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Abstract - This paper addresses the approximation properties of the smooth fuzzy models. 
It is widely recognized that the fuzzy models can approximate a nonlinear function to any 
degree of accuracy in a convex compact region. However, in many applications, it is 
desirable to go beyond that and acquire a model to approximate the nonlinear function on a 
smooth surface to gain better performance and stability properties. Especially in the region 
around the steady states, when both error and change in error are approaching zero, it is 
much desired to avoid abrupt changes and discontinuity in the approximation of the input-
output mapping. This problem has been remedied in our approach by application of the 
smooth compositions in the fuzzy modeling scheme.  In the fuzzy decomposition stage of 
fuzzy modeling, we have discretized the parameters and then calculated the result through 
partitioning them into a dense grid. This could enable us to present the formulations by 
convolution and Fourier Transformation of the parameters and then obtain the 
approximation properties by studying the structural properties of the Fourier 
Transformation and convolution of the parameters. We could show that, irrespective to the 
shape of the membership function, one can approximate the dynamics and derivative of the 
continuous systems together, using the smooth fuzzy structure. The results of the paper 
have been tested and evaluated on a discrete event system in the hybrid and switched 
systems framework.   

Keywords: Fuzzy Control, Fuzzy IF-THEN Systems (TSK), Smooth Compositions, 
Universal Approximation, Theoritecal Results.  

1 Introduction 
Soft computing methods have been used for identification and control of nonlinear 
and complex systems based on the input-output data collected from the original 
system [1]. There are many applications of artificial neural network and fuzzy 
modeling framework for the identification and model based control purpose in the 
industry and academia [2], [3]. Such methods show quite interesting ability in 
presenting the industrial processes with different types of data. The advantage of 
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fuzzy models is that they can also include the operator information for dealing 
with the concept of uncertainty and handling the problisitic logics [4], [5]. The 
inclusion of information about the process in the generation of the methematical 
model makes the control task also capable of coping with the various nonlinear 
behaviors such as limit cycles, or where large changes in the operating conditions 
can be anticipated during the routine operation. From the modelling prospect, 
however, there is a weak point of the fuzzy modelling approach rather than neural 
networks that neural network can approximate an arbitrary smooth function 
together with its derivatives, while standard fuzzy systems cannot guarantee the 
accuracy in approximation of derivatives [6].   

Fuzzy models are widely utilized for approximation of any nonlinear function to 
the desired degree of accuracy in the convex compact region [7], [8], [9]. 
However, there are many applications where we need to go beyond and acquire a 
model for approximation of the nonlinear function on a smooth surface for better 
performance and stability properties. The reason we are interested to acquire the 
smoothness property of the model is for avoiding abrupt changes, discontinuity or 
chattering behaviors in the approximation of the input-output mapping, 
particularly, in the region around the steady states, when both error and change in 
error are approaching zero [10], [11]. The continuity of not only the function, but 
also its derivatives, based on the literature, is defined as the smoothness property 
[12]. Generally speaking, it is more difficult to obtain smooth approximators 
rather than continuous approximators, while it can be more useful for the practical 
physical systems. Although, there has been done lots of works in fuzzy systems 
theory and applications, there can be found just little works on the continuity and 
smoothness of the fuzzy systems [6].  

Primary works on fuzzy systems shows that fuzzy systems can uniformly 
approximate any real continuous function on a compact domain to the desired 
degree of accuracy [7], [8].  Then, Wang and Mendel proved that fuzzy systems, 
with Gaussian membership functions, product t-norm and centroid defuzzification 
are universal approximators [11].  Castro extended the results to Gaussian, 
triangular or trapezoidal membership functions, any t-norm and any practical 
defuzzification to be a universal approximator [13].  Then, Kreinovich further 
showed that fuzzy systems with Gaussian membership functions can do accurate 
approximation of a smooth function and its derivatives [6], however, it is 
unanswered that whether a fuzzy system with arbitrary continuous membership 
functions (not necessarily Gaussian, triangular or trapezoidal) can accurate 
approximation a function smoothly, i.e. not only the smooth function is 
approximated but also its derivatives.  

Recently some new smooth compositions have been presented in [14], which have 
been employed for modeling  static input-output mapping of dynamical systems in 
[15] and for the control purpose in [16].   But, there is lack of study on the 
approximation properties of such smooth fuzzy models.  
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In this paper, we will show that the practical achievement from the application of 
smooth compositions is that we would be able to model two ( or more) different 
states of a discontinuous or a switched system by a single fuzzy model with the 
minimum variation. The other contribution will be that we can be sure that 
employing the smooth compositions in the design of the fuzzy models and 
controllers, the plant can damp the uncertainties and parameter variation and 
noises fast.  

In fact, the uncertainty factors might appear in practice in all the various real life 
decision making processes and the industrial problems, e.g. the insufficient 
information in the knapsack problem and the network optimization [17], [18], the 
lack of history data for portfolio selection and return estimation in the market [19], 
the demand of data estimation in the changeable environment for transportation 
planning problem [20], supply chain design problem in the uncertain demand or 
variable manusfacture costs [21], and so on. Hence, it is desirable to study in 
which capacity smooth compositions can improve the estimation accuracy.  

The rest of the manuscript is as follows. First we review mathematical smoothness 
and continuity properties. Then, we study the general structure of fuzzy systems. 
Based on the results of the two beginning sections, we formulize the smoothness 
property of a special class of fuzzy systems which is the main result of the paper. 
Following that we bring an example to demonstrate the practical functionality and 
properties of the obtained results and the proposed theorems. Finally we draw 
conclusions.  

2 Preliminaries 
In this section for the convenience of the readers we review some mathematical 
backgrounds from [11], [12].  

Definition 1: A function 𝑓(𝑥) is continuous at the point 𝑐 if and only if 𝑓(𝑥) is 
defined at 𝑐 and for any 𝜖 > 0 there exists a 𝛿 > 0 such that |𝑓(𝑥) − 𝑓(𝑐)| < 𝜖 if 
 |𝑥 − 𝑐| < 𝛿 . 

Definition 2: A function 𝑓(𝑥) has gap discontinuity at 𝑐 if  𝑓(𝑐) is undefined. 

For instance, 𝑓1(𝑥)

𝑓2(𝑥)
 has gap discontinuity at  𝑐 if 𝑓2(𝑐) = 0.

Definition 3: A function 𝑓(𝑥) has jump discontinuity at 𝑐 if  𝑓(𝑐) is defined and 
lim

x→c+
𝑓(𝑥) ≠  lim

x→c−
𝑓(𝑥). 

The function f(x) = {
4, 𝑥 < 0
5, 𝑥 ≥ 0 

 for example has a jump discontinuity at 𝑥 = 0. 

After review of some mathematical definitions, we continue to the main part of 
the manuscripts.  
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2.1 Structure of fuzzy systems: 
We consider the multiple input single output systems to facilitate our theory 
development. Nevertheless, our results can be extended for the multiple - input- 
multiple output systems; since the multiple outputs can be decomposed readily 
into several single output systems.  

Consider the problem of approximation for a nonlinear function of the following 
form: 

𝑓: 𝑅𝑛 → 𝑅 (1) 

𝑦 = 𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) (2) 

For every input variable of the system we consider an interval where there is the 
highest probability that the variable lies in this interval. Then, we divide the 
interval into 2N+1 regions and assign a membership function to each region.   

Next step in constructing fuzzy system is to assign rules for the data in the 
different regions of the input and output domains. We consider,    

𝑅(𝑖): if  𝑥1 is 𝑀1
𝑖  and 𝑥2 is 𝑀2

𝑖  and ⋯ and  𝑥𝑛is 𝑀𝑛
𝑖  then (3) 

𝑔(𝑥1, ⋯ , 𝑥𝑛) is 𝑏𝑖  under the probability 𝜇𝑖 , 𝑖 = 1, ⋯ , 𝑟

Here the function 𝑔(𝑥1, ⋯ , 𝑥𝑛)  is about to approximate the function 𝑓(𝑥1, ⋯ , 𝑥𝑛)
in the corresponding interval.  The rules generated for the fuzzy system in this 
way, have two "if"  and "then" parts.  There are different ways for interpretation of 
the relations and making mathematical inference on the fuzzy values using the 
compositions of t-norm and s-norm in the fuzzy systems´ domain. The different 
types of the fuzzy compositions introduced in the literature [14], [22], are 
summarized as below,  

1- Min t-norm
𝑇(𝑎, 𝑏) = min (𝑎, 𝑏)

2- Product t-norm
𝑇(𝑎, 𝑏) = 𝑎𝑏

3- Max s-norm
𝑇(𝑎, 𝑏) = max (𝑎, 𝑏)

4- Probabilistic s-norm
𝑆(𝑎, 𝑏) = a + b − ab

5- Lukasicwicz t-norm
𝑇(𝑎, 𝑏) = max (𝑎 + 𝑏 − 1,0)

6- Lukasicwicz s-norm
𝑆(𝑎, 𝑏) = max (𝑎 + 𝑏, 1)
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7- Weak t-norm

𝑇(𝑎, 𝑏) = {
min(𝑎, 𝑏)  max(𝑎, 𝑏) = 1

0       𝑜. 𝑤
8- Strong s-norm

𝑆(𝑎, 𝑏) = {
max(𝑎, 𝑏)  min(𝑎, 𝑏) = 0

1       𝑜. 𝑤
9- Hamacher t-norm

𝑇𝐻(𝑎, 𝑏) =
𝑎𝑏

𝛾 + (1 − 𝛾)  ∥ 𝑎 + 𝑏 − 𝑎𝑏 ∥
 𝛾 ≥ 0 

10- Hamacher s-norm

𝑆𝐻(𝑎, 𝑏) =
𝑎 + 𝑏 − (2 − 𝛾)𝑎𝑏

1 − (1 − 𝛾)𝑎𝑏
 𝛾 ≥ 0 

11- Doubois t-norm

𝑇𝐷(𝑎, 𝑏) =
𝑎𝑏

 max (𝑎, 𝑏, 𝛼)
 𝛼 ∈ (0,1) 

12- Yager t-norm

𝑇𝑌(𝑎, 𝑏) = 1 − min {1, √(1 − 𝑎 )𝑝 + (1 − 𝑏)𝑝𝑝
}   𝑝 > 0 

13- Yager s-norm

𝑆𝑌(𝑎, 𝑏) = min{1, √𝑎𝑝 + 𝑏𝑝
𝑝

}   𝑝 > 0 

14- Smooth t-norms

𝐼: 𝑇𝑆(𝑎, 𝑏) =  1 − cos (
2

𝜋
cos−1(1 − 𝑎) cos−1(1 − 𝑏))

𝐼𝐼: 𝑇𝑆(𝑎, 𝑏) =
4

𝜋
tan−1(tan (

𝜋

4
𝑎) tan(

𝜋

4
𝑏)) 

𝐼𝐼𝐼: 𝑇𝑆(𝑎, 𝑏) = 1 − 
2

𝜋
cos−1(sin (

𝜋

2
𝑎) sin(

𝜋

2
𝑏)) 

IV: 𝑇𝑆(𝑎, 𝑏) =  cos (cos−1 𝑎 + cos−1 𝑏 −
2

𝜋
 cos−1 𝑎 cos−1 𝑏) (4)

15- Smooth s-norms

𝐼: 𝑆𝑆(𝑎, 𝑏) =  
𝑟. 𝑑. 𝛽− logβ(𝑑) −logβ(𝑟)

(𝛽 − 1)
, 𝑟 = (𝛽 − 1)𝑎 + 1, 𝑠

= (𝛽 − 1)𝑏 + 1, 𝛽 ∈ (1,∞)

𝐼𝐼: 𝑆𝑆(𝑎, 𝑏) =  1 −  
4

𝜋
tan−1(tan (

𝜋

4
(1 − 𝑎)) tan(

𝜋

4
(1 − 𝑏))) 

𝐼𝐼𝐼: 𝑆𝑆(𝑎, 𝑏) =  
2

𝜋
cos−1(cos (

𝜋

2
𝑎) cos(

𝜋

2
𝑏)) 
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IV: 𝑆𝑆(𝑎, 𝑏) =   cos ( 
2

𝜋
 cos−1 𝑎 cos−1 𝑏)   (5)

From the above list, the smooth t-norm and smooth s-norms are the differentiable 
functions of the input parameters, and we will talk about them more in the next 
section.   

The actual output of the model is determined based on the centroid defuzification 
formula, which is given simply by,  

𝑔( �̅�) =  
∑ 𝑏𝑖  𝜇𝑖  𝑟

𝑖=1

∑ 𝜇𝑖
𝑟
𝑖=1

(6) 

where  𝜇𝑖 is considered to be at the center of the region 𝐵𝑖   at every time instant of
dynamics of the system, �̅� = [𝑥1, ⋯ , 𝑥𝑛] and r is the total number of the fuzzy
rules for approximation of the plant.   

3 Approximation Properties 
On the purpose of explaining the approximation procedure, we consider equation 
(4) and equation (5) as the formulation of t-norm and t-conorm under study, and
denote them by smooth compositions  𝑇𝑠−𝐼𝑉 and  𝑆𝑠−𝐼𝑉, respectively. The
approach can be extended to other types of the smooth compositions. For the
system defined by the function 𝑓(𝑥1, ⋯ , 𝑥𝑛)  introduced above, we assume r=2,
with three state variables, then, the fuzzy model will be written as,

𝑔(𝑥1, ⋯ , 𝑥𝑛) =
𝑁(𝑥1,⋯,𝑥𝑛)

𝐷(𝑥1,⋯,𝑥𝑛)
=

𝑏1∗𝜇1+𝑏2∗𝜇2

𝜇1+𝜇2 
   (7) 

where  𝜇𝑖( �̅�, 𝛼𝑖)are the membership functions from the system state vector �̅� =
[𝑎, 𝑏, 𝑐], 𝑖 = 1, ⋯ , 𝑟 and 𝛼 is the design parameter. 

 𝜇𝑖( �̅�, 𝛼𝑖) = 𝑆𝑠−𝐼𝑉 (𝑇𝑠−𝐼𝑉 (𝜇𝑖 
(𝑎,⋅), 𝜇𝑖(𝑏,⋅), 𝜇𝑖  (𝑐,⋅))) =     (8) 

𝑆𝑠−𝐼𝑉(𝑇𝑠−𝐼𝑉(𝑇𝑠−𝐼𝑉( 𝜇𝑖(𝑎,⋅), 𝜇𝑖(𝑏,⋅)), 𝜇𝑖  (𝑐,⋅)))

Let Λ1 = 𝑇𝑠−𝐼𝑉(𝜇(𝑎,⋅), 𝜇(𝑏,⋅)),  and Λ2 = 𝑇𝑠−𝐼𝑉( Λ1, 𝜇(𝑐,⋅)), and upon Eq (4),

Λ1 = cos (cos−1 𝜇𝑖(𝑎,⋅) + cos−1 𝜇𝑖( 𝑏,⋅) −
2

𝜋
cos−1  𝜇𝑖(𝑎,⋅)  cos−1 𝜇𝑖( 𝑏,⋅))

Λ2 = cos (cos−1 Λ1  + cos−1𝜇𝑖( 𝑐,⋅) −
2

𝜋
cos−1 Λ1   cos−1 𝜇𝑖(𝑐,⋅)).

Based on Eq (5),  𝜇𝑖(⋅, 𝛼𝑖) = cos ( 
2

𝜋
𝑐𝑜𝑠−1 𝛬1  𝑐𝑜𝑠−1 𝛬2 ) , hence, we define,

𝜃 =  
2

𝜋
𝑐𝑜𝑠−1 𝛬1  𝑐𝑜𝑠−1 𝛬2   (9) 

Therefore, 
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μ
i
(⋅, 𝛼𝑖) = cos(𝜃) =  𝑟𝑒𝑎𝑙 (exp(𝑗𝜃)),

where 𝑗 = √−1 . For the suitable selection of exponential function  𝐺(𝑥, 𝛼𝑖) and
𝜃 we write it more simple as,   

𝜇𝑖 (⋅, 𝛼𝑖) =  𝐺(⋅, 𝛼𝑖) ∶= 𝑟𝑒𝑎𝑙 (exp(𝑗𝜃))    (10) 

Therefore, we can generalize the procedure and write, 

𝑔(𝑥1, ⋯ , 𝑥𝑛) =
𝑁(𝑥1,⋯,𝑥𝑛)

𝐷(𝑥1,⋯,𝑥𝑛)
=  

∑ 𝑏𝑖𝐺( �̅�,𝛼𝑖)𝑟
𝑖

∑ 𝐺( �̅�,𝛼𝑖)𝑟
𝑖

.            (11) 

If we consider a box [−𝑁, 𝑁], ⋯ , [−𝑁, 𝑁] along a dense grid with the steps 
Δ 𝛼1 = ⋯ =  Δ𝛼𝑟 = ℎ and correspondingly 𝑏𝑖 = 𝑏(𝛼𝑖), we can write the
summation as the integration,  

𝑁( �̅�). ℎ𝑛 = ∫ ⋯ ∫ 𝑏( �̅�). 𝐺( �̅�, �̅�)
𝑁

−𝑁

𝑁

−𝑁
 . 𝑑�̅�                (12) 

𝐷( �̅�). ℎ𝑛 = ∫ ⋯ ∫  𝐺( �̅�, �̅�). 𝑑�̅�
𝑁

−𝑁

𝑁

−𝑁
 .           (13) 

Now, as ℎ → 0 and 𝑁 → ∞, we will have the multi-dimensional integrals, 

 𝑁∞( �̅�) = ∫ ⋯ ∫ 𝑏( �̅�). 𝐺( �̅�, �̅�)
∞ 

−∞

∞
−∞

 . 𝑑�̅�          (14) 

 𝐷∞( �̅�) =  ∫ ⋯ ∫  𝐺( �̅�, �̅�). 𝑑�̅�
∞

−∞

∞
−∞

 .            (15) 

The value of the last integral is independent of the system states vector 
(𝑥1, ⋯ , 𝑥𝑛) . Hence, it sums up to a constant value C for 𝐷∞( �̅�). Therefore, to
find the approximation of the function 𝑓(⋅) we just need to find the weights 𝑏(�̅�), 
such that 

𝐶 ⋅ 𝑔( �̅�) =  ∫ ⋯ ∫ 𝑏( �̅�). 𝐺( �̅�, �̅�)
∞ 

−∞

∞
−∞

 . 𝑑�̅�          (16) 

The right side of this equation is the convolution of the function 𝑏( �̅�) and the real 
function 𝐺( �̅�, �̅�). We can transform the convolution to the frequency domain, and 
use the Fourier transformation to find the weights as, 

�̂�( �̅�) =  
𝐶⋅𝑔( �̅�)

𝐺( �̅�)
 (17) 

and then use the inverse Fourier Transformation to get the desired function  𝑏( �̅�). 

To come up to the results, here we review some theorems from the signal and 
system literature.  

Theorem 1: Let ℱ and ℛ be continuous real-valued functions and assume that ℱ 
or ℛ is zero outside some bounded set. If ℱ ∈ 𝐶𝑘 and ℛ ∈ 𝐶𝑙, then ℱ ∗ ℛ ∈ 𝐶𝑘+𝑙.

Proof: see [23]. 

Theorem 2: (Derivative Theorem) If ℱis a rough function, and ℛ is a smooth 
function, then the convolution ℱ ∗ ℛ will be smoother than ℱ.  
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Proof: The theorem can be deduced from Theorem 1, see also [24]. 

Theorem 3: If ℱis a rough function and ℛ is n-times differentiable, then the 
convolution ℱ ∗ ℛ will be n-times differentiable.  

Proof: The theorem can be deduced from Theorem 1, see also [25]. 

Corollary 1: The convolution ℱ ∗ ℛ is at least as smooth as the function ℱ and 
the function  ℛ separately.  

Theorem 4: The fuzzy model obtained by the arbitrary membership function and 
the smooth s-norm and t-norm compositions is continuous, n-time differentiable 
and smoother than a periodic cosine function. 

Proof: The fuzzy model is the convolution of the function 𝑏( �̅�) by the function 
𝐺( �̅�, �̅�) weighted by the constant value C, according to the Eq (16). Since the 
function 𝐺( �̅�, �̅�) is a cosine function whatever the membership functions are, 
hence, based on Theorems 1-3, we can conclude Theorem 4. It is to say, the model 
will be smoother than cosine function, whatever the function 𝑓(⋅) is.   

Remark 1: Theorem 4 applies independent of the shape and nature of the plant, 
according to the derivative theorem stated above. In other words, Theorem 4 
applies even if the plant has a rough or discontinuous dynamics.  

Remark 2: The interpretation of theorem 4 in control application will be that, the 
control surface which the smooth fuzzy system produces will be smooth. Even if 
the system has a discrete state or systematic transition, based on this theorem, the 
transition in the system will happen with the minimum level of abrupt changes and 
variations. Moreover, the control system will show a better robustness to the 
uncertainties and disturbances in the region around the steady state point, trying to 
stay on the smooth surface.  

Now we look at the properties of the estimation of derivatives of the plant. 

3.1 Estimation of the Dynamic System Derivatives 
We first consider the first derivative of the model. Taking the first derivative we 
have, 

𝑔1( �̅�) =
𝑁1( �̅�)

𝐷( �̅�)
−  

𝑁( �̅�)𝐷1( �̅�)

𝐷2( �̅� )
   (18) 

 𝑁∞( �̅�) =  ∑ 𝑏𝑖𝐺1(𝑥, 𝛼𝑖)
𝑟
𝑖 =  ∫ ⋯ ∫ 𝑏( �̅�). 𝐺1( �̅�, �̅�)

∞ 

−∞

∞
−∞

 . 𝑑�̅�               (19) 

𝐷∞( �̅�) = ∑  𝐺1(𝑥, 𝛼𝑖)
𝑟
𝑖 =  ∫ ⋯ ∫  𝐺1( �̅�, �̅�). 𝑑�̅�

∞
−∞

∞
−∞

 .           (20) 

Again using the same procedure, we come to, 

𝐶 ⋅ 𝑔1( �̅�) =  ∫ ⋯ ∫ 𝑏( �̅�). 𝐺1( �̅�, �̅�)
∞ 

−∞

∞
−∞

 . 𝑑𝛼.̅          (21) 
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If we consider the m-th higher derivatives, similarly, we arrive to 

𝐶 ⋅ 𝑔𝑚( �̅�) =  ∫ ⋯ ∫ 𝑏( �̅�). 𝐺𝑚( �̅�, �̅�)
∞ 

−∞

∞
−∞

 . 𝑑𝛼.̅          ( 22) 

Theorem 5: The fuzzy model obtained by the smooth compositions is continuous 
and m-time differentiable.  

Proof: Considering that the function 𝐺𝑚( �̅�, �̅�) is a cosine function in origin and
m-times differentiable, also Theorem 2, hence we always can approximate the
desired function up to m-th Derivative 𝑔𝑚( �̅�) with the desired accuracy using the
smooth fuzzy model ( m is an arbitrary number).

Theorem 6: The approximation function 𝑔(�̅�)  is defined everywhere in the 
domain of the states with the possible finite numbers of jump discontinuities.  

Proof: Based on the definition, the smooth compositions are smooth with the 
possible number of discontinuities over their domains. Hence, the integration 
∫ ⋯ ∫ 𝑏( �̅�). 𝐺 ( �̅�, �̅�)

∞ 

−∞

∞
−∞

 𝑑 �̅�  in Eq (1) always can be calculated by the grid 
based sum of integration for the appropriate small h and large N. 

Theorem 7: Consider the smooth fuzzy system defined above with the parameters 
�̅� = [𝛼1, ⋯ , 𝛼𝑟] for the rules. The smooth fuzzy model  𝑔(�̅�)  is continuous if

∃𝛼𝑖,, 𝑖 ∈ [1, 𝑟] such that max( 𝜇(𝛼𝑖)) > 0, i.e. there exists at least one input fully
covered by the membership functions. 

Proof: We describe the case for  𝑖 = 2 which is extendable to the cases with the 
higher number of rules. Consider the integral part as stated above for the case  𝑖 =
2 , when there is a discontinuity for 𝛼2 ∈ [𝑐1, 𝑐2] .

∫ ∫ 𝑏( �̅�). 𝐺𝐷( �̅�, �̅�)
∞ 

−∞

∞
−∞

 𝑑 �̅� =  ∫ ∫ 𝑏( 𝛼1, 𝛼2). 𝐺𝐷( �̅�, 𝛼1, 𝛼2)
𝑐1

−∞

∞
−∞

 𝑑 𝛼1𝑑𝛼2

+∫ ∫  𝑏( 𝛼1, 𝛼2). 𝐺𝐷( �̅�, 𝛼1, 𝛼2)
∞ 

𝑐2

∞
−∞

  𝑑 𝛼1𝑑𝛼2.       (23) 

The above integrations are calculable at every point, as the last input is supposed 
to be fully covered by the membership functions, and is continuous.  

From the Fourier Transformation viewpoint, described above, it worth mentioning 
that the Fourier Transformation exists only if the jump discontinuity at  𝛼2 =  𝑐
cannot change the value of any of the integrals, i.e. ,  𝑐1 = lim

α2→c−
, 𝑐2 =

lim
α2→c+

 since at this case, the inverse of the Fourier transformation will converge 

to the mid value level at the point of discontinuity. 

Corollary 2:  Consider the smooth fuzzy system with one input. The jump 
discontinuity of the mapping function 𝑓(𝑥1, ⋯ , 𝑥𝑛) will not impact on the
smoothness property of the resulted smooth fuzzy model.  

Proof: For the one input case, the above formulation will be, 

∫ 𝑏( �̅�). 𝐺𝐷( �̅�, 𝛼1)
∞

−∞
 𝑑 𝛼1 =  ( 24) 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



On Approximation Properties of Smooth Fuzzy Models 

– 10 – 

 ∫ 𝑏( �̅�). 𝐺𝐷( �̅�, 𝛼1)
𝑐−𝜖

−𝑁 𝜖→0
 𝑑 𝛼1 +  ∫ 𝑏( �̅�). 𝐺𝐷( �̅�, 𝛼1)𝜖→0

+𝑁

𝑐+𝜖 
 𝑑 𝛼1

for a suitable choice of number N. It is obvious that the value of the integral will 
not be affected by the point discontinuity of the system.   

 Theorem 8: (Main Theorem) Let d and n be integers, and 𝑁 > 0 and 𝜖 > 0 be 
real numbers. Assume the function 𝑓(𝑥1, ⋯ , 𝑥𝑛) is a D-times differentiable
function on [−𝑁, 𝑁]𝑛 . Then, using the smooth fuzzy compositions, one can
construct a fuzzy model 𝑔(𝑥1, ⋯ , 𝑥𝑛) to approximate the function 𝑓(𝑥1, ⋯ , 𝑥𝑛)
and its derivatives up to D-th order with the desired accuracy  𝜖. 

Remark 3: The results we presented here compared to the earlier works by 
Kreinovich [6] on smoothness properties for the fuzzy models brings much lesser 
restrictions; As in this manuscript we have not put any restriction on shape of 
membership function, ( to be or not be in Gaussian Form) to gain the smoothness 
property, compared to their work.  

Now we show the effectiveness of the obtained results by an illustration. 

4 Illustrative Examples 
 To demonstrate application of the proposed approach, we take the simple model 
as Table 1, where each rule consequent is shown based on the crisp number.  

The table represents the logical rule that orchestrate switching between the 
different states of the finite state machine.  Such kind of logical rules, when 
coupled with the controller and the plants modelled with continuous or difference 
equations are generally called hybrid or switched systems which have the 
increasing popularity for modeling and control of the devices with digital 
components, e.g. relays, switches, stepper motors, so on [10], [26]. Traditionally 
fuzzy controllers for hybrid and switched systems are designed such that every 
subsystem is being considered by a separate fuzzy structure. What follows is an 
evidence that using the smooth fuzzy schemes, it would be possible to model and 
control the different discrete states of the system by a single fuzzy model structure 
such that the augmented continuous and discrete dynamics of the system changes 
between the augmented continuous and discrete states of the model smoothly.  

 Table 1: logical rules of the switched system 

𝒙𝟏\ 𝒙𝟐 𝑿𝟐𝟏 𝑿𝟐𝟐 𝑿𝟐𝟑

𝑿𝟏𝟏 1 2 3 

𝑿𝟏𝟐 4 5 6 

𝑿𝟏𝟑 7 8 9 
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We first consider fuzzy membership functions shown in figure 1, where they 
cover all the domain of the system states definition. Consequently, we have used 
first the conventional fuzzy inference for the fuzzy model and compared that to 
the smooth fuzzy structure. They are equal in the functioning for mapping the 
input-output relation. 

Membership function for the state x1 Membership function for the state x2 

Output surface of the classical fuzzy systems Output surface of the smooth fuzzy 

Figure 1: Case 1: when membership functions of both states cover the space. 

We then considered fuzzy membership functions shown in figure 2 and figure 3, 
where the membership function of the first state covers all the domain of system 
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state definition, and the membership function of the second state does not cover 
all the second state space. Again, we have used the conventional fuzzy inference 
for the fuzzy model and compared that to the smooth fuzzy model. This is clear 
that the classical fuzzy model has great value of variation in the output. This is 
while the smooth fuzzy model has a minimum variation which is to say its 
performance is almost similar to the case 1, when the membership functions 
covered all the state space. 

Membership function for the state x1 Membership function for the state x2 

The output surface of the classical fuzzy The output surface of the smooth fuzzy system 

Figure 2: Case 2: when membership functions of just one state covers the state space 
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Figure 3: The comparison of the output of the fuzzy function with the smooth compositions vs the 
classical compositions 

Lastly, we consider the fuzzy membership functions shown in figure 3, where 
none of the state spaces are covered by the membership functions. It is clear that 
both of the fuzzy models show high amount of variation and discontinuity.  

As it is clear from the results of simulations, when the membership functions 
cover at least one of the state space variables, the smooth fuzzy model shows a 
smooth and minimum variation behavior for modeling of the input-output 
mapping, compared to the classical fuzzy model.  In control applications, this 
feature can be used to damp the effect of the parameter variations and noise in the 
system and using the smooth compisitions one can run the system to return to the 
stable states after the disturbance with the minimum turbulences.   

The inspection of the results in the example could clear up that i) converse to the 
earlier contributions, we are able to model two ( or more) different states of a 
discontinuous or a switched system by a single smooth fuzzy model. ii) Based on 
the result of the case when the membership function of the second state in the 
simulation does not cover all the second state space, we claim that the smooth 
fuzzy models can uniformly approximate any real continuous function on a 
possible non-compact domain to the desired degree of accuracy, which is new in 
the fuzzy modeling literature. iii) As it has demonstrated in the simulation, for the 
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Membership function for the state x1 Membership function for the state x2 

Output surface of the classical fuzzy systems Output surface of the smooth fuzzy systems 

Figure 4:  Case 3: when membership functions of none of states cover the space 

case when the second state in the simulation does not cover all the second state 
space, the error between the smooth fuzzy model and the plant, in comparison to 
the error value with the same definition in the classical fuzzy model of the plant, 
has declined much more - to the minimum possible value.  Hence, we claim that 
employing the smooth compositions in the design of connectivist fuzzy modeling 
and controller schemes [27], we will not have high value of real plant-fuzzy model 
difference, neither the un-modeled dynamics, and therefore, will not need to 
restrict ourselves to the conservative methods of robust or adaptive control 
schemes. iv) As it is demonstrated by the simulation, the smoothness property of 
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such fuzzy model structure could encompass the change in the discrete modes of 
the switched system by showing the minimum amount of variations and errors. 
Hence, we can generalize it and expect to be able to damp the uncertainties and 
parameter variations of the systems and environmental noises also very fast 
through the same smoothness properties of the fuzzy model. Some simulations in 
the earlier publications on smooth fuzzy modeling and control [15], [16], [33] 
have demonstrated the robustness properties of such connectivist smooth fuzzy 
modeling and control schemes, however, they lack providing a theoretical 
analysis. The current manuscript can back up their results by giving a clue that 
why such robustness properties exist.  

Conclusion 

In this paper it is shown that we can model the dynamics and derivative of the 
continuous systems using the smooth fuzzy structure. We did not put any 
limitation on shape of the membership functions, in contrast to the earlier works, 
where the special Gaussian membership function has been considered. As a result 
of this finding, what we need to do in design of smooth fuzzy systems, to 
approximate dynamics of the system along its derivatives, would be to stick to the 
common practice of choosing the centric point and do not care of shape of the 
membership function.  

We backed up our theories by an example where each rule’s consequent has been 
shown based on a crisp number. It can be seen as a Mamdani model with the 
height defuzzification, or the discrete state models of hybrid and switched 
systems.  

Furure works 

Upon the findings, the future research could focus on application of the smooth 
fuzzy compositions in modeling and control of the discrete states of more practical 
hybrid and switched systems, where in every discrete state the plant represents a 
continuous dynamics instead of representing a constant value. That can present a 
deeper systemic analysis of the materials presented in the current work and model 
the whole nonlinear structure by a single fuzzy model, converse to the common 
practice of employing a different fuzzy model for each state.  

In our analysis and transformation, to run the approximation error and its 
derivative tends to zero we need to increase the number of partitions in the dense 
grid as well as the fuzzy rules. It means that in the practical applications, we will 
have growing numbers of fuzzy rules to make use of the smooth approximation 
properties. Therefore, there is a trade-off between the accuracy of the fuzzy model 
and the modelling complexity. Hence, It is required to think about a method for 
finding the minimal number of fuzzy rules for a given accuracy of the fuzzy 
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model in the future researches. One suggestion will be to discard the rules which 
have weak contribution to the output.  

In [28], [29] the interpolation of the fuzzy rules has been suggested for reducing 
the complexity in the model identification. We believe that the same procedure 
can be applied for lowering the number of rules in the smooth fuzzy model, such 
that just the rules with the essential information remain and the rest is replaced by 
the interpolation algorithm.  
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