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Abstract: Score-driven models applied to finance and economics have attracted significant

attention in the last decade. In this paper, we apply those models to climate data. We study

the robustness of a recent climate econometric model, named ice-age model, and we extend that

model by using score-driven filters in the measurement and transition equations. The climate

variables considered are Antarctic ice volume Icet, atmospheric carbon dioxide level CO2,t, and

land surface temperature Tempt, which during the history of the Earth were driven by exogenous

variables. The influence of humanity on climate started approximately 10-15 thousand years

ago, and it has significantly increased since then. We forecast the climate variables for the last

100 thousand years, by using data for the period of 798 thousand years ago to 101 thousand

years ago for which humanity did not influence the Earth’s climate. For the last 10-15 thousand

years of the forecasting period, we find that: (i) the forecasts of Icet are above the observed

Icet, (ii) the forecasts of the CO2,t level are below the observed CO2,t, and (iii) the forecasts of

Tempt are below the observed Tempt. Our results are robust, and they disentangle the effects

of humanity and orbital variables.

Keywords: climate change; ice-ages and inter-glacial periods; atmospheric CO2 and land sur-

face temperature; dynamic conditional score models; generalized autoregressive score models
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1. Introduction

Climate change is the most important global issue on the Earth. According to the Inter-

governmental Panel on Climate Change (2021), compared to the period of 1850 to 1900, the

Earth’s global surface temperature for the period of 2081 to 2100 is very likely to rise by 1.0 to

1.8 Celsius degrees under the “very low greenhouse gas emissions scenario”, by 2.1 to 3.5 Celsius

degrees for the “intermediate scenario”, and by 3.3 to 5.7 Celsius degrees under the “very high

greenhouse gas emissions scenario”. The worst-case scenario implies dramatic consequences on

the nature and wildlife in terrestrial, wetland, and ocean ecosystems, and on humanity with re-

spect to food and water security, migration, health, higher risk of conflict worldwide, reduction

of global economic product, and a possible collapse of the current societal organization.

Humanity has existed for 6,000,000 years and the modern human form evolved around

300,000 years ago. Climate change is partly due to the influence of humanity on the Earth’s

climate, which started approximately 10-15 thousand years ago, by commencing agricultural

activities such as cultivating plants and livestock (Ruddiman 2005). That influence significantly

increased after the industrial revolution (from 1769 to 1840), and it has further increased with

an accelerating growth rate since then. The Earth’s population rose from 1 billion in 1800 to

more than 7.8 billion in 2021, which was associated with a significant global-scale economic

expansion. One of the consequences is the rising greenhouse gas emissions (e.g., carbon dioxide,

CO2, nitrous oxide, N2O, and methane, CH4), which are directly related to global warming.

The atmospheric CO2 levels and land surface temperature are related to melting glaciers

and sea ice. In the present paper, as noted by Castle and Hendry (2020, Chapter 6), we name

the climate econometric models of those variables as ice-age models. During the 4.5 billion-year

history of the Earth, the variables ice volume, atmospheric CO2, and land surface temperature

simultaneously changed, driven by exogenous orbital variables, such as (i) changes in the non-

circularity of the Earth’s orbit with a period of 100 thousand years, (ii) changes in the tilt of

the Earth’s rotational axis relative to the ecliptic (i.e., the plane of the Earth’s orbit around the

Sun) with a period of 41 thousand years, and (iii) circular rotation of the rotational axis itself,
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which changes the season at which the Earth’s orbit is nearest to the Sun, with a period that is

between 19 to 23 thousand years (it is variable due to the changes in the tilt of the rotational

axis). The orbital variables are exogenous to humanity, and in this paper we disentangle them

from the effects of humanity on the Earth’s climate in the statistical inferences. In addition to

the aforementioned orbital variables, other exogenous variables which also influence the Earth’s

climate are the following: variations in the Sun’s radiation output, volcanic eruption particles

in the atmosphere and ice cover, and changes in the magnetic poles (Castle and Hendry 2020).

As in the work of Castle and Hendry (2020), we use data for climate and orbital variables

for the last 798 thousand-year period, and we provide out-of-sample forecasts of Antarctic ice

volume, atmospheric CO2, and land surface temperature for the last 100 thousand years. Those

authors use the automatic model selection method named Autometrics (Doornik 2009), to ap-

proximate the unknown data generating process (DGP) of climate data. They also motivate

the application of econometric techniques to study climate change, by referring to the similar

time series properties of the economic and climate data (e.g., non-stationarity, non-linearity,

stochastic seasonality, and extreme observations).

In this paper, we also use the model selection results of Castle and Hendry (2020), with

respect to the order of the dependent variables in the ice-age models, selection of the orbital

variables affecting the insolation of the Earth, parameter restrictions, and lag-order selection of

the dependent and explanatory variables. We study the robustness of the results of the above

authors, and we improve their model specification by considering more general score-driven

updates in the measurement and transition equations of the ice-age model. In this way, we

improve the dynamic specification of the benchmark ice-age model (Castle and Hendry 2020).

Score-driven time series models are introduced in the works of Creal et al. (2008) and

Harvey and Chakravarty (2008). Those models are generalizations of classical time series models,

for example, ARMA (autoregressive moving average) (Box and Jenkins 1970), and GARCH

(generalized autoregressive conditional heteroskedasticity) (Engle 1982; Bollerslev 1986). Score-

driven models are robust to outliers and missing observations (Harvey 2013), and a score-driven
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update, asymptotically at the true values of parameters, reduces the Kullback–Leibler distance

between the score-driven filter and the true DGP in every step (Blasques et al. 2015).

These advantages of the score-driven models motivate their application to climate data. We

compare the statistical and forecasting performances of the ice-age model of Castle and Hendry

(2020) with those of our score-driven ice-age models. The likelihood-based model performance

metrics and diagnostic tests of this paper indicate that the climate econometric model of Castle

and Hendry (2020) is improved. We report impulse responses among Antarctic ice volume,

atmospheric CO2 level, and land surface temperature, which are robust for the ice-age model of

Castle and Hendry (2020) and all score-driven ice-age models of the present paper.

By using data for the first 698 thousand years of the sample (for which humanity did not

influence the Earth’s climate), we present out-of-sample forecasts of the Antarctic ice volume,

atmospheric CO2 level, and land surface temperature for the period of the last 100 thousand

years of the sample. We find that the forecasting results of Castle and Hendry (2020) are robust.

For the last 10-15 thousand years when humanity influenced the Earth’s climate, we find that: (i)

the forecasts of ice volume are above the observed ice volume, (ii) the forecasts of the atmospheric

CO2 level are below the observed CO2 level, and (iii) the forecasts of temperature are below

the observed temperature. For the last 20 thousand years of the sample, the new score-driven

homoskedastic ice-age model for the t-distribution provides the best forecasting performance for

all variables. The results disentangle the effects of humanity and the effects of the exogenous

variables on the Earth’s climate, and motivate to take further actions to achieve the “very low

greenhouse gas emissions scenario” (Intergovernmental Panel on Climate Change, 2021).

The remainder of this paper is organized as follows: Section 2 presents the econometric

methods. Section 3 presents the data and the empirical results. Section 4 presents the discussion.

2. Climate Econometrics

2.1. Benchmark Ace-Age Model

Model specification—In the work of Castle and Hendry (2020, Chapter 6), estimation and fore-

casting results are presented for a general unrestricted model (GUM), named the ice-age model.

4



That model specification is the benchmark model of the present paper. We study the robustness

of the results for the ice-age model, and extend the model specification by using score-driven

dynamics. In this section, we review the benchmark ice-age model of Castle and Hendry (2020).

The dependent variables yt (3 × 1) of the ice-age model are yt = (Icet,COt,Tempt)
′, where

‘Ice’ denotes Antarctic ice volume, ‘CO2’ denotes atmospheric carbon dioxide level, and ‘Temp’

denotes Antarctic-based land surface temperature. The order of the variables in yt is defined

in the work of Castle and Hendry (2020), which we use for all models of the present paper.

Correspondingly, the ice-age model is specified as follows:

yt = µt + vt = γ0 + Γ1yt−1 + Γ2zt + Γ3zt−1 + vt (1)

where µt (3×1) is the conditional mean of yt given Ft−1 ≡ σ(y1, . . . , yt−1, z1, . . . , zt), the reduced-

form error term vt ∼ N3(03×1,Σ) has a multivariate i.i.d. normal distribution, where the covari-

ance matrix is Σ ≡ ΩΩ′ (3 × 3), for which Ω (3 × 3) is a lower-triangular matrix with positive

elements in the diagonal, and zt (9× 1) includes strongly exogenous explanatory variables (Cas-

tle and Hendry 2020). We initialize µt by using the start values of the dependent variables y1.

We assume that the maximum modulus of the eigenvalues of Γ1, denoted as Cµ, is less than one.

The elements of the vector of explanatory variables zt are three main interacting orbital

changes over time affecting solar radiation that could drive ice ages (Castle and Hendry 2020):

zt = (Ect,Obt,Prt,Ect ×Obt,Ect × Prt,Obt × Prt,Ec
2
t ,Ob2

t ,Pr
2
t )

′ (2)

where ‘Ec’ measures the eccentricity (i.e., non-circularity) of the Earth’s orbit, ‘Ob’ is obliquity

measuring the tilt of the Earth’s rotational axis relative to the ecliptic, and ‘Pr’ is a measure of

the precession of the equinox (i.e., circular rotation of the rotational axis itself).

The conditional mean µt in Equation (1) includes the vector of constant parameters γ0 (3×1),

and parameter matrices Γ1 (3× 3), Γ2 (3× 9), and Γ3 (3× 9). We note that the more general

GUM formulation of Castle and Hendry (2020, p. 102) includes the vector of dummy variables
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of outliers, which are not included in the estimated GUM specifications of Castle and Hendry

(2020, p. 104). For the benchmark ice-age model, we report estimation and forecasting results for

Equation (1) which excludes the outlier-dummies. The same outlier-dummies are also excluded

from the score-driven ice-age models of the present paper, because those models are robust to

extreme observations (Harvey 2013).

The GUM estimates reported in the work of Castle and Hendry (2020, p. 104) impose

restrictions on the matrices Γ1, Γ2, and Γ3. According to those restrictions, the following

elements of Γ1 are not restricted to zero: Γ1,1,1, Γ1,1,3, Γ1,2,2, Γ1,2,3, Γ1,3,2, and Γ1,3,3. The

following elements of Γ2 are not restricted to zero: Γ2,1,1, Γ2,1,4, Γ2,1,5, Γ2,2,1, Γ2,2,7, Γ2,3,1, Γ2,3,4,

and Γ2,3,5. Furthermore, the following elements of Γ3 are also not restricted to zero: Γ3,1,1, Γ3,1,2,

Γ3,1,4, Γ3,2,1, Γ3,2,2, Γ3,2,4, and Γ3,3,4. The benchmark ice-age model is estimated by using the

maximum likelihood (ML) method, as in the work of Castle and Hendry (2020).

Impulse responses—We estimate the dynamic effects of the i.i.d. structural-form error term

ϵt ≡ Ω−1vt ∼ N3(03×1, I3). The corresponding IRFs are defined as follows:

∂yt+j

∂ϵt
= Γj

1Ω for j = 0, . . . ,∞ (3)

The IRFs are identified by using the sign restrictions for the contemporaneous effects among the

elements of vt, which is based on simulations of matrix Ω, according to the following procedure

(Rubio-Ramirez et al. 2010): First, the ML estimates of Ω are used. Second, a K ×K matrix

K̃ of independent N(0, 1) numbers is simulated. For the IRFs, 3 million simulations of K̃

are generated, only those simulations are used that satisfy the sign restrictions, and for each

simulation Ω is replaced by Ω̃ in the IRF formulas. For the simulations that satisfy the sign

restrictions, we report the mean ± one standard deviation estimates of the IRFs. Third, the

QR decomposition (Rubio-Ramirez et al. 2010) of K̃ is performed, and the resulting matrices

are denoted as Q̃ (orthogonal matrix) and R̃ (upper triangular matrix). Fourth, we define

Ω̃ ≡ Ω× Q̃′. For each simulation of Ω̃, sign restrictions are used in accordance with Table 1.
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The sign restrictions of Table 1 are motivated as follows: (i) In the work of Castle and

Hendry (2020, Tables 6.2 and 6.3), the correlation coefficient estimates among the residuals of

the ice-age model are reported. The sign restrictions in Table 1 are according to the correlation

coefficients of Castle and Hendry (2020). (ii) For the negative effects of CO2 on Icet, and for the

positive effects of Icet on Tempt of Table 1, we refer to the work of Qin and Buehler (2012). For

the positive interaction effects between CO2 and Tempt of Table 1, we also refer to the works

of Jouzel et al. (2007) and Lüthi et al. (2008). (iii) For the negative effects of Icet on CO2 of

Table 1, we refer to the work of Wadham et al. (2019). (iv) For the positive effects of Tempt on

CO2 of Table 1, we refer to the work of Archer et al. (2004). (v) For the negative interaction

effects between Tempt and Icet of Table 1, we refer to the work of Bronselaer et al. (2018).

Table 1. Sign restrictions on contemporaneous impact responses.

Icet shock CO2,t shock Tempt shock

Icet + − −
CO2,t − + +

Tempt − + +

2.2. Score-Driven Ice-Age Models

2.2.1. Score-Driven Homoskedastic Ice-Age Model

Model specification—The score-driven ice-age model of this paper uses the score-driven model

specification in the work of Harvey (2013, p. 56). The model is specified as follows:

yt = µt + vt (4)

µt = γ0 + Γ1µt−1 + Γ2zt + Γ3zt−1 +Ψut−1 (5)

where µt (3 × 1) is the conditional mean of yt given Ft−1 ≡ σ(y1, . . . , yt−1, z1, . . . , zt, µ1), vt is

the multivariate i.i.d. reduced-form error term, zt (9 × 1) is the vector of strongly exogenous

explanatory variables, and ut (3 × 1) is the vector of scaled score functions (Harvey 2013).

The assumption of strict exogeneity of zt is from the work of Harvey (2013, p. 56), which is
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supported for zt of Equation (2) in the work of Castle and Hendry (2020, p. 95). We initialize

µt by using the start values of the dependent variables y1 (Harvey 2013). The conditional mean

µt includes the following parameters: the vector of constant parameters γ0 (3 × 1), and the

parameter matrices Γ1 (3 × 3), Γ2 (3 × 9), Γ3 (3 × 9), and Ψ (3 × 3). We assume that the

maximum modulus of the eigenvalues of Γ1, denoted as Cµ, is less than one.

For Γ1, Γ2, and Γ3, we use the same aforementioned restrictions as in the work of Castle and

Hendry (2020), which is motivated by the following general-to-specific model selection procedure.

In the first step, for the parameter estimation of the score-driven ice-age model, we start with the

aforementioned restrictions of Γ2 and Γ3, and initially we use unrestricted parameter matrices

for Γ1 and Ψ. In a second step, we restrict those parameters of Γ1 and Ψ to zero which are

not significant at the 1% level. In this way, the same elements of Γ1 and Ψ are restricted for

the score-driven models as for matrix Γ1 in the work of Castle and Hendry (2020). Hence, the

following elements of Ψ are not restricted to zero: Ψ1,1, Ψ1,3, Ψ2,2, Ψ2,3, Ψ3,2, and Ψ3,3.

The reduced-form error term vt ∼ t3(0,Σ, ν) has a multivariate i.i.d. t-distribution, where

the scale matrix is Σ ≡ ΩΩ′ (3×3), for which Ω (3×3) is a lower-triangular squared matrix with

positive elements in the diagonal, and ν > 2 is the degrees of freedom parameter (the restriction

on the parameter space ν > 2 ensures that the covariance matrix of vt is well-defined).

The scaled score function ut is defined as follows. The log of the conditional density of yt is:

ln f(yt|Ft−1; Θ) = ln Γ

(
ν + 3

2

)
− ln Γ

(ν
2

)
− 3

2
ln(πν) (6)

−1

2
ln |Σ| − ν + 3

2
ln

[
1 +

v′tΣ
−1vt
ν

]
where vt = yt−µt, Θ = (Θ1, . . . ,ΘS)

′ is the vector of time-invariant parameters, which includes

the elements of γ0, Γ1, Γ2, Γ3, Ψ, Ω, and ν. The partial derivative of the log conditional density

ln f(yt|Ft−1; Θ) with respect to µt is (Harvey 2013):

∂ ln f(yt|Ft−1; Θ)

∂µt

=
ν + 3

ν
Σ−1 ×

(
1 +

v′tΣ
−1vt
ν

)−1

vt ≡
ν + 3

ν
Σ−1 × ut (7)
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The scaled score function ut is defined in the second equality of Equation (7), where vt is

multiplied by [1+(v′tΣ
−1vt)/ν]

−1 = ν/(ν+v′tΣ
−1vt) ∈ (0, 1). Therefore, the scaled score function

is bounded by the reduced-form error term: |ut| < |vt|. All elements of ut are bounded functions

of vt for ν < ∞ (Harvey 2013), hence all moments of ut are well-defined. In the work of Harvey

(2013), it is shown that ut is multivariate i.i.d. with mean zero and a covariance matrix:

Var(ut) = E

[
∂ ln f(yt|Ft−1; Θ)

∂µt

× ∂ ln f(yt|Ft−1; Θ)

∂µ′
t

]
=

ν + 3

ν + 5
× Σ−1 (8)

We also note that if ν → ∞, then ut →p vt. In the limiting case, Equations (3) and

(4) provide a VARMAX(1,1) (vector autoregressive moving average with exogenous variables,

VARMAX) structure for the dependent variables:

yt = γ0 + Γ1yt−1 + Γ2zt + Γ3zt−1 + (Ψ− Γ1)vt−1 + vt (9)

The benchmark ice-age model is a special case of the score-driven ice-age model, because if

ν → ∞ and Ψ = Γ1 for Equations (4) and (5), then we obtain Equation (1). This can also be

seen for the limiting case for ν → ∞ in Equation (9), by using Ψ = Γ1. We name Equation (9)

the score-driven homoskedastic Gaussian ice-age model.

All score-driven models are estimated by using the maximum likelihood (ML) method (Har-

vey 2013; Blasques et al. 2021). For the ML estimation, we assume correct model specifications

for all econometric models of the present paper. Under that assumption, the standard errors

of the ML estimates are consistently estimated by using the outer product of the gradient of

the log-likelihood (LL) function. Another consequence of the correct model specification as-

sumption is that the updating terms of the score-driven filters, asymptotically and at the true

values of parameters, are white noise vectors. For technical details on the statistical inference

of score-driven models, we refer to the works of Harvey and Chakravarty (2008), Harvey (2013),

Creal et al. (2008, 2011, 2013), Blasques et al. (2021), and Blazsek et al. (2020, 2021a, 2021b).

Impulse responses—First, we define the vector of the structural-form error terms ϵt (3× 1).
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The variance of the reduced-form error term vt ∼ t3(0,Σ, ν) is factorized, as follows:

Var(vt) = Σ× ν

ν − 2
=

(
ν

ν − 2

)1/2

× ΩΩ′ ×
(

ν

ν − 2

)1/2

(10)

Based on that, the following multivariate i.i.d. structural-form error term ϵt is introduced:

vt =

(
ν

ν − 2

)1/2

Ω× ϵt (11)

where E(ϵt) = 0, Var(ϵt) = I3 and ϵt ∼ t3[0, I3 × (ν − 2)/ν, ν]. Furthermore, by substituting

Equation (11) into Equation (7), ut as a function of the structural-form error term is:

ut = [(ν − 2)ν]1/2Ω
ϵt

ν − 2 + ϵ′tϵt
. (12)

Second, from Equations (4) and (5), the nonlinear MA(∞) representation of yt is:

yt = vt +
∞∑
j=0

(
Γj
1γ0 + Γj

1Γ2zt−j + Γj
1Γ3zt−1−j + Γj

1Ψut−1−j

)
(13)

=

(
ν

ν − 2

)1/2

Ω× ϵt

+
∞∑
j=0

{
ϕjγ0 + Γj

1Γ2zt−j + Γj
1Γ3zt−1−j + Γj

1Ψ[(ν − 2)ν]1/2Ω
ϵt−1−j

ν − 2 + ϵ′t−1−jϵt−1−j

}
We focus on the impulse responses for the dependent variables yt, because the variables within

zt are strongly exogenous to humanity. From yt, we are particularly interested in the dynamic

effects of the atmospheric carbon dioxide level on the Antarctic-based land surface temperature,

because humanity has influence on the CO2 emissions. Thus, the new measurement method of

impulse responses for the score-driven ice-age model of this paper may have policy implications

in relation to carbon dioxide emissions regulation. The contemporaneous and dynamic effects
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of the structural-form error term ϵt, respectively, are given by the following equations:

∂yt
∂ϵt

=

(
ν

ν − 2

)1/2

Ω (14)

∂yt+j

∂ϵt
= Γj−1

1 Ψ[(ν − 2)ν]1/2ΩD̃t for j = 1, . . . ,∞ (15)

where

D̃t =


ν−2+ϵ′tϵt−2ϵ21,t
(ν−2+ϵ′tϵt)

2

−2ϵ1,tϵ2,t
(ν−2+ϵ′tϵt)

2

−2ϵ1,tϵ3,t
(ν−2+ϵ′tϵt)

2

−2ϵ2,tϵ1,t
(ν−2+ϵ′tϵt)

2

ν−2+ϵ′tϵt−2ϵ22,t
(ν−2+ϵ′tϵt)

2

−2ϵ2,tϵ3,t
(ν−2+ϵ′tϵt)

2

−2ϵ3,tϵ1,t
(ν−2+ϵ′tϵt)

2

−2ϵ3,tϵ2,t
(ν−2+ϵ′tϵt)

2

ν−2+ϵ′tϵt−2ϵ23,t
(ν−2+ϵ′tϵt)

2

 (16)

We note that IRFs for the ice-age model are not reported in the work of Castle and Hendry

(2020). We study the robustness of the results of Castle and Hendry (2020), by comparing the

IRFs of the score-driven ice-age models and the IRFs of the benchmark ice-age model.

In Equation (15), the dynamic interaction effects are time-dependent due to D̃t. In the

empirical applications of the present paper we replace D̃t by the sample average (White 2001) for

the last 10 observations of the sample, because, as noted in the work of Castle and Hendry (2020,

p. 111), humanity has influenced climate for the last 10 thousand years. There are alternative

ways for the estimation of dynamic interaction effects for nonlinear models (Lütkepohl 2005),

hence the IRF estimation of our paper may be modified in future applications.

Finally, we also report contemporaneous and dynamic effects of the structural-form error

term ϵt for the score-driven ice-age model for the multivariate normal distribution:

∂yt
∂ϵt

= Ω (17)

∂yt+j

∂ϵt
= Γj−1

1 ΨΩ for j = 1, . . . ,∞ (18)

The IRFs of this section are identified by using the procedure of Rubio-Ramirez et al. (2010).

2.2.2. Score-Driven Heteroskedastic Ice-Age Model

Model specification—We extend the score-driven ice-age model for the homoskedastic multi-
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variate t-distribution, by considering score-driven conditional heteroskedasticity with constant

correlation coefficients for the reduced form error term vt. The model is specified as follows:

yt = µt + vt (19)

µt = γ0 + Γ1µt−1 + Γ2zt + Γ3zt−1 +Ψut−1 (20)

where µt (3×1) is the conditional mean of yt given Ft−1, which is defined later in this section, vt

is the multivariate i.i.d. reduced-form error term, zt (9× 1) is the vector of strongly exogenous

explanatory variables, and ut (3× 1) is the vector of scaled score functions. We initialize µt by

using y1 (Harvey 2013). The conditional mean µt includes includes the following parameters:

the vector of constant parameters γ0 (3× 1), and the parameter matrices Γ1 (3× 3), Γ2 (3× 9),

Γ3 (3 × 9), and Ψ (3 × 3). For the parameters of µt, we use the same restrictions as for the

homoskedastic score-driven ice-age model for the t-distribution. We assume that the maximum

modulus of the eigenvalues of Γ1, denoted as Cµ, is less than one.

The reduced-form error term vt|(Ft−1; Θ) ∼ t3(0,Σt, ν) has a multivariate conditional t-

distribution, where degrees of freedom ν > 2, the scale matrix is Σt ≡ DtRDt, where Dt (3× 3)

is a time-varying diagonal matrix with the score-driven scales of each time series, and R (3× 3)

is the time-invariant correlation matrix. The specification of this section assumes that the

correlation coefficients are constant over time. This specification can be extended according to

the results of Creal et al. (2011) to dynamic correlation coefficients, by using a score-driven

volatility plus correlation model for the t-distribution.

The positive definiteness of R and boundedness of the correlation coefficients for (−1, 1) are

ensured by using the following specification: R = ∆−1Q∆−1 ≡ ∆−1ΩΩ′∆−1, where ∆ (3× 3) is

a diagonal matrix in which the elements of the diagonal are the square roots of the elements of

the diagonal of the positive definite matrix Q (3 × 3) (Engle 2002). The positive definiteness

of Q is ensured by using the Cholesky decomposition Q = ΩΩ′, in which Ω (3 × 3) is a lower

triangular matrix with positive elements in the diagonal. For parameter identification reasons,
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each element of the diagonal of Ω is restricted to one. Furthermore, Dt is specified as follows:

Dt =


exp(λ1,t) 0 0

0 exp(λ2,t) 0

0 0 exp(λ3,t)

 (21)

We specify the filters λi,t in Equation (21) as follows:

λi,t = ωi + βiλi,t + αiei,t−1 + α∗
i sgn(−vi,t−1)(ei,t−1 + 1) (22)

where sgn(·) is the signum function, and α∗
i for i = 1, 2, 3 measure asymmetric effects in the

conditional scale of the dependent variables. We initialize λi,t for i = 1, 2, 3 using the uncondi-

tional mean E(λi,t) = ωi/(1 − βi) for i = 1, 2, 3, respectively (Harvey 2013). In the following,

we define the updating terms ut and ei,t. For the covariance stationarity of λi,t, asymptotically

at the true values of parameters, it is required that Ci,λ = |βi| < 1 for i = 1, 2, 3.

First, the scaled score function ut is defined as follows. The log conditional density of yt is:

ln f(yt|Ft−1; Θ) = ln Γ

(
ν + 3

2

)
− ln Γ

(ν
2

)
− 3

2
ln(πν) (23)

−1

2
ln |Σt| −

ν + 3

2
ln

[
1 +

v′tΣ
−1
t vt
ν

]
where vt = yt − µt, Ft−1 ≡ σ(y1, . . . , yt−1, z1, . . . , zt, µ1, λ1,1, λ2,1, λ3,1), Θ = (Θ1, . . . ,ΘS)

′ is the

vector of time-invariant parameters, which includes the elements of γ0, Γ1, Γ2, Γ3, Ψ, Ω, ω1, ω2,

ω3, β1, β2, β3, α1, α2, α3, α
∗
1, α

∗
2, α

∗
3, and ν. The partial derivative of the log of the conditional

density ln f(yt|Ft−1; Θ) with respect to µt is:

∂ ln f(yt|Ft−1; Θ)

∂µt

=
ν + 3

ν
Σ−1

t ×
(
1 +

v′tΣ
−1
t vt
ν

)−1

vt ≡
ν + 3

ν
Σ−1

t × ut (24)

The scaled score function ut is defined in the second equality of Equation (24), where vt is

13



multiplied by [1 + (v′tΣ
−1
t vt)/ν]

−1 = ν/(ν + v′tΣ
−1
t vt) ∈ (0, 1). Therefore, the scaled score

function is bounded by the reduced-form error term: |ut| < |vt|. All elements of ut are bounded

functions of vt for ν < ∞, hence all moments of ut are well-defined. The scaled score function

ut|(Ft−1; Θ) has a zero conditional mean and the following conditional covariance matrix:

Var(ut|Ft−1; Θ) =
ν + 3

ν + 5
× Σ−1

t (25)

The latter result is an extension of the work of Harvey (2013, p. 206).

Second, the updating term ei,t for i = 1, 2, 3 is defined as follows. The conditional distri-

butions of the marginals of yt are yi,t|(Ft−1; Θ) ∼ t[µi,t, exp(λi,t), ν] for i = 1, 2, 3 (Kibria and

Joarder 2006). The log of the conditional density of yi,t|(Ft−1; Θ) for i = 1, 2, 3 is

ln fi(yi,t|Ft−1; Θ) = ln Γ

(
ν + 1

2

)
− ln Γ

(ν
2

)
− 1

2
ln(πν)− λi,t (26)

−ν + 1

2
ln

[
1 +

v2i,t
ν exp(2λi,t)

]
where vi,t = yi,t − µi,t. We define the updating term of the filter λi,t for i = 1, 2, 3 as follows:

ei,t ≡
∂ ln fi(vi,t|Ft−1; Θ)

∂λi,t

=
(ν + 1)v2i,t

ν exp(2λi,t) + v2i,t
− 1 (27)

Equations (22) and (27) are the Beta-t-EGARCH with leverage effects model of Harvey and

Chakravarty (2008) (see also Creal et al. 2013 and Harvey 2013).

Impulse responses—First, we define the structural-form error terms ϵt (3×1). The conditional

variance of the reduced-form error term vt|(Ft−1; Θ) ∼ t3(0,Σt, ν) is factorized, as follows:

Var(vt|Ft−1; Θ) = Σt ×
ν

ν − 2
=

(
ν

ν − 2

)1/2

Dt∆
−1Ω× Ω′∆−1Dt

(
ν

ν − 2

)1/2

(28)
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Based on that, the following multivariate i.i.d. structural-form error term ϵt is introduced:

vt =

(
ν

ν − 2

)1/2

Dt∆
−1Ω× ϵt (29)

where E(ϵt) = 0, Var(ϵt) = I3 and ϵt ∼ t3[0, I3 × (ν − 2)/ν, ν]. Furthermore, by substituting

Equation (29) into Equation (24), ut as a function of the structural-form error term is:

ut = [(ν − 2)ν]1/2Dt∆
−1Ω

ϵt
ν − 2 + ϵ′tϵt

. (30)

Second, from Equations (19) and (20), the nonlinear MA(∞) representation of yt is:

yt = vt +
∞∑
j=0

(
Γj
1γ0 + Γj

1Γ2zt−j + Γj
1Γ3zt−1−j + Γj

1Ψut−1−j

)
(31)

=

(
ν

ν − 2

)1/2

Dt∆
−1Ω× ϵt

+
∞∑
j=0

{
ϕjγ0 + Γj

1Γ2zt−j + Γj
1Γ3zt−1−j + Γj

1Ψ[(ν − 2)ν]1/2Dt∆
−1Ω

ϵt−1−j

ν − 2 + ϵ′t−1−jϵt−1−j

}
The contemporaneous and dynamic effects of the structural-form error term ϵt, respectively,

are given by the following equations:

∂yt
∂ϵt

=

(
ν

ν − 2

)1/2

Dt∆
−1Ω (32)

∂yt+j

∂ϵt
= Γj−1

1 Ψ[(ν − 2)ν]1/2Dt∆
−1ΩD̃t for j = 1, . . . ,∞ (33)

where D̃t is given by Equation (16). In Equations (32) and (33), the dynamic interaction effects

are time-dependent due to Dt and D̃t. We replace Dt and D̃t by their sample averages for the

last 10 observations of the sample (Castle and Hendry 2020). The IRFs are identified by using

the procedure of Rubio-Ramirez et al. (2010). We also refer to the work of Lütkepohl (2005)

for alternative estimation methods for time-varying IRFs.
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3. Empirical Results

3.1. Data and In-Sample Results

Data—In Table 2, the dependent and the explanatory variables are presented. The table

shows the definition of each variable, observation period, units of measurement, data sources, and

some descriptive statistics. In Figures 1 and 2, the evolution of the dependent and explanatory

variables, respectively, are presented. According to Figures 1(b) and 1(c), atmospheric CO2,t

and land surface temperature Tempt, respectively, remarkably are in unison. In Figure 1, it

can also be noticed that Antarctic ice volume Icet moves in the opposite direction from CO2,t

and Tempt, creating the ice-age and inter-glacial periods periodically. The seasonality of the

dependent variables (Figure 1), which is partly due to the three main interacting orbital changes

over time affecting solar radiation (Figure 2), is clearly observed in these figures.

In-sample results—In Table 3, the ML parameter estimates for the (i) benchmark ice-age

model (Castle and Hendry 2020), (ii) score-driven homoskedastic ice-age model for the normal

distribution, (iii) score-driven homoskedastic ice-age model for the t-distribution, and (iv) score-

driven heteroskedastic ice-age model for the t-distribution are reported. According to the table,

under the parameter restrictions for Γ1, Γ2, Γ3, and Ψ, the estimated parameters, for all models,

are significantly different from zero. For the most general score-driven heteroskedastic ice-age

model for the t-distribution, significant and asymmetric volatility dynamics are estimated, as αi

and βi for i = 1, 2, 3, and α∗
i for i = 1, 2, are significantly different from zero.

In Table 4, the statistical performance metrics and some diagnostic test results for the

models of Table 3 are reported. The statistical performances are compared by using the LL,

Akaike information criterion (AIC), Bayesian information criterion (BIC), and Hannan–Quinn

criterion (HQC) metrics. The use of these variables for score-driven models is motivated by

the work of Harvey (2013, p. 56). We find that the statistical performance of the score-driven

heteroskedastic ice-age model for the t-distribution is superior to the statistical performances of

other specifications of Tables 3 and 4. For all models, we find that the Cµ and Ci,λ for i = 1, 2, 3

statistics support the covariance stationarity of µt and λi,t, respectively. As a diagnostic test of
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the residuals, we use the Ljung–Box test (Ljung and Box 1978) for all elements of vt, ϵt, ut, and

et. The diagnostic tests for the score functions ut, and et are motivated by the work of Harvey

(2013, p. 55), due to the robustness to extreme observations of the score-function-based Ljung–

Box test. The Ljung–Box test results indicate that the ice-age model of Castle and Hendry

(2020) is not fully supported, which is noted in the same work (p. 102, footnote 4). From

the score-driven ice-age specifications, full support is provided for the most general score-driven

heteroskedastic ice-age model for the t-distribution.

In the following, we present the parameter estimates for the benchmark ice-age model (Equa-

tion (1)) and the score-driven heteroskedastic ice-age model for the t-distribution (Equation

(20)). First, the estimates of Equation (1) are given by (Table 3):

ˆIcet = 1.3735 + 0.8549 Icet−1 − 0.0208 Tempt−1 + 95.8353 Ect − 47.5937 EctObt

−5.2167 EctPrt − 93.5393 Ect−1 − 0.3706 Obt−1 + 46.7753 Ect−1Obt−1

(34)

ĈO2,t = 1.8718 + 0.8468 CO2,t−1 + 0.0136 Tempt−1 + 13.8095 Ect + 0.2106 Ob2
t

−27.1270 Ect−1 − 1.1138 Obt−1 + 5.6423 Ect−1Obt−1

(35)

ˆTempt = −2.6657 + 0.8587 CO2,t−1 + 0.8684 Tempt−1 − 335.9696 Ect

+254.2055 EctObt + 26.6287 EctPrt − 111.3537 Ect−1Obt−1

(36)

The estimates correspond to the estimates of Castle and Hendry (2020, p. 104). We note that

one unit of CO2,t is 7.8 gigatonnes in their work, and one unit of CO2,t is 780 gigatonnes in the

present paper. Hence, the difference between the CO2,t parameter estimates in their work (p.

104, Equation (6.4)), and our CO2,t parameter estimates. Second, the estimates of Equation

(20) are given by (Table 3):

ˆIcet = 1.1817 + 0.8824 Icet−1 − 0.0172 Tempt−1 + 84.6136 Ect − 42.7119 EctObt

−4.8681 EctPrt − 83.4944 Ect−1 − 0.3307 Obt−1 + 42.4409 Ect−1Obt−1

+0.9651 u1,t−1 − 0.0289 u3,t−1

(37)
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ĈO2,t = 1.4068 + 0.8528 CO2,t−1 + 0.0122 Tempt−1 + 11.9581 Ect + 0.1270 Ob2
t

−26.3809 Ect−1 − 0.7289 Obt−1 + 6.1482 Ect−1Obt−1

+1.3943 u2,t−1 + 0.0166 u3,t−1

(38)

ˆTempt = −0.6955 + 0.1382 CO2,t−1 + 0.9377 Tempt−1 − 272.0190 Ect

+194.7069 EctObt + 17.5525 EctPrt − 78.4289 Ect−1Obt−1

+4.7059 u2,t−1 + 0.9860 u3,t−1

(39)

To compare the parameter estimates of Equations (34)-(36) with those of Equations (37)-(39),

the dynamic interaction effects for Antarctic ice volume, atmospheric CO2, and land surface

temperature are studied by using the IRFs.

In Figures 3 to 6, the IRFs for the (i) benchmark ice-age model, (ii) score-driven homoskedas-

tic ice-age model for the normal distribution, (iii) score-driven homoskedastic ice-age model for

the t-distribution, and (iv) score-driven heteroskedastic ice-age model for the t-distribution, re-

spectively, are reported. The IRF estimates for the score-driven models indicate robust IRF

estimation results in the work of Castle and Hendry (2020). The IRFs of Figures 3 to 6 are

identified by using sign restrictions on the contemporaneous relations. The IRF figures indicate

that the signs of the dynamic interaction effects are coherent with the signs of the same inter-

action effects of the aforementioned works of Archer et al. (2004), Jouzel et al. (2007), Lüthi

et al. (2008), Qin and Buehler (2012), Bronselaer et al. (2018), Wadham et al. (2019), and

Castle and Hendry (2020). According to Figures 3 to 6, the IRF estimates are persistent and

are consistent with the estimates of the long-run solutions of Equation (1) reported in the work

of Castle and Hendry (2020, p. 107, Table 6.4).

By comparing the IRF estimates of the benchmark ice-age model with those of the score-

driven ice-age models, for several panels of Figures 3 to 6, stronger effects are measured for the

score-driven ice-age models than for the benchmark ice-age model. The strongest effects are

measured for the score-driven heteroskedastic ice-age model for the t-distribution (Figure 6).

We find the following differences: (i) For the benchmark ice-age model, the dynamic effects of
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a unit Icet shock (i.e., measured based on the δ18O proxy) on CO2,t are less than −0.25 (i.e.,

−195 gigatonnes of CO2), while for the score-driven models the same effect is stronger and it

is approximately −0.35 (i.e., −273 gigatonnes of CO2) (Figures 3 to 6, Panel (d)). (ii) For the

benchmark ice-age model, the dynamic effects of a unit Tempt shock on CO2,t are less than 0.25

(i.e., 195 gigatonnes of CO2), while for the score-driven models the same effect is stronger, and

it is between 0.30 and 0.35 (i.e., 234 and 273 gigatonnes of CO2, respectively) (Figures 3 to 6,

Panel (f)). (iii) For the benchmark ice-age model, the dynamic effects of a unit Icet shock (i.e.,

measured based on the δ18O proxy) on Tempt are less than −0.35 (i.e., −3.5 Celsius degrees),

while for the score-driven models the same effect is stronger, reaching an estimate between −0.40

and −0.45 (i.e., −4 and −4.5 Celsius degrees, respectively) (Figures 3 to 6, Panel (g)). (iv) For

the benchmark ice-age model, the dynamic effects of a unit CO2,t shock (i.e., an increase of 780

gigatonnes of CO2 in the atmosphere) on Tempt is approximately 3.5 Celsius degrees, while it

is above 4 Celsius degrees for the score-driven ice-age models (Figures 3 to 6, Panel (h)).

Finally, in Figure 7, we present the scaled score function ut as a function of the structural-

form error term ϵt. The figure presents the estimates for the score-driven heteroskedastic ice-age

model for the t-distribution, which is the best-performing ice-age specification according to the

likelihood-based model selection metrics. In the three-dimensional graphs of Figure 7, we present

the elements of ut from Equation (30) as functions of ϵ1,t and ϵ2,t, where ϵ3,t = 0 for the purpose

of illustration. We note that within theDt term of Equation (30), we use the unconditional mean

estimate of λi,t for i = 1, 2, 3, which is Ê(λi,t) = ω̂i/(1−β̂i) for i = 1, 2, 3, respectively. The figure

indicates that extreme values of the structural-form error terms are discounted by the scaled

score functions. This supports the outlier-robustness of the score-driven ice-age models of the

present paper. We also note that very similar score-functions are estimated for the score-driven

homoskedastic ice-age model for the t-distribution.
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(a). Ice volume Icet

(b). Atmospheric carbon dioxide level CO2,t

(c). Antarctic-based land surface temperature Tempt

Figure 1. Evolution of Icet, CO2,t, and Tempt from 798 thousand years ago to 1 thousand years ago.
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(a). Eccentricity of the Earth’s orbit Ect

(b). Obliquity (the tilt of the Earth’s rotational axis relative to the ecliptic) Obt

(c). Precession of the equinox (circular rotation of the rotational axis itself) Prt

Figure 2. Evolution of Ect, Obt, and Prt from 798 thousand years ago to 1 thousand years ago.
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(a). u1,t as a function of ϵ1,t and ϵ2,t

(b). u2,t as a function of ϵ1,t and ϵ2,t

(c). u3,t as a function of ϵ1,t and ϵ2,t

Figure 7. Robustness of the scaled score function to extreme values. Note: ϵ3,t = 0 is assumed for this figure.
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3.2. Out-of-Sample Forecasting Results

In Table 5, the multi-step ahead out-of-sample forecasting performances of the (i) benchmark

ice-age model (Castle and Hendry 2020), (ii) score-driven homoskedastic ice-age model for the

normal distribution, (iii) score-driven homoskedastic ice-age model for the t-distribution, and

(iv) score-driven heteroskedastic ice-age model for the t-distribution are compared.

The following climate variables are predicted: Icet, CO2,t, and Tempt. The estimation window

is for the period of 798 thousand years ago to 101 thousand years ago (T = 698), for which

humanity did not influence the Earth’s climate. The multi-step ahead forecasting window is

for the last 100 thousand years (Tf = 100). Due to the periods included in the estimation

and forecasting windows, the forecasting results can disentangle the effects of humanity and the

exogenous effects on the Earth’s climate. We use two loss functions for forecasting performance

evaluation: (i) mean square error (MSE), and (ii) mean absolute error (MAE). These loss

functions are averaged for different periods of the last 100 thousand years (Table 5). We do not

use statistical tests of forecasting accuracy, due to the small sample size.

For most of the cases, the MSE and MAE results indicate that, for the periods of the last

100 thousand years to the last 30-40 thousand years, the benchmark ice-age model provides the

most precise forecasts (Table 5). The only exception for the MAE-based forecasting performance

evaluation is for Icet, for which the results indicate that for the periods of the last 100 thousand

years and the last 90 thousand years, the score-driven heteroskedastic ice-age model for the

t-distribution provides the most precise forecasts (Table 5). The results also indicate for all

variables that, for the most recent period of the last 20-30 thousand years, in which humanity

impacted the Earth’s climate, the score-driven homoskedastic ice-age model for the t-distribution

provides the most precise forecasts (Table 5).

In Figure 8, the multi-step ahead out-of-sample forecasts of Icet, CO2,t, and Tempt for the (i)

benchmark ice-age model, (ii) score-driven homoskedastic ice-age model for the normal distribu-

tion, (iii) score-driven homoskedastic ice-age model for the t-distribution, and (iv) score-driven

heteroskedastic ice-age model for the t-distribution are presented.
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The figure includes the observed values of Icet, CO2,t, and Tempt, the forecasts of these

variables, and the forecasts ± one standard deviation estimates of the forecasts. The figure

shows the following interesting results for the most recent period of the sample, when humanity

impacted the Earth’s climate (Castle and Hendry 2020). For the last 10-15 thousand years of

the forecasting window, the observed values of ice are below the forecast interval, indicating

unexpectedly low levels of ice. Moreover, for the last 10-15 thousand years of the forecasting

window, the observed levels of CO2 and temperature are above the forecast interval, indicating

unexpectedly high levels of CO2,t and temperature. These multi-step ahead forecasting results

are robust for the different econometric models (Figure 8), and are consistent with the results

in the work of Castle and Hendry (2020, Figures 6.9, 6.12, and 6.13).

In Figure 9, the one-step ahead out-of-sample forecasts of Icet, CO2,t, and Tempt for the (i)

benchmark ice-age model, (ii) score-driven homoskedastic ice-age model for the normal distribu-

tion, (iii) score-driven homoskedastic ice-age model for the t-distribution, and (iv) score-driven

heteroskedastic ice-age model for the t-distribution are presented. We use a rolling-window ap-

proach for estimation and forecasting. The first rolling-window is for the period of 798 thousand

years ago to 101 thousands years ago (T = 698). After the model estimation, the one-step

ahead forecasts of all dependent variables are computed. Then, the first observation of the

rolling-window is excluded and a new last observation is added from the sample. This estima-

tion and the one-step ahead forecasting procedure is repeated until the end of the full sample

period, providing Tf = 100 one-step ahead out-of-sample forecasts.

The figure includes the observed values of Icet, CO2,t, and Tempt, the forecasts of these

variables, and the forecasts ± one standard deviation estimates of the forecasts. As for the

multi-step ahead forecasts, for the last 10-15 thousand years, the figure shows a significant

decrease in the level of ice and significant increases in CO2 and temperature. For most of the

periods of the last 10-15 thousand years, the observed values of ice are unexpectedly located

below the mean forecasts, and the observed values of CO2 and temperature are unexpectedly

located above the mean forecasts. These forecasting results are robust for the different models.
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4. Discussion

We have compared the statistical and forecasting performances of the benchmark ice-age

model (Castle and Hendry 2020) and those of our score-driven ice-age models. We have used

data for climate and orbital variables for the last 798 thousand-year period, and we have provided

out-of-sample forecasts of Antarctic ice volume, CO2, and temperature for the last 100 thousand

years. We have studied the robustness of the results of the benchmark model.

For data of the last 798 years, the statistical performance metrics and diagnostic tests have

indicated that the dynamic specification of the benchmark ice-age model is improved. We have

reported impulse responses among Antarctic ice volume, atmospheric CO2, and land surface

temperature, which are robust for the specification of Castle and Hendry (2020). We have

found that the average impact of a unit increase in the atmospheric CO2 level on land surface

temperature is approximately 3.5 Celsius degrees for the benchmark ice-age model, and it is

above 4 Celsius degrees for the score-driven models of our paper.

We have found that the forecasting results of the benchmark model are robust, by using data

for the first 698 thousand years of the sample, for which humanity did not influence the Earth’s

climate, to forecast Antarctic ice volume, atmospheric CO2, and land surface temperature for

the last 100 thousand years of the sample. In this way, the effects of humanity and the effects

of exogenous variables on the Earth’s climate have been disentangled. For the last 10 to 15

thousand years when humanity influenced the Earth’s climate, we have found the following

results: (i) the forecasts of ice volume are above the observed ice volume, (ii) the forecasts of the

atmospheric CO2 level are below the observed CO2 level, and (iii) the forecasts of temperature

are below the observed temperature. These results help to disentangle the effects of humanity

and the effects of the exogenous orbital variables on the Earth’s climate, and they also a provide

motivation to take further proactive actions to significantly reduce the greenhouse gas emissions,

and to respond to the most important challenge of the 21th century: global warming.
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