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Abstract

In this paper, we propose and compare alternative ways to merge the plans
formed by sequences of actions of unknown similarities between goals and ac-
tions. Plans are formed by actions and executed by several operator agents,
which cooperate through recommendations. The operator agents apply the
plan actions over passive elements (which we call node agents) that require
additional future executions of another plan after some time of use. Such
ignorance of the similarities between the plan actions and the goals justifies
the use of a distributed recommendation system, which will provide a useful
plan to apply for a certain goal to a given operator agent. Then, this plan
is generated from the known results of previous executions of different plans
by other operator agents. Here, we provide the general framework of execu-
tion (the agent system), and different merging algorithms are applied to this
problem.
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1. Introduction

The term multi-agent planning has been used in the literature for two
types of problems. On the one hand, it has been interpreted as the problem to
find plans for a group of agents (Ephrati & Rosenschein, 1993) (Rosenschein,
1982). In such an approach, autonomous agents intend to coordinate their
actions to satisfy different goals of each agent (Georgeff, 1983) (Muscettola &
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Smith, 1987). The drawback of this problem definition is that autonomous
agents, who pursue their particular goals by definition, may adopt a non-
cooperative attitude if they do not have personal incentives to cooperate.

On the other hand, when the agents share a common collective goal,
multi-agent planning is alternatively considered a “divide et impera” prob-
lem. Such a common goal, which is typically complex, is split into sub-
problems among the agents. Then, each agent solves a subproblem, and
all corresponding subsolutions that are generated in parallel by the agents
must be merged into a unified solution (Wilkins & Myers, 1998) (Ephrati
& Rosenschein, 1993). In some cases, there is no partition of the problem,
and agents only independently apply different planners to the same problem
(as in scheduling for transportation systems (Fischer et al., 1995)) to more
quickly converge to a solution.

1.1. General context and motivation

The problem of merging plans with no previous partition follows a similar
approach to ours: each agent defines its own plans in parallel in a distributed
and independent manner until a merging algorithm is applied to merge the
plans into a single, unified, and supposedly better plan. This merging algo-
rithm must identify key elements of the plans that provide improvements,
incompatibilities, efficiencies and other relevant features in the method to
solve the problem.

This analysis and search of the key elements of plans to be merged by
autonomous agents acting as independent planners can become extremely
complex. With this goal, (Bruce & Newman, 1978) proposed a structured
model of actions, intentions, beliefs and states to be represented in the plans.
(Rosenschein, 1982) proposed a formalization of plans to detect potential
conflicts. Similarly, (Georgeff, 1983) suggested the definition of correctness
and execution conditions to be satisfied in a plan. (Shieber, 1985) defined a
temporal logic system to specify restrictions of plans that (Yang et al., 1992)
and (Foulser et al., 1992) used to ensure an efficient merge of alternative
plans that pursued a common goal. A more recent logic system for multi-
agent planning was proposed by (de Weerdt et al., 2003). (Elkawkagy &
Biundo, 2011) and (Brahimi et al., 2014) use preprocessing steps to generate a
hierarchy of subplans that agents compute in an independent way. Therefore,
for them merging has a different meaning, it is just a composing task of
hierarchically pre-ordered subplans. This is not our case, since we do not
assume a previously known hierarchy of subplans, we assume the knowledge
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of the number and similarities of actions (not subplans) that may compose a
plan. How they have to be composed is the goal of our planning computing,
instead of being previously known. And (Elkawkagy & Biundo, 2011) and
(Brahimi et al., 2014) merge parts of the final plan, not complete alternatives
of the final plan as we do. A very recent work by (Borrajo & Fernández, 2018)
provides an interesting view of distributed planning with autonomous agents
focused on protecting privacy.

The use of execution conditions, logic or temporal restrictions to combine
plans is based on the intrinsic characteristics of the plan and dependencies
of the actions that form a plan, which are typically domain-dependent. This
drawback is often ignored by assuming that they are previously known, al-
though this cannot be the case in real problems. However, plans can also
be merged using an external evaluation of the actions (instead of previously
known restrictions), as the following proposals and our study suggest:

• Partial global planning (Decker & Lesser, 1992): each agent iteratively
proposes an incremental prototype of a global plan: when an agent
receives the global plan, it combines such a plan with its plan to cre-
ate an improved new global plan (e.g., removing redundancies). This
improvement is proposed to the other agents so that they can accept,
modify or reject it.

• An approach based on an external estimation of the quality of a plan
from (Ephrati & Rosenschein, 1993): the combination of a set of plans
is suggested to detect redundant actions using the A* search algorithm
and a suitable cost heuristic. A process of joint aggregation was also
suggested, where the agents form an improved global plan voting joint
actions, and the votes play the role of the cost in the heuristic (Ephrati
et al., 1995).

Similar to our proposal, these approaches merge plans using external eval-
uations of the plans instead of assumed known previous restrictions. How-
ever, the improvement of these two merging proposals is obtained from an in-
ternal analysis that uses complex knowledge representation formalisms about
plans. Therefore, they are domain-dependent and similar to the logical-
temporal restrictions and execution conditions of the most extended ap-
proaches regarding the problem of combining plans. In contrast, the origi-
nality of our approach relies on the method of such external evaluation. We
evaluate plans in a truly domain-independent manner according to the results
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obtained by the past execution of the plans to be combined and not a rich
(and complex) deliberation about the compatibility, efficiency and redundan-
cies of the actions that form the plan. Then, the evaluation is extrinsic of the
actual composition of the plans to be combined. We can say that the under-
lying inspiration of our method is closer to a neural/subsymbolic approach
instead of a deliberative/symbolic approach: the valuation of the plan is the
output of a black box with two inputs–own direct experience and recommen-
dations. These inputs are two indirect methods to estimate the quality of the
plan, which are not based on the expression of the positive/negative inter-
relationships of the actions that form the plans to be combined. Therefore,
our approach does not rely on the previous, certain and complete knowledge
of domain.

This idea is strongly inspired by our previous works on recommendation
systems, specifically the agent-based reputation management (Carbo et al.,
2003) Gomez et al. (2007) (Carbo & Molina, 2010). In these contributions,
autonomous agents use the ability to dynamically combine past experiences
to face new situations and select and mix them to improve the expected
results.

To provide this ability to the agents, such past experiences must be rep-
resented in a context-sensible manner, which includes an integration mech-
anism based on a utility control of these experiences. In simple terms, they
must be able to distinguish (contextualize) which of these experiences are
similar (it is in fact an estimation) to one another and to the new situation.
This problem has been addressed by planning systems that use case-based
reasoning, e.g., (Veloso, 1994) (Redmond, 1990) (Goel et al., 1994) (PLAZA
& MCGINTY, 2005). Therefore, solving the problem of combining past ex-
periences requires using context information; in our case, experiences are
previously executed plans. This contextual information is the estimation of
the applicability of a particular plan to the actual situation faced by the
agent, even if this estimation is roughly computed by indirect sources of
information (the aforementioned two inputs of the black box).

1.2. Assumptions

We must accept several assumptions to apply our approach, which drive
us to reflect some unrealistic requirements. For example, all plans are ex-
ecuted in a completely deterministic world. We assume that each action
always produces the same consequence (no given uncertainty), and the exe-
cution of plan actions is time-independent, i.e., identical results are produced
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any time the plan is executed.
We must also assume the next statements about the nature of autonomous

agents that perform the plan combinations:

• They are self-interested and mainly focus on reaching their own goals.

• They are consistent; the specification of their internal state must be an
accurate representation of the external world.

• The agents have no conflict among themselves; they are cooperative
and not competitive.

• The agents are benevolent, i.e., they have a predisposition to help each
other.

• The agents are honest; the information that they share with others is
a precise representation of their own internal state.

In planning systems, plans are often considered partially or completely
ordered according to given restrictions over their actions, where partial or-
dering allows that the correct plans are open to different sequences of actions.
Completely ordered plans denote a unique solution in the form of a partic-
ular sequence of actions. Our approach to the problem assumes completely
ordered plans, and we assume that there is only one correct action in each
step of the plan. We also assume that the actions are independent: the ac-
tions that should be executed before and after do not alter the suitability of
a particular action ordered in the correct step.

We assume that the final combined plan is executed by an active ‘opera-
tor’, which can have different expertise, over a ‘node’ or physical passive ele-
ment that requires the execution of successive plans with a frequency, which
depends on the success of the previously executed plan. For example, a ma-
jor city can consider the infrastructure elements of the city that deteriorate
with time as nodes, and they require maintenance over time. In our urban
example, the operators can be human resources that perform maintenance
tasks (plans) of the infrastructure elements, which require an expertise level
and a correct sequence of operations (plan actions) to succeed. A success
will imply a long time period until the next maintenance task is required.

To represent different types of actions that may form a plan, we con-
sider that some nodes have certain similarities (i.e., they belong to the same
“type”) in two different grades; then, minor differences among the nodes are
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represented as nodes of the same type but different subtypes. An operator
that accurately notices such differences will select the correct action to per-
form on the node. Therefore, we define an action by 3 values that represent
its suitability according to the node to be applied:

• corresponding type of the node to be executed.

• corresponding subtype of the node to be executed.

• corresponding time (sequence order of the plan) to be executed.

Furthermore, we assume that the types and subtypes of the nodes are
public and previously known, and there is a limited (low) number of them.
We assume that the agents may compare different nodes to obtain a simi-
larity estimation, which depends on their type and subtype. Then, they can
compare the similarity of a node, over which a plan was executed, with the
current node, which requires a new combined plan to be executed. Thus, the
suitability of an action over a given node can be computed according to the
similarity of the type and subtype of that node with the type and subtype
of the node to which the action belongs. If a plan is effectively suitable,
the node will reduce the expected time before the successive plan must be
executed over that node.

Additionally, we assume that the number of steps of a plan is public,
previously known and limited (small). Hence, the suitability of an action in
a given plan step can again be computed according to where such action in
the plan is placed (when such action is placed near or at the correct plan
step).

Finally, we assume that weights are associated to the relative relevance
of these three suitability criteria (type, subtype of the node and time of
execution); thus, the final suitability of the plan is computed as their weighted
sum.

2. Defining the agent system

Both types of agents (node and operator agents) are implemented in
JADEX (Braubach et al., 2004), which is a JAVA-based academic agent plat-
form that complies with the IEEE-FIPA standard (fip, 1997) and facilitates
the implementation of a deliberative approach of agent reasoning structured
into three levels of knowledge: beliefs, desires and intentions (in advance,
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BDI). Many other agent platforms implement such standard and BDI rea-
soning (Kravari & Bassiliades, 2015). Nonetheless, this survey from 2015
explicitly shows that JADEX provides a higher level of robustness and per-
formance than 24 other alternative agent platforms. More recent and claim-
to-be-more-efficient platforms as SPADE 1 can be considered, but JADEX
has been largely successfully applied in research, teaching and industrial ap-
plications, and we have previous expertise developing applications with it.
Furthermore, we published a deeper explanation of how agents internally
used beliefs, desires and intentions in this problem in (Carbo et al., 2016).

• The beliefs of agents and content of the exchanged messages (concepts,
actions and predicates of an ad hoc ontology) are JAVA classes that
represent such knowledge. The concepts in the ontology are as follows:
node identifier; node type; operation to be performed (their ordered
sequence forms a plan), which is defined by the operation type; node
type and subtype to be applied; and expertise, which represents the
ability of the operator that executes the operation plans. The beliefs
of the node agents include the current operator agent and the expected
time until a new operation plan must be executed over this node. Op-
erator agents have the next beliefs: availability of the operator, which
are the currently operated nodes; type of specialized node; its exper-
tise; its last operation plans over each type of node; and final operator
agents that act as recommenders (identifiers and expertise) and their
corresponding last recommendation.

• The intentions of agents correspond to the actions performed by an
operator or node agent that looks for the satisfaction of a given goal
(conceptually, an instantiated desire). Typically, they involve receiving
a message, accessing the content of the message and internal beliefs of
the agent, performing computations over these data, and building and
sending a response message to another node/operator agent.

• The desires of agents are implemented in JADEX as goals that can
be fired by external events (reception of a message) or internal events
(specific conditions over the beliefs of the agents are satisfied). Such
goals in our agent system implementation consists of the complete ex-

1https://pypi.org/project/SPADE/
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Figure 1: CFP interaction protocol between a node and an operator agent

ecution of the corresponding role (initiator/participant in FIPA terms)
in a protocol.

The messages between the operator and the node agents are instances of
pre-defined IEEE-FIPA protocols. Therefore, we have the next sequence of
protocols in a typical iteration cycle of our agent system:

• The first protocol to launch is a call for proposal protocol (see Figure
1), where the node agent acts as an initiator, and the operator agent
acts as a participant. This protocol is associated with the goal of a node
to become assigned to an operator agent, and it is fired by an internal
event of a node agent because its beliefs show no current operator agent.
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Figure 2: Propose interaction protocol between a node and an operator agent
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Figure 3: Query recommender interaction protocol between two operator agents
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Figure 4: Query expertise interaction protocol between two operator agents

11

Participants: 
Olher operator ents 

n ...... 9_ue_ry-.._re_f __ (._e_.xp_e_r1_1s_e.._) _ m_, 

"' 
iní orm-resull. ( expertise) 



Figure 5: Query recommendation interaction protocol between two operator agents
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Figure 6: Request plan execution interaction protocol between an operator and a node
agent
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• Next, a proposed interaction protocol is launched with the node agent
as the initiator and the operator agent as the participant; the associated
goal is fired by an internal event when the node agent observes that
the belief that corresponds to the expected time of a new required
operation plan points out such circumstance (see Figure 2).

• Then, a query interaction protocol occurs with an operator agent as
the initiator and another agent as the participant of the query protocol.
This query protocol identifies the recommenders that are specialized in
a particular type of node. It is fired by an internal event of an operator
agent because its beliefs show that it must generate an operation plan
for a node agent of a given type, and it has no recommenders of this
node type among its beliefs (see Figure 3).

• Again, another query protocol is launched where an operator agent
that acts as an initiator asks about its expertise in a type of node
to another operator, which acts as a participant in the protocol, as a
potential recommender. It is fired by an internal event of an operator
agent because its beliefs show that it must generate an operation plan
for a node agent, and it must update the expertise of recommenders of
this node type in its beliefs (see Figure 4).

• Additionally, another query protocol initiated by an operator agent
asks about the operation plan that another operator agent, which acts
as a participant in the protocol, recommends for a particular type of
node. It is fired by an internal event of an operator agent because its
beliefs show that it must generate an operation plan for a node agent
of a given type, and it must update the recommended operation plan
of the recommenders of this node type in its beliefs (see Figure 5).

• Finally, a request protocol is launched by the operator agent as the
initiator and a node agent as the participant of the protocol. There,
the operator agent requests the node agent to execute an operation
plan, which is generated by combining the received recommendations
and the last operation plan of such operator agent for that type of
node. It is fired by an internal event of an operator agent because its
beliefs show that it must generate an operation plan for a node agent
of a given type, and all of its beliefs, which correspond to the expertise
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and recommended operation plans of this node type, are updated (see
Figure 6).

3. Merging Plans

As shown in the description of the agent interaction protocols, the com-
bination of plans will occur immediately before the execution of the last
protocol. Specifically, when the operator agent has updated its beliefs, the
subsequent knowledge includes the following:

• expertise about the given node type of the operator agents that act as
recommenders

• operation plan that the operator agents recommend for the given node
type

• previous own expertise about the node type

• previous own operation plan for the node type

Our merging method uses these four inputs to produce a new operation plan,
which will be sent to the node agent. The corresponding answer from the
node agent will include the time to spend before a new operation plan is
required. This time is computed according to the level of success obtained
with the operation plan suggested by the operator agent, and it will be used
by the operator agent to update its own expertise in such node type.

We will obtain this level of success based on the equations in the Agent
Reputation Testbed (ART) platform (Fullam et al., 2005). This platform has
been used for experimentation in several publications (LukeTeacy et al., 2007)
Yann Krupa & Vercouter (2009) (Diniz Da Costa et al., 2008) (Munoz et al.,
2009) and several international competitions in International Conference on
Autonomous Agents and Multi Agent Systems (AAMAS).

resul = Φ(‖e− t‖ , s) (1)

s = (1− E + 1/c)× ‖e− t‖ (2)

The ART testbed generates the error in a service estimation through a
normal distribution centred in the difference between the estimated (noted
as e) and the true value of the service (noted as t); the standard deviation s
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denotes the noise that avoids an optimal perception of the true value of the
service in real life (Equation 1). s takes its value from Equation 2. In this
equation, E denotes the expertise of the agent in providing such service, c
is the cost for the agent to provide the service, i.e., the time invested by the
agent (which represents the effort of the agent). Thus, stronger expertise,
more invested effort, and larger success of the estimation correspond to less
noise applied to the normal distribution.

Similarly, we may compute the difference between the optimal plan and
the suggested plan (the node agents will compute such difference). Hence,
we assume that such optimal plan is available, plans have a limited number
of steps, and the possible operations to be applied in each step is limited
and dependent on the type and subtype of the nodes. Therefore, with the
number of steps, number of types and subtypes, and weights of making a
mistake in the step, all types and subtypes are setup parameters of the agent
system.

‖e− t‖ =
∑

i=1..maxtimestep

(wtype × ‖ei,type − ti,type‖

+wsubtype × ‖ei,subtype − ti,subtype‖
+wtimestep × ‖ei,timestep − ti,timestep‖)

(3)

Then, each operation of an optimal plan is defined by three dimensions:
the correct type of the node to apply, correct subtype of the node and correct
time step to apply. The difference between an operation of the plan suggested
by an operator agent and the optimal operation is computed as a weighted
sum of the distance of the node type, subtype and timestep (sequence order),
as shown in Equation 3.

time = resul ×maxtime (4)

When we have the level of success obtained with the suggested plan by
the operator agent, the node agent must compute the required time for the
next plan execution. It would take its value from Equation 4, where resul is
the level of success of the suggested plan and maxtime is the maximum time
that any node may spend without the execution of a new plan (given static
value as parameter in the setup of the agent system). Thus, a better level of
success of the plan implies less required time to execute a new plan.
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s = (1− El + 1/Eg)× ‖e− t‖ (5)

Finally, the node agent must compute the new expertise of the operator
agent after the suggested plan is executed. In our design, the concept of
expertise has two associated values:

• Global expertise: the number of times that an operator agent has ex-
ecuted plans (regardless of their success) for a given node type. The
number of times will increase until a threshold, which is defined as a
setup parameter; then, after the number of plan executions, the global
expertise is fixed at the maximum value. The global expertise is used
instead of the invested time of Equation 2, assuming that all of our op-
erator agents spend identical amount of time in the execution of plans,
but operator agents with more global expertise are more efficient in
identical time periods.

• Local expertise: the ability in suggesting a plan for a given node type.
It is computed as the opposite of the standard deviation s ; then, it has
a recursive definition, where past local expertise affects the computa-
tion of the current local expertise, as s was defined in Equation 5 as
dependent of local expertise.

According to these two features of expertise, Equation 2 from the ART
testbed becomes redefined in our agent system as Equation 5.

Meanwhile, operator agents must weight the recommended plans from
other operator agents to combine them into a new single plan to suggest
to the node agent. The reputation of the operator agents in our domain is
contextual, i.e., it takes a different value for each node type. It is computed
from the global and local expertise of the operator agent using Equation 6,
where El is the local expertise, Eg is the global expertise, and Thr is the
threshold of the global expertise.

rep = 1− (1− El)× (Thr/Eg) (6)

Next, we will show 4 methods to use all of these elements to combine
plans. The first method is only a no-merging method used as a benchmark
to compare the improvement in level of success of the operator agents that
suggest a plan to the node agent by combining plans.
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3.1. Merging method 0: no merging and ignoring recommendations

newplan = oldplanj, j = arg max
i=1..n

si (7)

The operator agent ignores all received recommendations, and it executes
the plans that are exclusively updated from its previous execution of plans
as shown in Equation 7, where s is the success of the execution of previous
plans. This method is used as the benchmark, and the relative benefits of
applying the other methods can be measured by the improvements in results
obtained with respect the results of this no-cooperation merging method.

3.2. Merging method 1: no merging considering recommendations

newplan = recommendedplanj, j = arg max
i=1..n

repi (8)

The operator agent select the best plan (according to the computed repu-
tation of the operator agents) among all possible options (recommendations
and previous plan for that node type) with no combination as shown in
Equation 8, where rep is the reputation of the received recommendation.

3.3. Merging method 2

newplan = arg max
i

numreck,i∑
j=1

repi,j, k ∈ [1, numtimesteps] (9)

The operator agent builds the new plan by combining the operations with
more reputation (inherited by the operator agent that suggests this operation
in this plan step in its recommended plan) and popularity (number of times
that this operation is suggested by the operator agents). In other words, we
sum all reputations of each possible operation for each plan step; thus, re-
peated operations and operations from operators with good reputation have
more options to become the suggested operation in the new plan step. This
process is summarized in Equation 9, where numoper is the number of dif-
ferent recommended operations for a given time step j, and numrec is the
number of recommenders that suggest that operation i is applied in time
step j.
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Table 1: General Parameter Setup

Parameter Value
Number of node agents 1
Number of operator agents 20
Number of recommenders an operator may ask 20
Number of plan steps 5
Number of types of a node 1
Number of subtypes of a node 2
Weights of errors mis-predicting types, subtypes and operations 1
Initial expertise of operators 1
Number of replacements of merging method 3 1
Generation of previous plans of operator agents random

3.4. Merging method 3

newplan =

{
bestk if bestk 6= worstk, k ∈ [1, numtimesteps]

arg maxi

∑numreck,i
j=1 repi,j otherwise, i ∈ [1, numoperk)

(10)
The operator agent modifies the recommended plan from the operator

agent with the most reputation. The modification consists of replacing a
number of the operations that this best plan according to the reputation
shares in the same plan step with the worst plan. These operations are
replaced by different suggested operations by other recommended plans (se-
lected in decreasing order of reputation of the operator agent). The number
of replacements is fixed as a parameter setup. Therefore, this combination
method is similar to evolutive algorithms, where plans are the individuals
to be crossed, and the reputation plays the role of a fitness function. This
process is summarized in Equation 10, where i goes from 1 to the number
of operations recommended for timestep k -1, which is the operation that the
best and the worst plans share.

4. Experimentation

Since our merging proposals are based on an external evaluation as section
1 stated, they substantially differ from the classic approach of merging plans,
they use logical domain-dependent restrictions and we do not. Therefore, as
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Table 2: Parameter Setup of Simulation 1

Parameter Value
Number of node agents 1
Number of iterations 2
Number of operator agents 20
Number to simulation runs 4 (one for each merging method)

our inputs and assumptions are different, we do not intend to make any
comparison with other merging methods in a shared agent framework as
(Zaghetto et al., 2017) did with tracking algorithms, since they are of different
nature. We also do not intend to test any simulation based on realistic
data from any problem domain, since our proposal intends to be generic
and domain independent. Instead, we focus on testing the four merging
methods according to the relative contribution of the cooperation provided
by recommendations and the evolution because of past experience. We define
two notably simple simulations, 1 and 2, where the improvement because of
the evolution and cooperation is considered isolated, and simulation 3, where
both evolution and cooperation jointly occur. We consider the parameter
setup in Table 1 for all simulations. All weights of error mis-predicting types,
subtypes and operations were set to 1, since different weights introduce the
possibility of giving more or less relevance to any of the three categories over
the others. Different weights can be useful if we know in advance that in
a given domain, the errors in any of the three categories imply more costly
consequences. However, we assume no previous knowledge of the domain
problem.

First, we consider a notably simple test, noted as simulation 1, with the
parameter setup in Table 2. In simulation 1, first, the node agent selects
one of 20 operator agents as its operator. Next, the selected operator agent
asks for recommendations from the other 19 operators about its previous
experience. Finally, the resulting plan is generated by combining the 19
responses and the previous experience of the selected operator (all of which
are fake, randomly generated experiences). Because there is only one node
agent, the other 19 operator agents do not have real “experience”; they only
act as “dumb” recommenders (always sending the same, constant, randomly
generated recommendation). Therefore, there is no reason to run more than 2
iterations. Each iteration consists of the execution of all described sequences
of protocols with the same set of agents and remaining beliefs.
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Table 3: Parameter Setup of Simulation 2

Parameter Value
Number of node agents 2
Number of iterations 10
Number of operator agents 2

Simulation 1 yields the results of Figure 7. The vertical axis of Figure 7
shows the improvement of the combined plan of each merging method (ap-
proaching the optimal plan), whereas the horizontal axis shows the evolution
along 2 iterations. The resulting lines of each merging method appear to
confirm the order in which they obtain the best possible plan from the same
available information through cooperation (in the form of recommendations)
but with no evolution of the available information of recommendations.

Simulation 2 with the initial parameter setup in Table 3 decreases the
level of cooperation (because there are 2 operator agents instead of 20), but
the information provided by recommendations is not constant or random
because it is based on the evaluation of the corresponding plan. Therefore,
the recommendation is improved in each iteration. Again, each operator
agent is linked to only 1 node agent because the parameter of their availability
remains equal to 1, and the two operator agents share their relative success
and failures in 10 iterations.

Figure 8 shows the information relative to simulation 2 in both axes, and
the lines show the evolution of the average improvement of both operator
agents. Here, we observe that the relative improvements are much less sig-
nificant (0.05 << 0.25) when the operator agents combine their plan with
only one recommendation (instead of 19 in the previous simulation). Thus,
the merging methods have much better performance when they have fewer
plans to combine, even when they are not accurate or updated (they were
constant in the previous simulation). Additionally, the differences among ‘se-
rious’ merging methods (methods 1-3 because method 0 cannot be considered
a merging method) are notably small in these circumstances.

Finally, we run simulation 3 with the parameter setup in Table 4, 10 node
agents and 10 operator agents along 10 iterations to observe the evolution
because of the changes in previous experiences and cooperation through ac-
curate recommendations. Each node agent is linked with a single operator
agent, and each operator agent asks for recommendations from the other 9
operator agents in each iteration.
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Figure 8: Improvement rate (0-1, Y axis) because of the merging methods (0,1,2,3) with
2 operators and 2 nodes in 10 iterations (X axis)

Table 4: Parameter Setup of Simulation 3

Parameter Value
Number of node agents 10
Number of iterations 10
Number of operator agents 10
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Figure 9: Improvement rate (0-1, Y axis) because of merging methods (0,1,2,3) with 10
operators and 10 nodes along 10 iterations (X axis)
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Figure 9, which corresponds to simulation 3, shows the differences of the
merging methods, which was present in the first simulation. In addition,
the relevance of the improvement in the combined plan generated in each
iteration has a similar scale (0.3 ≈ 0.25). Merging method 1 appears to
generate combined plans not so close to the optimal one, whereas merging
methods 2 and 3 show similar results, although merging method 3 shows
slightly better results in the first iterations (faster convergence). Consider-
ing the simulations, we can estimate that most of the improvement is a result
of the cooperation of agents in the form of recommendations (method 1 is
close to methods 2 and 3) instead of the combination of plans. Therefore,
although a combination method to merge plans is required to take advantage
of recommendations, most of the improvement is expected from the research
on issues from the recommendation system domain (computing the reputa-
tion of sources and selecting the correct partners for cooperation) instead
of the issues from the planning domain relative to the merging plans. Fi-
nally, the set of simulations of our agent system is limited, and many other
initial setups can be considered. We intended to maintain a simple agent
system to observe the relative contribution of merging plans and the use of
recommendations with more clarity.

5. Conclusions

When we must merge plans and do not have sufficient knowledge on
the actions and goals, a domain-independent merging method will provide a
helpful alternative, which is the motivation of this work. Specifically, in this
paper, we have accomplished the following goals:

• we have defined and implemented an agent system that enables the
comparison of alternative methods to merge plans based on the roles
of the nodes and operators using the BDI paradigm.

• we have assumed a given number of conditions (mainly independent
actions) that enable an evaluation of the actions in the plan, which do
not depend on intrinsic domain-dependent restrictions over the actions.

• we have justified the use of recommendations and defined a way to
weight them according to the past execution of the plans and several
simple methods to merge them.
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• we have tested the performance of the merging algorithms with simple
simulations and observed that the contribution from the recommenda-
tions is much greater than that from the plan-merging methods.

We are aware of the limited scope of applicability of our proposal, where
many assumptions must be jointly present to justify its use. However, our
contribution is innovative because it is located in the boundaries of plan-
ning and research issues of the recommender systems and relevant because it
broadens the applicability of merging-plan algorithms to problems that were
not available (they previously depend on domain-dependency logic). Our
method also provides new paths to be explored by other researchers, since
our agent system is an open framework (and available in sourceforge 2) to
include many other merging algorithms, including different methods to com-
pute the reputation of recommenders or a simple test with no other initial
setup.
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