230. [CrossRef]
35. Zhang, S. Nearest neighbor selection for iteratively kNN imputation. J. Syst. Softw. 2012, 85, 2541–2552. [CrossRef]
36. Zhu, X.; Li, X.; Zhang, S. Block-Row Sparse Multiview Multilabel Learning for Image Classification. IEEE Trans. Cybern. 2016, 46,

450–461. [CrossRef]
37. Lall, U.; Sharma, A. A Nearest Neighbor Bootstrap for Resampling Hydrologic Time Series. Water Resour. Res. 1996, 32, 679–693.

[CrossRef]
38. Zhu, X.; Zhang, S.; Jin, Z.; Zhang, Z.; Xu, Z. Missing Value Estimation for Mixed-Attribute Data Sets. IEEE Trans. Knowl. Data Eng.

2011, 23, 110–121. [CrossRef]
39. James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning with Applications in R; Springer:

Berlin/Heidelberg, Germany, 2013; pp. 995–1039.
40. Frydman, H.; Altman, E.I.; Kao, D.-L. Introducing Recursive Partitioning for Financial Classification: The Case of Financial

Distress. J. Financ. 1985, 40, 269–291. [CrossRef]
41. Zhang, D.; Zhou, X.; Leung, S.C.; Zheng, J. Vertical bagging decision trees model for credit scoring. Expert Syst. Appl. 2010, 37,

7838–7843. [CrossRef]
42. Zibanezhad, E.; Foroghi, D.; Monadjemi, A. Applying decision tree to predict bankruptcy. In Proceedings of the 2011 IEEE

International Conference on Computer Science and Automation Engineering, CSAE, Shanghai, China, 10–12 June 2011; pp.
165–169. [CrossRef]

43. Laborda, R.; Laborda, J. Can tree-structured classifiers add value to the investor? Financ. Res. Lett. 2017, 22, 211–226. [CrossRef]
44. Hughes, G. On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 1968, 14, 55–63. [CrossRef]
45. Jarman, K.H. Beyond Basic Statistics: Tips, Tricks, and Techniques Every Data Analyst Should Know. In Beyond Basic Statistics:

Tips, Tricks, and Techniques Every Data Analyst Should Know, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 1–190.
[CrossRef]

46. Famili, A.; Shen, W.-M.; Weber, R.; Simoudis, E. Data Preprocessing and Intelligent Data Analysis. Intell. Data Anal. 1997, 1, 3–23.
[CrossRef]

47. Bermingham, M.L.; Pongwong, R.; Spiliopoulou, A.; Hayward, C.; Rudan, I.; Campbell, H.; Wright, A.F.; Wilson, J.F.; Agakov, F.;
Navarro, P.; et al. Application of high-dimensional feature selection: Evaluation for genomic prediction in man. Sci. Rep. 2015, 5,
10312. [CrossRef]

48. Efron, B.; Hastie, T.; Johnstone, I.; Tibshirani, R.; Ishwaran, H.; Knight, K.; Loubes, J.M.; Massart, P.; Madigan, D.; Ridgeway, G.;
et al. Least angle regression. Ann. Stat. 2004, 32, 407–499. [CrossRef]

49. Smith, G. Step away from stepwise. J. Big Data 2018, 5, 32. [CrossRef]
50. Kuhn, M.; Johnson, K. Applied Predictive Modelling; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–600.
51. Pearson, K.X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables

is such that it can be reasonably supposed to have arisen from random sampling. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1900, 50,
157–175. [CrossRef]

52. Belsley, D.A. A Guide to using the collinearity diagnostics. Comput. Sci. Econ. Manag. 1991, 4, 33–50. [CrossRef]
53. Goldstein, M.; Chatterjee, S.; Price, B. Regression Analysis by Example. J. R. Stat. Soc. Ser. A Stat. Soc. 1979, 142, 512. [CrossRef]
54. Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 1996, 58, 267–288. [CrossRef]
55. Yeh, I.-C.; Lien, C.-H. The comparisons of data mining techniques for the predictive accuracy of probability of default of credit

card clients. Expert Syst. Appl. 2009, 36, 2473–2480. [CrossRef]
56. Hassanat, A.B.; Abbadi, M.A.; Altarawneh, G.A.; Alhasanat, A.A. Optimal K parameter for KNN Classifier with square root. Int.

J. Comput. Sci. Inf. Secur. 2014, 12, 33–39.
57. Ben-David, A.; Frank, E. Accuracy of machine learning models versus “hand crafted” expert systems—A credit scoring case

study. Expert Syst. Appl. 2009, 36, 5264–5271. [CrossRef]

http://doi.org/10.1016/j.ejor.2009.03.036
http://doi.org/10.1016/j.ejor.2006.04.051
http://doi.org/10.1016/j.patcog.2007.03.014
http://doi.org/10.1016/S0933-3657(03)00051-4
http://doi.org/10.1016/j.eswa.2008.01.009
http://doi.org/10.1016/S0305-0483(01)00026-3
http://doi.org/10.1016/S0925-2312(03)00372-2
http://doi.org/10.1109/21.97458
http://doi.org/10.1016/j.eswa.2010.06.048
http://doi.org/10.1016/j.jss.2012.05.073
http://doi.org/10.1109/TCYB.2015.2403356
http://doi.org/10.1029/95WR02966
http://doi.org/10.1109/TKDE.2010.99
http://doi.org/10.1111/j.1540-6261.1985.tb04949.x
http://doi.org/10.1016/j.eswa.2010.04.054
http://doi.org/10.1109/CSAE.2011.5952826
http://doi.org/10.1016/j.frl.2017.06.002
http://doi.org/10.1109/TIT.1968.1054102
http://doi.org/10.1002/9781118856178
http://doi.org/10.3233/IDA-1997-1102
http://doi.org/10.1038/srep10312
http://doi.org/10.1214/009053604000000067
http://doi.org/10.1186/s40537-018-0143-6
http://doi.org/10.1080/14786440009463897
http://doi.org/10.1007/BF00426854
http://doi.org/10.2307/2982566
http://doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://doi.org/10.1016/j.eswa.2007.12.020
http://doi.org/10.1016/j.eswa.2008.06.071


Mathematics 2021, 9, 746 22 of 22

58. Gambacorta, L.; Huang, Y.; Qiu, H.; Wang, J. How do Machine Learning and Non-Traditional Data Affect Credit Scoring? New
Evidence from a Chinese Fintech Firm. BIS Working Papers 834. Available online: https://www.bis.org/publ/work834.pdf
(accessed on 30 November 2020).

59. Altman, E.I. Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. J. Financ. 1968, 23, 589–609.
[CrossRef]

60. Mahmoudi, N.; Duman, E. Detecting credit card fraud by Modified Fisher Discriminant Analysis. Expert Syst. Appl. 2015, 42,
2510–2516. [CrossRef]

61. McLeay, S.; Omar, A. The Sensitivity of Prediction Models to the Non-Normality of Bounded and Unbounded Financial Ratios.
Br. Account. Rev. 2000, 32, 213–230. [CrossRef]

62. Shumway, T. Forecasting Bankruptcy More Accurately: A Simple Hazard Model. J. Bus. 2001, 74, 101–124. [CrossRef]
63. Chava, S.; Jarrow, R.A. Bankruptcy Prediction with Industry Effects. Rev. Financ. 2004, 8, 537–569. [CrossRef]
64. Campbell, J.Y.; Hilscher, J.; Szilagyi, J. In Search of Distress Risk. J. Financ. 2008, 63, 2899–2939. [CrossRef]
65. De Menezes, F.S.; Liska, G.R.; Cirillo, M.A.; Vivanco, M.J. Data classification with binary response through the Boosting algorithm

and logistic regression. Expert Syst. Appl. 2017, 69, 62–73. [CrossRef]
66. Kruppa, J.; Schwarz, A.; Arminger, G.; Ziegler, A. Consumer credit risk: Individual probability estimates using machine learning.

Expert Syst. Appl. 2013, 40, 5125–5131. [CrossRef]
67. Pal, R.; Kupka, K.; Aneja, A.P.; Militky, J. Business health characterization: A hybrid regression and support vector machine

analysis. Expert Syst. Appl. 2016, 49, 48–59. [CrossRef]
68. Duéñez-Guzmán, E.A.; Vose, M.D. No Free Lunch and Benchmarks. Evol. Comput. 2013, 21, 293–312. [CrossRef]

https://www.bis.org/publ/work834.pdf
http://doi.org/10.1111/j.1540-6261.1968.tb00843.x
http://doi.org/10.1016/j.eswa.2014.10.037
http://doi.org/10.1006/bare.1999.0120
http://doi.org/10.1086/209665
http://doi.org/10.1093/rof/8.4.537
http://doi.org/10.1111/j.1540-6261.2008.01416.x
http://doi.org/10.1016/j.eswa.2016.08.014
http://doi.org/10.1016/j.eswa.2013.03.019
http://doi.org/10.1016/j.eswa.2015.11.027
http://doi.org/10.1162/EVCO_a_00077

	Introduction 
	Materials and Methods 
	Credit Risk Management 
	Machine Learning and Credit Scoring: A Review of Literature 

	Methods and Materials 
	Classification Algorithms 
	Logistic Regression 
	Support Vector Machines 
	K-Nearest Neighbors 
	Random Forest 

	Curse of Dimensionality 
	Wrapper Methods 
	Filter Methods 
	Embedded Methods 

	Resampling 

	Empirical Analysis 
	Sample Data and Variables 
	The Determination of Model Parameters for the KNN-Algorithm 
	Empirical Results and Discussion 
	Comparison of Findings with Existing Literature—Managerial Implications 
	Revisiting Credit Scoring Models: From Altman Z-Score to Machine Learning with Feature Selection Methods 
	Limitations and Future Research 


	Conclusions and Discussion 
	References

