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Abstract: Score-driven models applied to finance and economics have attracted significant
attention in the last decade. In this paper, we apply those models to climate data. We study
the robustness of a recent climate econometric model, named ice-age model, and we extend that
model by using score-driven filters in the measurement and transition equations. The climate
variables considered are Antarctic ice volume Ice;, atmospheric carbon dioxide level CO4,, and
land surface temperature Temp,, which during the history of the Earth were driven by exogenous
variables. The influence of humanity on climate started approximately 10-15 thousand years
ago, and it has significantly increased since then. We forecast the climate variables for the last
100 thousand years, by using data for the period of 798 thousand years ago to 101 thousand
years ago for which humanity did not influence the Earth’s climate. For the last 10-15 thousand
years of the forecasting period, we find that: (i) the forecasts of Ice, are above the observed
Icey, (ii) the forecasts of the COgy; level are below the observed COqy, and (iii) the forecasts of
Temp, are below the observed Temp,. Our results are robust, and they disentangle the effects
of humanity and orbital variables.
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1. Introduction

Climate change is the most important global issue on the Earth. According to the Inter-
governmental Panel on Climate Change (2021), compared to the period of 1850 to 1900, the
Earth’s global surface temperature for the period of 2081 to 2100 is very likely to rise by 1.0 to
1.8 Celsius degrees under the “very low greenhouse gas emissions scenario”, by 2.1 to 3.5 Celsius
degrees for the “intermediate scenario”, and by 3.3 to 5.7 Celsius degrees under the “very high
greenhouse gas emissions scenario”. The worst-case scenario implies dramatic consequences on
the nature and wildlife in terrestrial, wetland, and ocean ecosystems, and on humanity with re-
spect to food and water security, migration, health, higher risk of conflict worldwide, reduction
of global economic product, and a possible collapse of the current societal organization.

Humanity has existed for 6,000,000 years and the modern human form evolved around
300,000 years ago. Climate change is partly due to the influence of humanity on the Earth’s
climate, which started approximately 10-15 thousand years ago, by commencing agricultural
activities such as cultivating plants and livestock (Ruddiman 2005). That influence significantly
increased after the industrial revolution (from 1769 to 1840), and it has further increased with
an accelerating growth rate since then. The Earth’s population rose from 1 billion in 1800 to
more than 7.8 billion in 2021, which was associated with a significant global-scale economic
expansion. One of the consequences is the rising greenhouse gas emissions (e.g., carbon dioxide,
CO., nitrous oxide, NoO, and methane, CHy), which are directly related to global warming.

The atmospheric CO, levels and land surface temperature are related to melting glaciers
and sea ice. In the present paper, as noted by Castle and Hendry (2020, Chapter 6), we name
the climate econometric models of those variables as ice-age models. During the 4.5 billion-year
history of the Earth, the variables ice volume, atmospheric CO,, and land surface temperature
simultaneously changed, driven by exogenous orbital variables, such as (i) changes in the non-
circularity of the Earth’s orbit with a period of 100 thousand years, (ii) changes in the tilt of
the Earth’s rotational axis relative to the ecliptic (i.e., the plane of the Earth’s orbit around the

Sun) with a period of 41 thousand years, and (iii) circular rotation of the rotational axis itself,



which changes the season at which the Earth’s orbit is nearest to the Sun, with a period that is
between 19 to 23 thousand years (it is variable due to the changes in the tilt of the rotational
axis). The orbital variables are exogenous to humanity, and in this paper we disentangle them
from the effects of humanity on the Earth’s climate in the statistical inferences. In addition to
the aforementioned orbital variables, other exogenous variables which also influence the Earth’s
climate are the following: variations in the Sun’s radiation output, volcanic eruption particles
in the atmosphere and ice cover, and changes in the magnetic poles (Castle and Hendry 2020).

As in the work of Castle and Hendry (2020), we use data for climate and orbital variables
for the last 798 thousand-year period, and we provide out-of-sample forecasts of Antarctic ice
volume, atmospheric COs, and land surface temperature for the last 100 thousand years. Those
authors use the automatic model selection method named Autometrics (Doornik 2009), to ap-
proximate the unknown data generating process (DGP) of climate data. They also motivate
the application of econometric techniques to study climate change, by referring to the similar
time series properties of the economic and climate data (e.g., non-stationarity, non-linearity,
stochastic seasonality, and extreme observations).

In this paper, we also use the model selection results of Castle and Hendry (2020), with
respect to the order of the dependent variables in the ice-age models, selection of the orbital
variables affecting the insolation of the Earth, parameter restrictions, and lag-order selection of
the dependent and explanatory variables. We study the robustness of the results of the above
authors, and we improve their model specification by considering more general score-driven
updates in the measurement and transition equations of the ice-age model. In this way, we
improve the dynamic specification of the benchmark ice-age model (Castle and Hendry 2020).

Score-driven time series models are introduced in the works of Creal et al. (2008) and
Harvey and Chakravarty (2008). Those models are generalizations of classical time series models,
for example, ARMA (autoregressive moving average) (Box and Jenkins 1970), and GARCH
(generalized autoregressive conditional heteroskedasticity) (Engle 1982; Bollerslev 1986). Score-

driven models are robust to outliers and missing observations (Harvey 2013), and a score-driven



update, asymptotically at the true values of parameters, reduces the Kullback—Leibler distance
between the score-driven filter and the true DGP in every step (Blasques et al. 2015).

These advantages of the score-driven models motivate their application to climate data. We
compare the statistical and forecasting performances of the ice-age model of Castle and Hendry
(2020) with those of our score-driven ice-age models. The likelihood-based model performance
metrics and diagnostic tests of this paper indicate that the climate econometric model of Castle
and Hendry (2020) is improved. We report impulse responses among Antarctic ice volume,
atmospheric CO, level, and land surface temperature, which are robust for the ice-age model of
Castle and Hendry (2020) and all score-driven ice-age models of the present paper.

By using data for the first 698 thousand years of the sample (for which humanity did not
influence the Earth’s climate), we present out-of-sample forecasts of the Antarctic ice volume,
atmospheric CO; level, and land surface temperature for the period of the last 100 thousand
years of the sample. We find that the forecasting results of Castle and Hendry (2020) are robust.
For the last 10-15 thousand years when humanity influenced the Earth’s climate, we find that: (i)
the forecasts of ice volume are above the observed ice volume, (ii) the forecasts of the atmospheric
COy level are below the observed COq level, and (iii) the forecasts of temperature are below
the observed temperature. For the last 20 thousand years of the sample, the new score-driven
homoskedastic ice-age model for the t-distribution provides the best forecasting performance for
all variables. The results disentangle the effects of humanity and the effects of the exogenous
variables on the Earth’s climate, and motivate to take further actions to achieve the “very low
greenhouse gas emissions scenario” (Intergovernmental Panel on Climate Change, 2021).

The remainder of this paper is organized as follows: Section 2 presents the econometric
methods. Section 3 presents the data and the empirical results. Section 4 presents the discussion.
2. Climate Econometrics
2.1. Benchmark Ace-Age Model
Model specification—In the work of Castle and Hendry (2020, Chapter 6), estimation and fore-

casting results are presented for a general unrestricted model (GUM), named the ice-age model.



That model specification is the benchmark model of the present paper. We study the robustness
of the results for the ice-age model, and extend the model specification by using score-driven
dynamics. In this section, we review the benchmark ice-age model of Castle and Hendry (2020).

The dependent variables y; (3 x 1) of the ice-age model are y; = (Ice;, COy, Temp,)’, where
‘Ice” denotes Antarctic ice volume, ‘CO,” denotes atmospheric carbon dioxide level, and ‘Temp’
denotes Antarctic-based land surface temperature. The order of the variables in y; is defined
in the work of Castle and Hendry (2020), which we use for all models of the present paper.

Correspondingly, the ice-age model is specified as follows:

Ye = e + 0 =5 + Tiyemr + Doz + T3zeg + 0y (1)

where p; (3x1) is the conditional mean of y; given F;_1 = o(y1, ..., Y1, 21, - - -, 2¢), the reduced-
form error term v; ~ N3(03x1, %) has a multivariate i.i.d. normal distribution, where the covari-
ance matrix is X = Q€ (3 x 3), for which © (3 x 3) is a lower-triangular matrix with positive
elements in the diagonal, and z; (9 x 1) includes strongly exogenous explanatory variables (Cas-
tle and Hendry 2020). We initialize y; by using the start values of the dependent variables y;.
We assume that the maximum modulus of the eigenvalues of I';, denoted as C),, is less than one.

The elements of the vector of explanatory variables z; are three main interacting orbital

changes over time affecting solar radiation that could drive ice ages (Castle and Hendry 2020):

2 = (Ec;, Oby, Pry, Ec; x Oby, Ec; x Pry, Ob, x Pry, Ec?, Ob?, Pr?)’ (2)

where ‘Ec’ measures the eccentricity (i.e., non-circularity) of the Earth’s orbit, ‘Ob’ is obliquity
measuring the tilt of the Earth’s rotational axis relative to the ecliptic, and ‘Pr’ is a measure of
the precession of the equinox (i.e., circular rotation of the rotational axis itself).

The conditional mean p; in Equation (1) includes the vector of constant parameters o (3x 1),
and parameter matrices I'; (3 x 3), I's (3 x 9), and I's (3 x 9). We note that the more general

GUM formulation of Castle and Hendry (2020, p. 102) includes the vector of dummy variables



of outliers, which are not included in the estimated GUM specifications of Castle and Hendry
(2020, p. 104). For the benchmark ice-age model, we report estimation and forecasting results for
Equation (1) which excludes the outlier-dummies. The same outlier-dummies are also excluded
from the score-driven ice-age models of the present paper, because those models are robust to
extreme observations (Harvey 2013).

The GUM estimates reported in the work of Castle and Hendry (2020, p. 104) impose
restrictions on the matrices I'y, 'y, and I's. According to those restrictions, the following
elements of I'y are not restricted to zero: I'i11, I'ii3, 22, T2, I'ige, and I'i33. The
following elements of I'y are not restricted to zero: I's 1, I'o14, I'215, 221, 207, a1, T'o3.4,
and I'y 3 5. Furthermore, the following elements of I'; are also not restricted to zero: I's 1 1, I's 1 2,
514, I'soq, I'so9, I'soq, and I's34. The benchmark ice-age model is estimated by using the
maximum likelihood (ML) method, as in the work of Castle and Hendry (2020).

Impulse responses—We estimate the dynamic effects of the i.i.d. structural-form error term

€ = QO 'y ~ N3(0341, I3). The corresponding IRFs are defined as follows:

ayt+j

e, =TIQ for j=0,...,00 (3)

The IRFs are identified by using the sign restrictions for the contemporaneous effects among the
elements of v;, which is based on simulations of matrix €2, according to the following procedure
(Rubio-Ramirez et al. 2010): First, the ML estimates of © are used. Second, a K x K matrix
K of independent N(0,1) numbers is simulated. For the IRFs, 3 million simulations of K
are generated, only those simulations are used that satisfy the sign restrictions, and for each
simulation Q is replaced by € in the IRF formulas. For the simulations that satisfy the sign
restrictions, we report the mean + one standard deviation estimates of the IRFs. Third, the
QR decomposition (Rubio-Ramirez et al. 2010) of K is performed, and the resulting matrices
are denoted as () (orthogonal matrix) and R (upper triangular matrix). Fourth, we define

Q = Q x Q'. For each simulation of Q, sign restrictions are used in accordance with Table 1.



The sign restrictions of Table 1 are motivated as follows: (i) In the work of Castle and
Hendry (2020, Tables 6.2 and 6.3), the correlation coefficient estimates among the residuals of
the ice-age model are reported. The sign restrictions in Table 1 are according to the correlation
coefficients of Castle and Hendry (2020). (ii) For the negative effects of CO5 on Ice;, and for the
positive effects of Ice; on Temp, of Table 1, we refer to the work of Qin and Buehler (2012). For
the positive interaction effects between CO5 and Temp, of Table 1, we also refer to the works
of Jouzel et al. (2007) and Liithi et al. (2008). (iii) For the negative effects of Ice; on COq of
Table 1, we refer to the work of Wadham et al. (2019). (iv) For the positive effects of Temp, on
CO4 of Table 1, we refer to the work of Archer et al. (2004). (v) For the negative interaction

effects between Temp, and Ice; of Table 1, we refer to the work of Bronselaer et al. (2018).

Table 1. Sign restrictions on contemporaneous impact responses.

Ice; shock  COgz¢ shock  Temp,; shock

Ices + — —
COa2¢ — + +
Temp, - + +

2.2. Score-Driven Ice-Age Models
2.2.1. Score-Driven Homoskedastic Ice-Age Model
Model specification—The score-driven ice-age model of this paper uses the score-driven model

specification in the work of Harvey (2013, p. 56). The model is specified as follows:

Ye = [ T+ Uy (4)
py = Yo + g1 +Tozg + T3z + Wy (5)
where g, (3 x 1) is the conditional mean of y, given Fy; 1 = 0(Y1, .-y Ys—1, 215+ -+, 2, 41), Vg 18

the multivariate i.i.d. reduced-form error term, z; (9 x 1) is the vector of strongly exogenous
explanatory variables, and u; (3 x 1) is the vector of scaled score functions (Harvey 2013).

The assumption of strict exogeneity of z; is from the work of Harvey (2013, p. 56), which is



supported for z; of Equation (2) in the work of Castle and Hendry (2020, p. 95). We initialize
iy by using the start values of the dependent variables y; (Harvey 2013). The conditional mean
¢ includes the following parameters: the vector of constant parameters vy (3 x 1), and the
parameter matrices I'; (3 x 3), I'ys (3 x9), I's (3 x9), and ¥ (3 x 3). We assume that the
maximum modulus of the eigenvalues of I';, denoted as C),, is less than one.

For I'y, I'y, and I's, we use the same aforementioned restrictions as in the work of Castle and
Hendry (2020), which is motivated by the following general-to-specific model selection procedure.
In the first step, for the parameter estimation of the score-driven ice-age model, we start with the
aforementioned restrictions of I'y and I's, and initially we use unrestricted parameter matrices
for I'y and W. In a second step, we restrict those parameters of I'y and ¥ to zero which are
not significant at the 1% level. In this way, the same elements of I';y and ¥ are restricted for
the score-driven models as for matrix I'y in the work of Castle and Hendry (2020). Hence, the
following elements of W are not restricted to zero: Wy, Wy3, Yoo, Wo3, W3, and Uss.

The reduced-form error term v, ~ t3(0,%, ) has a multivariate i.i.d. ¢-distribution, where
the scale matrix is ¥ = Q€ (3 x 3), for which © (3 x 3) is a lower-triangular squared matrix with
positive elements in the diagonal, and v > 2 is the degrees of freedom parameter (the restriction
on the parameter space v > 2 ensures that the covariance matrix of v, is well-defined).

The scaled score function u; is defined as follows. The log of the conditional density of y; is:

In (| Fi—1;©) = InT <VT+3) —InT (

v

2) - gln(ﬂy) (6)

1 3 'yt
——ln|2|—iln Qi
2 2 v
where v, = y; — i, © = (04,...,0g) is the vector of time-invariant parameters, which includes
the elements of vy, I'1, I's, I's, ¥, €, and v. The partial derivative of the log conditional density

In f(y:| Fi—1; ©) with respect to p is (Harvey 2013):

1 L /271 -1
0 nf<y§|ft 10) _vitdea (uu) = L2 s, (7)
e v v v



The scaled score function wu; is defined in the second equality of Equation (7), where v; is
multiplied by [1+ (v;X  vy) /v]™t = v/(v+vjS ;) € (0,1). Therefore, the scaled score function
is bounded by the reduced-form error term: |u;| < |v¢|. All elements of u; are bounded functions
of v, for v < oo (Harvey 2013), hence all moments of u; are well-defined. In the work of Harvey

(2013), it is shown that wu; is multivariate i.i.d. with mean zero and a covariance matrix:

Oln f(y| Fi-1;0) " Oln f(ye| Fi—1;0) v+3

Vi =F -
ar(uy) o o " X

= (8)

We also note that if v — oo, then u; —, v;. In the limiting case, Equations (3) and
(4) provide a VARMAX(1,1) (vector autoregressive moving average with exogenous variables,

VARMAX) structure for the dependent variables:

Y =" + T1yem1 + Doz + Tazpmy + (W — ) vy + v (9)

The benchmark ice-age model is a special case of the score-driven ice-age model, because if
v — oo and ¥ = I'y for Equations (4) and (5), then we obtain Equation (1). This can also be
seen for the limiting case for ¥ — oo in Equation (9), by using ¥ = I';. We name Equation (9)
the score-driven homoskedastic Gaussian ice-age model.

All score-driven models are estimated by using the maximum likelihood (ML) method (Har-
vey 2013; Blasques et al. 2021). For the ML estimation, we assume correct model specifications
for all econometric models of the present paper. Under that assumption, the standard errors
of the ML estimates are consistently estimated by using the outer product of the gradient of
the log-likelihood (LL) function. Another consequence of the correct model specification as-
sumption is that the updating terms of the score-driven filters, asymptotically and at the true
values of parameters, are white noise vectors. For technical details on the statistical inference
of score-driven models, we refer to the works of Harvey and Chakravarty (2008), Harvey (2013),
Creal et al. (2008, 2011, 2013), Blasques et al. (2021), and Blazsek et al. (2020, 2021a, 2021b).

Impulse responses—First, we define the vector of the structural-form error terms ¢; (3 x 1).



The variance of the reduced-form error term v, ~ t3(0, 2, v) is factorized, as follows:

y y 1/2 / y 1/2
Var(v;) = ¥ X = x QQ x i (10)

v—2 v—2 vV —

Based on that, the following multivariate i.i.d. structural-form error term ¢; is introduced:

Lo\ L2
Vy = <]/—2> QXGt (].1)

where E(e;) = 0, Var(e;) = I3 and € ~ 3]0, I3 x (v — 2)/v,v]. Furthermore, by substituting

Equation (11) into Equation (7), u; as a function of the structural-form error term is:

€
Uy = [(I/ - 2>V]1/29Tt—|—elgt (12)
t

Second, from Equations (4) and (5), the nonlinear MA(oc0) representation of y; is:

Y = Ut -+ Z (F‘{"}/O + F{FQZt,j + F{ngtflfj + F{‘I’Utflfj) (13)
§=0
1/2
v
= (]/ — 2> Q x €¢
Jng + D0y + Dilsz 4 + TI0[(v — 2)0]120 1y
+;{¢ Yo + [MT2zj + T3z 15 + DIV [(v — 2)v V246 a1,

We focus on the impulse responses for the dependent variables y;, because the variables within
z; are strongly exogenous to humanity. From y,, we are particularly interested in the dynamic
effects of the atmospheric carbon dioxide level on the Antarctic-based land surface temperature,
because humanity has influence on the CO, emissions. Thus, the new measurement method of
impulse responses for the score-driven ice-age model of this paper may have policy implications

in relation to carbon dioxide emissions regulation. The contemporaneous and dynamic effects

10



of the structural-form error term ¢, respectively, are given by the following equations:

1/2
3yt 14
9 _ Q (14)
Oe; v—2
8yt ; : ~
+ -1 ,
L — (v = 2u]Y2QD, for j=1,...,00 (15)
8615
where
v—2teje—26; —2e1,t€2,t —2€1,4€3,1
(v—2+¢ler)? (v—2+¢ler)? (v—2+¢ler)?
Dt — —2€2 t€1 ¢ V*2+526t*255,t —2¢€2 €3¢ (16)
(v—2+e€rer)? (v—2+¢€rer)? (v—2+¢€rer)?
—2€3 t€1 ¢ —2€3 1€ ¢ V_2+€;Et_2€§,t
(v—2+¢€l€r)? (v—2+¢€l€r)? (v—2+¢€ler)?

We note that IRFs for the ice-age model are not reported in the work of Castle and Hendry
(2020). We study the robustness of the results of Castle and Hendry (2020), by comparing the
IRFs of the score-driven ice-age models and the IRFs of the benchmark ice-age model.

In Equation (15), the dynamic interaction effects are time-dependent due to D,. In the
empirical applications of the present paper we replace D, by the sample average (White 2001) for
the last 10 observations of the sample, because, as noted in the work of Castle and Hendry (2020,
p. 111), humanity has influenced climate for the last 10 thousand years. There are alternative
ways for the estimation of dynamic interaction effects for nonlinear models (Liitkepohl 2005),
hence the IRF estimation of our paper may be modified in future applications.

Finally, we also report contemporaneous and dynamic effects of the structural-form error

term ¢; for the score-driven ice-age model for the multivariate normal distribution:

Oy
9 _q 17
76, (17)
Weks _ ity for j=1,... 00 (18)
aEt

The IRFs of this section are identified by using the procedure of Rubio-Ramirez et al. (2010).
2.2.2. Score-Driven Heteroskedastic Ice-Age Model

Model specification—We extend the score-driven ice-age model for the homoskedastic multi-

11



variate t-distribution, by considering score-driven conditional heteroskedasticity with constant

correlation coefficients for the reduced form error term v;. The model is specified as follows:

Y = e + Ut (19)

pe = Yo + D1 +Toze + Tgzeg + Yy (20)

where g, (3 x 1) is the conditional mean of y; given F;_;, which is defined later in this section, v,
is the multivariate i.i.d. reduced-form error term, z; (9 x 1) is the vector of strongly exogenous
explanatory variables, and u; (3 x 1) is the vector of scaled score functions. We initialize y; by
using y; (Harvey 2013). The conditional mean p; includes includes the following parameters:
the vector of constant parameters o (3 X 1), and the parameter matrices I'; (3 x 3), I'y (3 X 9),
I'3 (3 x9), and ¥ (3 x 3). For the parameters of y;, we use the same restrictions as for the
homoskedastic score-driven ice-age model for the t-distribution. We assume that the maximum
modulus of the eigenvalues of I';, denoted as C,, is less than one.

The reduced-form error term v |(F;_1;0) ~ t3(0,%;, ) has a multivariate conditional ¢-
distribution, where degrees of freedom v > 2, the scale matrix is 3; = D;RD;, where D, (3 x 3)
is a time-varying diagonal matrix with the score-driven scales of each time series, and R (3 x 3)
is the time-invariant correlation matrix. The specification of this section assumes that the
correlation coefficients are constant over time. This specification can be extended according to
the results of Creal et al. (2011) to dynamic correlation coefficients, by using a score-driven
volatility plus correlation model for the ¢-distribution.

The positive definiteness of R and boundedness of the correlation coefficients for (—1,1) are
ensured by using the following specification: R = AT'QA™ = A7IQO/'A~! where A (3 x 3) is
a diagonal matrix in which the elements of the diagonal are the square roots of the elements of
the diagonal of the positive definite matrix @ (3 x 3) (Engle 2002). The positive definiteness
of @ is ensured by using the Cholesky decomposition @) = Q€ in which Q (3 x 3) is a lower

triangular matrix with positive elements in the diagonal. For parameter identification reasons,

12



each element of the diagonal of € is restricted to one. Furthermore, D; is specified as follows:

exp(A1s) 0 0
D, = 0 exp(Ag;) 0 (21)
0 0 exp(As¢)

We specify the filters \;; in Equation (21) as follows:

)‘iﬂf = w; + Bi)\i,t + Q€1 + afsgn(—vi,t_l)(ei,t_l + 1) (22)

where sgn(-) is the signum function, and o for i = 1,2,3 measure asymmetric effects in the
conditional scale of the dependent variables. We initialize \;; for ¢ = 1,2, 3 using the uncondi-
tional mean E(\;;) = w;/(1 — 3;) for i = 1,2,3, respectively (Harvey 2013). In the following,
we define the updating terms w; and e;;. For the covariance stationarity of \;;, asymptotically
at the true values of parameters, it is required that C; , = |5;| < 1 for i = 1,2, 3.

First, the scaled score function u; is defined as follows. The log conditional density of ¥, is:

In f (el Fr150) = In T (”T“’) —r (4) =S ing) (23)
/N —1
LAk I [HM}
2 v

where Ve = Y — g, ]:t—l = O'(yl7 ey Yt 1, Ry ey 2ty )\1,1, /\271, )\3,1>, @ = (@1, RN ’@5')/ is the
vector of time-invariant parameters, which includes the elements of vy, I'y, I's, I's, U, Q, wy, wo,
ws, B1, B2, B3, a1, ag, as, af, ab, of, and v. The partial derivative of the log of the conditional

density In f(y|Fi—1;©) with respect to p is:

81nf(yt|}—t_1;@) _ V+32t_1 % <1 X

v =— Y Xy (24)

(9,ut v

EASRI) - v+3_
v

The scaled score function wu; is defined in the second equality of Equation (24), where v; is

13



multiplied by [1 + (v}, ') /v]™! = v/(v + viS;'v;) € (0,1). Therefore, the scaled score
function is bounded by the reduced-form error term: |u;| < |v;|. All elements of u; are bounded
functions of v; for v < oo, hence all moments of u; are well-defined. The scaled score function

u| (Fi—1;©) has a zero conditional mean and the following conditional covariance matrix:

v+3 $-1

Var(ut]}—t,l; @) = 15 X 24 (25)

The latter result is an extension of the work of Harvey (2013, p. 206).
Second, the updating term e;; for i = 1,2, 3 is defined as follows. The conditional distri-
butions of the marginals of y; are y;+|(Fi—1;0) ~ t[uis, exp(Aiz),v] for ¢ = 1,2,3 (Kibria and

Joarder 2006). The log of the conditional density of y;+|(Fi—1;©) for i =1,2,3 is

v+1 v 1
In fi(yis|Fio1;©) = InT ( . ) —al (§> — 5 In(mv) = A (26)

v+1 v
_ |1+ &t
2 1 { + Vexp(QAi,t)]

where v;y = y;+ — pir. We define the updating term of the filter A;; for ¢ = 1,2, 3 as follows:

o = Oln fi(vig| F1-1;0) _ (v + v, B
wt= Oy vexp(2Xiy) + v,

(27)

Equations (22) and (27) are the Beta-t-EGARCH with leverage effects model of Harvey and
Chakravarty (2008) (see also Creal et al. 2013 and Harvey 2013).
Impulse responses—First, we define the structural-form error terms ¢, (3x1). The conditional

variance of the reduced-form error term v;|(F_1;©) ~ t3(0, 3, v) is factorized, as follows:

v v \Y? ) Sr 1 v\
Var(vy|Fi-1;0) = ¥ x 9 (y — 2) DA™ x AT Dy < 2) (28)
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Based on that, the following multivariate i.i.d. structural-form error term ¢; is introduced:

vV —

Lo\ 12
UV = ( 2) DtAilg X € (29)

where E(e;) = 0, Var(e;) = I3 and ¢; ~ t3]0, I3 X (v — 2)/v,v]. Furthermore, by substituting

Equation (29) into Equation (24), u; as a function of the structural-form error term is:

— (v —2)"2D,AT —— 30
w == DDA (30)
Second, from Equations (19) and (20), the nonlinear MA (oo) representation of y; is:
Y = v + Z (F{’yo + Fjl'l“gzt,j + F{ngt,l,j + F{\Ifut,l,j) (31)
=0
Lo\ 2
= ( ) DtA_lQ X €
v—2
a . . . . _ € 1
+ + DiTozj + TiTs20-1; + DV[(v — 2)0) /2D, ATQ ) }
;{m Mot Ty + {0 202D AT,

The contemporaneous and dynamic effects of the structural-form error term ¢;, respectively,

are given by the following equations:

8yt o v 1/2D A_IQ (32)
Oes C\r—2 !
aé/tﬂ _ Fjl‘—l\Ij[(y _ Q)V]l/QDtA_lﬁf)t for j=1,...,00 (33)
€t

where D is given by Equation (16). In Equations (32) and (33), the dynamic interaction effects
are time-dependent due to D, and D,. We replace D, and D, by their sample averages for the
last 10 observations of the sample (Castle and Hendry 2020). The IRFs are identified by using
the procedure of Rubio-Ramirez et al. (2010). We also refer to the work of Liitkepohl (2005)

for alternative estimation methods for time-varying IRF's.
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3. Empirical Results
3.1. Data and In-Sample Results

Data—TIn Table 2, the dependent and the explanatory variables are presented. The table
shows the definition of each variable, observation period, units of measurement, data sources, and
some descriptive statistics. In Figures 1 and 2, the evolution of the dependent and explanatory
variables, respectively, are presented. According to Figures 1(b) and 1(c), atmospheric COq;
and land surface temperature Temp,, respectively, remarkably are in unison. In Figure 1, it
can also be noticed that Antarctic ice volume Ice; moves in the opposite direction from COq,
and Temp,, creating the ice-age and inter-glacial periods periodically. The seasonality of the
dependent variables (Figure 1), which is partly due to the three main interacting orbital changes
over time affecting solar radiation (Figure 2), is clearly observed in these figures.

In-sample results—In Table 3, the ML parameter estimates for the (i) benchmark ice-age
model (Castle and Hendry 2020), (ii) score-driven homoskedastic ice-age model for the normal
distribution, (iii) score-driven homoskedastic ice-age model for the ¢-distribution, and (iv) score-
driven heteroskedastic ice-age model for the ¢-distribution are reported. According to the table,
under the parameter restrictions for I'y, I's, I's, and W, the estimated parameters, for all models,
are significantly different from zero. For the most general score-driven heteroskedastic ice-age
model for the ¢t-distribution, significant and asymmetric volatility dynamics are estimated, as «;
and (3; for i = 1,2,3, and o for ¢ = 1,2, are significantly different from zero.

In Table 4, the statistical performance metrics and some diagnostic test results for the
models of Table 3 are reported. The statistical performances are compared by using the LL,
Akaike information criterion (AIC), Bayesian information criterion (BIC), and Hannan—Quinn
criterion (HQC) metrics. The use of these variables for score-driven models is motivated by
the work of Harvey (2013, p. 56). We find that the statistical performance of the score-driven
heteroskedastic ice-age model for the ¢-distribution is superior to the statistical performances of
other specifications of Tables 3 and 4. For all models, we find that the C), and C; ) fori =1,2,3

statistics support the covariance stationarity of p, and \;;, respectively. As a diagnostic test of
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the residuals, we use the Ljung—Box test (Ljung and Box 1978) for all elements of vy, €;, u;, and
e;. The diagnostic tests for the score functions u;, and e; are motivated by the work of Harvey
(2013, p. 55), due to the robustness to extreme observations of the score-function-based Ljung—
Box test. The Ljung-Box test results indicate that the ice-age model of Castle and Hendry
(2020) is not fully supported, which is noted in the same work (p. 102, footnote 4). From
the score-driven ice-age specifications, full support is provided for the most general score-driven
heteroskedastic ice-age model for the t-distribution.

In the following, we present the parameter estimates for the benchmark ice-age model (Equa-
tion (1)) and the score-driven heteroskedastic ice-age model for the t-distribution (Equation

(20)). First, the estimates of Equation (1) are given by (Table 3):

Ice, = 1.3735+ 0.8549 Ice,_; — 0.0208 Temp,_; + 95.8353 Ec; — 47.5937 Ec,Ob;,

(34)
—5.2167 Ec;Pr; — 93.5393 Ec; 1 — 0.3706 Ob;_; + 46.7753 Ec;_10b;_
0y, = 1.8718+0.8468 COqy_y + 0.0136 Temp,_; + 13.8095 Ec, + 0.2106 Ob? -
—27.1270 ECt,1 —1.1138 Obt,1 + 5.6423 Ethlobtfl
Temp, = —2.6657 + 0.8587 COq;s 1 + 0.8684 Temp, ; — 335.9696 Ec, 0

+254.2055 Ec;Ob; + 26.6287 Ec;Pr; — 111.3537 Ec;_10b;_4

The estimates correspond to the estimates of Castle and Hendry (2020, p. 104). We note that
one unit of COy; is 7.8 gigatonnes in their work, and one unit of CO,; is 780 gigatonnes in the
present paper. Hence, the difference between the COy; parameter estimates in their work (p.

104, Equation (6.4)), and our CO,y; parameter estimates. Second, the estimates of Equation

(20) are given by (Table 3):

Ice, = 1.1817 +0.8824 Ice,_; — 0.0172 Temp,_, + 84.6136 Ec, — 42.7119 Ec,0b,
—4.8681 Ec;Pr; — 83.4944 Ec;_; — 0.3307 Ob,;_; + 42.4409 Ec;_10b;_, (37)
+0.9651 uy ;1 — 0.0289 uz; 1
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COyy = 1.4068 + 0.8528 CO4y_1 + 0.0122 Temp, , + 11.9581 Ec; + 0.1270 Ob?
—26.3809 Ec,_; — 0.7289 Ob,_; + 6.1482 Ec,_;0b,_; (38)
+13943 U2 t—1 + 0.0166 U3,t—1

Temp, = —0.6955+ 0.1382 COy,;_y + 0.9377 Temp, ; — 272.0190 Ec,
+194.7069 Ec,Ob, + 17.5525 Ec;Pr; — 78.4289 Ec;_;0b;_; (39)
+4.7059 ug ;1 + 0.9860 uz;

To compare the parameter estimates of Equations (34)-(36) with those of Equations (37)-(39),
the dynamic interaction effects for Antarctic ice volume, atmospheric CO,, and land surface
temperature are studied by using the IRF's.

In Figures 3 to 6, the IRFs for the (i) benchmark ice-age model, (ii) score-driven homoskedas-
tic ice-age model for the normal distribution, (iii) score-driven homoskedastic ice-age model for
the t-distribution, and (iv) score-driven heteroskedastic ice-age model for the t-distribution, re-
spectively, are reported. The IRF estimates for the score-driven models indicate robust IRF
estimation results in the work of Castle and Hendry (2020). The IRFs of Figures 3 to 6 are
identified by using sign restrictions on the contemporaneous relations. The IRF figures indicate
that the signs of the dynamic interaction effects are coherent with the signs of the same inter-
action effects of the aforementioned works of Archer et al. (2004), Jouzel et al. (2007), Liithi
et al. (2008), Qin and Buehler (2012), Bronselaer et al. (2018), Wadham et al. (2019), and
Castle and Hendry (2020). According to Figures 3 to 6, the IRF estimates are persistent and
are consistent with the estimates of the long-run solutions of Equation (1) reported in the work
of Castle and Hendry (2020, p. 107, Table 6.4).

By comparing the IRF estimates of the benchmark ice-age model with those of the score-
driven ice-age models, for several panels of Figures 3 to 6, stronger effects are measured for the
score-driven ice-age models than for the benchmark ice-age model. The strongest effects are
measured for the score-driven heteroskedastic ice-age model for the ¢-distribution (Figure 6).

We find the following differences: (i) For the benchmark ice-age model, the dynamic effects of
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a unit Ice; shock (i.e., measured based on the 6'®0 proxy) on CO,; are less than —0.25 (i.e.,
—195 gigatonnes of COs), while for the score-driven models the same effect is stronger and it
is approximately —0.35 (i.e., —273 gigatonnes of CO) (Figures 3 to 6, Panel (d)). (ii) For the
benchmark ice-age model, the dynamic effects of a unit Temp, shock on CO,; are less than 0.25
(i.e., 195 gigatonnes of CO;), while for the score-driven models the same effect is stronger, and
it is between 0.30 and 0.35 (i.e., 234 and 273 gigatonnes of COs, respectively) (Figures 3 to 6,
Panel (f)). (iii) For the benchmark ice-age model, the dynamic effects of a unit Ice; shock (i.e.,
measured based on the %0 proxy) on Temp, are less than —0.35 (i.e., —3.5 Celsius degrees),
while for the score-driven models the same effect is stronger, reaching an estimate between —0.40
and —0.45 (i.e., —4 and —4.5 Celsius degrees, respectively) (Figures 3 to 6, Panel (g)). (iv) For
the benchmark ice-age model, the dynamic effects of a unit COs; shock (i.e., an increase of 780
gigatonnes of CO; in the atmosphere) on Temp, is approximately 3.5 Celsius degrees, while it
is above 4 Celsius degrees for the score-driven ice-age models (Figures 3 to 6, Panel (h)).
Finally, in Figure 7, we present the scaled score function u; as a function of the structural-
form error term ¢;. The figure presents the estimates for the score-driven heteroskedastic ice-age
model for the t-distribution, which is the best-performing ice-age specification according to the
likelihood-based model selection metrics. In the three-dimensional graphs of Figure 7, we present
the elements of u, from Equation (30) as functions of €;, and e, where €3, = 0 for the purpose
of illustration. We note that within the D; term of Equation (30), we use the unconditional mean
estimate of \; ; for i = 1,2, 3, which is E()\i,t) = @Z/(l—@) for i = 1,2, 3, respectively. The figure
indicates that extreme values of the structural-form error terms are discounted by the scaled
score functions. This supports the outlier-robustness of the score-driven ice-age models of the
present paper. We also note that very similar score-functions are estimated for the score-driven

homoskedastic ice-age model for the t-distribution.

19



6€0T°0

c08T°0

€649€°0

8000°0

86.L

(9661) 'Te 10 prefred
"(99180p 1 = q1un 1)

xoutnbs o1} Jo uolissedaId
oY) WO SUIALISP AJIOTPOLIB]

s1eak puesnoysy |

16600

[428%4

QSvy'C

9.02°C

86.

(966T) 'Te 10 prefireq

*(se9189p (T = 9tun 1) o19dioe o) 07 dAIIR[OI

SIX® [RUOIJRJOI S [IIRF ) JO I[I} S} Ul soSueyd

oY) WO SUIALISP AJIOTPOLIB]

s1ead puesnoyy |

6TT0°0

TL20°0

00G0°0

¢v00°0

86.L

(9661) ‘Te 10 pre[red

*(£311e[MOIIO S9j0ULP 0I9Z)

1110 S Y3Ier oY) JO A}LIe[NOIn-uou Jurduryd
a1} WO SUIALISP AJIOTPOLIB]

s1eak puesnoyy |

UOTIRIADD pIepUR)S
weaN

WINWIXBN
WINTWTUTI

oz1s ojdureg

921nos eje(J

JUSUWILINSCITN

Aousnbaiy eje(y

03e s1eadA puesnoys | 03e s1ead puesnoys | 08e s1ead puesnoy) | 9jep puy
o8e s1eak puesnoyy} {6, o8e s1eak puesnoyy) {6, 08e s1ead puesnoy) {6/ 9jep 11els
xournbe a1 Jo uoIssadaIJ AybiiqQO 1110 S YjIer oY) JO AJIDLIJUOIIH o[qreLIRA
g qO o soqelrea Aroreueldxy (q)

6006°C 9¥4c 0 L9V¥°0 UOIYRIASD plepue)g

680G — G86C'C LOLTY ueeN

c99L°€E 00%6°C 0080°¢ WNWIXeN

0€8¢°01— 692¢L°1 0ootr'e R A

86.L 86.L 86.L ozs opduweg

(L00g) ‘Te 1@ [ozNOL
90130p snis[e)) T = jun |
sIeo puesnoyy |

o3e s1ead puesnoy) |
03® s1ead puesnoyl g6,

arnjeroduwo) 90BJINS PUR] PISE-OIIOIRIUY

(8002) ‘T8 %0 1T

20D Jo seuuo0eIi8 ()R), = yun |
sIeo puesnoyy |

o3e s1ead puesnoy) |

08® s1ead puesnoyl g6,

20D odueydsow)y

(g00g) owdey pue BIIST]
Axo1d Qg9 Y3 uo peseqg
s1eok puesnoyy |

08® s1ead puesnoyl |

03® s1ead puesnoyl g6/,

QWINJOA 9]

90Ino0s e
JTOWSINSBIN
Aouenbeiy eje
oep pud

?1ep 1Ielg
a[qerrep

*dway,

“"NOU

#9201

so[qeLrea juopuada(] ()

'$019819R)S 9AT)dIIOSo( *Z O[qel,

20



(a). Ice volume Icet
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(b). Atmospheric carbon dioxide level CO2 ¢
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(c). Antarctic-based land surface temperature Temp,
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Figure 1. Evolution of Icet, CO2¢, and Temp, from 798 thousand years ago to 1 thousand years ago.
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(a). Eccentricity of the Earth’s orbit Ec
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(b). Obliquity (the tilt of the Earth’s rotational axis relative to the ecliptic) Oby
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(c). Precession of the equinox (circular rotation of the rotational axis itself) Pr¢
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Figure 2. Evolution of Ec¢, Ob, and Pry from 798 thousand years ago to 1 thousand years ago.
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Figure 7. Robustness of the scaled score function to extreme values
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3.2. Out-of-Sample Forecasting Results

In Table 5, the multi-step ahead out-of-sample forecasting performances of the (i) benchmark
ice-age model (Castle and Hendry 2020), (ii) score-driven homoskedastic ice-age model for the
normal distribution, (iii) score-driven homoskedastic ice-age model for the ¢-distribution, and
(iv) score-driven heteroskedastic ice-age model for the ¢-distribution are compared.

The following climate variables are predicted: Ice;, COy;, and Temp,. The estimation window
is for the period of 798 thousand years ago to 101 thousand years ago (17" = 698), for which
humanity did not influence the Earth’s climate. The multi-step ahead forecasting window is
for the last 100 thousand years (Ty = 100). Due to the periods included in the estimation
and forecasting windows, the forecasting results can disentangle the effects of humanity and the
exogenous effects on the Earth’s climate. We use two loss functions for forecasting performance
evaluation: (i) mean square error (MSE), and (ii) mean absolute error (MAE). These loss
functions are averaged for different periods of the last 100 thousand years (Table 5). We do not
use statistical tests of forecasting accuracy, due to the small sample size.

For most of the cases, the MSE and MAE results indicate that, for the periods of the last
100 thousand years to the last 30-40 thousand years, the benchmark ice-age model provides the
most precise forecasts (Table 5). The only exception for the MAE-based forecasting performance
evaluation is for Ice;, for which the results indicate that for the periods of the last 100 thousand
years and the last 90 thousand years, the score-driven heteroskedastic ice-age model for the
t-distribution provides the most precise forecasts (Table 5). The results also indicate for all
variables that, for the most recent period of the last 20-30 thousand years, in which humanity
impacted the Earth’s climate, the score-driven homoskedastic ice-age model for the ¢-distribution
provides the most precise forecasts (Table 5).

In Figure 8, the multi-step ahead out-of-sample forecasts of Ice;, COq 4, and Temp, for the (i)
benchmark ice-age model, (ii) score-driven homoskedastic ice-age model for the normal distribu-
tion, (iii) score-driven homoskedastic ice-age model for the ¢-distribution, and (iv) score-driven

heteroskedastic ice-age model for the ¢-distribution are presented.
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The figure includes the observed values of Ice;,, CO2,, and Temp,, the forecasts of these
variables, and the forecasts 4+ one standard deviation estimates of the forecasts. The figure
shows the following interesting results for the most recent period of the sample, when humanity
impacted the Earth’s climate (Castle and Hendry 2020). For the last 10-15 thousand years of
the forecasting window, the observed values of ice are below the forecast interval, indicating
unexpectedly low levels of ice. Moreover, for the last 10-15 thousand years of the forecasting
window, the observed levels of COy and temperature are above the forecast interval, indicating
unexpectedly high levels of CO4; and temperature. These multi-step ahead forecasting results
are robust for the different econometric models (Figure 8), and are consistent with the results
in the work of Castle and Hendry (2020, Figures 6.9, 6.12, and 6.13).

In Figure 9, the one-step ahead out-of-sample forecasts of Ice;, COq,, and Temp, for the (i)
benchmark ice-age model, (ii) score-driven homoskedastic ice-age model for the normal distribu-
tion, (iii) score-driven homoskedastic ice-age model for the ¢-distribution, and (iv) score-driven
heteroskedastic ice-age model for the ¢-distribution are presented. We use a rolling-window ap-
proach for estimation and forecasting. The first rolling-window is for the period of 798 thousand
years ago to 101 thousands years ago (T = 698). After the model estimation, the one-step
ahead forecasts of all dependent variables are computed. Then, the first observation of the
rolling-window is excluded and a new last observation is added from the sample. This estima-
tion and the one-step ahead forecasting procedure is repeated until the end of the full sample
period, providing 7 = 100 one-step ahead out-of-sample forecasts.

The figure includes the observed values of Ice,, COq,, and Temp,, the forecasts of these
variables, and the forecasts 4 one standard deviation estimates of the forecasts. As for the
multi-step ahead forecasts, for the last 10-15 thousand years, the figure shows a significant
decrease in the level of ice and significant increases in COy and temperature. For most of the
periods of the last 10-15 thousand years, the observed values of ice are unexpectedly located
below the mean forecasts, and the observed values of COsy and temperature are unexpectedly

located above the mean forecasts. These forecasting results are robust for the different models.
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4. Discussion

We have compared the statistical and forecasting performances of the benchmark ice-age
model (Castle and Hendry 2020) and those of our score-driven ice-age models. We have used
data for climate and orbital variables for the last 798 thousand-year period, and we have provided
out-of-sample forecasts of Antarctic ice volume, CO,, and temperature for the last 100 thousand
years. We have studied the robustness of the results of the benchmark model.

For data of the last 798 years, the statistical performance metrics and diagnostic tests have
indicated that the dynamic specification of the benchmark ice-age model is improved. We have
reported impulse responses among Antarctic ice volume, atmospheric CO2, and land surface
temperature, which are robust for the specification of Castle and Hendry (2020). We have
found that the average impact of a unit increase in the atmospheric CO2 level on land surface
temperature is approximately 3.5 Celsius degrees for the benchmark ice-age model, and it is
above 4 Celsius degrees for the score-driven models of our paper.

We have found that the forecasting results of the benchmark model are robust, by using data
for the first 698 thousand years of the sample, for which humanity did not influence the Earth’s
climate, to forecast Antarctic ice volume, atmospheric COs, and land surface temperature for
the last 100 thousand years of the sample. In this way, the effects of humanity and the effects
of exogenous variables on the Earth’s climate have been disentangled. For the last 10 to 15
thousand years when humanity influenced the Earth’s climate, we have found the following
results: (i) the forecasts of ice volume are above the observed ice volume, (ii) the forecasts of the
atmospheric CO, level are below the observed COs level, and (iii) the forecasts of temperature
are below the observed temperature. These results help to disentangle the effects of humanity
and the effects of the exogenous orbital variables on the Earth’s climate, and they also a provide
motivation to take further proactive actions to significantly reduce the greenhouse gas emissions,

and to respond to the most important challenge of the 21th century: global warming.
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