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CHAPTER 1

INTRODUCTION

Density-based clustering algorithms involve a relevant subset of all the methods devel-
oped for cluster analysis, which is one of the fundamental pillars of unsupervised learn-
ing [2]. While the origins of clustering can be traced to the early 20th century [3], it is not
until the 1990s that the concerns that would lead to develop density-based clustering algo-
rithms are raised [4]. In 1996, the most popular density-based clustering algorithm to date
(DBSCAN) is published [5] and, with it, many applications for density-based clustering
are found within increasingly different fields over the next decades.

In this introductory chapter, we present an overview of the research that led to this
dissertation, focused mainly on density-based clustering. The work presented in this doc-
ument can be divided into two main blocks, which, briefly stated, are: (1) research on
the development of novel density-based algorithms and (2) research on evaluation tech-
niques and metrics for density -based clustering. The motivation that led to this approach
is expressed in Section 1.1. First, the original motivation to pursue the study of density-
based clustering algorithms (landmark discovery) is introduced in Section 1.1.1. After
that, in Section 1.1.2, we explain the demand for an evaluation benchmark applicable to
density-based clustering algorithms.

In Section 1.2, the main objectives of this thesis, which emerge from the demands
and opportunities introduced in the motivation section, are presented and justified. Sub-
sequently, we introduce the main scientific contributions of this thesis (Section 1.3). A
notation guide is then included to serve as a reference for the reader (Section 1.4). Lastly,
the description regarding the structure of this document is included in Section 1.5.

1.1. Motivation

Density-based clustering techniques are used in a wide range of scenarios. Since they
were originally conceived for spatial databases [5], [6], the most typical usually involve
this type of data. In this context, even many of the recent instances of research within
the field of density-based clustering are proposed generically with spatial datasets in
mind [7], [8]. Nevertheless, other lines of research have proposed alternative applications
for density-based clustering. Some of them are directly related to physical, real-world
spatial features, like the study of human mobility [9], trajectory segmentation [10] and
landmark discovery [1], which are all mainly based on the use of GPS data. However,
density-based clustering has also been applied in many other diverse contexts, such as
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Figure 1.1: Example of 9 landmarks to be discovered in the city of Madrid (Spain). Map
obtained from OpenStreetMaps2.

audio source analysis [11], image segmentation [12] or motion pattern analysis [13].

A frequent characteristic among scenarios where density-based clustering algorithms
are applicable is the scarcity of labeled data. Moreover, even when labels are available,
there is often disparity of criteria in the annotations. Therefore, the development of spe-
cific evaluation techniques for density-based clustering is of paramount importance. Fur-
thermore, there is a need to standardize these evaluation techniques to provide a sensi-
ble consensus. In this context, the acquisition of relevant data to conform an evaluation
benchmark is a robust option to cover the mentioned needs.

It is worth mentioning that this thesis has been partially developed within the frame-
work of an existing research project, which focused on obtaining touristic landmarks from
publicly available data (geo-located images and some additional textual information). As
a result, the research presented in this thesis is often applied to the task of landmark
discovery, which becomes the standard case of study for the proposed algorithms and
evaluation techniques.

1.1.1. The landmark discovery task

The main goal of automatic landmark discovery is to determine, within a certain distribu-
tion, concealed regions or points that are particularly relevant, given a specific criterion.
Landmark discovery is a particularly challenging task, often due to the difficulty of deter-
mining relevant characteristics that support the identification of a landmark. This problem
is illustrated in Fig. 1.1, where 9 potential landmarks to be discovered in a map of the city
of Madrid, annotated by a hypothetical observer, are displayed. On this map, we can no-

2OpenStreetMap: https://www.openstreetmap.org/copyright
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tice some of the potential problems that can be encountered in landmark discovery. The
first noticeable aspect is the disparity of clusters’ shapes and sizes, which, as we will dis-
cuss later on in Section 2.1.1, can be problematic for some techniques. As we reflect on
the figure, other problems can arise. For instance, cluster 2 contains Spain’s Royal Palace,
which is undoubtedly a relevant touristic landmark. However, immediately south of it is
Madrid’s Cathedral which, for this (arbitrary) example, is not relevant enough to be con-
sidered a relevant landmark. And so, the first potential disparity of criteria is encountered.
Similarly, cluster 9 (park El Retiro) is annotated as a single cluster, but a different observer
could have viewed its internal monuments as singular, independent entities (dotted lines).
Another potential problem is data similarity. For instance, clusters 7 (Columbus Square)
and 8 (National Library) are significantly close, so assuming, for instance, that we only
rely on geographical information, they could be indistinguishable to an automated system.
For the rest of the clusters (1,3,4,5 and 6), we can observe another potential problem. Al-
though no major difficulties should be expected regarding their discovery, since they are
reasonably separated from the rest, their shape could vary from one annotator to another
(e.g. for cluster 6, the Atocha train station, the landmark could include the train tracks or
not).

Hence, a consensus for what constitutes a landmark must be agreed upon. A usual
property to identify landmarks is their popularity, meaning that if an event, area or at-
tribute within a sample space is recurrent, it should be considered as a landmark.

Clustering-based approaches are often chosen to address the automatic discovery of
landmarks in various fields [14][15]. Particularly, real-world landmark discovery appli-
cations often focus on spatial datasets [16]. Within this context, the discovery of touristic
landmarks is a field worth studying. Expert tools to support the tourist industry have been
previously developed, like an application to detect unexpected behavior and prevent or
mitigate undesired situations within cities [17] or a personalized route-planner based on
social-media data [18]. Nonetheless, the discovery of relevant landmarks is a particularly
recurrent topic among the state-of-the-art [19]–[21]. The angle of the approach, however,
is immensely variable.

In some works, textual contributions such as geo-located tweets have been used as
part of a place-relevance detector [22]; in others, user-generated images are employed and
their visual properties can be used to discriminate between landmarks [23]. In this sense,
the most common approach relies on geo-located images [24][25], as they provide both
location and visual information, which notably boosts the performance of the detection
process. In some cases, additional meta-data attached to the source images can be also
used to refine the process [26].

Although the use of images and geo-located content provides powerful cues for land-
mark discovery, it also introduces some challenges. One example of this is that the spatial
areas associated to real-world landmarks (e.g., parks, buildings) have arbitrary shapes
and, therefore, are not easy to model with traditional centroid-based clustering over GPS-
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coordinates. To cope with this issue, spectral and density-based clustering have been
employed [27] [28] and showed decent results. However, mainly due to the fact that most
approaches focus on large cities or individual conurbations, there is a particular prob-
lem that has not been properly solved yet: scale and density variability along the sample
set. This problem is frequently encountered when the area of analysis is large region
that consists of several non-connected inhabited cores (e.g., a coastal area composed of
several villages). Traditional density-based approaches like DBSCAN [5] fail to con-
sider the possibility of diverse-density clusters coexisting in the same sample space. In
this scenario, hierarchical approaches can become a decent solution for the problem of
scale [29], whereas variations in density have been also considered and modeled in some
previous works [26]. However, the former were not conceived with the specific task of
landmark discovery in mind and, therefore, have some inconvenient limitations that will
be later meticulously addressed in Chapters 3 and 6. These chapters also discuss the latter
(P-DBSCAN) and show that it does not provide appropriate results in our scenarios.

Consequently, there was an opportunity for additional research in this context to ad-
dress the aforementioned problems through the development of novel techniques (see
Section 1.2).

1.1.2. Density-based clustering evaluation: a benchmark

Ideally, when a novel clustering algorithm is developed, one should provide an accurate
idea of its behaviour. This is often done through empirical evidence, whether it is in
generic scenarios and datasets [30] or in a particular context of application of the algo-
rithm [31]. Furthermore, there is another option often employed when a new algorithm
is implemented (or when we want to study the behaviour of existing algorithms), which
consists in assessing it using a more general and rich evaluation benchmark.

Benchmark datasets are chosen to represent different characteristics in data distribu-
tions and, hence, reflect the behaviour of an algorithm in such circumstances. Such data
can be either real-world data or synthetic, with each option having advantages and disad-
vantages. Authors in [32] and [33] both discuss these pros and cons. While the former
criticizes the use of synthetic data for evaluating the actual usefulness of the algorithm,
the latter argues that, in fact, employing real-world datasets makes sense if the final (and
preferably unique) purpose of the algorithm is known, whereas the use of synthetic data
is quite enlightening if certain specific behaviours are analyzed, as it allows the isolation
of those particular characteristics while reducing the impact of others. Such an approach
is obviously impossible when dealing with real-world datasets.

There are a variety of benchmark datasets that may be used to observe algorithm
behaviour, from typical toy datasets (like the one shown in Fig. 1.2) to datasets explic-
itly gathered for specific purposes: image segmentation [35], web document [36] or au-
dio [37] clustering. However, at the time this dissertation was written, a significant gap
was found in the literature with respect to benchmark data for density-based clustering.
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Figure 1.2: Behaviour of several clustering algorithms (K-Means, Mean-Shift and DB-
SCAN) in toy datasets with different characteristics. Taken from [34].

In other words, when density variations are paramount to correctly identify groups within
the data, researchers do not have a reference benchmark to resort to, and they often have
to gather specific datasets to evaluate the performance of the clustering algorithms. This
is the case of automatic landmark discovery, for instance, where labeled data is not easy
to find (see Section 1.1.1). Although some survey articles [33] suggest the use of syn-
thetic, parametrizable data to study the statistical performance of the algorithms, which
could potentially be adapted for density-based clustering algorithms, they emphasize on
the unrealistic nature of their synthetic data, which effectively reduces the impact of the
benchmark data.

Another factor that should be accounted for when considering a benchmark is the
choice of the evaluation metric. There are two types of metrics to be considered when
evaluating clustering partitions: (1) external metrics, which rely on some ground-truth
labeled partition to be compared to the partition under analysis and provide a measure
of their similarity; and (2) internal metrics, which are based on the characteristics of the
data that belong to each cluster, usually providing a measure of cluster compactness and
separation.

When labeled data is available, the use of external evaluation is the obvious choice,
since it is based on the true nature of the data. Many comparisons between such evalu-
ation techniques have been made in the context of clustering [38][39] and, particularly,
in the context of density-based clustering [40]. However, due to the scarcity of annotated
databases [41], external evaluation is not always possible.

Of course, we can also resort to internal metrics to establish the performance of an al-
gorithm. These have also been employed when labeled databases were not available [42].
Analogously to the case described in the paragraph above, comparison studies between
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such indexes have also been made [43]. However, internal metrics, as we will discuss
in depth in this dissertation, do not always realistically reflect the actual behaviour of
an algorithm. Therefore, their use is often restrained to certain scenarios with limited
characteristics.

Overall, the current state-of-the-art evaluation possibilities, considering both the avail-
able benchmark data and the potentially applicable metrics, are insufficient to rigorously
study the behaviour of density-based clustering algorithms. Naturally, these claims are
further explored and properly justified in the subsequent chapters of this dissertation. In
the next section, we summarize the approach taken in this research to overcome these
limitations.

1.2. Thesis objectives

As it was introduced in the previous sections and will be further developed in the follow-
ing chapters, there is a clear opportunity to develop the field of density-based clustering
both by innovating in the context of algorithm design and by expanding the available
background regarding evaluation methods in the field. This dissertation sows the seeds
of these demands and attempts to address them through novel scientific contributions. To
this end, the following objectives have been established:

1. To design and implement a new density-based clustering technique tailored to the
task of automatic landmark discovery, i.e, suitable for scenarios where clusters may
have varying shapes and densities.

2. To develop a method that automatically generates synthetic data with a flexible,
parametrizable system that truthfully reflects the nature of data distributions with
arbitrary characteristics such as dimensionality, noise, shape, density variations,
etc.

3. To design and implement a new internal evaluation technique that resembles in the
most accurately possible way the performance of external metrics within the field
of density-based clustering.

4. To gather a sufficiently reflective dataset collection, both synthetic and real, to be
able to build an evaluation benchmark for density-based clustering.

1.3. Scientific contributions

The pursuit of fulfilment of the aforementioned objectives led to the proposal of some
novel scientific contributions discussed in this dissertation. These contributions, which
are fully described and justified in the next chapters, can be grouped into three categories:
(1) algorithms, (2) databases and (3) evaluation techniques.
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Regarding the first category, we present two novel density-based clustering algorithms
(KDBSCAN and VDBSCAN) that have a direct applicability on the task of automatic land-
mark discovery. We will prove that the combination of these two algorithms adapts to both
urban and rural areas, whether they consist of a single dense conurbation or of several
non-connected inhabited cores. We take ideas from previous approaches and develop a
new clustering scheme to address the problem of varying density along the sample space.
Particularly, we make several assumptions regarding the radial distribution of human in-
habited areas, and carry out a granularity analysis of the area, which proves to be very
efficient dividing a large region into different towns or villages.

With respect to the acquisition of data, geodesic content from diverse real locations
was gathered to directly evaluate the behaviour of KDBSCAN and VDBSCAN in the task
of landmark discovery. Furthermore, a new flexible data generation system was devel-
oped (SynFlex). This system’s parameters can be used to imitate certain realistic data
characteristics that are not often found in synthetic data, like variety of shapes, hierarchy
depth or inter-cluster density variations.

Finally, regarding the third category, a new internal evaluation metric (FLAG index)
has been designed to reflect the performance of algorithms in datasets with strong den-
sity variations and cluster shape arbitrariness. Moreover, the proposed SynFlex system
and FLAG index are combined with existing external metrics from the literature (see Sec-
tion 2.2.2) to build an evaluation benchmark (containing both real and synthetic data) that
reflects the behaviour of a given clustering algorithm in relevant scenarios where varia-
tions in density, dimensionality, shape, noise presence and hierarchy are factors of special
relevance.

Summarizing, the main novel scientific contributions of this research are the follow-
ing:

1. A Kernel-based variation of DBSCAN (KDBSCAN), published in [1], whose goal
is to identifying arbitrarily-shaped groups of points within a significantly sparse
sample space, without previous knowledge of the amount of resulting clusters. This
algorithm will be applied to the discovery of non-connected human settled areas
(towns, villages) within a region of analysis.

2. A multi-scale variation of DBSCAN that takes into account the variations in den-
sity when moving away from the centroid of the data (VDBSCAN). This algorithm,
published in [1], will be used for the discovery of relevant landmarks within a con-
nected region, considering user-provided, geodesic and text-based information.

3. A novel public dataset, made from user-generated contents, which contains six par-
tially labeled heterogeneous locations, from single conurbations to larger regions
with non-connected cores. This dataset will be used to evaluate the aforementioned
algorithms and compare them with other relevant algorithms.
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4. A novel synthetic data generation system with flexible parametrization (SynFlex)
that reflects real data characteristics. This system will be used to generate realistic,
synthetic data to evaluate density-based clustering algorithms.

5. A new internal evaluation index (FLAG) based on intra-cluster fluctuation and the
agglomeration of elements in the local environment of each cluster (inter-cluster
dispersion). This metric will be used to evaluate the performance of clustering
algorithms when annotated real-world data is unavailable.

6. A benchmark designed to reflect the behaviour of a clustering algorithm with re-
spect to five crucial factors in cluster analysis: shape, density, noise presence, hier-
archy depth and dimensionality. This is done through the use of synthetic data and
a selected number of unlabeled real-world datasets.

1.4. Notation guide

In this section, we present a quick guide for the key notation used in this document and
some additional clarifications for the sake of comprehension. The notation used and its
description are shown in Table 1.1.

Note that, when sub-indices are defined as part of the elements name, the element is
defined accordingly. For instance, let us define ξG as a variable, then G is part of the term
(i.e., it does not define the Gth element of a given ξ). Furthermore, note that even though
an element can be referred to as a point, if it is represented by a vector of coordinates, it
is denoted as a vector. Finally, it is worth noticing that a set C can contain scalars, vectors
or other sets.

Notation Description
a scalar (index, element of a vector, etc.)
b vector
C set
C∁ complement of set C
bi ith element of vector b; scalar
bi, j jth position of the ith element of vector b
|C| Cardinality of set C
ci ith element of set C; scalar
ci ith element of set C; vector
Ci ith element of set C; set

Table 1.1: Notation guide.

1.5. Structure of the document

The last section of this introductory chapter consists of a brief presentation and description
of the contents of the subsequent chapters.
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Chapter 2 provides a review of the current literature and related technologies. First,
a review on density-based clustering is presented, including a brief overhaul of its histor-
ical context and its main practical applications. Then, we include an assessment of the
current evaluation techniques applicable to unsupervised learning, highlighting the role
of database acquisition and some of the main external and internal metrics. Finally, the
particular context of landmark discovery is explored, since it is a fundamental focus of
the research that led to this dissertation.

Chapter 3 introduces the proposed density-based clustering algorithms. KDBSCAN
and VDBSCAN are two modifications of the classic DBSCAN algorithm that can be used
in different contexts. Nonetheless, we apply them in the particular context of landmark
discovery. The algorithms are rigorously defined and the application context is described
in detail.

Chapter 4 describes the experiments carried out to validate and demonstrate the per-
formance of the proposed algorithms (KDBSCAN and VDBSCAN). The details regarding
the gathered datasets from real locations and their associated landmarks are explained,
and the results obtained by the algorithms (as well as a comparison with other relevant
algorithms) are discussed.

Chapter 5 introduces the techniques developed with the goal of establishing an ade-
quate benchmark for density-based clustering algorithms. First, the synthetic data gen-
eration system with flexible parametrization (SynFlex) is explained and, after that, the
developed internal metric (FLAG) is also presented. To conclude, the main characteristics
of the benchmark are introduced.

Chapter 6 presents the validation experiments for the techniques presented in Chap-
ter 5. First, the SynFlex system and the FLAG index are verified using a real-world,
fully annotated dataset. Then, the particular specifications of the benchmark experiments
are broken down and the results yielded by several existing clustering algorithms in this
benchmark are thoroughly examined and discussed.

Chapter 7 offers closure on this dissertation by presenting the principal conclusions
drawn from this thesis and offering some potential lines of work associated with this
research.
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CHAPTER 2

STATE OF THE ART

Clustering, as expressed by [44], is a type of classification imposed on a finite set of
objects. The most important particularity of clustering among classification techniques
is its unsupervised, intrinsic nature [45]. In other words, only the nature of the data
itself, and not its labels, class or category (if known) is used for cluster analysis. Cluster
analysis is a complex field of research that led to the design and implementation of many
algorithms over the years [46]. Depending on the specific problem to be solved, different
clustering criteria and, hence, different clustering algorithms, should be employed.

For instance, centroid-based algorithms, like the classic K-Means algorithm (which
will be further discussed and explored in this document), use the distance from each
sample to certain position vectors (centroids) to establish the belonging to each clus-
ter [47]. Hierarchical models, on the other hand, usually rely on a dendrogram (either
using a bottom-up or top-down approach) to determine the similarities between samples
and group them into clusters [48]. Distribution-based algorithms, like the well-known
EM algorithm [49], attempt to define density distributions for each cluster and assign
the samples to the one with the highest likelihood. Lastly, density-based clustering algo-
rithms differentiate clusters that are separated from each other by contiguous regions of
low density of samples [50]. This document focuses mainly on this last type of clustering.

A worthy issue to discuss with respect to any type of unsupervised learning is evalua-
tion. Since algorithms do not require of labels or classes to sort data into groups, there is
no need to use labeled datasets to employ clustering algorithms. However, this yields the
necessity of employing internal metrics for evaluation, which is not always convenient.
This downside could be tackled by employing labeled databases even if there is no need
for them in the learning process. However, the unavailability of labeled datasets is al-
ready a major bottleneck for the development of supervised learning algorithms [51], so
this might not always be a realistic evaluation option.

In this chapter, we will first further explore the concept of density-based clustering,
establishing its historical context and discussing some of its applications (Section 2.1).
Additionally, we discuss the evaluation of unsupervised learning algorithms (Section 2.2),
first by exploring the possibility of building labeled databases and then by discussing
available evaluation metrics for the cases where labels can be obtained (external) and also
for those cases in which this is not an option (internal). Finally, in Section 2.3, we review
and discuss techniques that tackle real-world, practical applications that will later be the
main focus of Chapters 3 and 4: landmark discovery.
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2.1. Density-based clustering

Among the different ways to tackle the clustering task, density-based methods are char-
acterized by establishing a sample’s affiliation to each cluster through the analysis of its
surrounding density. Consequently, clusters are considered to be high density regions of
the data distribution [50]. Basic density-based clustering approaches have two convenient
characteristics that make them suitable to work in certain environments: (1) the number
of resulting clusters does not need to be known a priori, and (2) no assumptions regard-
ing the nature of the underlying data distributions are made. This allows density-based
clustering algorithms to generate clusters with arbitrary shapes, unlike most alternative
approaches, which usually lead to convex clusters with globular shapes.

In this section, we explore the historical context and motivations that led to the devel-
opment of density-based clustering algorithms, along with a review of their applications.

2.1.1. Historical context

The most well-known density-based clustering algorithm is probably a density-based al-
gorithm for discovering clusters in large spatial databases with noise (DBSCAN) [5].
Many modifications and variations of this algorithm have been proposed for different
tasks since it was published in 1996 [26], [52], [53]. In the original DBSCAN, authors
proposed a method based on packing together samples based on their vicinity. If a sample
has enough neighbours in its vicinity, it becomes a core point and can be expanded to
become a more populated cluster. The minimum number of neighbours considered to be-
come a core point (MinPts) and the extension of the vicinity (ε) are the main parameters
to be adjusted by the user in DBSCAN. Take the example shown in Fig. 2.1: at the end
of the expansion, a cluster is formed by core points that are connected by a high density
chain of points (red samples in Fig. 2.1) and their reachable neighbours (yellow samples
in Fig. 2.1). Those samples that are not reachable from any core point are considered
outliers or noise (blue sample in Fig. 2.1).

In the original research [5], authors mention among the main motivations for their re-
search the inability for previous, non-density-based clustering algorithms to form clusters
with arbitrary shapes (spherical, linear, elongated, curved, etc.) and their requirement of
prior knowledge regarding the nature of the data (type of distribution, number of clus-
ters, etc.). Therefore, they proposed that by taking into account the variations in density
directly, without making further assumptions of the underlying distribution, these limita-
tions were removed. Although this was the original motivation, authors in [50] discuss
some other natural inspirations (species divergence in zoology, topographic distributions)
behind the motivation to use density-based clustering techniques.

Nevertheless, as it happened with the parameters of non-density-based algorithms,
finding appropriate values for the ε parameter is not always trivial [55]. Moreover, a
single value for this parameter might not suffice, since clusters with different densities
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Figure 2.1: DBSCAN cluster example with MinPts = 4 and ε equivalent to the radius of
the circumferences. Figure taken from [54].

may be present in a single data collection [1]. This problem has been mainly addressed
through developing modifications of DBSCAN, as we explain in the following section.

2.1.2. Density-based clustering methods

Following the proposal of DBSCAN [5], the field of density-based clustering was greatly
expanded through numerous algorithms. We can group these algorithms into two main
categories based on their approach: (1) local algorithms, which start from a point and
expand the clusters without taking into account the whole distribution; and (2) global
algorithms, which first analyze the sample space and then use the obtained information to
cluster the samples.

Local algorithms: the original DBSCAN belongs to this category, since it treats the
sample space point by point. A popular group of algorithms that fall into this category are
hierarchical density-based clustering algorithms. These work by building a dendrogram
that can then be pruned following a given criterion. One of the first instance of hierarchical
density-based algorithms in the literature is OPTICS [56], which differs from DBSCAN
in that, instead of processing all points in an arbitrary order, it establishes a priority queue
based on distance between points (spatially close samples are close to each other in the
queue). It then stores a distance from each point to the next in the queue that can be used
to build a reachability-plot (see Fig. 2.2) from which the clusters can be extracted. OP-
TICS’ main disadvantage is that its high time complexity makes it difficult to apply for
large databases. Alternatively, an improved hierarchical density-based algorithm, HDB-
SCAN [29], was proposed. HDBSCAN performs DBSCAN with varying ε values over the
data, and then it integrates the results to achieve the best partition according to a certain
cluster stability measure [57]. Additionally, the algorithm VDBSCAN [1], which is later
explained as a part of this thesis (see Section 3.1.2) also follows a hierarchical approach.

12



Figure 2.2: OPTIC’s reachability-plot for an example of three clusters. Figure taken
from [58].

Another type of local algorithms rely on adaptive strategies to handle density changes.
This is the case of DVDBSCAN [59], which compares the density of the growing cluster
to the density of the neighborhood of a core-point that is a candidate to be added to
the cluster. If the comparison between them satisfies the joining criterion (a threshold
and a similarity index) the cluster is expanded correspondingly. An additonal example
of adaptive algorithm is P-DBSCAN [26], which handles the density changes through
an Adaptive Density parameter that prevents the points to be added to the cluster if the
density drops below a certain threshold.

Global algorithms: these category includes algorithms that analyze the whole sam-
ple space before clustering the data. This is not a common approach in density-based
clustering, since one of the main motivations of developing this field was to be able to
adapt to local changes in density (see Section 1.1, which is harder to do if you fix certain
conditions beforehand (e.g., the number of output clusters). Nevertheless, some examples
of this approach can be observed in the literature. The most popular is probably DEN-
CLUE [60], which performs a Kernel Density Estimation (KDE) over the data to compute
density attractors for each point that will determine, through a typical hill-climbing pro-
cess (see Fig. 2.3), the cluster to which they are grouped. This method, however, has a
large number of parameters, so it is difficult to adjust to different scenarios. A modifica-
tion of this algorithm, DENCLUE-IM [61], was also proposed to improve the algorithm
by eliminating the costly hill-climbing step. In this thesis, another algorithm that makes
use of KDEs (KDBSCAN [1]) is presented as a part of this thesis, and will be explained
in detail in Section 3.1.1.

As we previously discussed in Section 1.1, the research presented in this document is
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Figure 2.3: Representation of the hill-climbing process for a given Kernel Density Esti-
mation. Figure taken from [62].

often tied to the particular application of landmark discovery, so most of the analysis is
based on it. However, the diverse application possibilities of density-based clustering are
worth reviewing. This is done in the following section.

2.1.3. Applications of density-based clustering

If we refer once more to the original publication of DBSCAN [5], we can observe that
authors proposed the algorithm with spatial databases in mind. Indeed, many of the ap-
plications of density-based clustering can be associated with spatial databases. In [6], a
generalization of DBSCAN is proposed for spatial databases and can be used for molec-
ular biology, astronomical and geographical data, among others. Another density-based
clustering algorithm for spatial databases is proposed in [63], with the novelty of taking
into account physical obstacles that may affect the clustering process.

A particular spatial application of special interest in this thesis is landmark discovery.
This application is explored in detail in Section 2.3, since, as we have already mentioned,
it is one of the main goals of this research. Nevertheless, at this point it is important to
specify that this task can combine the use of spatial data with other types of data, like
textual [26][64] or temporal [52][65] information.

Other applications can be also found in the literature, like those that deal with image
databases: image matching [66], generic color image segmentation [12] and, particularly,
biomedical image segmentation [67]. Density-based clustering of sound data has also
been tackled (in [68] it is applied for voice pathology detection), as well as clustering of
pure textual information, like web opinions and social interactions [69]. Lastly, authors
in [70] propose a method to apply density-based clustering to uncertain types of data.

Hence, we have seen that density-based clustering can have a wide range of appli-
cations aside from grouping spatial information. Later in this dissertation (Chapters 5
and 6), the effect that different types of data have on the performance of clustering algo-
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rithms will be explored further.

2.2. Evaluation methods in unsupervised learning

The gathering of data to train supervised learning algorithms is often a challenge, due to
the scarcity of labeled data. On the other hand, since unsupervised learning algorithms do
not require labeled data to be adjusted, we do not encounter this problem at the point of
developing, implementing or adjusting a system.

However, evaluation is a very different challenge. Since internal metrics are solely
based on the characteristics of the clustering results (regardless of the authentic, original
group of each sample) they often fail to reflect the true task-based performance of the
applied algorithm or, at least, lead to scenarios where different metrics disagree on the
results [71]. Therefore, if possible (i.e., if we have access to labeled data), it is convenient
to evaluate clustering algorithms using external metrics.

In this section, we first discuss the possibilities for database acquisition (Section 2.2.1),
whether it is real data (labeled and unlabeled) or synthetically generated. After that, the
current literature on external metrics (Section 2.2.2) and internal metrics (Section 2.2.3)
applicable to clustering algorithms is reviewed.

2.2.1. Database acquisition for density-based clustering

Obtaining data and, particularly, labeled data, can be a challenging task. Privately owned
databases are not always accessible [72] and generating real databases by gathering and
annotating the data personally can be a strenuous and tedious process. This process is par-
ticularly discussed for the context of this research, along with an analysis of the available
sources, in Section 2.3.

A suitable solution to the scarcity of data is resorting to synthetic data generation.
However, data generation systems are quite diverse, and finding one that appropriately
fills our needs is not always possible.

Some data generation algorithms are centered in categorical and relational data gen-
eration. In [73], a system is designed to generate data suitable for online transactions
and streaming applications, while the work in [74] centers on producing data for statis-
tical testing. Others are even more task specific, devoted to produce data for healthcare
applications [75] or fraud detection [76].

Regardless of the application, another drawback that we can encounter is the system’s
requirement for already existing data as an input (which serve as an example of the data
to be produced) to be able to model the data [74] or the specification of certain scenario
characteristics [77].

Since this research is focused on the analysis of density-based clustering algorithms,
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we would ideally need a system able to generate data with varying densities and arbitrary
shapes and sizes for the groups of samples. In this context, the system developed in [78] is
promising. It is able to generate clusters of different densities by using different statistical
distributions to generate each cluster. Additionally, in contrast to the rest of the literature
reviewed in this section, it also provides variability of shapes. However, it does so via
linear equations and transformations (causing the final shape of the cluster to be based on
specific shapes like rings, crosses or alphabet letters). Hence, the generation of differently
shaped clusters looks rather synthetic and, thus, not realistic.

Therefore, there is an opportunity to fill this gap in the literature by developing a
system that flexibly generates realistic datasets with varying densities, shapes and sizes.
This will be further explored in Section 5.1.

2.2.2. External evaluation metrics

External evaluation for clustering algorithms is possible by comparing two clustering re-
sults: (1) the predicted groups for each samples and (2) the original group to which the
sample belong. In this section, we review some of the most important external evaluation
metrics for clustering. For this research, we focus on single group clustering (i.e., each
sample has unique membership to a single group), although fuzzy versions of some of the
metrics have been proposed [79].

One of the most popular evaluation metrics is the Rand index [80], which compares
the similarity between the predicted clustering and the original one by considering, for all
samples, when they are grouped into the same cluster and when they are not. The ratio
between the number of agreeing pairs and the total number of pairs is the result of the in-
dex. This simple metric is often used in the context of external clustering evaluation [81].
However, it suffers from two main limitations: (1) it tends to its maximum value when the
number of predicted clusters increases, and (2) the value of the Rand index when com-
paring different random clustering results is not stable. To tackle these, a modification of
the Rand Index, which adjusts its behaviour for chance has been proposed: the Adjusted
Rand Index [82]. The latter is mentioned as the index of choice in [83] when comparing
two partitions with a different amount of clusters.

Another popular index proposed to tackle Rand’s limitations is the Fowlkes-Mallows
index [84], which, when comparing predicted labels to ground-truth labels, can be com-
puted as the geometric mean of the precision and the recall. Although this index tends to
perform well with noise presence, it has the drawback of returning unusually high values
when the number of predicted clusters is low [85].

Also worth mentioning is the V-Measure score [86], initially conceived for natural lan-
guage processing, but potentially applicable to any given clustering problem. This metric
proposes two complementary concepts: homogeneity and completeness. Homogeneity
measures the extent to which predicted clusters are formed by samples of a single cate-
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gory (the same ground-truth cluster), whereas completeness measures how many samples
from a ground-truth cluster are elements of the same predicted cluster. The V-Measure is
then computed as the harmonic mean between homogeneity and completeness, and can
be weighted to favour one or the other. One of the main advantages of this method is
that it provides a comprehensive interpretation of the results by combining two separate
scores that represent specific desirable properties of an ideal clustering result.

To conclude, we also consider a general metric in probability: Mutual Information
(MI). The term mutual information was coined in [87], but it had already been defined
by Shannon in [88], and it is one of the most popular methods to assess the dependence
between two random variables. In the context of Information Theory, for which it was
originally proposed, MI can be understood as a measure of the amount of information we
have about one variable by observing the other. Nevertheless, MI has also been used in the
context of clustering evaluation for different tasks [89], [90]. Furthermore, a modification
of mutual information adjusted for chance, similar to that of the Rand index, has been
proposed for the specific context of clustering evaluation [91].

The appropriateness in the choice of the metric highly depends on the task at hand.
A metric useful to evaluate clustering partitions in a certain context does not have to be
useful in another. For this reason, in Chapter 6 of this document, we study the suitability
of these metrics for our particular scenario of application.

2.2.3. Internal evaluation metrics

External metrics are often preferable to internal metrics, since they are based on ground-
truth information about the data. However, their use is not always an option, as discussed
in Section 2.2.1. Therefore, in this section, we review some of the most relevant alter-
natives in the current literature to evaluate clustering results internally. Analogously to
what was mentioned in the previous section, internal metrics for fuzzy clustering have
also been proposed [92], but this research is focused on non fuzzy algorithms, so they lie
out of the scope of this review.

There are many internal metrics that can be used to evaluate clustering results. These
metrics usually consider a relationship between the compactness or dispersion of the indi-
vidual clusters and the separation among them [93]. The differences between the metrics
usually lie within how these two concepts are computed and compared.

In this context, the Dunn index [94], undoubtedly one of the most popular internal
metrics, considers the relationship between the worst case of compactness (maximum
intra-cluster dispersion) and separation (minimum distance between two clusters). The
main disadvantage of this metric is that, since it compares worst case scenarios, it is not
very stable, i.e., if an algorithm generates even a single cluster with undesirable charac-
teristics, it can have a strong impact in the result.

The Davies-Bouldin index [95], on the other hand, performs a pairwise analysis of the
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clusters and computes a quality value (Ri, j) for every pair:

Ri, j =
S i + S j

Mi, j
(2.1)

where S i is the dispersion of the ith cluster in the collection and Mi, j is the distance be-
tween clusters, usually calculated as the distance between cluster centroids. Then, the
quality of each cluster is the maximum value of its pairings. The final value of the index
is the average of every cluster’s quality. Since the value of Ri, j is desired to be small,
a lower value of the Davies-Bouldin index suggests a better partition than a higher one.
Since it analyses the worst case for every cluster, in contrast to the Dunn index which
does it for the whole colleciton, the effect of a single rogue cluster (or very few of them)
is mitigated. Nevertheless, as it happened with Dunn, Davies-Bouldin does not consider
intra-cluster and inter-cluster density variations. Furthermore, it does not explicitly pe-
nalize the excessive generation of clusters, which usually favours intra-cluster dispersion.

A metric that tackles this last problem is the Calinski-Harabasz index [96]. Like Dunn,
it is calculated as a ratio between inter-cluster dispersion (computed as the distance of the
cluster centroid to the center of the sample space) and intra-cluster dispersion (computed
as the sum of distances from every sample in the cluster to the center of the cluster). The
main novelty is, as we stated, the introduction of a penalization for excessively generating
clusters. The Calinski-Harabasz index (CH) can be expressed as follows:

CH =
Np − NCl

NCl − 1
·

Dinter

Dintra
(2.2)

where NCl is the number of generated clusters, Np is the total number of data samples and
Dinter and Dintra are, respectively, the inter-cluster and intra-cluster dispersion.

Another alternative metric is the Silhouette score [97], which measures, for every
point in the sample space, the similarity with respect to the points grouped in its same
cluster (cohesion) and to the ones belonging to different clusters (separation). Cohesion
(a) is computed as the mean distance to the rest of the points inside the cluster and sepa-
ration (b) as the distance to the closest point that belongs to a different cluster. Then, the
Silhouette coefficient of a sample is computed as:

s =
b − a

max(a, b)
(2.3)

The final value of the metric is the average of all coefficients. Thus, the value is in the
range [−1,+1], with higher values suggesting a better partition than lower ones.

The concept of separation introduced by the Silhouette score (distance to closest point
in a different cluster) makes more sense when analyzing sample spaces with clusters of
different shapes and sizes. This is depicted in Fig. 2.4, where one can observe that cluster
A is visibly closer to B than to C, but other metrics comparing distance between cen-
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Figure 2.4: Toy example of a clustering partition with 4 clusters with different shapes and
sizes.

troids would disagree. However, the cohesion concept does not cope well with arbitrarily
shaped clusters. For instance, elongated groupings would be penalized (even if they have
a significantly high density throughout the region of the cluster) with respect to globular
ones. This can be appreciated with cluster D in Fig. 2.4, for which even if its clear that
its densely packed throughout its extension and, therefore, fairly compact, the cohesion
values for points in its extremes would cause it to provide a worse cohesion measure
than cluster C, for instance, which is visibly less compact but its globular shape provides
a more stable distance to the cluster center. This is not ideal when analyzing scenar-
ios where density variations are not caused by underlying data distributions that produce
globular-shaped clusters (e.g., Normal distributions).

Incidentally, as it is posed in Section 2.1, this is precisely the type of context in which
density-based clustering are usually applied. Therefore, even if the discussed generic
metrics can be useful to provide an idea of the performance of clustering algorithms in
certain environments, it is clear that, in the context of density-based clustering, task-
specific metrics should be considered.

Task-specific metrics have already been explored in the literature. The Density-Based
Clustering Validation (DBCV) index [98] was designed to favour algorithms that assume
arbitrary changes in density throughout the sample space or, to express it alternatively,
those that do not make assumptions regarding the underlying distribution of the space. It
measures the validity of every cluster as (once again) a relationship between intra-cluster
dispersion and inter-cluster separation. Similarly to the Silhouette score, the separation
between clusters is measured as the minimum distance between points that belong to dif-
ferent clusters. Then, the separation measure (DC) of an individual cluster is the smallest
among them (the distance to the closest neighbouring cluster). However, the main nov-
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elty resides in that intra-cluster dispersion (S C) is computed as the heaviest branch of the
Minimum Spanning Tree (MST) of the cluster (i.e., the farthest distance between adjacent
points). The value of a cluster’s validity (V) is then similar to the Silhouette coefficient:

V =
DC − S C

max(S C,DC)
(2.4)

Again, analogously to Silhouette, the final value of the metric is the average of every
cluster. However, this time it is the weighted average along the clusters, where weights
are proportional to cluster cardinality. Thus, the range and desirable values of this metric
are the same as the Silhouette score. The main disadvantage of this metric is that, by
considering the heaviest branch of the MST as a measure of dispersion, it inevitably forces
the metric to assume all clusters in a good partition will have similar densities. In other
words, if we take a look once again at Fig. 2.4, clusters like B and D (with visibly different
densities) being identified simultaneously would be heavily penalized by DBCV.

Another denisty oriented internal metric is the Separation-Variance (SV) index [99].
This index considers intra-cluster variance (Vk) and inter-cluster separation (S k). Sepa-
ration is computed similarly to DBCV and Silhouette, although authors do not specify a
concrete method to calculate distance between clusters. The variance is defined as the
distance from the centroid of the cluster to the farthest point in the cluster. The final value
of the metric is the computed as the ratio between the sum of the separation measures for
all clusters and the sum of the clusters’ variances.

The main potential weakness of this metric is that, once again, it penalizes coexistence
of clusters with notably different densities, since it directly sums all values of variance
without taking into account the actual size or relative position of each cluster.

Even though the last two described metrics (DBCV and SV index) are task specific
and could potentially be useful for our problem, we have already discussed some of their
limitations and, later in this document, we will objectively show that they do not always
correlate well with external metrics. Hence, they lack the capability to truthfully reflect
the quality of the results in our application scenario. As a result, a novel internal metric
to tackle this problem is proposed in this thesis (see Section 5.2).

2.3. End-user application: touristic landmark discovery

We have seen that one of the main applications of density-based clustering is automatic
landmark discovery (Section 2.1.3) and novel methods based on density-based clustering
are presented in this document to tackle this problem (discussed in Chapter 3). However,
this task has also been approached through other techniques and, therefore, the decision to
pursuit the research line that led to this document (density-based clustering) needs proper
justification.

The landmark discovery task was introduced in Section 1.1 as the determination of
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Figure 2.5: Pipeline representing the process of landmark discovery.

relevant elements within a distribution by following a specific criterion. For this research,
we focus on geographical landmarks, which can be directly represented by raw geograph-
ical data (e.g, GPS coordinates) but also by associated images or text, as we introduced in
Section 1.1.1. The pipeline of the landmark discovery process is illustrated in Fig. 2.5.

The first step of the displayed pipeline is the problem statement, i.e., the type of land-
marks to be discovered (touristic attractions, trending restaurants, events, etc.). It is im-
portant to clarify this as it will heavily impact the source of the data to analyze. As we
will further explore in Chapter 3, the main targets of this research are touristic landmarks.
After this is decided, we can acquire the corresponding data to fit our needs (see Fig. 2.5).
Section 2.3.1 provides an insight on the available data sources for our application context.

Once the data has been gathered, the next step in the pipeline is to apply a relevant
algorithm that is able to locate the main relevant landmarks. In the context of touristic
landmark discovery, this would imply the identification of the regions containing the most
relevant monuments, parks, squares, streets or buildings of interest, etc. The detection of
landmarks by clustering geographical data is a recurrent research topic [19][20] which
is followed in this thesis. Section 2.3.2 further explores which clustering algorithms are
better suited to the task at hand.

2.3.1. Source analysis

The most straightforward method to find geographical landmarks is to analyze geo-located
content. In this sense, a relevant source to provide this type of content is Twitter 3, which
is often used as base for event exploration [21][100]. It has also been used to determine
specific locations, like pinpointing user’s homes [101]. However, the research in [22]
regarding the discovery of relevant physical landmarks showed that among the resulting
predicted landmarks, points unrelated to tourism (like crowded train stations or commer-
cial areas) were also discovered. Other sources, like Foursquare 4 and Instagram 5, have
similar problems, since users also tend to publish their content related to places with no
touristic interest [102][103]. Additionally, these last two have very restricted API usage.
Alternatively, Flickr 6 is a much more appropriate source for the detection of touristic

3Twitter: https://twitter.com/
4Foursquare: https://foursquare.com/
5Instagram: https://www.instagram.com
6Flickr: https://www.flickr.com/
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landmarks. Flickr is a web platform that stores user-generated multimedia content. In
addition, users enrich their contents with useful meta-data (geo-location, descriptive tags,
user identification, etc.). This information can be used to retrieve relevant touristic land-
marks from certain regions [104][27].

In this thesis, we consider the geographical information and the additional metadata
of the photos (particularly, textual descriptive tags) as the basis for landmark discovery
through density-based clustering. Nevertheless, alternative approaches can be found in
the literature, and these will be further explored in the following section.

2.3.2. Relevant clustering methods for landmark discovery

Several clustering algorithms have been considered in the literature for the purpose of
landmark discovery, some of them being better tailored to the task.

A classic partitioning algorithm such as Mean-Shift [105] has been previously em-
ployed in [19] to attempt the discovery of relevant touristic landmarks in a worldwide
dataset. However, the scenario considered in the mentioned research is far too generic
and, as we will show in our experiments in Chapter 4, Mean-Shift fails to adapt to more
realistic datasets. Another classic algorithm, k-means [106], performs reasonably well
working with spatial data when the number of output clusters is known [107]. The same
happens with the classic approach of Agglomerative Hierarchical clustering [108], for
which selecting the optimal number of final clusters often yields the clustering results
that best satisfy the relationship between intra-cluster and inter-cluster dispersion. Unfor-
tunately, a method for determining this parameter a priori is not trivial in the majority of
scenarios. This is particularly relevant for the case of landmark discovery, as the number
of landmarks strongly depends on the area of analysis. Furthermore, focusing on the use
of GPS coordinates, we must take into account that the shape of a cluster representing
a landmark might be irregular, which prevents the use of centroid-based clustering tech-
niques. Instead, spectral clustering and density-based clustering approaches have often
been taken to detect touristic landmarks, as they both allow the formation of arbitrarily-
shaped clusters.

The main benefit of Spectral Clustering is often dimensionality reduction [27]. How-
ever, in the application addressed in this thesis the spatial features are always going to be
incredibly relevant among the different types of meta-data. As a result, if a dimensional-
ity reduction is attempted, we run the risk of eventually reducing the problem to spatial
clustering without any other meta-data for support. Nonetheless, in [109], landmark dis-
covery is attempted using a hierarchical algorithm based on binary trees divided with
spectral clustering, but non-automatable assumptions must be made in order to achieve
and assess landmark discovery (e.g., dismissing all resulting clusters that do not fall near
a labeled landmark).

On the other hand, density-based algorithms have been applied to this particular task.
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Methods like the seminal DBSCAN algorithm [5], which, as we discussed in Section 2.1,
packs together points with respect to their vicinity, fit well with our assumptions. The
original DBSCAN has been used on the particular task of landmark discovery [20] and,
additionally, several extensions of the algorithm have been proposed to deal with partic-
ular aspects of the problem: P-DBSCAN [26]. This algorithm, aside from including the
Adaptive Density modification discussed in Section 2.1.2, proposes the use of the number
of users in a vicinity of a potential core point instead of simply considering the number of
adjacent points, thus limiting the influence of users uploading many pictures into the same
location. Although these extensions adapt well to the problem of landmark discovery, we
will prove in this dissertation that they are not robust enough to perform landmark dis-
covery on diverse geographical areas. Similarly, DVDBSCAN [59] proposes an adaptive
criterion to expand the clusters (see Section 2.1.2). However, the experiments presented
in the original paper [59] are not very conclusive, since they provide a single synthetic
database to draw conclusions.

Another fairly recent algorithm is HDBSCAN [29], which addresses the varying den-
sity of a sample space using different values for the scale parameter, seeking a stable
solution. However, the approach of the algorithm is quite generic, as it was not conceived
to solve this particular problem, but to perform clustering within an n-dimensional sample
space. In our context, HDBSCAN can be applied over the GPS coordinates of photos to
discover landmarks of interest. However, GPS coordinates are often not sufficient to solve
the problem by themselves. Our proposal here is to consider both the spatial features and
the user-provided information in the samples (e.g., descriptive textual tags), along with
a crucial assumption of density variation (explained in the next chapter), thereby solving
this issue.

In conclusion, we have seen that there have been many attempts to solve this task
using only geodesic coordinates, but without the support of additional sample meta-data
(user information, descriptive tags) the systems fall short. Additionally, even for the cases
where additional meta-data is considered, we will prove that the algorithms discussed in
this dissertation are better suited for the problem at hand, outperforming all the methods
currently being used for landmark discovery.
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CHAPTER 3

A NOVEL APPROACH TO LANDMARK DISCOVERY:
KDBSCAN & VDBSCAN

This chapter presents a novel approach to a well-known clustering problem: auto-
matic landmark discovery. As Section 2.3 mentions, landmark discovery tasks are often
tackled through the use of clustering algorithms and, specifically, density-based clustering
algorithms. The research conducted for this Thesis yielded a novel clustering alternative
that can be used to address this problem. Particularly, two new density-based clustering
algorithms (KDBSCAN and VDBSCAN) are proposed.

At this point, it is important to mention that landmark discovery is a particular prob-
lem with limited (albeit extensive) applicability. Furthermore, the nature of the exploited
databases (i.e., two-dimensional geographical data) further directs the applicability of the
algorithms, even if, as it is explained later on in Section 3.2.2, we can partially extend the
dimensionality of geographical data with textual features. Nevertheless, the proposed al-
gorithms are designed so that their applicability transcends the characteristics of this type
of data. This particular aspect will be explored in Chapter 5, where different clustering
algorithms are tested against various databases of variable, changing characteristics, with
the goal of analyzing the behaviour of these algorithms with respect to changes in the
data’s nature.

Therefore, it is imperative that the definition of the clustering algorithms is indepen-
dent from the final application task. In consequence, both algorithms are first described
from a generic mathematical perspective (Section 3.1) and later applied to the task at
hand: automatic landmark discovery (Section 3.2). In that section, the complete discov-
ery system is described, consisting on three modules: (1) the data gathering module, (2)
the data pre-processing module, and (3) the landmark detection module. This last mod-
ule makes use of the proposed algorithms (KDBSCAN and VDBSCAN) to tackle the final
discovery task.

Each algorithm has been design to adapt to a particular scenario of interest, as we will
further explain in Section 3.2.3. Briefly stated, KDBSCAN was designed to identify places
of interest in scarcely distributed regions (see Fig. 3.1.a) while VDBSCAN was designed
to identify individual landmarks within those places of interest (see Fig. 3.1.b).
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Figure 3.1: Representation of the objectives of each algorithm in the context of touris-
tic landmark discovery: (a) KDBSCAN identifies the places of interest within a certain
region, and (b) VDBSCAN identifies the touristic landmarks inside each region.

Figure 3.2: Results produced by DBSCAN for different values of ε (decreasing from left
to right) applied to an artificial set of points.

3.1. Proposed density-based clustering algorithms

In this section, two novel algorithms for density-based clustering are presented: KDB-
SCAN and VDBSCAN. They are both variations of the well-known DBSCAN algorithm,
particularly exploiting a crucial parameter: the ε distance. Conceptually, this parameter
is used to determine at which scale the clustering is performed (see Fig. 3.2).

The first algorithm, KDBSCAN, estimates the underlying density distribution of a
given sample space in order to identify relevant peaks to which all the points will be
assigned based on density-reachability. On the other hand, VDBSCAN takes advantage
on the assumption of a gradual density drop when moving away from the centroid of the
dataset, following a divisive approach to find arbitrarily-shaped clusters.
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3.1.1. KDBSCAN: Kernel-Density-Based Spatial Clustering of Applications with Noise

This algorithm groups sets of data in different clusters according to the density in the
sample space. However, unlike many density-based clustering approaches, KDBSCAN
attempts to determine the number of resulting clusters prior to the clustering step. This
approach, as it was discussed in Section 2.1.2, is not common for density-based clustering.
However, some data distributions can benefit from it, like, for instance, distributions with
large areas where density is extremely low but have high inter-cluster density variations.
Furthermore, even for the cases where these variations are not severe and other parametric
approaches like k-means could be applied, the problem of determining the number of
output clusters remains to exist. To tackle this, KDBSCAN first estimates the underlying
distribution in the sample space and then it selects its peaks.

The first step of KDBSCAN is to obtain a Kernel Density Estimation (KDE) with
Gaussian kernels [110] that estimates the underlying distribution fKDE(p) for the input set
of samples P = {p1, p2, ..., pN}. At this point, the first of two algorithm-specific parameters
of this algorithm is specified: the bandwidth factor of the Gaussian kernels h, which is
used to scale the covariance matrix of the data. This parameter impacts the scale of the
analysis, since increasing the bandwidth factor will result in larger, less numerous convex
areas of the estimated distribution (see Fig. 3.4).

The next step consists in obtaining the number of output clusters. To this end, the M∗

local maxima of the distribution are identified and stored in vector P∗ = {p∗
1
, p∗

2
, ..., p∗

M∗
}.

These local maxima are analyzed to check their validity as a cluster centroid. This is
done through a measure of topographic prominence [111]. The topographic prominence
T P of a peak is given by the vertical distance between the peak and its key col. The key
col of a peak is the highest possible point to which we have to descend in order to climb
again from it to an equal or higher point of the distribution. This concept is illustrated
in Fig. 3.3. As it can be observed, even though the displayed p1 is lower than p1, its
topographic prominence is greater, since the difference with its key col is larger. It is
worth noting that for a unique absolute maximum in a distribution (p4) there are no equal
or higher points, so the key col is considered to be the minimum value of the distribution.
The feature of topographic prominence is useful to determine the independence of a peak.

We therefore analyze local maxima in the KDE distribution, and use prominence to de-
cide which of them must be considered independent cluster centroids. In order to provide
a generic criterion for this decision and given that the range of potential values of promi-
nence strongly depends on the data distribution, we compute a normalized topographic
prominence as follows: given a local maximum found in location p∗

i
, the normalized to-

pographic prominence NT P(p∗
i
) is:

NT P(p∗i ) =
T P(p∗

i
)

fKDE(p∗
i
)

(3.1)
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Figure 3.3: Example illustrating the concept of topographic prominence. In red, the lo-
cal maxima of the distribution (pi); in blue, their respective key cols (KCi); in orange,
the topographic prominence; in yellow (dotted) the value of the maxima in the distri-
bution ( fKDE(p∗

i
)); and in green, over each maxima, a representation of its normalized

topographic prominence.

Figure 3.4: Kernel Density Estimation for an artificial set of points from 3 Normal distri-
butions (a) with two bandwidth factors h = 0.2 (b) and h = 0.8 (c).

This concept is also illustrated in Fig. 3.3, where we can see that even though T P(p3) >
T P(p1), the value of the distribution of p1 is significantly lower, so its normalized topo-
graphic prominence (the green bar in Fig. 3.3) is higher.

At this point, we have a notion of the relevance (given by its prominence) of each local
maxima, and we now need to decide which are kept as cluster centroids. For this, the value
NT P(p∗

i
) is compared to a lower bound t, and all p∗

i
∈ P∗ that do not satisfy this threshold

are discarded (for being too dependent on another maxima), yielding cluster centroid
vector Z = {ζ1, ζ2, ..., ζM}. This threshold t is the second of the two algorithm-specific
parameters of the algorithm, and it will impact the algorithm’s sensitivity to crowded
areas with variable internal density. In other words, it determines how close should two
intertwined groups of points be to be considered as part of the same group. This can be
appreciated in Fig. 3.4.a, where one could consider 3 groups of points determined by each
of the 3 normal distributions (low value of t) or 2 groups determined by joining the two
distributions on the left (high value of t).
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Algorithm 1 Assignment phase of algorithm KDBSCAN.
Input: A set of points P, a sub-set of M cluster centroids Z, initial parameters
(ε0,MinPts), neighborhood radius update factor (ηε).
Output: Set of clusters C

1: function assign(P, Z, ε0, MinPts, ηε)
2: for i from 0 to M-1 do
3: Ci = create-empty-cluster(i)
4: Ci = combine-unique(Ci,ζi)
5: end for
6: i = 0
7: ε = ε0

8: k = 0
9: while points unclassified > MinPts − 1 do

10: Ci = expand-cluster(Ci, P, ε, MinPts)
11: i = i + 1
12: if i ≥ M then
13: i = 0
14: k = k + 1
15: ε=update(ε,ηε,k) // see Eq. (3.2)
16: end if
17: end while
18: if points unclassified > 0 then
19: C = assign(P, Z, ε0, MinPts − 1, ηε)
20: end if
21: return C
22: end function

Once the set of cluster centroids Z are identified, each data sample pi ∈ P must be
assigned to a centroid. This assignment is not trivial, and cannot be done by simple
proximity since this would alter the nature of the problem, where we are dealing with
arbitrary cluster shapes. In fact, in order to preserve the essence of the data distribution,
assignments must be done according to a density-based clustering algorithm. To this end,
a modified version of DBSCAN is used to iteratively assign all samples to the correct
centroid, i.e., the one that lies at a given local maximum ζi ∈ Z for which the path from p
to ζi is a monotonously increasing function.

In order to provide a more precise and formal description of KDBSCAN, a pseudo-
code containing its assignment phase is provided in Alg. 1.

The assignment phase starts considering a set P of N points, in which a subset of M
centroid clusters Z has been previously identified. At the beginning, a set of M clusters
is created, each one containing one centroid ζi ∈ Z (lines 2-4 in Alg. 1), and an initial
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Algorithm 2 Expand-Cluster function.
Input: A set of points P, a cluster C to be expanded and parameters (ε,MinPts).
Output: Expanded cluster C

1: function expand-cluster(C, P, ε, MinPts)
2: Q = C
3: while Q is not empty do
4: p = extract-from-queue(Q)
5: H = obtain-neighborhood(p, P, ε)
6: H = remove-classified-points(H)
7: if size(H) > MinPts then
8: C = combine-unique(C,H)
9: Q = combine-unique(Q,H)

10: end if
11: end while
12: return C
13: end function

value ε0 is set. Let us note that the instruction combine-unique, which is used here to
add a point to the current cluster, will be used along the algorithm to merge two sets of
elements avoiding repetition. After this initialization, the algorithm operates iteratively
until the stopping condition (discussed later) is met.

At each iteration k, DBSCAN’s expansion function (defined in Alg. 2) is applied to
each cluster (line 10 in Alg. 1) using the current value of ε and a fixed value of MinPts.
Clusters are expanded by annexing unclassified points in the neighborhood of the core-
points (represented by set Q in Alg. 2). Additionally, if some point p′ in the neighborhood
H is a core-point itself, it is added to the cluster as well, and its neighborhood H′ is
subsequently considered to be potentially included as well. This expansion continues
until no new core-points can be reached from the current core-points in the cluster.

At the end of every iteration k of the assignment phase, ε is updated following the next
recursive equation:

ε(k) = ε(k−1) · (1 + ηε) (3.2)

where ηε is the neighborhood radius update factor, which governs how the scale param-
eter ε grows at each iteration.

DBSCAN’s MinPts parameter establishes the number of neighbors inside a radius ε
to consider a core-point. In other words, for a given ε, it influences the expansion rate and
the stopping condition. As the assignment phase of KDBSCAN aims to iteratively traverse
the database until all points are assigned, MinPts needs to be just small enough so that the
algorithm does not fall into an endless loop. And even in that case, the maximum amount
of unclassified points left is MinPts−1, since a larger amount would become a core-point
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Figure 3.5: Example of a radially decreasing density distribution in the city of Madrid.
As we move away from the city center (density centroid) the density of samples decreases.

by itself. Therefore, we set the default value MinPts = 4 (established in [5]) and iterate
until all samples but the last MinPts − 1 are assigned. This defines the stopping condi-
tion, and then we can assign all remaining samples by recursively calling our assignment
function decreasing MinPts (lines 18-20).

Two other initial parameters have been mentioned in this assignment phase: ε0 and
ηε. However, these only control the scale space, and both their values should ideally be as
low as possible. This is further discussed in Section 4.2.2.

The output of KDBSCAN is, therefore, the set of clusters resulting after the assignment
of all samples has been completed. As it will be later shown in Section 3.2, KDBSCAN is
effective to discriminate large groups of points presented in sparse sample spaces, espe-
cially when those groups have arbitrary shapes and sizes and have internal density varia-
tions, but are overall similar regarding volume of points. An illustrative example of such
scenario would be a geographic region containing multiple urban nuclei (which would
contain several landmarks themselves) separated by long distances.

3.1.2. VDBSCAN: Variable-Density-Based Spatial Clustering of Applications with
Noise

This algorithm is a hierarchical modification of the DBSCAN algorithm. VDBSCAN is
designed to take advantage of sample spaces with varying density and, more specifically,
datasets where density decreases when moving away from a global maximum, which we
call density centroid (see Fig. 3.5).

In order to provide a better understanding of the algorithm, a pseudo-code version of
VDBSCAN is provided in Alg. 3 (let us note that, in the provided pseudo-code, we denote
|C| as the cardinality of a set or collection C).

VDBSCAN is an iterative divisive clustering algorithm that, at each new iteration,
works at a finer resolution, subdividing several clusters into smaller ones. At each level,
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the variable ε defines the neighborhood radius of DBSCAN and therefore determines the
scale or resolution of the process. For the first layer, an initial value (ε0) is specified,
which will be then updated in the following levels. Opposite to KDBSCAN, we want to
start the algorithm with a large enough value ε0, that avoids splitting large clusters in the
first iteration. Hence, as it happened in KDBSCAN, it is known that its ideal value is as
high as possible (see Section 4.2.2).

The goal of VDBSCAN is to assign each data point pi ∈ P to a collection of clusters
C = {C0,C1,C2, ...,CD}. For initialization purposes, a single cluster C0 is created, which
contains all samples in our set P. At each level of the algorithm, we operate independently
over each cluster Ci: considering the subset of data samples belonging to each cluster, we
perform DBSCAN (its pseudo-code is included in Alg. 4) using the current value of ε
and a fixed value of MinPts (the default value MinPts = 4 established in [5] works for
most databases). As a result, each cluster Ci is subdivided into a new set of sub-clusters S
and the next step is to decide which of the new sub-clusters are relevant. To this end, we
first sort the set of sub-clusters by their relevance (line 11 in Alg. 3), which can be simply
measured by their cardinality |Ci| (although alternative strategies could be followed, as
we will later discuss in Section 3.2.3). Then, we compare each sub-cluster S j with its
complement S ∁j , which contains the remaining points in S , to decide whether S j should
be considered an independent cluster or not (line 14). The comparison is made according
to a Subdivision Criterion that considers the internal properties of clusters S j and S ∁j (it
will be described in depth in Section 3.1.2). If the sub-cluster S j is found to be different
enough from S ∁j , their samples are removed from the original cluster Ci, and the cluster
S j is added to the collection C.

Once this process is repeated for all the clusters present in the set C, we check if at least
one sub-division has been performed or, instead, the set C has remained unaltered (line
20). In the latter case the variable that controls the number of static levels is increased.
Before starting the next iteration, the neighborhood radius ε is updated (line 25) according
to Eq. (3.3), leading to a finer resolution analysis.

ε(k) = ε(k−1) · (1 − ηε) (3.3)

Again, analogously to KDBSCAN, the initial parameter ηε would ideally be as low as
possible (see Section 4.2.2).

The algorithm continues operating until the stopping condition is met. This happens
when a sufficient number of iterations (scale levels) have not produced modifications in
the results. In other words, convergence is attained.

Subdivision criterion

Similar to the criterion employed in [112] for Agglomerative Clustering, in order to decide
if a sub-cluster S j within a cluster Ci is independent enough to be separated, we compare
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the distance between S j and its complement sub-cluster S ∁j with their respective internal
distances:

Dist(S j, S ∁j ) ≶ MInt(S j, S ∁j ) (3.4)

The distance between the two clusters Dist(S j, S ∁j ) is simply computed as the mini-
mum distance between both sets of points, i.e., the distance between the two closest points
from both sets:

Dist(S j, S ∁j ) = min
p∈S j,q∈S∁j

dp(p, q) (3.5)

where dp(p, q) is the distance between points p and q.

On the other hand, the minimum internal distance of the sub-clusters is computed as:

MInt(S j, S ∁j ) = min(int(S j) + τ(S j), int(S ∁j ) + τ(S ∁j )) (3.6)

where int(C) and τ(C) are, respectively, the internal distance and the regularization term
for cluster C.

First, we have computed the internal distance int(C) of a cluster C as the maximum
value among the average distances of the K nearest neighbors of each point in the cluster.

int(C) = max
pi∈C

1
K

K∑︂
k=1

dp(pi, p(i)
k

) (3.7)

where p(i)
k is the k-nearest neighbor of the point pi. In other words, we take the worst

possible case representing the sparsity of the cluster. For the sake of simplicity, we set the
number of nearest neighbors K = MinPts used for DBSCAN.

Finally, a regularization term τ(C) is added to the internal distance to model our as-
sumptions regarding the problem. Specifically, with this term we attempt to compensate
two facts: 1) small clusters show low internal distances, which favors the generation of
excessively small sub-clusters that we want to avoid; and 2) we want to favor larger and
sparse clusters in those regions within the sample space that are far away from the density
centroid. To cope with both requirements, we have defined the following regularization
term:

τ(C) =
κ · I(C)

rC
(3.8)

where κ is the parameter that controls regularization; rC is the ratio between the cardinality
of the cluster |C| and the cardinality of the sample space |P| (the size of the dataset), which
penalizes small clusters; and I(C) is a measure of the isolation of the cluster, which will
be higher for clusters located far from the density centroid. Specifically, I(C) is defined
as follows:

I(C) = dp(mC,mC∁) (3.9)
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In other words, as the distance between the mass-center of the cluster and that of its
complement. Conceptually, the isolation of a cluster represents how distant it is from the
main agglomeration of points within a sample space (density centroid).

The most relevant parameter of this algorithm is, hence, the regularization parameter
κ, which will determine the flexibility of the Subdivision Criterion. In other words, it will
establish how prone are clusters to be separated at each level. It should also be noticed
that the regularization factor is useful to enforce algorithm convergence, since, given that
clusters are smaller in new iterations, it hinders subsequent divisions.

To conclude, the output of VDBSCAN is a set of D clusters that effectively describe a
sample space with variable density. The key concepts to its novelty are (a) its hierarchical
structure based on divisive clustering, by which we are able to capture different scales
within a variable-density sample space; and (b) the introduction of the isolation concept,
which makes VDBSCAN effective against distributions with a radially-decreasing density.

3.2. Practical application of K+VDBSCAN: touristic landmark discovery

In this section, we propose touristic landmark discovery as a direct application for the
novel algorithms explained in Section 3.1. Our proposal for landmark discovery is en-
closed in a large-scale research project, and will become a processing block of a system
devoted to automatically generate travel guides. Once the landmarks are identified on a
given area, multimedia content (text, images, video) is retrieved and included in the guide.
To this end, we can use publicly available user-generated contents from social networks
and multimedia platforms.

The work presented here focuses on the automatic discovery of landmarks, defined by
their GPS coordinates and other user-provided information. With this goal in mind, we
can identify three levels of hierarchy in our analysis, which will be referred to throughout
this document: a) region, which defines the geographical area under analysis, i.e., the
complete sample space P; b) Place-of-Interest (PoI), which consists on each independent
conurbation present within a region (for instance, each of the villages in a coastal area);
and c) landmark, which represents each monument, park or other type of relevant element
within any given PoI.

The system is divided into three main blocks, as displayed in Fig. 3.6: (1) the data
gathering block, which will access Flickr to obtain the necessary data from a certain re-
gion; (2) the data pre-processing block, which will prepare the raw data for our clustering
analysis; and (3) the landmark discovery block, which will make use of the novel algo-
rithms discussed in Section 3.1 to discover the most relevant touristic places within the
analyzed region. Each of the blocks considered will be discussed in-depth in the following
subsections.
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Figure 3.6: Pipeline of the complete system. It is divided in three main blocks: data gath-
ering, which accesses the online platform to conform the dataset (Section 3.2.1); data pre-
processing, which removes inherent noise (Section 3.2.2) and generates the bag-of-words
model signatures (Section 3.2.2); and landmark discovery, which performs PoI and land-
mark discovery through hierarchical density-based clustering (Sections 3.2.3 and 3.2.3,
respectively).

3.2.1. Data gathering

Given an area of interest, we aim to automatically collect a dataset of user-generated
contents, that will be then used to automatically discover the main landmarks within the
area. Working with user-generated content fits well with our definition of landmark, which
is based on the popularity of a place. In addition, as the system is supposed to work
in any area provided as a query, we need to automatically generate the corresponding
dataset, associated to the area, which contains the images’ geo-location and associated text
(tags, descriptions, titles, etc.). As it was discussed in Section 2.2.1, we found the ideal
platform for our purposes is Flickr. The Flickr API 7 allows for downloading images while
specifying constraints for their meta-data in the query, which is very useful to generate an
appropriate dataset.

In the experiments shown in this dissertation, a circular query area is defined specify-
ing the GPS coordinates of its center (latitude and longitude), and a radius (in km). How-
ever, our system could be easily adapted to work with arbitrarily-shaped areas defined by
irregular masks. Once the query is defined, we retrieve from Flickr all the images that
have been geo-located in that area since 2005 (along with the identification of the users
that uploaded them). Moreover, if available, a list of user-generated tags is obtained for
each image.

3.2.2. Data pre-processing

This module of the system is in charge of preparing the data for the subsequent clustering
stage. It performs two independent tasks: a) Noise Removal and b) Generation of Textual
Signatures.

7Flickr: https://www.flickr.com/services/api/
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Noise Removal

One of the main problems with user-generated images is the noise inherent to their anno-
tations. Our analysis revealed two main causes:

• Incorrect tagging: some users upload their pictures from a trip in a single ses-
sion with a unique geo-location (regardless of the exact place associated with each
photo). Additionally, it is not uncommon for a user to upload numerous images
of a single monument or event sharing the same descriptive tags. This causes an
artificial density of points at some places. To overcome this issue, we only allow
unique samples at each exact GPS location, meaning that one location can present
multiple samples if and only if the user that posted them or the tags attached to them
are different.

• Non-relevant content: although less often than in other platforms, such as Twitter
or Instagram, retrieved pictures may show contents related to personal events (wed-
dings, birthday parties) therefore not being relevant for touristic purposes. To tackle
this, a list of stop-words was employed to avoid generic non-relevant content in the
final database.

Hence, the output of this module is a final set of samples P = {p1, p2, ..., p∗N}, each of
them associated with an image in Flickr, and composed of two features, namely: a) GPS
coordinates of the picture; and b) a list of textual tags associated with it. This collection
of samples is then fed to the next sub-module in order to generate the tag signature of
each image.

Tag Signature Generation

Unfortunately, geodesic data is often not enough to discriminate between neighboring
landmarks, specially when the distance between them is small compared to their sizes.
In these cases, additional information like image meta-data is necessary to increase the
dimensionality of the representation and enhance the discrimination.

Since the tags are often scarce, unstructured and noisy, we have built a Bag-of-Words
(BoW) model, in which the set of tags for each image is transformed into a fixed-length
signature vector using a tf-idf [113] approach. It is worth mentioning that alternative
techniques, such as the more advanced word2vec [114], were also tested to obtain vector
representations of the tag space. The results, however, did not show any improvement
over BoW for this scenario.

This data pre-processing stage ends up with a set of input features, each one composed
of a GPS coordinate vector g and a textual (based on the descriptive tags) signature vector
t, as illustrated in Fig. 3.6.

35



Figure 3.7: Example of a region with multiple PoIs (a) and a single PoI (b). Both locations
are displayed at the same scale.

3.2.3. Landmark Discovery (K+VDBSCAN)

Landmark Discovery constitutes the main task of our system. This section will describe
the two modules in charge of performing this operation. The first one, called PoI Detec-
tion, aims to identify non-connected settled areas within the region of analysis, allowing
the subsequent module to operate independently in each location. To this end, the al-
gorithm KDBSCAN described in Section 3.1.1 will be employed. The second module,
Landmark Detection, consists on a multi-scale analysis of each identified location using
the algorithm VDBSCAN (discussed in Section 3.1.2), which will ultimately identify each
independent touristic landmark. In the remainder of this document, the complex algorithm
yielded by the application of these two modules will be referred to as KDBSCAN.

VDBSCAN takes advantage of the following assumption, which is true for most ur-
ban areas, towns, and villages: gradual residential, commercial or industrial growth ac-
cumulates infrastructure around a center and, furthermore, more compact and densely-
distributed clusters tend to be near that center (e.g., squares, churches, buildings), whereas
larger and sparsely-distributed locations (parks, zoos, stadiums, etc.) are more often lo-
cated in the outskirts. Nonetheless, we have seen that, for this assumption to be valid, we
need to previously separate each PoI using KDBSCAN.

Fig. 3.7 displays an example of a region that is clearly a single conurbation (Valencia)
and one that contains several isolated villages (coastal area of Euskadi).

Place-of-Interest Detection Module

The input to this module is a feature vector containing geodesic coordinates for each sam-
ple, along with the tag signature computed in the previous module (see Section 3.2.2).
For now, however, we ignore the tag signature and simply work with the geodesic coordi-
nates. The KDBSCAN algorithm is applied to these set of coordinates yielding N clusters
as the module’s output, each one representing an individual PoI.
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Landmark Detection Module

This second module aims to discover, within each detected PoI, its most prominent land-
marks. To this end, it makes use of VDBSCAN. Due to the aforementioned reasons, in
VDBSCAN we concurrently use geodesic coordinates and tag signatures to describe the
data samples. Consequently, the distance between two points dp(p1, p2), i.e., the distance
used in Eqs. (3.5), (3.7) and (3.9), is computed as a weighted linear combination of two
independent distances (both normalized between 0 and 1), one regarding each considered
feature:

dp(p1, p2) = γ · d̂g(p1, p2) + (1 − γ) · dt(p1, p2) (3.10)

where d̂g(p1, p2) stands for a normalized version of the geodesic distance; dt(p1, p2) is the
distance between the two textual signatures, and γ ∈ [0, 1] is a weighting parameter that
will be discussed later.

The normalized geodesic distance is computed as follows:

d̂g(p1, p2) = min
(︄
dg(p1, p2)

fd
, 1

)︄
(3.11)

where d̂g(p1, p2) is the geodesic distance separating p1 and p2, fd is a scaling factor, and
the distance is clipped to a maximum of 1. The normalized distance is not sensitive to fd,
since it has been set to a large enough value (1 km in our experiments) to assume that two
samples at a distance of fd are not adjacent neighbors within the same cluster.

Furthermore, the distance between textual signatures dt is computed using cosine sim-
ilarity:

dt(p1, p2) = 1 −
tT
1 t2

||t1||2||t2||2
(3.12)

where vectors t1, t2 are the tf-idf textual signatures of points p1 and p2.

The rationale behind this combined distance is the following: in general, geodesic co-
ordinates successfully discriminate most of the landmarks within a PoI. However, it was
observed that they are insufficient when analyzing high density areas, where landmarks
are located extremely close to each other (buildings within the same square, neighbor-
ing monuments, etc.). This problem is particularly relevant when the size of a particular
landmark is big compared to its distance to neighboring monuments (e.g., the size of a
museum or a park located in the center of a city might be quite larger than their distance
to neighboring landmarks). Hence, in these scenarios it is useful to increase the dimen-
sionality of the descriptors in order to attain a better discrimination. In order to weight the
relative influence of each feature (geodesic or textual), we have set the value of γ = 0.999.
Although it might seem that this value neglects the influence of the textual distance, let
us note that geodesic distances, despite being bounded in a [0,1] interval, are in general
small, specially in the last iterations. In those cases, the textual distance becomes relevant.
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Figure 3.8: VDBSCAN results in urban regions. At the bottom, Valencia; at the top,
Getafe. The left side represents centric zones, while the right hand side represents places
in the outskirts. Data belonging to different clusters is represented by different colors.

Another aspect of this module that is worth mentioning is that the relevance concept
used to sort the sub-clusters in VDBSCAN (line 11 in Alg. 3; Section 3.1.2) is here defined
as the number of users that take part in the cluster, rather than just their cardinalities. This
introduces a more appropriate concept of cluster relevance.

The output of this last module is a set of the most prominent landmarks within each
PoI, each of them represented by a single cluster. Fig. 3.8 shows a result of the com-
plete system. As desired, the algorithm is able to properly detect compact clusters within
crowded areas of the center of the city, and keep larger and less dense clusters in the out-
skirts. The performance of the system will be thoroughly assessed in Section 4. A series
of experiments were conducted to reflect the performance of the proposed algorithms re-
garding simple landmark discovery (VDBSCAN) and landmark discovery with prior PoI
detection (K+VDBSCAN).
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Algorithm 3 VDBSCAN Algorithm, including DBSCAN clustering function.
Input: A set of points P, initial neighborhood radius (ε0), neighborhood radius update
factor (ηε), correction factor (κ), unchanged levels threshold (L).
Output: Set of clusters C (predicted landmarks).

1: function v-dbscan(P, ε0, ηε)
2: C0 = create-empty-cluster(0)
3: C0 = combine-unique(P,C0)
4: ε = ε0

5: C = create-set{C0}
6: unchanged = 0
7: while unchanged < L do
8: Cold = C
9: for i from 0 to |C| − 1 do

10: S = dbscan(Ci, ε)
11: S = sort-by-relevance(S )
12: for j from 0 to |S | − 1 do
13: S ∁j = remove-points-from-cluster(S j,Ci)

14: if Dist(S j, S ∁j ) > MInt(S j, S ∁j ) then
15: C = add-cluster-to-set(S j, C)
16: S = remove-cluster-from-set(S j, S )
17: end if
18: end for
19: end for
20: if Cold == C then
21: unchanged = unchanged + 1
22: else
23: unchanged = 0
24: end if
25: ε = update(ε,ηε) // see Eq. (3.3)
26: end while
27: return C
28: end function
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Algorithm 4 DBSCAN clustering function.
Input: A set of points D and parameters (ε,MinPts).
Output: Set of clusters C

1: function dbscan(D, ε, MinPts)
2: i = 0
3: while points unclassified > 0 do
4: p = get-next-unclassified-point(D)
5: Ci = create-empty-cluster(i)
6: Ci = combine-unique(Ci,p)
7: Ci = expand-cluster(Ci,D, ε, MinPts)
8: if |Ci| == 1 then
9: classify-as-noise(Ci)

10: else
11: i = i + 1
12: end if
13: end while
14: return C
15: end function
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CHAPTER 4

EXPERIMENTS ON KDBSCAN & VDBSCAN FOR LANDMARK
DISCOVERY

In this chapter, we explain the experiments carried out to assess the performance of
KDBSCAN and VDBSCAN in the discussed application context: landmark discovery.
First, in Section 4.1, the evaluation methods employed are described. After that, in Sec-
tion 4.2, the datasets against which the algorithms will be tested are detailed, along with
the experimental setup. To conclude, the results of the experiments are broken down and
analyzed in Section 4.3.

4.1. Evaluation metrics

Clustering techniques are usually unsupervised and, thus, their evaluation becomes a chal-
lenging task. For this work, intrinsic statistical metrics and indexes were discarded as they
did not correlate well with our goals. On the other hand, extrinsic metrics require a set of
ground-truth (GT) annotations to establish comparisons with the system output. Getting
accurate labels for each data sample is impractical in our scenario, since we are dealing
with thousands of images for each location under analysis. Nevertheless, as the goal of
our work is to detect landmarks, we can assess our approach from an Information Re-
trieval perspective, comparing the discovered locations with a GT list of GPS coordinates
associated with the manually identified main landmarks of the region. This list is much
simpler and faster to obtain, and avoids labeling every data sample. However, it requires
to perform an alignment process between the automatically generated set of clusters C
(groups of data samples), and a ground-truth vector GT with the GPS locations of the real
landmarks. In our case, we consider that Ci ∈ C and GT j ∈ GT are aligned if the mini-
mum geodesic distance between GT j and the points in Ci is lower than a very restrictive
threshold T Hd = 50m.

However, we need to take into account the fact that a cluster could be aligned with
several GT locations, and vice versa. Potential multiple alignments are processed as
follows: in the case that a GT location aligns with multiple clusters, we prioritize the
alignment of the GT location with the cluster that, among those that are not yet assigned
to a GT location, has the highest cardinality. Alternatively, if a cluster can be aligned with
several GT locations, we prioritize the location that, among those that are not yet assigned
to a cluster, is closest to the cluster centroid. In other words, the alignment process is
started with the cluster with the highest cardinality, and the collection is traversed in order
until all clusters are processed or all the GT locations have been assigned.
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City (lat,lon) #GT N D

Tapia (43.567, -6.951) 22 2003 223
Geta f e (40.301, -3.722) 24 3884 806
Jerez (36.684, -6.137) 53 11467 832

Valencia (39.469, -0.377) 57 112587 744
Guadala j. (41.079, -3.202) 24 2208 474
Euskadi (43.284, -2.309) 56 21077 1011

Table 4.1: Characteristics of the databases after preprocessing. Respectively: city; lati-
tude and longitude of the approximate center in decimal degrees; length of GT-location
list; number of samples; length of dictionary (number of words).

Once the alignment between the automatically generated clusters C and the ground-
truth vector GT is defined, we can evaluate the performance of the system using Average
Precision (AP), a well-established metric in Information Retrieval [115].

4.2. Dataset and experimental setup

4.2.1. Dataset

We made our dataset publicly available 8. It consists of six different regions of interest, all
located in Spain. For the sake of generality, we have considered four diverse single-PoI re-
gions, including a small village, Tapia de Casariego (Asturias), with approximately 3.7K
inhabitants registered in 2020’s population census; two medium-sized cities, Jerez de la
Frontera (Andalucia) and Getafe (Madrid), with approximately 213K and 185K inhabi-
tants respectively; and a large city, Valencia (Comunitat Valenciana), with approximately
800K inhabitants. In addition, we also included two multi-PoI regions corresponding to
famous touristic areas: Guadalajara (region including various villages with Black Archi-
tecture), and Euskadi (region between rivers Lea and Oria, with several coastal touristic
villages). For each location, the data gathering module (see Section 3.2.1) was used to
retrieve images and their corresponding meta-data (GPS coordinates, tags), and we asked
local tourist information centers to generate a list of landmarks and places of interest in
the area. The details of the dataset are displayed in Table 4.1.

4.2.2. Parameter validation

We have compared our approach with other solutions found in the literature tackling the
automatic discovery of landmarks or the clustering of data (see Section 4.3). As all the
approaches have several parameters with an important impact on the results, we have
followed a process that ensures a fair comparison between algorithms. When possible,

8https://github.com/plasavall/LanDete
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we have set their values to those proposed by the authors in the corresponding papers. In
the case of clustering approaches not used for landmark discovery, we have followed a
cross-validation strategy on a subset of the data (∼ 10%).

With respect to the proposed algorithms (KDBSCAN and VDBSCAN), throughout this
document we have distinguished between two different types of parameters: scale-space
and algorithm-specific parameters.

Scale-space parameters Parameters ε0, ηε and (just for VDBSCAN) L define together
the scale space. ε0 represents the initial scale, L is the number of levels the algorithm
results’ are allowed to remain unchanged, and ηε determines the scale relation between
consecutive levels. Hence, they define both the limits and the degree of discretization of
the scale space. It is clear that considering large ranges and fine discretization will provide
a better performance at the expense of an increase on the complexity. Nevertheless, the
algorithms’ behavior with respect to these parameters is quite stable, and a set of optimal
values was found, providing a good trade-off between performance and complexity.

For KDBSCAN, values of ε0 = 200 m and ηε = 0.1 were set. Regarding VDBSCAN, it
is worth mentioning that, unlike the case of KDBSCAN, ε is no longer a spatial magnitude,
as we are using the aforementioned combined distance metric dp(p1, p2). The value of this
parameter was set to ε0 = 0.2. Additionally, we set ηε = 0.1 and L = 8.

Algorithm-specific parameters There are two specific parameters in KDBSCAN: the
bandwidth factor of the kernels h, and the prominence lower bound t. Regarding the
former, it is obvious that we need to adjust it large enough so that the resulting distribution
presents isolated maxima in the center of each PoI. On the other hand, the latter controls
which maxima are discarded and, hence, not considered as valid density centroids. This
second parameter is harder to adjust, since we have no prior information on about the
distribution. A cross-validation strategy was followed to adjust these parameters, yielding
values of h = 0.35 and t = 0.4, which provided the more stable results in terms of AP.

The only specific parameter for VDBSCAN is the regularization parameter κ. As it was
explained, the regularization factor avoids the proliferation of excessively small clusters
and helps the algorithm to attain convergence. After validation, we set κ = 1.7 ·10−3. This
low value makes sense, since rC (which represents the size of the cluster) takes low values
due to its normalization.

4.3. Results

In this section, we present the results of the complete system, compared with several
methods in the literature for the task of automatic landmark discovery. Furthermore, a
comparison between the application of our approach with and without the PoI Detection
Module has also been made. To this end, each region will be analyzed as if it contained

43



a single PoI. This will show the influence of KDBSCAN in those regions with more than
one PoI.

Finally, we provide an assessment of the usability of our method to generate automatic
travel guides.

Results for landmark discovery

In this section, we compare the performance of our approach with various alternatives
found in the literature: some of them, despite being generic solutions for clustering data,
have been previously used in our scenario to cluster geo-spatial data: k-means is used in
[107] to detect road lanes from GPS data, while in [20] and [19], DBSCAN and Mean-
Shift are used, respectively, to find meaningful locations based on GPS data (see Sec-
tion 2.3). Other algorithms have been particularly designed to deal with variable-density
sample populations (HDBSCAN [29], Hierarch. Agglom. [116]). Finally, some algo-
rithms were specifically proposed to tackle the task of landmark discovery (P-DBSCAN
and P-DBSCAN with adaptive density [26]).

The results obtained for the six considered locations are displayed in Table 4.2, which
shows the performance in terms of AP. It is worth mentioning that, for k-means, which
is non-deterministic, the performance was obtained as the average of 40 executions of
the algorithm (the standard deviation is also displayed in this case). Table 4.2.a shows
the results obtained in the regions with a single PoI, whereas Table 4.2.b shows those
containing multiple PoI. Two versions of our approach are included, with and without
the PoI Detection Module, i.e., using both of the proposed algorithms (KDBSCAN and
VDBSCAN) and using just VDBSCAN.

In addition, Fig. 4.1 shows the output of the different algorithms for the center of Jerez
de la Frontera, providing supplementary visual support to our analysis of the results.

At first glance, one can clearly notice that our proposal outperforms the algorithms
found in the literature.

With respect to generic solutions previously used to cluster geo-spatial data, it is clear
that, since they do not consider the concepts of density and scale variations, a common set
of valid parameters for every case does not exist. Therefore, they fail to address the task
of landmark discovery. However, Mean-Shift and k-means perform significantly better
than DBSCAN. This is due to the fact that they do not consider the concept of noise, and
therefore assign every data sample to a cluster, allowing more potential alignments. One
could argue that this is not the objective we have in mind, as the output of this procedure
will be closer to district separation than to landmark discovery (this can be appreciated
in Fig. 4.1). In other words, they divide the sample space into Voronoi-cells, rather than
detecting relevant independent locations within an enclosed space. This limitation comes
from the fact that the evaluation technique was designed for information retrieval and not
for cluster alignment.
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Figure 4.1: Visual comparison between clustering algorithms in a central area of Jerez
de la Frontera. Note that, for each cluster, a maximum of 1000 points are displayed.

In contrast, Hierarchical Agglomerative clustering and HDBSCAN take density varia-
tions into consideration. The former is particularly tricky to adjust, as the presented prob-
lem does not provide a general way to set the number of output clusters a priori. In this
context, a similar issue occurs with k-means and, in fact, the results obtained by these two
algorithms are quite similar for the six scenarios. HDBSCAN, on the other hand, produces
a set of clearly defined, heavily discriminated clusters (see Fig. 4.1.h), which results in a
conceptual improvement with respect to the previous algorithms. However, approaches
addressing this particular problem were not found in the literature at the time this research
was performed. Hence, the algorithm works exclusively with spatial coordinates, yielding
average numerical performances.

Finally, there are two algorithms specifically proposed for landmark discovery: P-
DBSCAN and our proposal. Although P-DBSCAN takes into account additional infor-
mation other than the spatial coordinates, i.e., the user who posted the picture (see Sec-
tion 2.3), it does not consider variations of density, so its performance is generally poor.
Indeed, its Adaptive Density modification provides better results in single-PoI regions,
but fails to adapt to areas with more complex density distributions (multi-PoI regions).

Regarding our proposal, the developed system was tested in all locations with and
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Algorithm Tapia Getafe Jerez Valencia Average
DBSCAN (1996) 0.25 0.30 0.29 0.38 0.30
k-means (1967) 0.55 (0.05) 0.70 (0.04) 0.35 (0.02) 0.58 (0.03) 0.54
Mean-Shift (2002) 0.50 0.72 0.40 0.53 0.53
Hierarch. Agglom. (1992) 0.44 0.72 0.37 0.54 0.51
HDBSCAN (2017) 0.40 0.71 0.42 0.53 0.51
P-DBSCAN (2010) 0.23 0.52 0.16 0.15 0.26
P-DBSCAN Addt (2010) 0.31 0.65 0.37 0.56 0.47
VDBSCAN 0.53 0.73 0.54 0.61 0.60
K+VDBSCAN 0.53 0.73 0.54 0.61 0.60

(a) Single-PoI regions.

Algorithm Guadalaj. Euskadi Average
DBSCAN (1996) 0.09 0.15 0.12
k-means (1967) 0.67 (0.03) 0.54 (0.02) 0.60
Mean-Shift (2002) 0.62 0.43 0.52
Hierarch. Agglom. (1992) 0.67 0.55 0.61
HDBSCAN (2017) 0.63 0.51 0.57
P-DBSCAN (2010) 0.55 0.50 0.52
P-DBSCAN Addt (2010) 0.45 0.37 0.41
VDBSCAN 0.67 0.59 0.63
K+VDBSCAN 0.75 0.77 0.76

(b) Multi-PoI regions.

Table 4.2: Performance, expressed as Average Precision (standard deviation, when non-
deterministic), of the different algorithms in the proposed locations. The 7 methods in
the literature are divided according to their approach for landmark discovery. Under
the double separation line, the results for our proposed system with (K+VDBSCAN) and
without (VDBSCAN) the PoI Detection Module are displayed.

without the PoI Detection Module. We can clearly see the impact that KDBSCAN has
on the results looking at the single-PoI cases, with an average improvement of 6% with
respect to the second best approach. In addition, when considering multi-PoI regions,
the results improve by an additional 13% when we combine KDBSCAN and VDBSCAN
(KDBSCAN).

The visual comparison in Fig. 4.1 shows that our system produces an outcome that is
closer to our idea of landmark: a well defined, limited area associated with a monument,
area or building of interest. In this sense, the algorithm in the literature that comes closer
to achieve this is HDBSCAN, but it performs notably worse than our proposal. From our
point of view, the main reasons that support this particular result are: (a) the introduction
of the isolation concept in VDBSCAN, which takes advantage of the assumption made in
Section 3.2.3 regarding the radial distribution of settled areas; and (b) the use of additional
meta-data, which improves the discriminant capability in the central areas of the cities,
where GPS coordinates are not enough to separate close landmarks. Hence, including
descriptive tags leads to results with better-shaped, more accurate clusters.

Finally, it is also relevant to discuss why, for every algorithm, performance is so
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location-dependent. Results in Table 4.2 show large differences depending on the lo-
cation, ranging from 0.23 to 0.73. From our point of view, this is likely due to the nature
of the different GT lists. Even though the criteria for developing the GT was the same
for all regions, in practice it is impossible to achieve analogous GT lists, since they had
been generated by different experts, each one being specialized on a the region under
analysis. Additionally, the six locations are very diverse in their nature, not only in terms
of population, but also shape, total area, population density, touristic appeal, etc. On the
one hand, we have four single-PoI regions of increasing population and density (Tapia,
Getafe, Jerez and Valencia). On the other, we have two multi-PoI regions (Guadalajara
and Euskadi) that are also very different population-wise. However, the fact that KDB-
SCAN outperforms the rest of the algorithms in every location gives a pretty good idea of
the good scalability and flexibility of our system.

To summarize, we have seen that the developed algorithms (KDBSCAN and VDB-
SCAN) not only constitute novel contributions to the field of density-based clustering,
but they also have a proven direct applicability in scenarios with variable density data
distributions, such as touristic landmark discovery. VDBSCAN exploits data distributions
where density gradually decreases from the data center of mass. Hence, it is very useful
when applied to geodesic data points belonging to a connected region (cities, villages,
etc.). In addition, the inclusion of a bag-of-words model that influences point-to-point-
distance helps discriminating different entities within the crowded areas. Lastly, when
combined with KDBSCAN, VDBSCAN can still be used to analyze data distributions with
several high-density groups of points of similar sizes, separated by potentially large low-
density areas. In our application scenario, this would be the case for regions that contain
several towns or villages separated by long distances. By including a specific step for
PoI-Detection (KDBSCAN), we are able to separate large groups of points, therefore pre-
venting the centroid of the data to be shifted to a non-relevant place (e.g., an isolated
sample between two villages). Consequently, VDBSCAN can be used independently over
each detected group.

Assessment for automatic generation of travel guides

A very direct application of our landmark discovery system is the automatic generation
of travel guides. To this end, we need to produce the greatest possible number of relevant
landmarks, keeping a large enough accuracy and avoiding false detections related to non-
touristic places. In Fig. 4.2 we analyze the precision of our system when we increase the
number of detected landmarks. In other words, it displays how the accuracy of the system
behaves when we consider just the top K relevant clusters. It is worth mentioning that
the predicted clusters are sorted by relevance, i.e., by popularity. For this experiment, our
goal would be providing a precision as close to 1 as possible for the largest possible K.
Indeed, we can see that, for the majority of the scenarios, KDBSCAN provided the most
robust result. In the case of Valencia, for instance, the precision did not drop until the 25th
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Figure 4.2: Variation of the precision when providing up to K = 1, 2, ...,G clusters as the
output of the system, where G is the length of the GT location list.

cluster was analyzed, while the precision for the second best algorithm (for this scenario:
DBSCAN) dropped at the 11th predicted cluster. The only exception to this behavior is
Getafe, where Mean-Shift and HDBSCAN held perfect precision for two more clusters
than our system. Nonetheless, their overall performance was still slightly lower than ours
considering this particular scenario and, what is more, this difference is heightened when
we consider the other five regions.

This proves that our system provides more relevant touristic recommendations than
other compared approaches. For most of the scenarios presented, our system is able
to present at least 10 relevant landmarks per location, with no false alarms. The only
exception to this is Tapia de Casariego (where only the top-6 predicted clusters had perfect
precision), and even in this case the accuracy at the 10th cluster is quite decent (0.8).

In order to further support the argument of this system’s direct applicability as a travel
guide generator, we established a comparison with the well-known touristic web platform
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Region Nt Prec(Nt) Prec(1.1Nt) Prec(1.2Nt) Prec(1.5Nt)
Tapia 4 1.0 1.0 1.0 1.0
Getafe 9 1.0 1.0 1.0 0.923
Jerez 18 0.888 0.895 0.857 0.741
Valencia 25 1.0 0.926 0.866 0.784

Table 4.3: Number of landmarks provided by TripAdvisor (Nt) for each region with a
single urban core and the precision of our system when providing the same Nt clusters, as
well as when providing 10%, 20% and 50% more than TripAdvisor.

TripAdvisor 9. Table 4.3 shows the number of relevant landmarks that were returned by
TripAdvisor when a certain region was analyzed. For the sake of simplicity, only single-
PoI regions where considered for this comparison. Additionally, it is worth mentioning
that shops, restaurants and bars were not considered as landmarks when developing the
GT lists (unless the building itself had some architectonic or cultural relevance). Note
that we obtain more results from TripAdvisor for mainstream touristic destinations (Jerez,
Valencia), but even in those cases the number of relevant landmarks is less than half the
amount of ground-truth locations considered for this research (see Table 4.1). Therefore,
we can infer that TripAdvisor is often insufficient to provide a significant landmark list
(this is particularly remarkable for less mainstream places). In the remaining columns
of Table 4.3, we can observe the precision of our system when we attempt to provide the
same amount of clusters than TripAdvisor, and also when we produce 10%, 20% and 50%
more than them. One can observe that we are able to generate up to 20% more landmarks
than TripAdvisor with total certainty of their relevance for the case of Tapia and Getafe
and maintaining the accuracy over 0.85 for the largest cities. This proves that our system
can be a very powerful tool when it is used as a travel guide generator, especially for less
visited or less developed areas, where travel guides might not be available.

9https://www.tripadvisor.es
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CHAPTER 5

A BENCHMARK FOR DENSITY-BASED CLUSTERING
ALGORITHMS

There are several problems that affect most scenarios where the application of density-
based clustering algorithms is of interest. Two of the most important ones, as it was
already mentioned in Chapter 2, are: (1) the absence of labeled data, which prevents
the use of external metrics to evaluate an algorithm’s performance, and (2) the lack of
meaningful internal metrics tailored to evaluate performance in databases where density,
shape and size variability are important factors.

In this chapter, we present a solution to address these two problems. First, in Sec-
tion 5.1, a system for automatic synthetic data generation with flexible parametrization
(SynFlex) is presented. This system is designed to be flexible and versatile. Its parame-
ters control different aspects of the data (density, shape, dimensionality, etc.) and allow
the user to produce realistic, fully-labeled databases. Nevertheless, non-synthetic, labeled
databases are still scarce, which narrows the applicability of external metrics mostly to
synthetic data. To tackle this, Section 5.2 of this Chapter presents a novel internal metric,
FLAG, tailored to assess the performance of clustering algorithms applied to data distri-
butions where density and shape variability are relevant factors to be taken into account.
In contrast to other popular metrics, which (as seen in Section 2.2.3) are usually based on
distance-based compactness, the proposed index (FLAG) focuses on density fluctuation
within data clusters.

To conclude this chapter, we integrate the two aforementioned contributions to build a
benchmark for density-based clustering algorithms (Section 5.3). In other words, a set of
both synthetic and non-synthetic databases with different parametrizations and character-
istics are generated. A series of experiments based on these databases are then proposed
to thoroughly assess the performance of clustering algorithms and, moreover, to analyze
changes in their behaviour and performance caused by the varying characteristics of the
data.

It is worth mentioning that, since there is a considerable amount of variables in this
chapter, we have included a reference (Table 5.2) at the end of the chapter for the sake of
comprehensiveness. Note that the notation guide included in Section 1.4 can be consulted
as well.
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Figure 5.1: Diagram for the SynFlex system. On the left, the cluster generation model; on
the right, the collection generation model with 3 hierarchy levels.

5.1. Synthetic data generation with flexible parametrization: SynFlex

As discussed in Section 2.2.1, most generic data generation algorithms either require ref-
erence datasets or focus on linear transformations to generate differently shaped clusters.
However, real data is often governed by non-linear transformations and arbitrary or hard
to define distributions. In this section, we introduce a synthetic data generation with flex-
ible parametrization (SynFlex) to produce fully-labeled, realistic data that can be used to
evaluate density-based clustering algorithms. In fact, SynFlex will be later used to build a
benchmark to analyze the behavior and performance of certain clustering algorithms (see
Section 5.3).

SynFlex follows an iterative probabilistic data generation process that can be divided
into two different modules: (1) cluster generation, which describes the generation pro-
cess and parametrization (shape, density, sample cardinality, dimensionality) of a single,
isolated data cluster, and (2) collection generation, which defines the whole sample space
through a hierarchical generation of clusters and establishes the relationships between
them (cluster cardinality, hierarchy level, noise presence). Therefore, the latter makes use
of the former to generate the distribution. A pipeline of the system is displayed in Fig. 5.1
and, in the subsequent sections, both modules will be explained.

5.1.1. Cluster generation

A single cluster is generated, confined to a normalized hyper-cubic sample space, with
sides of unitary length. Through the modification of several parameters, the cluster can
have variable distribution, shape, and density.

The generation of the cluster, as it is displayed in Fig. 5.1, can be expressed as 3
separate steps: (1) the Voronoi stage, (2) the expansion stage, and (3) the sampling stage.
In the first stage, the hyper-cube is divided in Voronoi cells that can potentially become

51



Figure 5.2: A 2D example of the stages representing the cluster generation process: (a)
Voronoi cells in hyper-cubic unitary space, (b) cells that conform the shape of the cluster
after expansion, (c) samples confined by cells selected during cluster expansion, and (d)
final cluster samples represented in isolation.

part of the cluster (Fig. 5.2.a). In the second, certain cells are selected to conform the
shape of the cluster (Fig. 5.2.b). In the third and final step, samples are drawn from a
statistical distribution and confined to the shape established in step 2 (Fig. 5.2.c). The
result of this process is a cluster of flexible cardinality, shape and density (Fig. 5.2.d) .

Voronoi Stage

The first step of this stage is the definition of a hyper-cubic unitary space. This hyper-
cube is then divided into NV cells by randomly sampling centroids from a uniform distri-
bution throughout the space and establishing a Voronoi diagram based on those centroids
(Fig. 5.2.a). The number of cells into which the hyper-cube is divided can be specified,
but one has to take into account that when data dimensionality increases, more cells are
needed to maintain the same expressive capabilities. Therefore, for our approach, a de-
fault value of this parameter, which depends only on data dimensionality, is used:

NV = 100 · 2D−1 (5.1)

where D is the number of dimensions of the desired cluster.

Hence, the output of this stage is a set of NV D-dimensional vectors V = [v1, v2, ..., vNC],
each representing the centroid coordinates of a Voronoi cell. This can be represented as a
Voronoi diagram like the one depicted in Fig. 5.3, and each cell can be easily referred to
using the index j : 1 < j < NV , which stands for the position of the cell j in the whole set
of generated Voronoi cells. From this point on, let us refer to the set of all cell indices as
ΩV .

Note that the set of cells that collide with the limits of the hyper-cube (shaded cells in
Fig. 5.3) are not considered as viable candidates to conform the shape of the cluster, since
the space they contain surpasses the limits of the hyper-cube and, furthermore, some can
have infinite extension. The indices of these limit cells constitute a fixed subset of ΩV ,
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Figure 5.3: Representation of Voronoi stage: Voronoi cells in hyper-cubic unitary space.
Shaded cells are not considered as potentially eligible to conform the final shape of the
cluster.

which is henceforth referred to as ΩL.

In the following stage, the cells that are part of the final cluster shape are selected.

Expansion Stage

The expansion stage plays a fundamental role in the data generation process. Once the
candidate cells have been defined, the ones that will finally shape the cluster must be
selected. Conceptually, this is done iteratively by choosing a transmitter cell and expand-
ing the cluster shape appending one adjacent Voronoi cell at every iteration. Thus, the
shape of the cluster depends on the selected transmitter cell and a direction of expansion
at every iteration, which will determine the next cell (receptor cell) to be added to the
cluster shape. To control this expansion, both the transmitter cell and the direction of
expansion are subject to change. Specifically, they are chosen using random distributions
controlled by certain expansion parameters. This approach allows us to generate clusters
with diverse characteristics like arbitrary shape and varying internal densities.

The expansion process is depicted in Fig. 5.4. On the left, we can appreciate the
order of appendment of each cell (the later the appendment, the lighter the tone) until the
final cluster shape (on the right) is reached. The details of the process of expansion are
rigorously explained in the remaining of this section.

The first step of this stage is to define the variables involved in the process. As we
briefly introduced in the previous paragraph, three variables define each state of the pro-
cess: (1) the transmitter cell index (tn), (2) the direction of expansion vector (dn), and (3)
the receptor cell index (rn). From the transmitter’s vicinity, the receptor is chosen using
the direction as a reference.

We can use this state to define a First-order Markov Model, which expresses the state

53



Figure 5.4: Representation of Expansion stage: Order of the expansion (left), where dark-
blue cells represent older appendments, whereas the lighter the tone, the newer the ap-
pendment; and final shape of the cluster (right).

xn of the cluster at each instant n. This means that the following state of the cluster at a
given instant depends solely on the current state (p(xn|xn−1)). Thus, the cluster expansion
occurs by changing the Markov state every time instant:

n ∈ N : 1 ≤ n ≤ NC (5.2)

where NC is the maximum number of Voronoi cells that can belong to the cluster shape
after the expansion, or, in other words, the stopping criterion, which will be further ex-
plained later on. Note that, since n has a finite range, the initial state (x1) needs to be
memory-less, so special conditions, which will be specified later, need to be applied.

For a cluster with D dimensions, each state xn is defined by the three random variables
defined above (xn = [tn, dn, rn]). Following this approach, we can express the probability
of a certain state xn as a product of three conditionally independent distributions:

p(xn|xn−1) = p(tn = j | in−1) · p(dn | dn−1) · p(rn | tn, dn, in−1) (5.3)

where in is a vector of length NV that records the order of adding time instant of each
Voronoi cell to the final cluster shape. Particularly, in, j = m if cell j was added to the
cluster shape at time instant m < n and in, j = 0 if cell j has not been added. This means
that this adding instant vector will be initialized as a vector of zeros and will be updated
with every iteration, letting us track of the cluster shape along the expansion process. It
is important to remember that only one cell can be added at a given time instant, so each
position of vector in that is greater than zero must be a unique timestamp.

In the subsequent paragraphs, we will motivate and define the distributions chosen for
each element in Eq. (5.3).

The transmitter cell index (tn) is the index of the Voronoi cell whose vicinity will be
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Figure 5.5: Representation of two cells that are not valid transmitter (green and red out-
lines): for the green cell, even though it belongs to the cluster, its vicinity contains either
limit cells or already added cells. Conversely, the red cell has a valid vicinity, but has not
been added to the cluster shape.

considered as potential candidates to be added to the cluster. We understand the vicinity
of a cell as the cells that share at least D vertices with it (2 vertices, i.e., a line, for a 2D
case; 3 vertices, i.e., a plane, for a 3D case). The transmitter cell needs to be selected
among those that have already been added to the cluster shape. However, before the
expansion begins, there are no added cells, so the first transmitter cell can be arbitrarily
chosen from those that do not collide with the limits (t0 ∉ ΩL). In our approach, the
default initial transmitter cell (t1) is the one that lies closer to the hyper-cube’s center, in
order to maximize expansion possibilities in any direction.

After the expansion begins, at each time instant n the transmitter cell is subject to be
updated. Any cell that has already been added to the cluster shape can potentially become
the new transmitter cell as long as its vicinity contains at least one cell that can still be
added to the cluster, i.e., a cell that does not already belong to the cluster and is not a limit
cell (see Fig. 5.5).

The update of the transmitter cell is controlled by parameter α and depends on the
instants in which the different cells have been added to the cluster (i.e., time instant vector
in). The range of α is (−∞,+∞). Conceptually, choosing a lower value (α < 0) will result
in electing a transmitter cell with a lower appendment time instant (older cell), whereas
choosing a higher value of this parameter (α > 0) will conversely mean electing a cell
with a higher appendment time instant (recently added cell). Particularly, the probability
that the cell j is selected as the new transmitter cell at instant n can be expressed as:

p(tn = j | in−1) ∝

⎧⎪⎪⎨⎪⎪⎩(in−1, j)α if in−1, j > 0, ΩEn ∩ Ψ j ≠ {}

0 otherwise
(5.4)
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where Ψ j is the set of cells in the vicinity of cell with index j and ΩEn is the set of cells
that have not been added to the cluster shape (in, j = 0 : ∀ j ∈ ΩEn) and are not limit cells
(ΩEn ∩ΩL = {}).

It is worth noticing that the probability in Eq. (5.4) is defined with respect to in−1,
since the adding instant vector is updated at the end of each iteration. Furthermore, note
that it is defined as a proportion, so the final values of the distribution are normalized
such that

∑︁
j p(tn = j) = 1. Thus, for a cell to be selected as a transmitter, it must have

already been added to the cluster shape (in−1, j > 0). Once the transmitter has been fixed,
two elements are remaining to define p(xn|xn−1). The receptor cell (i.e., the cell to be
appended to the cluster shape at time instant n) must be selected and, to this end, the
direction of expansion must be fixed first.

The direction of expansion vector (dn) is a D-dimensional normalized vector that rep-
resents the direction from a given point p to another p′ = p+ dn and it determines which
of the potential cells will be considered to be added to the cluster shape (receptor cell).
Its initial value is arbitrary. For our approach, it is initially chosen randomly from a D-
dimensional multivariate uniform distribution (d1 ∼ UD[0, 1]). Then, during algorithm
execution, the probability of it being updated at each time instant n follows a Bernoulli
distribution controlled by a parameter β with range [0, 1], such that:

p(dn = δ | dn−1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩β if δ = δ∗

1 − β if δ = dn−1
(5.5)

where δ∗ ∼ UD[0, 1] is a uniform D-dimensional random vector that stands for the new
candidate for direction of expansion.

Therefore, this distribution works as follows: by setting high values of β we can en-
force changes in the direction of expansion (choosing new directions uniformly at ran-
dom). On the other hand, low values of β will result in less changes of direction. An
example of the direction of expansion vector is shown in blue in Fig. 5.6. The value of
the direction vector, as mentioned before, controls which cell in the vicinity of tn is set as
the receptor cell. The specific criterion is explained below.

The receptor cell index (rn) is the index of the Voronoi cell selected to be included in
the cluster shape at time instant n. The direction of expansion dn marks the most likely
cells to be selected among those belonging to the vicinity of tn. Once again, some special
conditions apply for the initial state. Since a cell has already been added at n = 1 (the first
transmitter cell) there cannot be another addition until the next iteration for the definition
of adding instant vector in to be consistent (each added cell index must have a unique
timestamp). Conceptually, this can be understood as if we set r1 = t1.

After the initial state (n > 1), we can define the probability of a cell to be selected as
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Figure 5.6: Representation of a transmitter cell (cyan), from which the direction vector
in set (blue). From the two eligible (white) cells adjacent to the transmitter, the vectors
representing the candidates for the direction of expansion are shown. The bottom cell
(green vector) is more likely to be selected as the receptor cell than the top cell (yellow
vector), since it is more similar to the direction vector.

the receptor cell using the following distribution:

p(rn = j | tn, dn, in−1) ∝

⎧⎪⎪⎨⎪⎪⎩S cos(L j − Ltn, dn) if in−1, j = 0 , j ∉ ΩL

0 otherwise
(5.6)

where and L j contains the spatial coordinates of cell j in the D-dimensional space and
S cos(a, b) stands for the cosine similarity of vectors a and b. Let us also remember that
ΩL is the fixed set of limit cells. Hence, (L j − Ltn) stands for a vector that sets a potential
direction of expansion (represented in yellow and green in Fig. 5.6), and dn is the desired
direction (represented in blue and green in Fig. 5.6).

Thus, the cells in the vicinity whose centers lie in a direction that is similar to dn−1 are
more likely to be selected as rn, as long as they are eligible cells, i.e., they are not limit
cells ( j ∉ ΩL) and have not been added to the cluster shape yet (in−1, j = 0). Note that, like
tn, the probability of rn is defined as a proportion, so it is normalized analogously.

Thus, the expansion and, inherently, the final shape of the cluster are heavily con-
ditioned by the selection of α and β. In Fig. 5.7 these potential shape variations are
displayed.

Finally, as mentioned above, a stopping criterion needs to be set. The expansion
process carries on by adding a new cell every iteration until the maximum number of
iterations is reached. Let us remember that, as it is expressed in Eq. (5.2), this number is
fixed by the maximum number of Voronoi cells that can conform the final cluster shape:
NC.
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Figure 5.7: Potential shape variations for a SynFlex cluster: (a) low (left) vs high (right)
values of α for a constant β = 0.5; (b) low (left) vs high (right) values of β for a constant
α = 0.

The value of NC can be adjusted through the use of a parameter: the Cluster-to-
Hypercube-Ratio (CHR):

NC = (|ΩV | − |ΩL|) ·CHR (5.7)

Let us remember that ΩV and ΩL are, respectively, the set of all Voronoi cells and the
set of limit cells (cells that collide with the limits of the hyper-cube). Then, from Eq. (5.7),
we can understand CHR as a ratio between the maximum number of Voronoi cells that can
conform the final cluster shape (NC) and the total number of those which can potentially
become part of the cluster shape after excluding the limit cells (|ΩV | − |ΩL|). Additionally,
note that since, necessarily, 0 < NC < (|ΩV | − |ΩL|), it yields that 0 < CHR ≤ 1 must hold.

After the expansion is finished, we can obtain the set of cells that conform the defini-
tive cluster shape by simply checking the positive indices of adding instant vector in:

ΩC =
⋃︂
{ j} ∈ ΩV

j : in, j > 0 (5.8)

Therefore, the output of this stage is the set of cells ΩC, which define the shape of the
cluster. This is illustrated in the right-hand side of Fig. 5.4.

The pseudo-code in Alg. 5 is provided as a summary of the complete expansion stage,
which produces the cluster shape. The following stage consists on generating the samples
that will fill this shape.

Sampling Stage

This final sampling stage is devoted to draw samples from a distribution to fill the cluster
shape defined by ΩC. The process to achieve this is quite straightforward.

First, a distribution is chosen and its parameters (or the rules to select them) are set.
Then, we draw samples from that distribution, with the restriction that they must lie inside
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Algorithm 5 Expansion stage of cluster generation.
Input: A D-dimensional set of Voronoi cells ΩV , of which limit cell set ΩL is a subset,
expansion parameters (α, β) and a stopping criterion parameter CHR.
Output: A D-dimensional cluster cell set ΩC.

1: function expand(ΩL, α, β, CHR)
2: NV = |ΩV |

3: NL = |ΩL|

4: NC = (NV − NL) ·CHR
5: n = 1
6: in = 0
7: tn = choose-initial-transmitter(ΩL)
8: rn = tn

9: in,rn = n
10: dn = choose-initial-direction(D)
11: while n ≤ NC do
12: n = n + 1
13: tn = update-transmitter(in−1) // see Eq. (5.4)
14: dn = update-direction(D, dn−1) // see Eq. (5.5)
15: rn = select-receptor(tn, dn, in−1) // see Eq. (5.6)
16: in = in−1

17: in,rn = n
18: end while
19: ΩC = get-cluster-shape(in)
20: return ΩC

21: end function

a cell belonging to the shape ( j ∈ ΩC). The number of samples to draw is adjustable
parameter (NS ) that must be set.

Therefore, the output of this stage is, like in the Voronoi stage, a total of NS D-
dimensional coordinate vectors representing the samples of the cluster S C = [s1, s2, ..., sNS].
In this thesis, a Normal distribution was chosen to draw the data samples:

S C ∼ N(µ = l0, σ = σC) : jsi ∈ ΩC ∀ (i ∈ N : i < NS ) (5.9)

where l0 is set as a vector representing the location of the initial transmitter cell, σC is a
parameter to be adjusted, which controls the internal density variation of the cluster (see
Fig. 5.8), and jsi is the index of the cell that contains each sample si ∈ S C, this is:

jsi = arg min
h : vh∈V

(||si − vh||) (5.10)
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Figure 5.8: Representation of the effect of σC = 0.1 (left) and σC = 5.0 (right) for
a SynFlex cluster. Regardless of the shape, note that for a low σC, the cluster density
decreases radially. For high enough values, the distribution tends to be uniform.

Parameter Brief description Default value
D Dimensionality -
NV Nº Voronoi cells 100 · 2D−1

NS Nº samples in the cluster -
CHR Cluster-to-Hypercube-Ratio 0.25
α Choice of tn -
β Change in dn -
Distribution Type of distribution N(µ = lo, σ = σC)
lo Mean of Distribution Initial transmitter cell
σC Variance of Distribution -

Table 5.1: Summary of cluster generation parameters. Parameters derived from choice of
distribution are represented under a horizontal dashed line. Parameters with no default
value need to be set by the user.

where let us remember that V is the Voronoi cell vector. Therefore, all drawn samples are
confined to the shape defined in the previous stage.

This set of cluster samples S C is, as mentioned above, the output of this last stage and,
therefore, the output of the cluster generation module.

To recapitulate, through the three stages explained above (Voronoi, expansion, sam-
pling), we are able to generate a cluster with arbitrary shape and variable internal density.
The flexibility of the system so far includes the parameters summarized in Table 5.1. For
some of these parameters, a sensible default value has been set, while others need to be
adjusted by the user to determine the nature of the desired cluster.

This cluster generation system can be used to generate a realistic sample space with
a flexible number of clusters with different characteristics, as it will be explained in Sec-
tion 5.1.2.
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Figure 5.9: Representation of a hierarchically organized collection with various levels
that are recursively generated: (a) 1 level, 8 elements (8 samples), (b) 2 levels, 16 ele-
ments at each of the 8 existing elements (128 samples) (c) 3 levels, 64 elements at each of
the existing 128 elements (8192 samples).

5.1.2. Collection generation

The main goal of the SynFlex generator is to obtain a sample space where data is suscep-
tible to be grouped into clusters of arbitrary shape, size and density. This module of the
system uses the cluster generation module to obtain such a sample space.

The simplest way to do this would be to generate a given number of clusters with ran-
dom locations. However, this would limit our analysis, since all the expressiveness would
lie on the cluster generation module. Therefore, it is interesting to use a richer strat-
egy: by introducing a hierarchical approach, we are able to extend the previous module’s
expressiveness to the generation of a collection of clusters.

Therefore, this module is designed as a hierarchical generative process, as it can be
observed in Fig. 5.1. The process is defined recursively. First, at the top level (l=1), a
single cluster is generated with the desired characteristics (see Fig. 5.9.a). In the next
level (l=2), a new cluster can be generated in the location of each of the samples that
conform the cluster generated at the previous level (see Fig. 5.9.b). This process can
be repeated as many times as needed generating as many levels of hierarchy as required
(l=3, l=4, l=5, etc.). As it can be observed in Fig. 5.9.c, this data distribution has density
variability throughout the sample space, with areas where clusters are packed together
and areas where the distance between clusters is much larger.

Each cluster is first generated in a normalized environment and, then, a scaling factor
is applied before placing it in its corresponding location (the D-dimensional coordinates
of an element in the previous hierarchy level). The maximum scale that a cluster can have
is limited by the nearest sample in the collection (excluding noise samples). This means
that, at each new added depth level, each element of the previous level is traversed in
a random order, and the maximum scale for the cluster that is placed in that position is
calculated according to the nearest sample, even if that sample has been generated in the
current level.

This is illustrated for a two-dimensional case in Fig. 5.10, where we can see that
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Figure 5.10: Representation of the scaling process: (a) Sample vector (blue samples)
from previous hierarchy level and max scale of cluster located in s1 (red dotted square),
(b) new cluster samples located in s1 (green) and max scale of cluster located in s2, (c)
new cluster samples located in s1 (green) and s2 (purple) and max scale of cluster located
in s2, and (d) new cluster samples from current hierarchy level (s1: green, s2: purple, and
s2: orange).

sample set S = [s1, s2, s2] contains samples from a previous hierarchy level (Fig. 5.10.a).
In the new level, we generate a cluster in each of these samples’ locations. We can see that
the maximum scale of the cluster located in sample s1 is limited by the nearest sample s2.
Specifically, the maximum side length of each hyper-cube, λMAX, is twice the Chebyshev
distance to the nearest sample:

λMAX(sc) = 2 · max
1≤i≤D

(|sc,i − sn,i|) (5.11)

where D is the dimensionality of the data, sc is the current sample (from the previous
hierarchy level) in whose location a cluster is being generated and sn is the nearest relevant
sample in the collection to sc, regardless of the level it belongs to. This can be observed
in Fig. 5.10.b, where it is clear that s2 is closer to s2 than to s1, but λMAX(s2) is limited
by a new sample in the cluster located in the position of s1 rather than by s2. A similar
thing happens when the cluster at s2’s position is limited by a new sample rather than by
s2 (Fig. 5.10.c,d).

Controlling the scale of the clusters is essential to analyze density variations, since the
size of the region a cluster occupies conditions its internal density. For this reason, the
final scale (λS ) of the generated cluster, although limited by λMAX, is determined by an
adjustable parameter: the scale factor fλ ∈ [0, 1]. Hence:

λS = fλ · λMAX (5.12)

Additionally, this module offers the possibility of adding noise samples at each gen-
eration level. Noise samples are generated with the same distribution and characteristics
as the relevant samples, and their quantity is controlled by the Element-to-Noise Ratio
(ENR) parameter. This ratio affects each hierarchy level independently and, therefore, it
can change from one level to the next. For instance, if we have a 2-level cluster collection
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Figure 5.11: Representation of the impact of ENR = 0.035 (left) and ENR = 0.005
(right). The lower the ENR, the stronger the noise presence (noise samples in black).

Figure 5.12: Representation of a 2-D cluster collection at each of the 3 hierarchy levels.
With the world coordinate analogy: (a) level 3 (city), (b) level 2 (region), and (c) level 1
(country).

and we specify ENR = 0.1 in level 1, we will have 10 noise samples per every cluster in
level 2. The specific values of these parameter across all levels will determine the global
ratio of samples to noise in the collection, i.e., the Signal-to-Noise Ratio (S NR). In the
example specified before (ENR = 0.1), generating clusters of 15 samples each yields:

S NR = 0.1
clusters

noise samples
· 15

relevant samples
cluster

= 1.5
relevant samples

noise samples
(5.13)

A visual example of the effect of the ENR is shown in Fig. 5.11.

Let us reflect on the last paragraphs with a representative example. We can imagine
a set of geographical world coordinates representing important landmarks within a small
town. This is represented in Fig. 5.12.a. If we zoom out of the area, we could start seeing
a region with several towns of different shapes and sizes, each containing their respective
landmarks (Fig. 5.12.b). Zoom out a little further and we could distinguish a country
containing several regions (Fig. 5.12.c). This illustrates a collection with 3 hierarchy
levels.

In sum, this module gives us control over three more flexible parameters: (1) the
number of hierarchy levels of the collection, i.e., the depth of the generative process; (2)
the number of elements in the clusters at each hierarchy level, which determines the final
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Figure 5.13: Examples of similarities between SynFlex and real-world data: (a) SynFlex
cluster with arbitrary shape (left) and an area with no samples within it compared to a
park(Parque Polvoranca, Community of Madrid, Spain) that has an inaccessible small
lake inside (right); (b) 2-level SynFlex cluster collection (left) and a partial map of Lon-
don with the Thames river where samples are relevant photos (right).

number of clusters in the collection; and (3) the SNR of the sample space, controlled by
the value of the ENR at each hierarchy level.

It is worth mentioning that, when generating a collection, the value for the parameters
of the cluster generation need to be provided as well. This can be done by specifying a
unique value of each parameter for all clusters in that level (e.g., NS = 32, α = 20, β =
0.2) or by specifying a distribution from which to draw the value of the parameter (e.g.,
NS ∼ N(µ = 60, σ = 15), α ∼ U(−50, 50), β ∼ U(0.2, 0.8)).

The output of this module can be expressed similarly to the previous, using a set
of samples XC, this time representing the whole collection of clusters. Furthermore, a
label vector yC can be defined as a vector that maps the samples with their corresponding
cluster.

Through the process defined in this section, we are able to generate synthetic databases
with realistic distributions whose characteristics can be flexibly controlled by specifying
a few interpretable parameters. The system was designed to express realistic datasets. A
clear influence when developing the flexibility of the system was the application context
in which this thesis is focused: landmark discovery. In this sense, the similarities between
real geographic data and SynFlex data are quite illustrative. For instance, the ability to
produce clusters with arbitrary shapes emulate the conditions in which data distributions
are generated in real-word scenarios, where obstacles may be present. The combination of
the cluster generation module with a hierarchical approach and the noise adding mecha-
nism allow for the imitation of certain characteristics of real data that are hard to replicate.
This can be observed in Fig. 5.13. In real datasets, there are often physical limitations that
hinder the presence of data on certain regions (e.g., a lake or a river). On the other hand, it
is common to have some samples in certain regions even when there is not a nearby cluster
(user uploading pictures of their own interest). This can be observed in Fig. 5.13.b, where
some isolated samples (noise) are present in between the main agglomerations (clusters).
In Section 6.2, we will further revise the realism and applications of this data generation
system.
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5.2. Internal clustering evaluation: Fluctuation-Agglomeration index (FLAG)

In this section, we provide a novel metric for internal clustering evaluation: the Fluctuation-
Agglomeration (FLAG) index.

Even if we are able to generate a realistic synthetic database, the fact that real-world
fully-labeled databases are scarce remains true. Therefore, it is essential to find an accu-
rate method to evaluate clustering algorithms without access to detailed labels. However,
as we have seen in Section 2.2.3, most internal metrics [94]–[97] are conceived as generic
evaluation techniques and, for the reasons discussed in that section, they are not tailored
to be applied in databases with significant density variations. Furthermore, those that
are designed to be applied in scenarios as those envisaged in this research [98], [99] do
not accurately reflect the performance of the algorithms. This last argument is further
developed and proven in Section 6.3.

Therefore, we define FLAG, a novel internal evaluation technique that outperforms
all the relevant metrics in the current literature (see Section 6.3). As we have seen, most
internal metrics rely on a comparison between intra-cluster dispersion (ideally low) and
inter-cluster dispersion (ideally high). However, unlike most of the metrics discussed in
Section 2.2.3, which rely on sample separation to compute intra-cluster dispersion, our
metric focuses on density fluctuation. Furthermore, let us remember that, when com-
puting inter-cluster dispersion, most of the discussed metrics rely on cluster centroid po-
sitions to calculate absolute distances between clusters, which works appropriately for
globular clusters, but is not representative of arbitrarily shaped clusters or clusters with
different scales. Instead, our metric will take into account the distance between cluster
boundaries to compute distances and gain notion of the agglomeration of the compared
clusters taking into account their respective scales.

Fluctuation: First, we resort to graph theory and define the notion of intra-cluster dis-
persion as the fluctuation of the Minimum Spanning Tree (MST) representing the cluster.
To this end, we compute the branch vector bi of a cluster Ci as the vector that contains the
values (length) of the edges of the Minimum Spanning Tree (see Fig. 5.14):

bi = [bi,1, bi,2, ..., bi,NS−1] (5.14)

where NS is the number of samples in cluster Ci.

Then, the fluctuation Fi of cluster Ci can be expressed as:

Fi = 1 +
σi

µi
(5.15)

where σi and µi are, respectively, the standard deviation and the mean of branch vector
bi. Thus, the fluctuation is computed as the variation of distances between adjacent clus-
ter samples (σi). This variation, however, needs to be normalized by the cluster’s own
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Figure 5.14: Graph representing the MST of Cluster Ci and its corresponding branch
vector bi.

Figure 5.15: Graphical representation of two clusters with different scales.

internal distribution (µi), since computing absolute values would penalize more dispersed
clusters. Furthermore, it is convenient to avoid that the value for the fluctuation fully
determines the final FLAG metric value in cases with low cardinality (if |Ci| = 2, then
σi = 0), which leads to the sum of a constant value (if σi, then Fi = 1).

Intuitively, since we want our clusters to be as evenly distributed as possible, Fi is
desired to have a small value (Fi ≈ 1).

Agglomeration: Secondly, we need to define the notion of inter-cluster dispersion.
This notion is defined for each cluster as the degree of agglomeration of other clusters in
the region where it is located. Ideally, we want every cluster to be grouped so that the
distance to its neighbouring clusters is larger than the distance between the samples that
conform it. However, this causes a scale conflict. This conflict is illustrated in Fig. 5.15,
where two clusters with different scales can be observed. At first glance, it is clear that
these clusters have been properly grouped. However, if we measure the absolute distance
between clusters C1 and C2 and we compare it to their corresponding internal distances,
C1 yields a satisfactory result whereas C2 does not.

To overcome this issue, we define the relative distance between to clusters Ci and C j

as:

ri, j =
di, j

min(µi, µ j)
(5.16)
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where di, j is the distance between clusters Ci and C j. This distance, as it was partially
mentioned above, is calculated as the smallest euclidean distance between two samples
that do not belong to the same cluster. Again, µi is the mean of Ci’s branch vector.

From the relative distance in Eq. (5.16), we can compute the agglomeration relative
to cluster Ci as follows:

Ai =
∑︂

1≤ j≤|C|
j≠i

1
ri, j

(5.17)

where |C| is the cardinality of the cluster collection, i.e., the total number of clusters.

By considering the inverse of this relative distance we give more relevance in the final
value of the agglomeration to the clusters that are closer to the one being analyzed.

Since we want our clusters to be separated by a distance that is large enough to con-
sider them as independent, their relative distances should be high and, hence, Ai is desired
to have a low value. Note that the distance only needs to be higher than the average
distance of the most compact cluster (for instance, the left cluster in Fig. 5.15), thereby
solving the conflict presented above.

FLAG: Finally, we could estimate the quality of each cluster as a simple product
between fluctuation (Eq. (5.15)) and agglomeration (Eq. (5.17)). Nevertheless, one could
argue that not all clusters have the same importance in a collection. As we have mentioned
before in this manuscript, a common method to determine relevance is by sheer popularity
or, in this case, sample cardinality. Hence, the impact of each cluster Ci in the final metric
is determined by its weight:

wi =
|Ci|

NT − NN
(5.18)

where |Ci| is the cardinality of cluster Ci, and NT and NN are, respectively, the total amount
of samples and the amount of noise samples in the sample space.

Note that noise samples are not taken into account when calculating the weight of
each cluster. However, noise is an important factor that must not be neglected in the
evaluation. For instance, a hypothetical algorithm that generates excessive noise and a
scarce collection of perfectly separated clusters could, were noise to be neglected, obtain
a better result than an algorithm that would risk classifying more points. Thus, we define
the noise factor fN as the ratio between the total amount of points and the amount of
relevant points:

fN =
NT

NT − NN
(5.19)

Therefore, this factor is designed to penalize algorithms that generate excessive noise
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and, in consequence, higher values of fN should hinder the value of the metric more than
lower ones.

To conclude, the final value of the FLAG index is computed as the sum of the weighted
products of fluctuation and agglomeration for each cluster, and then modulated by the
noise factor as follows:

FLAG = fN ·
∑︂

1≤i≤|C|

wi · Fi · Ai (5.20)

where let us remember that |C| is the cardinality of the cluster collection, i.e., the total
number of clusters.

This metric, as it will be later explored in Section 6.3, is a powerful instrument for
evaluating clustering algorithms in datasets where labels are not available and, further-
more, where variability of density and shapes are important factors to be taken into ac-
count.

5.3. Combining datasets and metrics into a benchmark for density-based clustering

As it was discussed at the beginning of this chapter, we aim to collect a series of synthetic
and non-synthetic databases with the goal of building a benchmark for density-based clus-
tering algorithms. Particularly, the synthetic datasets were generated using SynFlex (see
Section 5.1) to reflect the behaviour of a tested algorithm in scenarios with varying char-
acteristics.

There are several data behaviours that can affect an algorithm’s result. When working
with datasets with high density variability and arbitrary data formations (the type of data
for which density-based clustering algorithms would be applied), we have identified the
following as the primary factors to be studied: (1) the shape of the clusters to be dis-
covered, (2) the density variability of the sample space, (3) the amount of noise in the
distribution and (4) the depth of the hierarchy in the data generation process and (5) the
dimensionality of the data.

Then, a series of databases exploring each of these factors is generated. This is done
by exploring different values of the parameters that control the SynFlex generation sys-
tem. For instance, when analyzing the effect of changing the shape of the clusters, dif-
ferent values for parameters α and β must be explored (see Section 5.1.1). To this end,
we first fix some default values for all adjustable parameters. Then, for each behaviour
factor, the corresponding parameters are tweaked to generate databases with the desired
characteristics.

Furthermore, two additional studies are presented: (6) a difficulty study, which com-
bines several factors of impact creating four levels of clustering difficulty and (7) a study
of unlabeled real-world databases using the FLAG index proposed in Section 5.2. The
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objective of these last two experiments is to provide a realistic performance evaluation of
the algorithms in generic scenarios.

The details of the parameter adjustment for each of the six mentioned synthetic stud-
ies, as well as the characteristics of the real-world datasets of the seventh study, will be
thoroughly described and further explained in Section 6.4, where the benchmark will be
tested against popular clustering algorithms from the literature discussed in this manuscript
(Section 2.3) and the ones proposed in [1], which are also presented and validated in
Chapters 3 and 4.
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Variable Brief description
D Data dimensionality
CHR Cluster-to-Hypercube Ratio
NV Nº Voronoi cells in hyper-cube
NC Nº Vor. cells that form the clsuter shape
NS Nº samples in the cluster
V Vor. stage output: set containing coordinates of Vor. cells
ΩV Set of total Vor. cells
ΩL Set of limit Vor. cells
ΩEn Set of valid Vor. cells at time instant n
xn Markov state at time instant n
tn Transmitter cell index at time instant n
dn Direction of expansion vector at time instant n
rn Receptor cell index at time instant n
in Adding instant vector at time instant n
Ψ j Set of cells in the vicinity of cell j
α Choice of tn

β Change in dn
ΩC Exp. stage output: set of cells forming the shape
lo Mean of Distribution (Normal)
σC Variance of Distribution (Normal)
S C Sam. stage output: set of cluster samples
λMAX Max. scale of the cluster
λS Final scale of the cluster
fλ Scale factor
ENR Element-to-Noise Ratio
bi Branch vector of cluster Ci

Fi Fluctuation of cluster Ci

Fi Fluctuation of cluster Ci

ri, j Relative distance between clusters Ci and C j

Ai Agglomeration of cluster Ci

wi weight of cluster Ci

fN Noise factor

Table 5.2: Summary of the variables used in this chapter and a brief explanation of each
of them. Over the dashed lines, the variables corresponding to SynFlex; below, those
belonging to FLAG.
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CHAPTER 6

VALIDATION EXPERIMENTS ON THE PROPOSED
BENCHMARK AND ASSOCIATED TOOLS (SYNFLEX, FLAG).

In this chapter, we present the experiments carried out to verify the usefulness of the
tools proposed in Chapter 5. To this end, we have studied the behaviour of several clus-
tering algorithms that, as we discussed in Section 2.3, are often used in the scenarios
proposed in this research. Particularly, we consider five algorithms with diverse charac-
teristics from the literature: (1) K-Means, (2) Mean-Shift, (3) Agglomerative Hierarchical
Clustering, (4) DBSCAN, (5) HDBSCAN; and the two algorithms proposed in Chapter 3:
KDBSCAN and VDBSCAN.

For the experiments where labels were available, we made use of an external metric to
evaluate the performance of each algorithm. We will first present the experiment through
which we chose this metric (Section 6.1). Then, the validation experiments carried out
for the SynFlex generator and the FLAG index are presented in Sections 6.2 and 6.3. To
close the chapter, the benchmark experiments (Section 6.4) are described and thoroughly
discussed.

6.1. Evaluation metrics for labeled data

The metric employed when evaluating an algorithm is important, especially when the con-
text of application of the algorithm is known, since not all clustering metrics are suitable
for the task, as it was discussed in Section 2.2.2. The following metrics were considered
for this experiment: Adjusted Rand Index, Fowlkles-Mallows, Adjusted Mutual Informa-
tion, and V-Measure (along with its components Completeness and Homogeneity). The
choice is supported by a simple experiment, for which a real-world database was fully-
labeled. This database consists in a set of geo-located points centered in the city of Getafe
(Madrid, Spain). Similarly to the ones discussed in Chapter 4, this dataset was extracted
from Flickr, and it includes 2827 data samples that correspond to the GPS coordinates
where the photographs were taken. The samples were manually labeled into 20 different
classes, each one representing a landmark (plus a a 21st category representing noise).

Thus, in order to choose the optimal external metric to evaluate clustering, the Getafe
database has been previously clustered using the six algorithms described above. Each
algorithm has a key parameter to adjust, which has been thoroughly swept to check the
influence on the performance measured by each metric. Fig. 6.1 shows a comparison of
these results for each algorithm in the Getafe dataset.
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Figure 6.1: Parameter sweep (x-axis) for six clustering algorithms and the results ob-
tained for the considered external metrics.

The first thing we can notice when observing Fig. 6.1 is that some metrics produce
erratic results when the parameters take extreme values. Fowlkes-Mallows index tends to
return the maximum value when the lowest number of clusters is detected. This means
that, for algorithms with parameters defining an area-of-effect (e.g., the bandwidth for
Mean-Shift; the ε for DBSCAN), Fowlkes-Mallows index reaches its maximum when the
parameter is at its largest value and, therefore, the number of clusters tends to a minimal
value. Likewise, for algorithms where the parameter is the number of clusters to be gen-
erated (K-Means, Agglomerative Hierarchical), the highest value is obtained when the
parameter is minimal. This behaviour, although rather expected (see Section 2.2.2), is
undesired and, in consequence, prevents the adoption of this metric in our scenario. Simi-
larly, the Completeness score returns the highest values for small values of the bandwidth
and ε parameters. Although it does provide a local maximum when analyzing different
values of the parameter for K-Means, the observed increase in performance is not substan-
tial and, furthermore, it still presents an erratic behaviour for the rest of the algorithms.
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The results produce by the homogeneity index are radically different from the other two,
returning better results for high number of clusters and low bandwidth for Mean-Shift. A
local maximum can be observed in the Homogeneity score when analyzing different val-
ues of ε in DBSCAN, but this is not enough to realistically reflect the results of a certain
clustering in this scenario. However, these two complementary scores (as it is mentioned
in Section 2.2.2) were conceived to be parts of a whole, more representative index: the
V-Measure.

The V-Measure and the other two depicted metrics (Adjusted Rand Index and Ad-
justed Mutual Information) provide more stable results. Moreover, they share most of
the local maxima (even if they do not always share the absolute maxima) for most of the
tested algorithms.

The Adjusted Rand Index provides generally smaller values than the other two, and it
penalizes harshly those algorithms that cannot identify noise samples (K-Means, Mean-
Shift, Agglomerative). The V-Measure provides, in average, higher performance values
than the other two. This is not necessarily a good thing, since, in fact, it has a narrower
range of values and is therefore less discriminative. Finally, the Adjusted Mutual Informa-
tion score provides a compromise between the previous two, since it is more permissive
with no-noise algorithms while still providing an acceptable range of results. For this
reason, the external results in this Chapter will be provided using the Adjusted Mutual
Information score (AMI) as the evaluation metric, comparing the ground truth labels with
the predicted labels resulting from applying each clustering algorithm.

Therefore, the first required validation is centered on SynFlex, and it is explained in
the following section.

6.2. Assessment of the synthetic data generator with flexible parametrization (Syn-
Flex)

The SynFlex generator is defined in Section 5.1 as a tool capable of generating datasets
that can be used to emulate realistic scenarios for tasks like landmark discovery. In order
to justify this claim, we have assessed the potential of SynFlex to automatically generate
a database with similar properties to the real-world Getafe dataset.

In order to set the appropriate parameters in SynFlex that led to a dataset similar to
Getafe, we proceeded as follows: first, we obtained the number of clusters (NS (level 1) =
20) and the range of the cluster cardinalities (NS (level 2) = U(17, 103)) from the Getafe
database. Moreover, a similar S NR (∼ 0.6) was desired, resulting on setting ENR =
0.01128 (88.65 noise samples per cluster) in level 1. For the rest of the parameters, a ran-
dom range of values was heuristically set. To account for possible variations, 10 different
databases were produced with these characteristics, and the six clustering algorithms dis-
cussed above were applied to each of the sets, with the aim of assessing if the results were
in concordance with those obtained using the original dataset. An instance of a synthet-
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Figure 6.2: Visual comparison between the Getafe dataset (left) and an equivalent dataset
generated using SynFlex (right).

ically generated dataset using this parametrization is compared to the Getafe dataset in
Fig. 6.2, where one can observe that the data distributions are visually similar.

It is important to mention that fixing the algorithms’ parameters following a cross-
validation strategy was not practical, since there were 10 different databases with dif-
ferent characteristics and a fair comparison required that all executions shared a generic
parametrization. Thus, the parameters were heuristically set taking as a reference the
parametrization for the Getafe database and the distribution of each synthetic set. Partic-
ularly, the median of all the distances between samples in the distribution was obtained.
Let us call this ϕD. Then, for each algorithm, an adjustable, algorithm-specific parameter
k is set and used in all databases. After that, each algorithm’s key parameter is fixed from
these two. For instance, for the ε in DBSCAN:

ε = k · ϕD (6.1)

For those algorithms that require an integer parameter (e.g., the number of clusters),
the nearest integer to k ·ϕD is set as the parameter’s value. Note that, since this strategy for
setting the parameters depends on the unique distribution of each dataset, it can be used
for any potential parametrization of the SynFlex generation system. In fact, this strategy
is later used in Section 6.4 to fix the parameters of the algorithms to be tested on the
benchmark.

The average results obtained for the 10 synthetic datasets are compared to those ob-
tained by the Getafe dataset (see Table 6.1). At first glance, one can clearly see that the
performance results are very similar, both in ranking and absolute value. In fact, the only
noticeable difference is between VDBSCAN and HDBSCAN, which, despite being the top
2 ranked algorithms, their position is exchanged. This could be due to the fact that VDB-
SCAN makes the assumption of a radially decreasing density from the distribution center
(see Section 3.1.2), which may not always hold in the case of synthetic databases. De-
spite this small variation, the results are similar enough to demonstrate the capability of
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Algorithm Getafe Synthetic
K-Means 0.443 0.430 (0.03)
Mean-Shift 0.413 0.397 (0.03)
Agglom. Hier. 0.453 0.443 (0.03)
DBSCAN 0.523 0.539 (0.1)
HDBSCAN 0.620 0.596 (0.03)
VDBSCAN 0.636 0.581 (0.03)

Table 6.1: Results for the Getafe dataset and average (standard deviation) results for the
analogous synthetic datasets. Results are expressed as the Adjusted Mutual Information
for each of the six prposed algorithms.

SynFlex to generate synthetic datasets that look realistic and share properties with real
databases. This observation supports the use of synthetic datasets for the evaluation of
density-based clustering algorithms.

6.3. Assessment of FLAG as an internal metric to evaluate density-based clustering
algorithms

A realistic automatic data generator like SynFlex is a powerful tool to study the behaviour
of clustering algorithms. However, as it has been mentioned, its existence does not change
the fact that there is an important lack of real-world labeled databases. In consequence,
the definition of the FLAG index is vital to evaluate those cases in which obtaining labels
is either impractical or impossible. Nevertheless, since internal metrics are not based on
any ground-truth, they need to be verified for the purposes at hand.

In this section, we present the results of the fully labeled Getafe dataset for the six
clustering algorithms that were already used in Section 6.2. The results shown are those
yielded by four of the most popular internal metrics in the literature: Dunn index [94],
Davies-Bouldin score [95], Calinski-Harabasz score [96], and Silhouette score [97]. Ad-
ditionally, two scenario specific metrics are used: DBCV [98] and SV index [99]. These
two metrics, as we discussed in Section 2.2.3, were designed to evaluate data distributions
where density variation is an important factor to be accounted for. The results are then
compared to the ones provided by the FLAG index and, of course, to those obtained by the
selected external metric: Adjusted Mutual Information (AMI). Let us remember that two
of the discussed metrics (Davies-Bouldin and the proposed FLAG index) express better
clustering results with lower values, whereas higher values are preferred for the rest of the
indices.

Table 6.2 shows the results of our experiment. Although a glance at them reveals
the superiority of the FLAG index to mimic the behaviour of the external metric, it is
worth noticing that different metrics produce values with very different ranges and varying
orders of magnitude. Hence, a fair comparison is not straightforward. In such scenario,
despite considering absolute values, it is more meaningful to compare the rankings of
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Algorithm Dunn Dav-Bould Cal-Hbz Silhouette DBCV SV FLAG AMI
K-Means 0.0096 0.70 4782.1 0.51 -0.65 1.10 5.63 0.443
Mean-Shift 0.0147 0.67 2859.1 0.50 -0.71 1.42 6.44 0.413
Agglom. Hier. 0.0154 0.71 4325.8 0.48 -0.55 1.11 3.93 0.453
DBSCAN 0.0002 3.01 34.4 -0.20 -0.49 2.15 1.99 0.523
HDBSCAN 0.0011 2.27 122.2 0.01 -0.70 1.19 1.61 0.620
VDBSCAN 0.0012 1.46 184.9 -0.14 -0.65 1.64 0.48 0.636

Table 6.2: Performance for the six algorithms in the Getafe dataset. Results are expressed
as four generic internal metrics (Dunn, Davies-Bouldin, Calinski-Harabasz and Silhou-
ette), 2 specific density-based internal metrics (DBCV and SV), the proposed FLAG index
and the Adjusted Mutual Information score.

Algorithm Dunn Dav-Bould Cal-Hbz Silhouette DBCV SV FLAG AMI
K-Means 3 2 1 1 3 6 5 5
Mean-Shift 2 1 3 2 6 3 6 6
Agglom. Hier. 1 3 2 3 2 5 4 4
DBSCAN 6 6 6 6 1 1 3 3
HDBSCAN 5 5 5 4 5 4 2 2
VDBSCAN 4 4 4 5 4 2 1 1
Rank coeff. Dunn Dav-Bould Cal-Hbz Silhouette DBCV SV FLAG AMI
Kendall τ -0.33 -0.60 -0.33 -0.60 0.20 0.33 1.0 -
Spearman ρ -0.60 -0.77 -0.60 -0.77 0.14 0.43 1.0 -
Pinto Weighted -0.59 -0.77 -0.61 -0.78 0.02 0.44 1.0 -

Table 6.3: Performance ranking for the six algorithms in the Getafe dataset. Results are
expressed as four generic internal metrics (Dunn, Davies-Bouldin, Calinski-Harabasz
and Silhouette), 2 specific density-based internal metrics (DBCV and SV), the proposed
FLAG index and the Adjusted Mutual Information (AMI) score. Three ranking correla-
tion coefficients (Kendall’s τ, Spearman’s ρ and Pinto Weighted Rank) are shown for the
ranking of every metric with respect to the AMI ranking.

the algorithms obtained using different metrics. Table 6.3 shows equivalent results to
Table 6.2, albeit this time in terms of the position that each algorithm got using each
evaluation technique.

In addition to comparing internal metrics to the external reference (AMI), we made
use of three different ranking coefficients: Kendall’s τ [117], Spearman’s ρ [118] and
Pinto Weighted Rank [119].

Kendall’s τ and Spearman’s ρ are well-known ranking coefficients. Both of them
consider all positions of a ranking to be equivalent and, hence, every position variation is
equivalent as well. However, when comparing clustering algorithms, it is useful to assign
more relevance to the top positions of the ranking. Therefore, we have also made use
of the Pinto Weighted Rank, which considers higher positions of the ranking to be more
relevant when calculating the final value of the coefficient.

The values of the three ranking coefficients are expressed in the range [−1,+1], where
higher values represent a better correlation with the reference ranking. When observ-
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ing Table 6.3, one can notice that the three ranking coefficients yield similar results. As
it is expected, the density-based metrics (DBCV and SV index) show better correlation
with the ranking provided by the external metric than the other four generic internal met-
rics. Moreover, FLAG offers a perfect correlation with the considered external metric,
which proves that it is better tailored to evaluate clustering algorithms in databases where
density, shape and size variations are strong factors to be taken into account. In conse-
quence, we selected FLAG as the evaluation metric of choice when dealing with unlabeled
databases. This is the case of real-world databases obtained to for the benchmark, which
are described in the following section.

6.4. Experiments using the proposed benchmark

In the previous sections, we have demonstrated the usefulness of SynFlex as a tool for the
generation of realistic data. Moreover, we have assessed the viability of FLAG as an inter-
nal metric to evaluate clustering algorithms in scenarios where density-based clustering
is usually applied.

This section contains a detailed description of the process followed to create the
databases for the benchmark presented in Section 5.3. The goal of this benchmark is
to establish a systematic, deep comparison between clustering algorithms in scenarios
with vastly varying densities.

In this context, as it was mentioned in Section 5.3, we have identified five main factors
that impact the nature of the data distributions when we want to attempt the clustering of
the data: (1) shape, (2) density, (3) noise, (4) hierarchy depth, and (5) dimensionality.
This led to several experiments where appropriate parametrizations of SynFlex were pro-
posed to study each factor. Furthermore, two additional experiments were included in the
benchmark, namely: (6) a difficulty experiment and (7) a real-world experiment.

6.4.1. Setup protocol

In order to assess the impact of each factor, some default values for the parameters were
proposed, which are listed in Table 6.4. Then, to study each factor, the corresponding
parameters were modified and the impact of these changes was studied, keeping the de-
fault values for the rest. Let us remember that, as we expressed in Section 5.3, for each
parametrization, the model was executed 10 times to produce more stable results. A brief
summary of the experiments that are described in the remaining of this section is included
in Table 6.5.

It is also worth mentioning at this point that all datasets used for the experiments have
been made publicly available 10 for the sake of replicability and to promote future research
in the field using this benchmark.

10https://github.com/plasavall/benchmark
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Parameter Brief description Default value
Depth Nº Hierarchy levels 2
fλ Scale factor U(0.05, 1)
ENR (level 1) Element-to-Noise Ratio 0.025
NS (level 1) Nº el. in the super-cluster 32
D Dimensionality 2
NV Nº Voronoi cells 100 · 2D−1

NS (last level) Nº samples in the clusters U(40, 80)
CHR Cluster-to-Hypercube-Ratio 0.25
α Choice of tn U(−100,+100)
β Change in dn U(0, 1)
Distribution Type of distribution N(µ = lo, σ = σC)
lo Mean of Distribution Initial transmitter cell
σC Variance of Distribution 0.5

Table 6.4: Default value given to the SynFlex parameters. The first three (over the first
dashed line) are set for the collection generation, while the rest are set for the cluster
generation. Note that the parameters below the second dashed line are directly dependent
on the choice of distribution.

Factor studied Parameters involved Evaluation metric
Shape α, β AMI
Density σNS , σ fλ AMI
Noise ENR AMI
Depth NS , Depth AMI
Dimensionality D AMI
Difficulty NS , Depth, ENR, α, β, fλ AMI
Real-World - FLAG

Table 6.5: Summary of the experiments. Over the dashed lines, the experiments cor-
responding to the five identified impact factors; below, the two additional experiments
proposed.

6.4.2. Results of the benchmark experiments

In this section, we break down the results for the seven experiments described at the be-
ginning of Section 6.4. First, each experiment is properly motivated. For the experiments
using SynFlex datasets, the parametrization details are presented and discussed. Further-
more, for those databases that can be represented in 2 dimensions we include reference
figures to better understand the features of the data. To conclude, the results for each
experiment are analyzed, and we include relevant conclusions drawn from them.

Shape experiment

The shape of a cluster is determined by parameters α and β, described in Section 5.1.1.
The former controls which Voronoi region dictates the immediate expansion area of the
cluster, whereas the latter controls the direction of that expansion. Low values of α will
yield shapes closer to a globular cluster, while high values will produce a worm-like
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Figure 6.3: Cluster examples for each parametrization: (a) globular-linear clusters, (b)
worm-linear clusters, (c) globular-random clusters, and (d) worm-random clusters.

Parameter globular-linear worm-linear globular-random worm-random
α -100 +100 -100 +100
β 0 0 1 1

Table 6.6: Parametrization for the shape experiment.

expansion of the cluster. On the other hand, low values of β will force the expansion in
a single direction, while large values of this parameter will produce random changes in
expansion direction, leading to irregularly-shaped clusters.

In this experiment, datasets with four different configurations are built altering the
values of these two parameters with respect to the default parametrization. Particularly,
the four parametrizations are: (1) globular-linear clusters, (2) worm-linear clusters, (3)
globular-random clusters, and (4) worm-random clusters. The values for the α and β
parameters are shown in Table 6.6. The rest of the parametrization remains in its de-
fault values. An example of a cluster generated with each parametrization is displayed in
Fig. 6.3.

Clustering is then performed over this data using the six compared algorithms. Av-
erage results, in terms of Adjusted Mutual Information, obtained from running the algo-
rithms in 10 replications of each parametrization are shown in Fig. 6.4.

From the figure, we can draw some conclusions. First, shape variations do not seem
to affect the performance of K-Means and the Agglomerative Hierarchical Clustering al-
gorithm, since the presence of noise is probably the most important factor in reducing
their performance (as it is shown in Section 6.4.2). While the impact of noise is also
strong for Mean-Shift, in this case a change in behaviour related to shape can observed.
Shapes closer to globular offer better performances than worm-like shapes. The opposite
happens for DBSCAN: it seems to be better are recognising the clusters among the noise
when they have distinctive shapes. A worthy aspect to mention about DBSCAN is the
high variation between results, which could be due to its notorious limitation to handle
data with different scales. Finally, HDBSCAN and K+VDBSCAN offer the best results for
all parametrizations, and a slight improvement can be observed for both of them when the
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Figure 6.4: Results for the shape experiment in terms of AMI. The black segments repre-
sent the variation in the results through the 10 instances for each parametrization (their
height is the value of the standard deviation).

changes in the direction are minimal (low β).

It is worth mentioning that, as it can be observed in Fig. 6.4, HDBSCAN shows a
slightly better performance than K+VDBSCAN. This swap with respect to the results ob-
tained in Chapter 4 is recurrent among the experiments presented in this chapter, and fur-
ther supports the idea that the use of additional metadata (e.g., the descriptive tags used
in Chapter 4), which is not present in these datasets, is crucial to the task of landmark
discovery. This issue will be further discussed in Section 7.2.

Density experiment

The variations in the density within a data distribution are undoubtedly a factor to consider
when developing a clustering algorithm. In fact, this was one of the main motivations to
develop density-based clustering algorithms originally (see Section 2.1).

According to the definition of the SynFlex generation system, we could control the
internal density variation within a cluster by choosing an appropriate statistical distribu-
tion. For instance, when choosing a Normal distribution to sample data inside a cluster,
this variation is controlled by σC. However, since these variations depend more on the
nature of each individual cluster and not the whole sample space, focusing on inter-cluster
variations is more appropriate to study the behaviour of the algorithms. In consequence,
variations in density from one cluster to another are no longer controlled by the data
distribution, but by their cardinality (set by NS ) and size (set by fλ).

Therefore, to study the effects of these variations, 4 parametrizations were defined
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Figure 6.5: Cluster examples for each parametrization: (a) no density variation, (b) low
density variation, (c) medium density variation, and (d) high density variation.

Parameter no variation low variation med. variation high variation
σNS 0 5 10 15
σ fλ 0 0.1 0.2 0.3

Table 6.7: Parametrization for the density experiment.

where values of these two parameters were changed to sequentially increase the variations
in density. In particular, we sampled these parameters using a Normal distribution with
a fixed mean (µNS = 60, µ fλ = 0.7) and an increasing standard deviation. Then, the four
parametrizations were: (1) no density variation, (2) low density variation, (3) medium
density variation, and (4) high density variation. The values of the parameters are reflected
in Table 6.7. The rest of the parameters were set to their default values. Again, an example
of clusters generated with each parametrization is displayed in Fig. 6.5.

Fig. 6.6 shows the results obtained in this experiment. Observing the results, one can
notice that modified density-based clustering algorithms (HDBSCAN and K+VDBSCAN)
experiment a slight increase in performance from no density variation to low density vari-
ation. From then, a steady decrease is observed, but they always remain over AMI values
of 0.7, whereas the rest of the algorithms do not surpass the 0.6 barrier. The only excep-
tion to this is DBSCAN, for we which we can observe a sudden increase in performance
for the high density variation parametrization. As it happened in the previous section, it
is worth mentioning that DBSCAN presents the highest standard deviation in the perfor-
mance values, so this could also be related to the scaling issues that DBSCAN faces. As
for non-density-based clustering algorithms, we can see that density variability is not a
strong factor affecting their performance: K-Means and Agglomerative Hierarchical yield
AMI performances around 0.6. Nevertheless, Mean-Shift presents the worst results sys-
tematically (AMI < 0.55). This is probably because, even though it is based on kernel
density estimation, it cannot identify noise samples or outliers (all samples were drawn to
each of the local maxima of the distribution).
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Figure 6.6: Average results for the density experiment in terms of AMI (left axis). The bars
represent the variation in the results through the 10 instances for each parametrization,
i.e., their height is the value of the standard deviation (right axis).

Parameter no noise weak noise mod. noise strong noise
ENR ∞ 0.035 0.015 0.005
Ns/cl. 0 29 67 200

Table 6.8: Parametrization for the noise experiment. The second row shows the approx.
amount of noise samples per generated cluster (1/ENR).

Noise experiment

Noise is a problematic factor to analyze. Some algorithms, like K-Means, are designed
to neglect the possibility of noise identification. This is a clear disadvantage when the
presence of noise or outliers is a reality, which is often the case in real-world databases.

The presence of noise in the SynFlex sets is easily controlled with the ENR parameter.
The default parametrization includes 2 levels of hierarchy, and since any noise generated
in the last level would be indistinguishable from the cluster samples themselves, the noise
is generated in level 1. Analogously to the previous sections, four parametrizations were
tested: (1) no noise, (2) weak noise, (3) moderate noise, and (4) strong noise. The values
of the ENR for each parametrization are shown in Table 6.8. The rest of the parameters
were set to their default values. An example of the noise presence resulting from each
parametrization is depicted in Fig. 6.7

The performance of the selected algorithms for the discussed parametrizations is
shown in Fig. 6.8. As it can be clearly observed, there is a significant decrease in per-
formance when the amount of noise increases. Most of the density-based clustering algo-
rithms (DBSCAN, HDBSCAN, K+VDBSCAN) obtain decent results (AMI > 0.65) up to
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Figure 6.7: Visual examples (at the same scale) of generated data for each parametriza-
tion: (a) no noise, (b) weak noise, (c) moderate noise, and (d) strong noise.

Figure 6.8: Average results for the noise experiment in terms of AMI (left axis). The bars
represent the variation in the results through the 10 instances for each parametrization,
i.e., their height is the value of the standard deviation (right axis).

the scenario with highest levels of noise, where their performance drops dramatically. The
other algorithms present a steady decrease, with notable AMI performances when there
is no noise (around 0.9) and falling under AMI < 0.2 when the noise is strong. These
significant changes in performance suggest that noise is one of the most relevant factors
in density-based clustering.

Experiment on the depth of the hierarchical model

The depth of the hierarchy used to generate the data distribution is, like noise, a trouble-
some factor to study. This is mainly because it is difficult to determine the correct scale
for analysis. For instance, a given clustering partition of a data distribution with 5 hierar-
chy levels could have correctly identified the clusters on the second-last level and, thus,
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Figure 6.9: Visual examples of generated data for each parametrization: (a) a 2-level
parametrization, (b) a 3-level parametrization, (c) a 4-level parametrization, and (d) a
5-level parametrization.

Parameter 2-level 3-level 4-level 5-level
NS (level 1) 128 8 4 2
NS (level 2) - 16 4 4
NS (level 3) - - 8 4
NS (level 4) - - - 4
Nº clusters 128 128 128 128
NS (last level) U(40, 80)

Table 6.9: Parametrization for the hierarchy depth experiment. All databases contain the
same final number of clusters (128).

its comparison with the true labels would be diminished.

For this experiment, we have studied how the algorithms adapt to different depths in
data generation. To this end, 4 parametrizations with a sequentially increased number of
hierarchy levels were fixed: (1) a 2-level parametrization, (2) a 3-level parametrization,
(3) a 4-level parametrization, and (4) a 5-level parametrization. The rest of the parameters
were set to their default values. An example of a dataset with each configuration is shown
in Fig.6.9

To control the depth, the SynFlex generator offers the possibility of directly adding
cluster levels over the existing ones. However, in order to be able to compare the scenar-
ios, the same number of clusters on the last level generated is kept the same. Table 6.9
reflects this parametrization in terms of the hierarchy depth and the number of elements
per level (NS ).

Fig. 6.10 shows the results obtained by the selected algorithm pool in the databases for
each parametrization. Note that a seventh algorithm is included in the comparison: VDB-
SCAN (without KDBSCAN). This is done to further reflect the usefulness of KDBSCAN
in identifying different regions of interest before applying VDBSCAN (see Chapter 3). For
the rest of the experiments, this comparison is unnecessary, since there is only 2 levels of
hierarchy and, therefore, there were no super-cluster divisions.

Indeed, when observing the results, a clear difference is observed between K+VDBSCAN
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Figure 6.10: Average results for the depth experiment in terms of AMI (left axis). The bars
represent the variation in the results through the 10 instances for each parametrization,
i.e., their height is the value of the standard deviation (right axis).

and VDBSCAN, with the performance of the latter dropping when depth is increased
(from 0.71 to 0.58), whereas the former only suffers from a slight decrease (from 0.71
to 0.68). Despite this fact, HDBSCAN remains to be the most robust against hierarchy
depth changes, maintaining its results around a decent margin (0.75 < AMI < 0.79).The
remaining algorithms decrease their performance with the increased depth, with the ex-
ception of Mean-Shift and DBSCAN, which experiment a slight increase for the last
parametrization (5-level hierarchy depth). In the case of DBSCAN, however, it is worth
mentioning that this slight increase (from 0.53 to 0.56) is not enough to recover from its
initial drop (0.76 to 0.54 from 2-level to 3-level hierarchy depth).

Dimensionality experiment

In this document, we are mostly studying the behaviour of algorithms in two-dimensional
environments. However, data often presents more than 2 dimensions, which may affect
the behaviour of clustering techniques.

The SynFlex generation system allows us to choose the dimensionality of the data
with a single parameter D. For this experiment, 4 parametrizations were set with in-
creasing dimensionality: (1) a 2-D parametrization, (2) a 3-D parametrization, (3) a 4-D
parametrization, and (4) a 5-D parametrization. The rest of the parameters were set to
their default values.

The performance of the selected algorithms for the discussed parametrizations is
shown in Fig. 6.11. As it can be observed, an increase in dimensionality does not have a
strong effect in most of the algorithms. A slight performance decrease can be observed
for Mean-Shift in 4 and 5 dimensions, while K-Means and Agglomerative Hierarchical
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Figure 6.11: Average results for the dimensionality experiment in terms of AMI (left
axis). The bars represent the variation in the results through the 10 instances for each
parametrization, i.e., their height is the value of the standard deviation (right axis).

experiment a slight progressive increase, always under the AMI = 0.7 barrier. In HDB-
SCAN and K+VDBSCAN, slim improvements are observed for 3D and 5D, but all results
are circling a 0.8 value for the AMI. The only exception is DBSCAN, which suffers a
steep performance loss with every increase in dimensionality, reaching an AMI value
under 0.2 for 5D. This suggests that, as dimensionality increases, the effect of density
variations becomes more relevant (i.e., a single value of ε is unable to correctly identify
the clusters). Therefore, the obtained results support the idea that the modifications of
the original DBSCAN algorithm for HDBSCAN and K+VDBSCAN not only serve the
purpose of adapting it to variable densities, but also make them more robust against di-
mensionality changes.

Difficulty experiment

After analyzing the performance impact obtained from changes in the five discussed fac-
tors, we present this additional experiment studying the generic concept of difficulty. Four
parametrizations were defined with an increasing difficulty by changing some of the pa-
rameters from their default values to values that have posed complications in the previous
experiments. Table 6.10 defines these parametrizations. The parameters that do not ap-
pear in the table were set to their default values.

Once more, the performance of the selected algorithms for the discussed parametriza-
tions is shown in Fig. 6.12. As it is expected, the harder the scenario, the worse the perfor-
mance. Like it happened with the noise experiment, the modified density-based clustering
algorithms (HDBSCAN, K+VDBSCAN) are the only ones that hold AMI results over 0.6
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Parameter Trivial Easy Moderate Hard
Depth 2 2 3 3
fλ 0.9 U(0.05, 1) U(0.05, 1) U(0.05, 1)
ENR (level 1) ∞ 0.04 0.025 0.005
NS (level 1) 32 32 4 4
ENR (level 2) - - 0.025 0.005
NS (level 2) - - 8 8
NS (lastlevel) 60 U(40, 80) U(40, 80) U(40, 80)
α -100 -100 U(−100,+100) U(−100,+100)
β 0 0 U(0, 1) U(0, 1)

Table 6.10: Values given to the SynFlex parameters for the difficulty experiment. Unless
it is specified otherwise, the parameter value is the same for all hierarchy levels.

Figure 6.12: Average results for the difficulty experiment in terms of AMI (left axis). The
bars represent the variation in the results through the 10 instances for each parametriza-
tion, i.e., their height is the value of the standard deviation (right axis).

until the last parametrization (hard scenario). This further supports the point of noise
being one of the most influential analyzed factors. However, the value of ENR in the
stronger noise parametrization (ENR = 0.005) is also used in the hard parametrization
of this experiment, and while there is still a dramatic performance drop for every algo-
rithm, modified density-based clustering algorithms suffer less in this experiment than
in the one depicted in Section 6.4.2. Particularly, K+VDBSCAN yields an AMI = 0.25
for the noise experiment, whereas the hard parametrization of this experiment yields an
AMI = 0.47. This result is probably caused by the increased dimensionality, since it
matches with the one obtained in the dimensionality experiment, where modified density-
based algorithms experimented a slight increase in performance for the 3D databases.
Additionally, DBSCAN suffers from an even greater performance drop in this experiment
from the third parametrization (moderate scenario) than in the noise experiment, which
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Figure 6.13: Representation of each sample space over their corresponding location’s
map. Note that each location is representing in the scale that favoured its visualization.

also matches with the significant decrease in performance in the dimensionality experi-
ment when D > 2.

Real-World experiment

To conclude this benchmark, we have also explored the behaviour of the algorithms in
several real-world databases. Similar to the Getafe dataset and the ones used in Chap-
ter 4, these databases were obtained from the Flickr web platform, and they represent ge-
ographical coordinates from 7 different real regions: (1) Siena (Italy), (2) Madrid (Spain),
(3) London (United Kingdom), (4) Budapest (Hungary), (5) Marrakech (Morocco), (6)
Amsterdam (The Netherlands), (7) Dubrovnik (Croatia) and (8) Temuco (Chile). These
represent areas of diverse nature attending to factors like population densities, tourism,
shape and size. For the purposes of this experiment, the assembled databases have default
sizes depending on the size of the region. Particularly, small regions (Temuco, Siena and
Dubrovnik) contain 4,000 samples; while the rest, which are sections of larger cities, con-
tain 6,000 samples. A map of each location is displayed in Fig 6.13. Let us remember that
these databases, as well as the ones in the previous experiments, have been made publicly
available 11 for further research.

It is important to remember that these databases were unlabeled and, therefore, cannot
be evaluated using a external metric like the Adjusted Mutual Information score. There-
fore, we have used of the proposed FLAG index (Section 5.2) to assess their performance.
These results are shown in Fig. 6.14. Let us remember that lower FLAG values represent

11https://github.com/plasavall/benchmark
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Figure 6.14: Results for the Real-World experiment in terms of FLAG for each tested
region.

better performances (see Section 5.2).

One can clearly observe that Mean-Shift systematically offers the worst performance
results, returning values of FLAG > 9 and often going over the 11 threshold, for an av-
erage FLAG = 10.98. This is in accordance with the results of the previous, supervised
experiments, where Mean-Shift was often the last contender in the comparisons. Like-
wise, K-Means has similar results, yielding marginally better results than Mean-Shift, but
yielding second-last best results in most scenarios (average FLAG = 8.70). The exception
to this is, once again, DBSCAN, which offers moderately worse results than K-Means in
Madrid, Amsterdam, Dubrovnik and Temuco (average FLAG = 9.97) but significantly
better results for the rest of the locations (average FLAG = 6.23). This erratic behaviour
was observed in the supervised experiments as well, where DBSCAN usually obtained
high standard deviations in the results of the 10 databases for each parametrization, sug-
gesting a high variability in the performance even in supposedly similar scenarios.

An interesting contrast with respect to the supervised experiments is the results ob-
tained by the Agglomerative Hierarchical clustering, which usually ranked 4th under DB-
SCAN in said experiments, but obtains stable, decent performance results here, averaging
a FLAG = 4.39 for all the analyzed real world scenarios. One of the reasons that could
cause this is the inability to identify noise samples by this algorithm, which has a penal-
izing effect when labels are available, but is not as significant with internal metrics.
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Once again, HDBSCAN and K+VDBSCAN yield the best results in every scenario,
with the former performing slightly better than the latter (an average FLAG = 1.31 versus
FLAG = 2.49).

This experiment is useful to further analyze the behaviour of algorithms in scenarios
with variable density and clusters with arbitrary shapes and sizes. Of course, as we discuss
in Section 7.2, it would be interesting to study this using fully labeled databases, but
obtaining them is not trivial, so the availability of an internal metric with this level of
correlation with the external ones (see Section 6.3) for these scenarios is a substantially
up to the mark alternative.

6.4.3. Conclusions about the experiments using the benchmark

Finding the appropriate algorithm to perform a certain task is challenging. Through the
experiments described in the previous section, we have seen that different algorithms
obtain varying performances depending on the scenario. In this last section of the chapter,
we gather some conclusions that may help a potential user decide which algorithm to
choose based on the results obtained in the proposed benchmark.

When the presence of noise is a factor for the application context, it is important to
choose an algorithm that does not neglect this factor. For instance, algorithms like K-
Means and Mean-Shift assign every sample to a category, so they are not a viable option
when the databases have high levels of noise. On the other hand, density-based clustering
algorithms are able to identify noise samples, so they are more suitable for this scenario.

Similarly, if the scenario requires the identification of clusters with arbitrary shapes,
the use of density-based clustering techniques is highly recommended, since they are able
to identify groups of points based on local density variations rather than distance to a
centroid. Therefore, classic approaches that favour the identification of globular clusters
(e.g., Mean-Shift) are not recommended in this case.

When analyzing the impact of dimensionality, we have observed that non density-
based approaches, although not obtaining great results, remain stable as dimensionality
increases. This, however, is not the case of DBSCAN, which experiments a steep de-
crease in its performance with the increase of dimensionality. As a result, in these cases
we should go one step further and make use of advanced density-based clustering algo-
rithms like HDBSCAN and K+VDBSCAN, which are more robust against the increase in
dimensionality.

To conclude, the experiment carried out using real-world databases for landmark dis-
covery revealed that the use of advanced density-based clustering algorithms is essential
in such a scenario, since it combines many problematic characteristics, namely: the pres-
ence of noise, varying inter-cluster density and arbitrary shape clusters.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1. Conclusions

One of the main goals of this work was to find clustering algorithms able to adapt to
data distributions with complex density variations. In this dissertation, we proposed two
novel density-based clustering algorithms: 1) KDBSCAN is designed to identify, from
the underlying distributions of the data, clusters of points with high intra-cluster density
variations that may be separated by sparse areas; and 2) VDBSCAN is designed to exploit
data distributions where density decreases radially from a center of mass.

Additionally, we have presented automatic touristic landmark discovery as a direct
application for these two methods. Finding touristic landmarks is a daring endeavor, not
only because of the subjective nature of the task, but also because of the challenge of data
gathering and meta-data analysis. Nonetheless, understanding how and why people visit
different places might help in the challenge of building more sustainable tourism models
in popular destinations, as well as attracting interest in less popular ones. Furthermore,
manually crafting travel guides is a tedious process that hinders the availability of guides
in less mainstream destinations. This particular scenario raises the need for automatic
tools to generate valuable content. To tackle this problem, we have made use of Flickr,
a public web platform that stores user-generated multimedia content. The development
of this research resulted in the generation of a dataset containing all the studied regions,
which has been made publicly available.

Taking all the above into account, we have assessed our algorithms in a real scenario
(the dataset obtained from Flickr). First, KDBSCAN was used to discriminate indepen-
dent conurbations (Places of Interest) within a certain region. After that, we applied
VDBSCAN to each resulting conurbation to provide an estimation of the landmark distri-
bution within the region. The obtained results prove that this approach outperforms the
current methods in the literature regarding landmark discovery (6% increase over second
best for individual cities or towns). This improvement is particularly significant when an-
alyzing regions with multiple conurbations (15% increase over second best method in the
literature). It is worth noticing that when algorithms KDBSCAN and VDBSCAN were de-
signed, certain considerations were taken into account, the main one being the availability
of metadata in the samples (i.e., descriptive tags) to be combined with the geographical
information. Nevertheless, later experiments (Chapter 6) showed that, in the absence of
this additional metadata, HDBSCAN often proved to be a more effective method for land-
mark discovery. This emphasises the relevance of the proposed combined distance and,
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furthermore, opens up potential lines of research that will be discussed in the next section.

Another important problem considered in this thesis was the lack of proper evalua-
tion techniques in the context of density-based clustering. To tackle this issue, we have
proposed a synthetic data generation system with flexible parameters (SynFlex) that al-
lows to model different characteristics regarding the nature of the data (density, shape,
dimensionality, hierarchy, noise, etc.). This system was proven to be able to flexibly pro-
duce realistic datasets in the context of landmark discovery, but its high flexibility in the
parametrization makes it potentially applicable to a wide range of fields. Also related
to the evaluation demand, an internal index based on intra-cluster fluctuation and inter-
cluster agglomeration (FLAG) was proposed. This index showed significant correlation
with the external metric used to evaluate annotated data in this context (Adjusted Mutual
Information), outperforming other generic, well-known indices (Dunn, Davies-Bouldin,
Calinski-Harabasz and Silhouette) as well as some task-specific metrics (SV, DBCV).

To conclude, these two contributions were combined to build a new evaluation bench-
mark for density-based clustering. The benchmark consists of real and synthetic data gath-
ered with the goal of providing a systematic evaluation of the performance of clustering
algorithms regarding five crucial factors: shape, density, noise, hierarchy and dimension-
ality. A set of well-known clustering algorithms have been assessed using the benchmark,
and the obtained results outlined some of their strengths and weaknesses. Particularly,
noise was proven to be a dominant factor when analyzing the algorithms’ performance,
with DBSCAN and its modifications (HDBSCAN and K+VDBSCAN) being less affected
by its presence. Also worth mentioning is the swap in performance at the top of the
ranking with respect to the experiments on landmark discovery (Chapter 4). In those ex-
periments, we were dealing with spatial and textual features and, while K+VDBSCAN
showed a better performance when additional textual information was available, HDB-
SCAN performed slightly better in most generic scenarios with only spatial information.

In summary, we have demonstrated the usefulness of our benchmark and we firmly
believe that it will become a powerful tool to support the development of new algorithms
and techniques in the field of density-based clustering.

7.2. Future work

Although the research conducted for this dissertation allowed us to extract some signif-
icantly important conclusions, there are still some potential lines of research that could
further enhance the impact of this thesis.

It is worth mentioning that the system presented and tested in Chapters 3 and 4, re-
spectively, was designed to be integrated to another system, which would attempt to find,
from the clusters provided by our Landmark Detector, the most iconic image, i.e., the
view that best represents the corresponding place. The technical background to achieve
this system is further explored in [120], [121].
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Nonetheless, there are still a few lines of work that could be explored regarding the re-
search performed for the development of density-based clustering algorithms. One would
be to explore the inclusion of the visual analysis in the clustering procedure, in the same
way that we have included a textual analysis through the bag-of-words model. How-
ever, image processing techniques are often extremely time-consuming, so this should be
done only if an exceptionally robust input for the subsequent processing blocks of the
project was required. Additionally, some blocks proposed in our system could be used
for alternative tasks. Particularly, KDBSCAN’s assignment phase could be applied to any
problem that required density-based clustering but in which there exists prior information
regarding the nature of the resulting clusters, e.g., clustering refinement.

On the other hand, regarding the research on evaluation techniques discussed in Chap-
ters 5 and 6, the main line of research that we identify is the inclusion of additional ex-
periments to the evaluation benchmark. Currently, regarding real-world data, only spatial
datasets are gathered to perform testing, and even though synthetic data offers a signif-
icant sense of generality, it would undoubtedly be positive to explore other real-world
data-types. Furthermore, the synthetic data generation for the experiments in Chapter 6
was designed to take into account the factors that affect density-based clustering algo-
rithms, but additional synthetic experiments could be proposed to analyze other type
of behaviours, shifting the paradigm and centering the analysis in supervised learning
(studying classification or regression algorithms, for instance) or on alternative types of
unsupervised learning algorithms.

Furthermore, the experiments on the benchmark also showed that, in the absence of
additional metadata, HDBSCAN proved to be more competitive than other clustering al-
ternatives, so it would be interesting to pursue a line of research that combined this method
with complementary algorithms, such as the proposed KDBSCAN, to further improve its
performance.

Finally, we are confident that the proposed benchmark can significantly boost research
in the field, as it offers a fair, systematic and complete evaluation mechanism. For in-
stance, deep learning models for metric learning, very useful for clustering tasks, could
be trained using large, labeled, synthetic datasets generated using SynFlex. Furthermore,
the benchmark can be the basis to approach scenarios where algorithms provide poor per-
formances (e.g., scenarios with a strong noise presence) and attempt to design and develop
new clustering algorithms.
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