
Routing optimization algorithms in integrated
fronthaul/backhaul networks supporting

multitenancy

by

Nuria Molner Siurana

A dissertation submitted by in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Telematic Engineering

Universidad Carlos III de Madrid

Advisor:
Antonio de la Oliva Delgado

September 2021

iii

Routing optimization algorithms in integrated fronthaul/backhaul networks supporting
multitenancy

Prepared by:

Nuria Molner Siurana
IMDEA Networks Institute, Universidad Carlos III de Madrid
contact: nuria.molner@imdea.org

Under the advice of:

Antonio de la Oliva Delgado
Universidad Carlos III de Madrid

Telematic Engineering Department, Universidad Carlos III de Madrid

This work has been supported by:

This thesis is distributed under license “Creative Commons Attribution – Non
Commercial – Non Derivatives”.

“The secret of getting ahead is getting started.”
– Mark Twain

“It does not matter how slowly you go as long as you do not stop.”
– Confucius

“It always seems impossible until it’s done.”
– Nelson Mandela

Acknowledgements

I would like to thank all the people who crossed my path during the PhD and helped
me to improve and grow both as a researcher and as a person. All the experiences lived
along those years made me the person I am today.

First of all, a big thank you to my lab colleagues, most of which became friends, for
making my everyday easy at the office and gave me motivation, hope and a reason to
continue even in the hardest times.

Also a big thank you to Arturo and Antonio, who offered me the opportunity to do
this PhD and believed in me from the very beginning.

I cannot forget to thank Ioannis, for all the help offered in my research. This thesis
would have not been the same without your contribution.

And another big thank you goes for the coauthors of the papers developed during the
period of this PhD, who played a very important role on the development and on the
value of this thesis.

Last, but not least, a huge thank you to my family and friends, without whose support
this journey would have not been possible. I thank them for always being a source of
inspiration, and believing in me and gave me the courage to start this adventure and
continue day by day.

Thank you mom, dad, Sonia, for being my biggest fans and supporters no matter
what I decide or do, this thesis is dedicated to you!

THANK YOU to all of you.

vii

Published Content

The content of this thesis is based on the following published papers:

[1] Nuria Molner, Antonio de la Oliva, Ioannis Stavrakakis, Arturo Azcorra.
Optimization of an integrated fronthaul/backhaul network under path and delay
constraints. Published in Ad Hoc Networks, vol. 83, pp. 41-54, ISSN 1570-8705, 2019.
https://doi.org/10.1016/j.adhoc.2018.08.025

• This work is fully included and its content is reported in Chapter 2.

• The author’s role in this work is focused on the design, implementation and
experimentation of the proposed methodology.

[2] Balázs Németh, Nuria Molner, Jorge Martín Pérez, Carlos Jesús Bernardos, Antonio
de la Oliva, Balázs Sonkoly. Delay and reliability-constrained VNF placement on mobile
and volatile 5G infrastructure. Published in IEEE Transactions on Mobile Computing,
2021. https://doi.org/10.1109/TMC.2021.3055426

• This work is fully included and its content is reported in Chapter 3.

• The author’s role in this work is focused on the design of the proposed optimization
model and its implementation in AMPL.

[3] Francesco Malandrino, Carla Fabiana Chiasserini, Nuria Molner, Antonio de la
Oliva. Network Support for High-performance Distributed Machine Learning. [Submitted
to IEEE Transactions on Networking, Under Revision].

• This work is fully included and its content is reported in Chapter 4.

• The author’s role in this work is focused on the design of the proposed optimization
model and characterization of the theoretical constraints.

ix

https://doi.org/10.1016/j.adhoc.2018.08.025
https://doi.org/10.1109/TMC.2021.3055426

Other Publications and
Submitted Content

[4] Nuria Molner, Sergio González, Thomas Deiß, Antonio de la Oliva. The 5G-
Crosshaul Packet Forwarding Element pipeline: Measurements and analysis. Published
in Fifth International Workshop on Cloud Technologies and Energy Efficiency in
Mobile Communication Networks (CLEEN), 2017. https://doi.org/10.23919/CLEEN.
2017.8045908

[5] Anna Tzanakaki, Markos Anastasopoulos, Nathan Gomes, Philippos Assimakopoulos,
Josep M. Fàbrega, Michela Svaluto Moreolo, Laia Nadal, Jesús Gutiérrez, Vladica
Sark, Eckhard Grass, Daniel Camps-Mur, Antonio de la Oliva, Nuria Molner, Xavier
Costa Perez, Josep Mangues, Ali Yaver, Paris Flegkas, Nikos Makris, Thanasis Korakis,
Dimitra Simeonidou. Transport network architecture. Published in 5G System Design:
Architectural and Functional Considerations and Long Term Research, pp. 151-180, John
Wiley & Sons, 2018, ISBN: 978-1-119-42512-0.

[6] Claudio Casetti, Carla Fabiana Chiasserini, Thomas Deiß, Pantelis A. Frangoudis,
Adlen Ksentini, Giada Landi, Xi Li, Nuria Molner, Josep Mangues. Network slices
for vertical industries. Published in IEEE Wireless Communications and Networking
Conference Workshops (WCNCW), pp. 254-259, 2018. https://doi.org/10.1109/
WCNCW.2018.8368981

[7] Claudio Casetti, Carla Fabiana Chiasserini, Jorge Martín Pérez, Nuria Molner,
Thomas Deiß, Jose Enrique Blázquez González, Cao-Thanh Phan, Farouk Messaoudi,
Giada Landi, Nicolás Serrano, Josep Mangues, Charles Turyagyenda. The Vertical Slicer:
Verticals’ Entry Point to 5G Networks. Published in The 27th European Conference on
Networks and Communications (EuCNC 2018), 18-21 June 2018, Ljubljana, Slovenia.

[8] Claudio Casetti, Carla Fabiana Chiasserini, Nuria Molner, Jorge Martín
Pérez, Thomas Deiß, Cao-Thanh Phan, Farouk Messaoudi, Giada Landi, Juan Brenes
Baranzano. Arbitration Among Vertical Services. Published in IEEE 29th Annual
International Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), pp. 153-157, 2018. https://doi.org/10.1109/PIMRC.2018.8580852

xi

https://doi.org/10.23919/CLEEN.2017.8045908
https://doi.org/10.23919/CLEEN.2017.8045908
https://doi.org/10.1109/WCNCW.2018.8368981
https://doi.org/10.1109/WCNCW.2018.8368981
https://doi.org/10.1109/PIMRC.2018.8580852

xii

[9] Kiril Antevski, Jorge Martín Pérez, Nuria Molner, Carla Fabiana Chiasserini,
Francesco Malandrino, Pantelis A. Frangoudis, Adlen Ksentini, Xi Li, Josep Salvat
Lozano, Ricardo Martínez, Iñaki Pascual, Josep Mangues Bafalluy, Jorge Baranda,
Barbara Martini, Molka Gharbaoui. Resource Orchestration of 5G Transport Networks
for Vertical Industries. Published in IEEE 29th Annual International Symposium on
Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 158-163, 2018.
https://doi.org/10.1109/PIMRC.2018.8581029

https://doi.org/10.1109/PIMRC.2018.8581029

Resumen

Esta tesis pretende ayudar en la definición y el diseño de la quinta generación de
redes de telecomunicaciones (5G) a través del modelado matemático de las diferentes
cualidades que las caracterizan. En general, la ambición de estos modelos es realizar
una optimización de las redes, ensalzando sus capacidades recientemente adquiridas para
mejorar la eficiencia de los futuros despliegues tanto para los usuarios como para los
operadores. El periodo de realización de esta tesis se corresponde con el periodo de
investigación y definición de las redes 5G, y, por lo tanto, en paralelo y en el contexto
de varios proyectos europeos del programa H2020. Por lo tanto, las diferentes partes
del trabajo presentado en este documento cuadran y ofrecen una solución a diferentes
retos que han ido apareciendo durante la definición del 5G y dentro del ámbito de estos
proyectos, considerando los comentarios y problemas desde el punto de vista de todos los
usuarios finales, operadores y proveedores.

Así, el primer reto a considerar se centra en el núcleo de la red, en particular en
cómo integrar tráfico fronthaul y backhaul en el mismo estrato de transporte. La solución
propuesta es un marco de optimización para el enrutado y la colocación de recursos que
ha sido desarrollado teniendo en cuenta restricciones de retardo, capacidad y caminos,
maximizando el grado de despliegue de Unidades Distribuidas (DU) mientras se minimizan
los agregados de las Unidades Centrales (CU) que las soportan. El marco y los algoritmos
heurísticos desarrollados (para reducir la complexidad computacional) son validados y
aplicados a redes tanto a pequeña como a gran (nivel de producción) escala. Esto los
hace útiles para los operadores de redes tanto para la planificación de la red como para
el ajuste dinámico de las operaciones de red en su infraestructura (virtualizada).

Moviéndonos más cerca de los usuarios, el segundo reto considerado se centra en
la colocación de servicios en entornos de nube y borde (cloud/edge). En particular, el
problema considerado consiste en seleccionar la mejor localización para cada función
de red virtual (VNF) que compone un servicio en entornos de robots en la nube, que
implica restricciones estrictas en las cotas de retardo y fiabilidad. Los robots, vehículos y
otros dispositivos finales proveen competencias significativas como impulsores, sensores y
computación local que son esenciales para algunos servicios. Por contra, estos dispositivos
están en continuo movimiento y pueden perder la conexión con la red o quedarse sin

xiii

xiv

batería, cosa que reta aún más la entrega de servicios en este entorno dinámico. Así, el
análisis realizado y la solución propuesta abordan las restricciones de movilidad y batería.
Además, también se necesita tener en cuenta los aspectos temporales y los objetivos
conflictivos de fiabilidad y baja latencia en el despliegue de servicios en una red volátil,
donde los nodos de cómputo móviles actúan como una extensión de la infraestructura
de cómputo de la nube y el borde. El problema se formula como un problema de
optimización para colocación de VNFs minimizando el coste y también se propone un
heurístico eficiente. Los algoritmos son evaluados de forma extensiva desde varios aspectos
por simulación en escenarios que reflejan la realidad de forma detallada.

Finalmente, el último reto analizado se centra en dar soporte a servicios basados en
el borde, en particular, aprendizaje automático (ML) en escenarios del Internet de las
Cosas (IoT) distribuidos. El enfoque tradicional al ML distribuido se centra en adaptar
los algoritmos de aprendizaje a la red, por ejemplo, reduciendo las actualizaciones para
frenar la sobrecarga. Las redes basadas en el borde inteligente, en cambio, hacen posible
seguir un enfoque opuesto, es decir, definir la topología de red lógica alrededor de la
tarea de aprendizaje a realizar, para así alcanzar el resultado de aprendizaje deseado.
La solución propuesta incluye un modelo de sistema que captura dichos aspectos en
el contexto de ML supervisado, teniendo en cuenta tanto nodos de aprendizaje (que
realizan las computaciones) como nodos de información (que proveen datos). El problema
se formula para seleccionar (i) qué nodos de aprendizaje e información deben cooperar
para completar la tarea de aprendizaje, y (ii) el número de iteraciones a realizar, para
minimizar el coste de aprendizaje mientras se garantizan los objetivos de error predictivo y
tiempo de ejecución. La solución también incluye un algoritmo heurístico que es evaluado
ensalzando una topología de red real y considerando tanto las tareas de clasificación
como de regresión, y cuya solución se acerca mucho al óptimo, superando las soluciones
alternativas encontradas en la literatura.

Abstract

This thesis aims to help in the definition and design of the 5th generation of
telecommunications networks (5G) by modelling the different features that characterize
them through several mathematical models. Overall, the aim of these models is to perform
a wide optimization of the network elements, leveraging their newly-acquired capabilities
in order to improve the efficiency of the future deployments both for the users and the
operators. The timeline of this thesis corresponds to the timeline of the research and
definition of 5G networks, and thus in parallel and in the context of several European
H2020 programs. Hence, the different parts of the work presented in this document
match and provide a solution to different challenges that have been appearing during
the definition of 5G and within the scope of those projects, considering the feedback and
problems from the point of view of all the end users, operators and providers.

Thus, the first challenge to be considered focuses on the core network, in particular
on how to integrate fronthaul and backhaul traffic over the same transport stratum.
The solution proposed is an optimization framework for routing and resource placement
that has been developed taking into account delay, capacity and path constraints,
maximizing the degree of Distributed Unit (DU) deployment while minimizing the
supporting Central Unit (CU) pools. The framework and the developed heuristics (to
reduce the computational complexity) are validated and applied to both small and large-
scale (production-level) networks. They can be useful to network operators for both
network planning as well as network operation adjusting their (virtualized) infrastructure
dynamically.

Moving closer to the user side, the second challenge considered focuses on the
allocation of services in cloud/edge environments. In particular, the problem tackled
consists of selecting the best the location of each Virtual Network Function (VNF)
that compose a service in cloud robotics environments, that imply strict delay bounds
and reliability constraints. Robots, vehicles and other end-devices provide significant
capabilities such as actuators, sensors and local computation which are essential for some
services. On the negative side, these devices are continuously on the move and might
lose network connection or run out of battery, which further challenge service delivery in
this dynamic environment. Thus, the performed analysis and proposed solution tackle the

xv

xvi

mobility and battery restrictions. We further need to account for the temporal aspects and
conflicting goals of reliable, low latency service deployment over a volatile network, where
mobile compute nodes act as an extension of the cloud and edge computing infrastructure.
The problem is formulated as a cost-minimizing VNF placement optimization and an
efficient heuristic is proposed. The algorithms are extensively evaluated from various
aspects by simulation on detailed real-world scenarios.

Finally, the last challenge analyzed focuses on supporting edge-based services, in
particular, Machine Learning (ML) in distributed Internet of Things (IoT) scenarios. The
traditional approach to distributed ML is to adapt learning algorithms to the network, e.g.,
reducing updates to curb overhead. Networks based on intelligent edge, instead, make
it possible to follow the opposite approach, i.e., to define the logical network topology
around the learning task to perform, so as to meet the desired learning performance.
The proposed solution includes a system model that captures such aspects in the context
of supervised ML, accounting for both learning nodes (that perform computations) and
information nodes (that provide data). The problem is formulated to select (i) which
learning and information nodes should cooperate to complete the learning task, and (ii)
the number of iterations to perform, in order to minimize the learning cost while meeting
the target prediction error and execution time. The solution also includes an heuristic
algorithm that is evaluated leveraging a real-world network topology and considering
both classification and regression tasks, and closely matches the optimum, outperforming
state-of-the-art alternatives.

Table of Contents

Acknowledgements VII

Published Content IX

Other Publications and Submitted Content XI

Resumen XIII

Abstract XV

Table of Contents XVII

List of Tables XXI

List of Figures XXIII

List of Acronyms XXV

1. Introduction 1
1.1. Main Contributions . 4
1.2. Thesis Outline . 6

2. Optimization of an Integrated Fronthaul/Backhaul Network 9
2.1. System Model . 12
2.2. Problem Formulation . 16

2.2.1. Incorporation of Delay constraints 21
2.3. Heuristic Algorithm . 23
2.4. Validation and Application of the Approaches 26

2.4.1. Small-Scale Topology . 26
2.4.2. Large-Scale Topology / Practical Crosshaul Transport Network . . 28

2.5. Conclusion . 33

xvii

xviii TABLE OF CONTENTS

3. VNF Placement on Mobile Cloud/Edge Environments 35
3.1. Mobile Robotics Use Case . 37
3.2. System Model . 39
3.3. Problem Formulation . 40

3.3.1. Radio Coverage Constraints . 42
3.3.2. Delay Constraints . 42
3.3.3. Battery Constraints . 44
3.3.4. Cost Minimization . 44

3.4. Heuristic Algorithm . 45
3.4.1. Complexity Analysis . 49

3.5. Validation and Application of the Approaches 50
3.5.1. Experiment Setup . 51
3.5.2. Simulation Results . 52

3.6. Conclusion . 57

4. Network Optimization for Distributed Machine Learning 59
4.1. System Model . 61

4.1.1. Modeling Real-World Supervised ML tasks 63
4.2. Problem Formulation . 64
4.3. Characterizing the Performance of the Learning Process 65

4.3.1. Learning Time . 66
4.3.2. Learning Time and Cost . 68
4.3.3. Learning Cost . 73
4.3.4. Number of Iterations . 73

4.4. Problem Analysis . 74
4.5. Heuristic Algorithm . 76

4.5.1. Greedy Solutions to Submodular Problems 77
4.5.2. The DoubleClimb . 78
4.5.3. Algorithm Analysis . 79

4.6. Validation and Application of the Approaches 80
4.6.1. Reference Scenario . 80
4.6.2. Performance Comparison . 82

4.7. Conclusion . 86

5. Conclusions 87

Appendices 91

TABLE OF CONTENTS xix

A. Linearization of the product of two variables 93
A.1. Linearization of the product of two binary variables 93
A.2. Linearization of the product of one binary variable and one real bounded

variable . 93

B. NP-Hardness 95
B.1. NP-Completeness proof of the problem defined in Chapter 2 95
B.2. NP-Hardness proof of the problem defined in Chapter 4 98

C. Algorithms Pseudo-codes 101
C.1. Algorithm for fixed RAN elements (Heuristic 2) 103

References 105

List of Tables

2.1. Parameters of fronthaul and backhaul traffic considered. 15
2.2. Parameters employed in the formulation of the optimization. 15
2.3. Variables employed in the formulation of the optimization. 16
2.4. Summary of main constraints of the optimization. 17

3.1. Parameters of the optimization formulation. 41
3.2. Variables of the optimization formulation. 41
3.3. Infrastructure used for experimentation. 52
3.4. Experiment parameters. 53

4.1. Main parameters of the model. 63
4.2. Main variables of the model. 63

xxi

List of Figures

2.1. The general network environment . 13
2.2. Small Scale Validation Environment. 28
2.3. Optimization vs Heuristic 1 cite. 28
2.4. Reference topology. 29
2.5. Synthetic Ring-Tree based topology. 30
2.6. Cite of Heuristic 1 and a generic Operator deployment. 32
2.7. Cite of Heuristic 2 and a generic Operator deployment. 33

3.1. Deployment of a cloud robotics warehousing Network Service (NS). 38
3.2. A service graph generated with a series-parallel graph. This instance

contains x8 VNFs bounded to mobile nodes, and is used in the battery
experiment (Figure 3.4). 50

3.3. Results of scalability, coverage probability and Service Function Chain
(SFC) delay experiments. 54

3.4. Impact of battery probability threshold on cost and feasibility. 56

4.1. Scheme of the interactions between L- and I-nodes in a general case. . . . 62
4.2. Evolution of the learning error for different values of X0

l when there are no
I-nodes. 67

4.3. Values ϵK
l when there are no I-nodes and obtained fit. 67

4.4. Values ϵK
l when I-nodes are present and obtained fit. 68

4.5. Duration of single iterations (each dot corresponds to one iteration) and
linear fit. 69

4.6. Toy scenario with |L| = 10 and |I| = 5 where both I-node sample
generation times and L-node computation times are uniformly distributed.
Left: Probabiliy Density Function (pdf)s of the I-node generation time ρi(t)
(blue), of the time required by the slowest I-node (red) and of the compute
time τk

l (t) (yellow). Right: pdfs of the time taken by local (green) and
global (gray) iterations. 70

4.7. Qualitative example of the constraint in Equation (4.2) and its components. 76

xxiii

xxiv LIST OF FIGURES

4.8. Experiments on the relation between the degree of a random graph with
100 vertices and uniform degree, and its spectral gap γ. 76

4.9. Our reference topology, depicting the network of a major operator (source:
[10]). 82

4.10. Normalized time and error of the solutions examined at each iteration
by DoubleClimb (left), Opt-Unif (center), and Genetic Algorithm (GA)
(right), in the basic scenario. Different colors correspond to different values
of dL, as in Figure 4.13. 83

4.11. Normalized time and error of the solutions examined at each iteration by
DoubleClimb (left), Opt-Unif (center), and GA (right), in the rich scenario.
Different colors correspond to different values of dL, as in Figure 4.13. . . 83

4.12. Comparison between DoubleClimb, Opt-Unif and the optimum (obtained
via brute-force) in the basic and rich scenarios, for different values of |L|. 84

4.13. Cost of the solutions examined at each iteration by DoubleClimb (first two
plots) and Opt-Unif (last two plots), in the basic (first and third plot) and
rich (second and fourth plot) scenarios. 85

List of Acronyms

3GPP 3rd Generation Partnership Project

4G 4th generation of telecommunications networks

5G 5th generation of telecommunications networks

AI Artificial Intelligence

AP Access Point

CAPEX CAPital EXpenditures

CDF Cumulative Distribution Function

CoMP Coordinated Multi-Point

CPRI Common Public Radio Interface

CPU Central Processing Unit

C-RAN Cloud or Centralized Radio Access Network

CU Central Unit

DU Distributed Unit

E2E End-to-End

eCPRI Enhanced Common Public Radio Interface

eNB evolved Node B

GA Genetic Algorithm

gNB next generation Node B

H2020 Horizon 2020 EU Research and Innovation programme

IEEE Institute of Electrical and Electronics Engineers

xxv

i.i.d. Independent and Identically Distributed

IoT Internet of Things

JCR Journal Citation Reports

LTE Long Term Evolution

MEC Multi-access Edge Computing

MIMO Multiple-Input Multiple-Output

ML Machine Learning

NF Network Function

NFV Network Function Virtualization

NR New Radio

NS Network Service

OPEX OPerational EXpenditures

OTT Over the Top

pdf Probabiliy Density Function

RAN Radio Access Network

RMSE Root Mean Square Error

RU Radio Unit

SDN Software Defined Network

SFC Service Function Chain

URLLC Ultra-Reliable Low-Latency Communication

vCPU virtual Central Processing Unit

VM Virtual Machine

VNF Virtual Network Function

XPU Crosshaul Processing Unit

1 Introduction

During the last five years, between 2016 and 2021, mobile data traffic has increased
more than ten times, a trend that is expected to continue in the future [11, 12] with
the increasing number of users and the growing field of Internet of Things (IoT). This
unprecedented and exponential increment of traffic was predicted [13], as indeed occured,
to affect the networks as they were defined and deployed, as well as the scope of the
evolution between generations of telecommunications networks. Incremental evolution of
previous-generation networks was not sufficient anymore to adapt to the new demands,
and, thus, the necessity of a redefinition of the telecommunication networks appeared.
The new 5th generation of telecommunications networks (5G), or 5G networks, as it is
commonly known, has been designed from scratch during the last five years and it is
currently starting to be commercially deployed.

Until the 4th generation of telecommunications networks (4G) a big part of the
infrastructure was based on special-purpose, often proprietary, hardware, which means
that in order to modify and adjust any component it was necessary to modify, reconfigure
or change the hardware device itself. Furthermore, since the hardware was proprietary,
every component had its own software developed by the manufacturer with its own
rules, thereby severely limiting interoperability between hardware of different deployment
moments and/or coming from different vendors. This issue made it hard for the networks
to adapt to the changes at the required speed of traffic increment.

Around this point, several trends have been gaining importance in the field of
telecommunications. One of them is the concept of Software Defined Network (SDN) [14,
15], which allows to control the vast majority of the network hardware, e.g., switches,
with standardized protocols, thereby making them independent from the manufacturer-
specific protocols. This new concept permits the hardware components of the networks to
be interoperable independently of the manufacturer, and communicate through a common
language. Additionally, having the components software-defined flexibilizes the networks,
making them able to be modified remotely and without requiring to change the hardware,
thereby attaining low costs and without deploying new infrastructure.

1

2 Introduction

A key enabler for SDN is the softwarization and virtualization of the network functions,
i.e., converting the traditional network function into a Virtual Network Function (VNF)
through Network Function Virtualization (NFV). The consequence of this virtualization
is that new ecosystems appear, also thanks to the emerging trend of the service oriented
market through Over the Top (OTT) companies, where traditional products have been
mutating into services. An example of it is Netflix, coming from the traditional cinema
market and moving into a service where a platform with such a big catalog of films that
it eliminates the need for people to buy or rent them: films are always available at home
on demand. This is a trend that is continuously growing, and it has been accelerated
due to the Covid-19 pandemics, with customers getting used to have a wide number of
services always at their disposal, to immediately satisfy their needs. This service oriented
market contributes to the increasing traffic demand, as well as to incentivize users to
have more devices connected to the networks and requesting content at the same time.
Such a phenomenon further contributes to the overload of the network and makes it
challenging to satisfy all the demands while guaranteeing the appropriate requirements
for their delivery.

The paradigm of cloud computing [16,17] has long been the most popular solution for
companies to host and deliver their services. It is a big challenge for small companies
to have their own servers to host the offered services, due to the costs of deployment,
maintenance and security. In cloud computing, there are cloud providers offering the
infrastructure, including maintenance and security, and the service providers rent part of
it to host their services, which allows the end users to receive good services at reasonable
prices.

However, cloud computing is centralized at few companies and locations around the
world and all the traffic requests need to go through the same networks at some points,
creating bottlenecks and overload at those segments of the network. In order to solve
this problem, edge computing [18, 19] was proposed, envisioning to deploy part of those
servers closer to the user, that is, at the edge of the network infrastructure. Thanks
to edge computing, it is possible to deploy within the network infrastructure the most
demanded services and offer better performance while eliminating a heavy part of the
traffic in the overloaded segments in the center of the networks. Thus, edge computing
offers a completely new perspective to the networks thanks to this reduction of load and
the correspondant reduction of End-to-End (E2E) latency for services.

Another emerging paradigm complementing and reinforcing this cloud/edge tendency
has been the IoT paradigm, whose main purpose is to connect all the devices people use
in their every day life to the Internet [20]. This is another trend that contributes to the
overload of the network and to increase the amount of continuous demands for services.
To relieve such a load, it is envisioned to perform part of the processing of the demands
at the devices themselves. Such fog devices have limited processing capacity, hence part

3

of the processing is performed in the cloud or edge servers, finding a balance between
performance of the service and not overloading the networks. Such balance can be sought
through Artificial Intelligence (AI), in particular distributed Machine Learning (ML)
algorithms, by defining the logical network topology of IoT devices around the learning
task to perform, instead of adapting the learning algorithms to the network as in the
traditional approach, in order to meet the desired learning performance. As a result, the
network is optimized to guarantee a balance between performance and load.

Considering all the emerging features and trends, the 5th generation of networks has
been designed thinking on the current and predicted future trends and embracing the
emerging concepts making the new networks: (i) more flexible, to deal with the changes
of demands within the already deployed components, thanks to SDN; (ii) more capable
and resilient for the future, thanks to softwarization; and (iii) capable of processing data
as well as transferring it, thanks to edge computing.

Moving the current networks into the new generation implies a process of evolution
and incremental deployment from traditional networks composed of legacy equipment to
5G networks completely built with new generation equipment. An important technology
in this transition is Cloud or Centralized Radio Access Network (C-RAN) [21], which
enhances the traditional radio elements (e.g., evolved Node B (eNB) or next generation
Node B (gNB) in 5G) to be split into a small footprint basic radio part (Distributed
Unit (DU)), which may include lowest levels of the protocol stack, and a pool-able base
band processing part (Central Unit (CU)). The deployment of this technology started
in 4G and it will be massively adopted in 5G to reduce the costs of deployment and
maintenance, CAPEX and OPEX, associated with the Radio Access Network (RAN),
and to provide an additional performance gain due to the pooling of resources, thanks to
edge computing, and the coordinated processing of signals from different cells by using
Coordinated Multi-Point (CoMP) [22,23].

This transition process will occur during the timelife of the current and already
deployed equipment. During this period, when a legacy component will end its useful
life, it will be replaced by an equivalent component of the new generation, ending the
process with a network fully composed of new generation equipment.

Considering all the features required to develop and deploy the new generation of
networks, new, complex decisions must be made and several challenges addressed in order
to guarantee an optimal design and management. The biggest challenges to consider are:
(i) to guarantee the coexistance of the new equipment and features deployed with the
legacy one during the transition period; (ii) the resource allocation in the cloud/edge
environment in order to guarantee the perfect balance between performance and service
costs; and (iii) to support edge-based services, most importantly, AI and ML in distributed
IoT networks.

In order to address these challenges, an optimization of the several parts of the network

4 Introduction

must be performed. This is the point where this thesis contributes to the solution of the
aforementioned challenges by:

Optimizing the placements of core network resources in order to guarantee the
coexistance of the new equipment and features deployed with the legacy one during
the transition period and at the end of it. See Contribution 1 in Section 1.1.

Optimizing the resource allocation in the cloud/edge environment in order
to guarantee the perfect balance between performance and service costs. See
Contribution 2 in Section 1.1.

Optimizing the edge network in order to enhance and optimize the performance
of the growing fields of IoT, ML and AI. See Contribution 3 in Section 1.1.

Finally, it is worth to notice that the contributions of this thesis have been designed
in the context of several Horizon 2020 EU Research and Innovation programme (H2020)
projects focused on 5G. In particular, considering some of the challenges of 5G-Crosshaul1,
5G-TRANSFORMER2, 5G-Coral3 and 5GROWTH4, as explained in more detail in
Section 1.2. Thus, the contributions are a response to the needs that were appearing
during the process of the design and developement of the 5G ecosystem. Hence, the
solutions presented in this thesis are based on feedback from both academia and industry
and they are developed satisfying the requirements of the future commercial real world
deployments of those types of networks.

1.1. Main Contributions

The main contributions of this thesis have been published in 2 venues, of which 1
has been published in Elsevier AdHoc Networks and 1 published in IEEE Transactions
on Mobile Computing, both indexed in Journal Citation Reports (JCR). Aldditionally,
1 contribution is submitted to IEEE Transactions on Networking and currently under
revision. In details,
Contribution 1. Core elements placement optimization.
This contribution, that responds to the aforementioned challenge (i), is gathered in
Chapter 2 and it can be divided into the development of: (i) an optimization framework
for joint routing and resource placement, taking into account delay, capacity and path
constraints, maximizing the degree of DU deployment while minimizing the supporting
CUs; (ii) an efficient heuristic approach for solving the optimization problem in large

1H2020-ICT-2014-2 Grant Agreement no. 671598. URL: http://5g-crosshaul.eu
2H2020-ICT-2016-2 Grant Agreement no. 761536. URL: http://5g-transformer.eu
3H2020-ICT-2016-2 Grant Agreement no. 761585. URL: http://5g-coral.eu
4H2020-ICT-2018-3 Grant Agreement no. 856709. URL: https://5growth.eu

1.1 Main Contributions 5

scale environments, allowing the operator to derive solutions aiming at maximizing the
Air Bandwidth (that is boosted by properly splitting a RAN element) while minimizing
the number of Crosshaul Processing Unit (XPU) (edge/cloud nodes hosting an array of
CUs) by determining the placement of XPUs and the RAN elements that can be split
into DUs and; (iii) a heuristic that allows the operator to compute the minimum number
of XPUs and their placement for a given mixed RAN/C-RAN deployment.

Nuria Molner, Antonio de la Oliva, Ioannis Stavrakakis, Arturo Azcorra.
Optimization of an integrated fronthaul/backhaul network under path and delay
constraints. Published in Ad Hoc Networks, vol. 83, pp. 41-54, ISSN 1570-8705,
2019. https://doi.org/10.1016/j.adhoc.2018.08.025

Contribution 2. Resource allocation optimization on cloud/edge environments with
mobile actors.
This contribution, that responds to the aforementioned challenge (ii), is threefold and
it is exposed in Chapter 3. First, the VNF placement problem is formulated as a
cost-minimizing optimization problem for allocation of resources in an edge ecosystem,
extending formulations in the state of the art imposing the radio coverage of mobile
fog devices, and preventing that VNF deployments use fog devices that may run out of
battery. Second, the optimization problem is solved by a novel heuristic algorithm that
gets close to optimal results while tackling both radio coverage and battery restrictions of
fog environments. Finally, the proposed algorithms are evaluated via extensive simulations
on a real-world scenario, confirming the beneficial properties of the proposed solutions in
terms of scalability, cost, and runtime.

Balázs Németh, Nuria Molner, Jorge Martín Pérez, Carlos Jesús Bernardos,
Antonio de la Oliva, Balázs Sonkoly. Delay and reliability-constrained VNF
placement on mobile and volatile 5G infrastructure. Published in IEEE
Transactions on Mobile Computing, 2021. https://doi.org/10.1109/TMC.2021.
3055426

Contribution 3. Network optimization for distributed ML.
This contribution, that responds to the aforementioned challenge (iii), is gathered in
Chapter 4. It focuses on the edge and IoT ecosystems, developing the work around AI, in
particular on distributed, supervised learning, and aims at filling the gap of defining the
logical network topology of the nodes that cooperate towards the ML task around the ML
task to perform and it can be divided into: (i) the development of a system model that
can represent several relevant supervised ML tasks and account for the specific features
of a 5G-and-beyond environment, most notably, the interaction between learning nodes

https://doi.org/10.1016/j.adhoc.2018.08.025
https://doi.org/10.1109/TMC.2021.3055426
https://doi.org/10.1109/TMC.2021.3055426

6 Introduction

and information nodes; (ii) the formulatation of the problem of choosing the computing
nodes and data sources, as well as the links connecting them, with the goal of minimizing
the (monetary or energy) cost of the learning process, subject to prediction quality and
learning time requirements; (iii) the development of an iterative algorithm that works
over real-world topologies, closely matching optimal decisions and outperforming state-
of-the-art alternatives.

Francesco Malandrino, Carla Fabiana Chiasserini, Nuria Molner, Antonio
de la Oliva. Network Support for High-performance Distributed Machine Learning.
[Submitted to IEEE Transactions on Networking, Under Revision]. https://arxiv.
org/pdf/2102.03394.pdf

1.2. Thesis Outline

The rest of the thesis is organized in different chapters detailing the contributions
mentioned in the previous subsection. It is structured from the core of the network to the
users for an easier understanding, and it also corresponds to the timeline of improving
each part of the network: from the need to improve the core of the network and offloading
part of the load closer to the user, to decentralizing the networks and avoid bottlenecks
in the center. Thus, this thesis as a whole presents an optimization of the network,
supporting the transition from the previous generation of networks to the new one in an
optimized manner.

Hence, Chapter 2 responds to some of the challenges emerged within the 5G-Crosshaul
project, which aimed at developing a 5G integrated backhaul and fronthaul transport
network enabling a flexible and software-defined reconfiguration of all networking
elements in a multi-tenant and service-oriented unified management environment. This
transport network targeted to flexibly interconnect distributed 5G radio access and
core network functions, hosted on in-network cloud nodes, through the implementation
of: (i) a control infrastructure using a unified, abstract network model for control
plane integration (Crosshaul Control Infrastructure, XCI); (ii) a unified data plane
encompassing innovative high-capacity transmission technologies and novel deterministic-
latency switch architectures (Crosshaul Packet Forwarding Element, XFE). Thus,
Chapter 2’s main goal is to enhance the core part of the network by optimizing the
RAN placements to move from legacy RAN equipments to flexible RAN ones. The work
exposed in this chapter considers both the transition period from legacy equipment to
new generation equipment, where both types of resources cohexist in the same transport
stratum, as well as the optimization of the network RAN elements in a new generation
network, where the optimal allocation of resources will help to reduce costs and increase
the performance of the network both for end users and operators.

https://arxiv.org/pdf/2102.03394.pdf
https://arxiv.org/pdf/2102.03394.pdf

1.2 Thesis Outline 7

As a natural extension of this project, 5G-TRANSFORMER appeared aiming to
transform the mobile transport network into an SDN/NFV-based Mobile Transport and
Computing Platform (MTP), and bringing the “Network Slicing” paradigm into mobile
transport networks by provisioning and managing MTP slices tailored to the specific needs
of vertical industries. The technical approach was twofold: (i) enable vertical industries
to meet their service requirements within customised MTP slices; and (ii) aggregate and
federate transport networking and computing fabric, from the edge all the way to the
core and cloud, to create and manage MTP slices throughout a federated virtualized
infrastructure.

This project was followed by 5GROWTH, that leverages on the results of 5G-PPP
Phase 2 projects where slicing, virtualization and multi-domain solutions for the creation
and provisioning of vertical services were developed and validated. The vision is to
empower verticals industries such as Industry 4.0, Transportation, and Energy with an
AI-driven Automated and Sharable 5G End-to-End Solution that allows these industries
to achieve simultaneously their respective key performance targets. Towards this vision,
the project automates the process for supporting diverse industry verticals through (i)
a vertical portal in charge of interfacing verticals with the 5G End-to-End platforms,
receiving their service requests and building the respective network slices on top, (ii)
closed-loop automation and SLA control for vertical services lifecycle management and
(iii) AI-driven end-to-end network solutions to jointly optimize Access, Transport, Core
and Cloud, Edge and Fog resources, across multiple technologies and domains.

In parallel to those projects, 5G-Coral was developed leveraging the pervasiveness of
edge and fog computing in the RAN to create a unique opportunity for access convergence.
This was envisioned by the means of an integrated and virtualised networking and
computing solution where virtualised functions, context-aware services, and user and
third-party applications were blended together to offer enhanced connectivity and better
quality of experience. The proposed solution contemplated two major building blocks: (i)
the Edge and Fog computing System (EFS) subsuming all the edge and fog computing
substrate offered as a shared hosting environment for virtualised functions, services,
and applications; and (ii) the Orchestration and Control System (OCS) responsible
for managing and controlling the EFS, including its interworking with other (non-EFS)
domains (e.g. transport and core networks, distant clouds, etc.).

Thus, Chapter 3, which is developed under the context of 5G-TRANSFORMER,
5G-Coral and 5GROWTH projects, gathers the challenges and architectures from
those projects and aims to optimize the allocation of network functions in cloud/edge
environments. This enables the possibility of offloading parts of the load from end-
user terminals to edge servers, thus enabling new services that require low latencies and
proximity to the originating devices. Adittionally, it considers networks managed by
multiple tenants and its policy agreements. In particular, the application selected for the

8 Introduction

experimentation and adjustments of the models is automated robots.
Finally, Chapter 4 has been developed within the context of 5GROWTH project, and

aims at optimizing the part of the network that is closer to the users in order to enable
emerging applications in the growing fields of IoT and ML. In this chapter, the behavior of
the nodes composing the edge/IoT networks have been characterized in order to optimize
their interactions to perform distributed ML tasks in an optimal manner under constraints
of learning cost, learning time and learning accuracy.

2 Optimization of an Integrated
Fronthaul/Backhaul Network

The 5th generation of telecommunications networks (5G) has been designed to
accomodate the exponential increment of mobile data traffic in an environment of reduced
revenues per user. This new generation of networks is characterized by an increment of
available bandwidth to the users, providing the user with unprecedented speeds, fostering
the evolution and deployment of new services which were not possible before. In addition,
to increase the available resources per area unit, it is expected that 5G deployments will
feature a higher capillarity, effectively increasing the density of the network. Through this
densification, spectrum can be reused in a more effective way, paving the way towards
higher bandwidths available to the end user as foreseen by the Cooper’s law.

One key element to support the increased bandwidth to the user is the transport
network that feeds the Radio Access Network (RAN). The future 5G RAN must support
an unprecedented amount of traffic, with very stringent requirements in terms of latency
and jitter. This will heavily impact on the design of the transport network feeding the
RAN that must support more demanding transport requirements. In addition, RAN
designers are looking for innovative ways of improving the performance achievable by the
RAN. One of the mechanisms already identified in the literature is to split the radio
elements (e.g., evolved Node B (eNB) or next generation Node B (gNB) in 5G) into a
small footprint basic radio part (Distributed Unit (DU)), which may include lowest levels
of the protocol stack, and a pool-able base band processing part (Central Unit (CU)).
This technology, known as Cloud or Centralized Radio Access Network (C-RAN), will be
massively used in 5G since it helps reduce the costs associated with the RAN and provide
an additional performance gain due to the pooling of resources and the coordinated
processing of signals from different cells. The disadvantage of the C-RAN technology
is the need for a high bandwidth and low delay network connection between the radio
and processing parts. This network segment has traditionally been known as fronthaul
and has recently been the subject of a lot of research on protocols (Common Public
Radio Interface (CPRI) [24], Enhanced Common Public Radio Interface (eCPRI) [25])
and analysis of the possible functional splits of the protocol stack [26,27]. The evolution

9

10 Optimization of an Integrated Fronthaul/Backhaul Network

of C-RAN technologies from a serial transmission (CPRI) to fully packetized protocols
(eCPRI) allows for the integration of fronthaul and backhaul networks.

4th generation of telecommunications networks (4G) networks started deploying the
C-RAN concept in the already deployed networks. The seminal paper [21] proposes the
use of fronthaul as a mechanism to reduce the CAPital EXpenditures (CAPEX) and
OPerational EXpenditures (OPEX) due to reduced expenses on the site antenna. Later,
fronthaul was also proven useful to improve the performance of the air interface due
to the easiness of synchronization of the CUs, allowing the use of Coordinated Multi-
Point (CoMP). The main problem with the C-RAN approaches of the moment was the
use of CPRI (the predominant fronthaul technology) which was using a serial transmission,
not encapsulated, requiring of point to point high bandwidth and dedicated fibers between
the DUs and CUs. This increases the cost of management and operation of the network,
since the operator has to face the operation of two different networks, one based on packets
(the normal backhaul or transport network) and a second one using a completely different
technology. This fact triggered a change in how standardization bodies were focusing on
C-RAN for 4G and 5G, working on solutions based on packets that can use standard
switching technologies.

In this context, the operator had to face a very complex and challenging network to
manage, which was no longer divided into RAN, transport and core domains but places
different RAN and core elements within data-centers distributed in the transport network.
This new network, which is being referred to as Crosshaul [28], encompasses the front-
and back-hauling network segments and requires new approaches for the planning and
operation of the network. For this new network, operators need to decide not only on the
placement of each radio node but also whether it should be split, where the higher layers
of such a split should be placed and how the resulting traffic sources affect the rest of
the links. This C-RAN approach was possible thanks to the deployment of intelligence at
the edge of the network, in the form of micro data-centers that can host virtual network
functions including C-RAN baseband processing, i.e. the higher layers of the functional
split. Hence, the edge inteligence has been a key component to transform the network
from a mere data pipe into a smart application hosting environment.

Some background information on each of these technologies, as well as related works
on the optimization of the resulting converged network are introduced in the following
paragraphs in order to understand better the challenges faced in order to optimize the
Crosshaul network.

The deployment of the 5G RAN was expected to capitalize on the concept of
C-RAN [29]. In C-RAN systems the base station functionality is split at a certain point of
the protocol stack (such as, for example, the physical layer), and the upper part is moved
to a central unit, typically within or co-located with an edge data center facility [22,30]. A
C-RAN system consists at least of the following three main components: the distributed

11

units implementing the radio functions, the central processing units which are typically
aggregated in pools, and the network interconnecting them, typically referred to as
fronthaul [31]. The different points in the protocol stack that determine the separation
of the functions processed in central or distributed units define what is referred to as
functional splits [26, 32]. The implementation of a given functional split uniquely defines
the properties of the system design [27]. The complexity, benefits and drawbacks of the
distributed and centralized units depend on the functional split chosen.

By the moment, the most common functional split corresponded to the division at the
physical layer (as implemented by the CPRI). CPRI is a non-packetized serial protocol
which cannot be integrated with other packetized transmissions unless a circuit (e.g., a
wavelength) is reserved for it. Hence in the work performed for this section the packetized
evolution of CPRI (eCPRI) is considered, which packetizes the I/Q samples in an Ethernet
compatible way.

The C-RAN approach benefits significantly from virtualization. By virtualizing and
centralizing the baseband processing of multiple cells, an operator is able to better manage
inter-cell interference and traffic load, as well as reduce overall costs. At the same time,
by co-locating multiple centralized units pooling gains appear and scaling up the system
when RAN demands increase is facilitated. The trend towards the deployment of Edge
data centers, aiming at hosting delay constrained applications, such as augmented reality,
opened the door for deploying C-RAN centralized units in virtualized infrastructure at
the edge of the network.

The efficient design and operation of such an environment requires a joint consideration
of routing, placement of Edge data center and C-RAN cell deployment in the presence of
traffic with multiple priorities and strict deadlines and, thus, extending the state of the
art. Work related to delay constrained routing may be found in [33], where a Djikstra
shortest path algorithm that uses link delay as the weight of a link is proposed. In [34],
the authors propose a heuristic algorithm based on the minimum delay path and shortest
path for networks with time-dependent edge-lengths. Heuristic algorithms to derive the
minimum cost (delay) tree between the source and the destination can also be found
in [35]. Routing with delay constraints and analysis of delay variation has also been
studied for multicast networks in [36]. The M/G/1 queuing model is one widely adopted
for modeling the queuing delay in network nodes. For instance, in [37], the authors
introduce fixed parameters for the arrival rates and exit rates (λ and µ) in order to
make the problem tractable. In [38–41] the authors approximate the delay with non
linear equations. In [42] authors deal with the M/G/1 queueing model with priorities
for the problem of the mixed fronthaul and backhaul networks proving that it is a good
approximation for this traffic. Authors in [43] used M/M/1 queueing model for Virtual
Network Function (VNF) placement problems without several priorities and dealing with
non-linear equations. Finally, works on un-splittable flow problems, such as [44], [45]

12 Optimization of an Integrated Fronthaul/Backhaul Network

and [46], develop heuristic algorithms for NP-hard problems in the general case, but
these papers do not consider networks integrating traffic with different priorities.

The unified problem considered in this work also addresses the optimal placement of
the Edge data centers, further enhancing the applicability and complexity of the work.
This problem is related to the problem of the Virtual Network Embedding (VNE) and the
problem of placing chains of virtual functions [47]. In this work, we consider the problem
of determining the optimal placement of the data centers subject to the transformation
of fronthaul flows (with special characteristics) into backhaul flows. Finally, work on
transporting fronthaul traffic over Institute of Electrical and Electronics Engineers (IEEE)
802.1Q switches has also been recently carried out. Works such as [48] conclude that such
a transport is possible through the extension provided by 802.1Qbu, 802.1Qbv and by
employing buffers at the receivers.

Although previous work, as the one exposed above shows that RAN centralization has
many advantages and has been tackled through multiple perspectives, the work presented
in this chapter, to the best of our knowledge, was the first to study the complete problem
of the joint optimization of C-RAN deployment and Edge data center placement, taking
into consideration the stringent fronthaul flow deadlines and the accumulated delay in
the switching devices.

In summary, a new methodology was necessary for the planning and operational
optimization of the network, focusing on the integrated transport of fronthaul and
backhaul traffic, the placement of the pool-able resources containing the radio nodes’
higher layers (CUs) and the overall delay achievable in the network. This new
methodology is explained in the following sections. Section 2.1 introduces the problem
in its context. Section 2.2 presents a mathematical formulation that maximizes the
DU deployment and yields the optimal number of data-centers containing the pool-
able CUs and their location, while taking into account the stringent delay requirements
of the resulting fronthaul traffic by incorporating proper queuing models. The
general formulation is non-convex and non-linear and since non-tractable (as shown in
Appendix B.1), certain approximations are also introduced in Section 2.2 to yield a
tractable formulation that can provide with reasonable computational complexity for
the optimal results, at least for the case of small scale environments. For larger-scale
environments, a computationally tractable heuristic is introduced in Section 2.3 that
provides for an efficient (though not necessarily optimal) solution, achieved in reduced
time. In Section 2.4 the developed approaches are validated and applied to both small-
and large-scale (production) networks and some results are presented.

2.1. System Model

Figure 2.1 depicts the general environment considered in this chapter, where a number
of sources are connected to the Internet (where the potential destination of a source flow

2.1 System Model 13

Cloud/Edge Network
Internet

XPU

Fronthaul

PDCP
RRC

RLC
MAC
PHY

DU

eNB

Figure 2.1: The general network environment

is assumed to reside) through an edge/cloud access network. The sources represent either
the base station of a classical RAN (e.g. an eNB node) or just a DU of a C-RAN
whose upper layer functions are executed somewhere in the Edge/Cloud network by the
CU. The traffic flow departing a DU source (fronthaul) is typically of high rate (e.g.,
0.9Gbps), although its exact bandwidth depends on the functional split used and the
channel bandwidth used (among others, depending on the functional split). On the other
hand, the traffic flows departing an eNB node (backhaul) are of much lower rate, can be
several and up to a maximum total rate of typically 0.15Gbps under full utilization of
the air medium of the eNB node (depending on Multiple-Input Multiple-Output (MIMO)
and bandwidth configuration of the eNB). This topology of mixed RAN and C-RAN
components is expected to dominate for the foreseen future, as a progressive migration
from a RAN to a C-RAN dominated world takes place for the benefits discussed earlier.

The main objective in this work was to provide for efficient or optimal designs of
such mixed RAN/C-RAN environments. These mixed environments emerge as operators
attempt to maximize their adoption of the C-RAN technology in the most effective way,
subject to the constraints imposed by the available supporting infrastructure (explained
below). Or, such environments may emerge in a more dynamic (operation-level) case,
where operators may switch on or off DUs or aggregate them in a lower number of
CUs according to the demand to reduce OPEX; re-optimization of the resulting mixed
RAN/C-RAN environment is then needed as well.

To facilitate the discussion on the formulation of the optimization problem in this
section, an originally all RAN environment will be considered and seek to optimize

14 Optimization of an Integrated Fronthaul/Backhaul Network

the degree of migration towards a mixed RAN/C-RAN environment by minimizing
the number of (remaining) RAN components and optimizing the C-RAN deployment
in the resulting environment. That is, maximize the number of RAN components
that are replaced by a DU, while maximizing the degree of aggregation/pooling of
the CU components by minimizing the number of locations hosting the CUs. The
latter pooling provides for some wireless capacity enhancement through coordinated
signal processing and reduces costs for the operator. All the co-located CUs will be
considered as components of a single data-center, to be referred to as Crosshaul Processing
Unit (XPU). The capacity of an XPU is considered to be equal to the number of CUs
available/implemented in the specific location.

The main challenge in this migration is due to the fact that the (single) flow departing
a DU (referred to as fronthaul): (a) has a (much) higher rate compared to that of the
original eNB; (b) it must be routed towards a XPU (containing a CU) facility to be
processed first, before it is transformed into backhaul flow(s) and be routed from there
towards the destination; (c) it has stringent delay requirements for reaching the CU
facility. In addition, the location of the CU facility - where a fronthaul flow is forwarded
to - needs to be determined by minimizing the number of such locations (maximizing
CU pooling), or minimizing the number of XPU facilities deployed. These challenges are
incorporated and addressed through the optimization formulation developed and solved
in this work.

As indicated earlier, this work considers a single type of packetized fronthaul flow
(eCPRI), although the model presented could be used for any other kind of packetized
fronthaul. This flow exists only over the path between the generating DU and the
associated XPU and it becomes a standard backhaul flow over the path between the XPU
and its destination. Such standard backhaul flows are also generated by the classical RAN
nodes (e.g., eNBs) and will coexist with fronthaul flows. The key parameters of the two
types of flows that are considered in this chapter are given in Table 2.1 from [24] and [49].
A quick cite of the two flows shows that the fronthaul flow is of much higher rate and
has much less delay requirements. This large asymmetry in these parameters leads to a
number of observations and design considerations.

As a fronthaul flow has very stringent delay requirements (compared to a backhaul
flow) it will be treated as a class of traffic of (non-preemptive) priority 1. A severe
consequence of changing an eNB node to a DU+CU is that a high rate increase will be
observed in the links departing the eNB/DU node towards the location of the associated
CU (XPU to be determined). This severe increase in the rates along with the stringent
delay requirement over that part of the network constraint the migration from a RAN to
a fully C-RAN environment. Finally, the high rate asymmetry makes the approximation
of considering in our optimization formulation a single (as opposed to multiple) backhaul
flow departing the associated CU a reasonable one, as it is expected to have only minor

2.1 System Model 15

impact on the solution of the optimization problem, which is primarily shaped by the
pre-XPU part of the access network.

Flow Value Delay Class
fronthaul (eCPRI) 900 Mbps 250 µs 1

backhaul (fronthaul after XPU usage) 150 Mbps 100 ms 2
backhaul 15 Mbps 100 ms 2

Table 2.1: Parameters of fronthaul and backhaul traffic considered.

The notation for the various parameters employed in the formulation of the
optimization are shown in Table 2.2. Notice that a fronthaul source generates one flow,
while a backhaul source generates up to K flows, denoted by k, 0 ≤ k ≤ K. It is
also worth to mention that the work performed in this chapter assumes values for the
air interface in line with 4G deployments, since in the moment the work was developed
there were no deployments of 5G C-RAN or even 5G air interfaces. However, as 5G
is deployed, operators will need to enhance their transport networks, that now need to
transport much more capacity to the RAN. In that moment, these values may differ
from the ones we chose but this is just a parameter of the model, which can be easily
changed and simulations re-run, yielding to different results in terms of total air capacity
or number of XPUs. Therefore, the operators will only have to perform the simulations
with the new values, but the main contribution, the mathematical model, heuristics and
tendencies on the results will be the same.

Parameters Definition
F set of sources
f l rate of fronthaul source/flow l, l ∈ F (Mbps)

f l+ rate of fronthaul flow l, l ∈ F , after using its CU (Mbps)
bl

k rate of flow k of backhaul source l, l ∈ F (Mbps)
pl packet size of fronthaul flow l (0.012 Mbits=1500bytes)
pl

k packet size of flow k of backhaul source l (0.012 Mbits)
Dl− delay constraint of fronthaul flow l, to reach its CU
Dl delay constraint of fronthaul flow l

Dl
k delay constraint of flow k of backhaul source l

E set of links of access/edge network
cij capacity of link (i, j) (Mbps)
µij capacity of link (i, j) (in packets/sec)
Li,j length of link (i, j)
X set of available XPU facilities
Nr capacity of XPU r, r ∈ X (in CUs)

Table 2.2: Parameters employed in the formulation of the optimization.

Let I∗∗∗ denote a binary variable (b.v.) assuming the value 1 if an event specified

16 Optimization of an Integrated Fronthaul/Backhaul Network

through ** and * has occurred, and 0 otherwise. The main binary and other variables
employed in the formulation of the optimization problem are defined in Table 2.3.

Variables Definition

Il b.v. indicating if source (flow) l is a DU (fronthaul), l ∈ F
(if not, it is an eNB)

Il
ij

b.v. indicating if link (i, j) is used by fronthaul flow l,
before reaching its CU, l ∈ F

Il+
ij

b.v. indicating if link (i, j) is used by fronthaul flow l,
after leaving its CU, l ∈ F ,

(and has then been transformed into a backhaul flow)
Il
ijk b.v. indicating if link (i, j) is used by flow k

of backhaul source l, l ∈ F
IXP U
r b.v. indicating if XPU r is used

IXP U,l
r b.v. indicating if XPU r is used by flow l, l ∈ F
λn

ij rate of priority class n entering link (i, j) (in packets/sec)
dl delay of fronthaul flow l, l ∈ F

dl− delay of fronthaul flow l, l ∈ F , until it reaches its CU
dl

k delay of flow k of backhaul source l, l ∈ F

Table 2.3: Variables employed in the formulation of the optimization.

2.2. Problem Formulation

In this subsection we employ the notation presented above to formulate the
optimization problem by presenting the objectives, the various traffic and resource
constraints and the supporting equations. The treatment of the delay constraints is
deferred to the next subsection.

A set of locations of the sources of traffic are given (whose type fronthaul/backhaul
is to be determined), along with the Edge/Cloud network topology (link capacities and
lengths), the set of network nodes which are capable of hosting an XPU facility and the
maximum number of XPUs to be possibly deployed. The solution of the optimization
problem will determine the type of each one of the sources, while maximizing the number
of fronthaul traffic sources and minimizing the number of XPUs deployed whose location
is also determined. As discussed earlier a source can be accepted as a fronthaul source
only if it is supported by a non-dedicated XPU, to yield some pooling gain; that is, if
its CU can be hosted in an XPU (location) that supports at least one more CU serving
another fronthaul source. The available link capacity between the sources and the XPU
location will be the constraining factor determining whether CU collocation is possible or
not.

To ensure that the maximum number of DU sources is determined under the constraint
that all of them are supported by non-dedicated XPUs, the following objective function

2.2 Problem Formulation 17

is defined for some g > 1.

max
{︄

g ·
∑︂

l

Il −
∑︂

r

IXP U
r

}︄
(2.1)

Notice that the above objective function prescribes the following gains or penalties:
(a) maximizes the number of DUs in the network, (b) minimizes the number of XPUs
that are used for those DUs, and (c) if a source is an eNB source, it is not associated
with any XPU and, thus, it does not contribute to the objective function (its gain is
zero). Notice that, based on the above, an eNB source is preferable over a DU source
supported by a dedicated XPU, because in Equation (2.10) we impose that the XPUs
cannot be dedicated to one DU. Similarly, a DU supported by a non-dedicated XPU is
preferable over (yields a higher gain than) an eNB source. Consequently, the objective
in Equation (2.1) ensures that the solution to the maximization will not contain any DU
source that is supported by a dedicated XPU, the number of DUs will be maximized
and the number of XPUs will be minimized. The latter is the case since it can be easily
shown that the resulting gain associated with M1 non-dedicated XPUs is higher than that
associated with M2 non-dedicated XPUs for M1 < M2, for the same number of DUs.

In order to accommodate the various resource constraints and other specific
requirements, various equations and constraints are introduced and summarized in
Table 2.4.

Constraint Function
Source Constraints To determine if a source is an eNB or a DUEqs. (2.2) and (2.3)

Link Capacity To assure the traffic that uses a link does not
Equation (2.4) surpass its capacity

Destination Constraint To assure all the traffic reaches its destinationEquation (2.5)
XPU Constraints To assure the fronthaul flows are processed
Eqs. (2.6) - (2.17) in a XPU
Node Constraints To assure non loss of trafficEqs. (2.20) - (2.22)

Single Path To assure single path for all the flows
Eqs. (2.23) - (2.25) in the network
Delay Constraints To compute the delay of the trafficEqs. (2.26) - (2.39)

Table 2.4: Summary of main constraints of the optimization.

The requirement for single path routing implies that all the traffic of any source leaves
the source through a single link, as captured by Equations (2.2) and (2.3).

18 Optimization of an Integrated Fronthaul/Backhaul Network

Il =
∑︂

j

Il
lj ∀ l ∈ F ∀(l, j) ∈ E (2.2)

(1− Il) =
∑︂

j

Il
ljk ∀ flow k of source l ∈ F (2.3)

The link capacity constraints are captured by Equation (2.4).

∑︂
l

f l · Il
ij +

∑︂
l

f l+ · Il+
ij +

∑︂
l,k

bl
k · Il

ijk ≤ cij ∀(i, j) ∈ E (2.4)

As the design space in this chapter is the Edge/Cloud network and the deployed
C-RAN, it is assumed that the destination of each flow is beyond this network and is
referred to as "the Internet"; let the superindex in jInt mark a (fictitious) node representing
that Internet destination of the flow. Notice also that a fronthaul flow always reaches its
(Internet) destination as a backhaul flow. Equation (2.5) captures the balance of flows
entering and exiting the edge/access network.

∑︂
l,k

Il
k +

∑︂
l

Il =
∑︂

i,jInt,l,k

Il
ijIntk +

∑︂
i,jInt,l

Il+
ijInt (2.5)

Equation (2.6) captures the requirement that a fronthaul flow must be routed through
a node hosting an XPU.

Il =
∑︂

r

IXP U,l
r ∀ l ∈ F (2.6)

Equation (2.7) imposes the requirement that a fronthaul flow l, l ∈ F , that uses XPU
r, r ∈ X , must use one (and only one) of the incoming links attached to the node hosting
the XPU (referred to as jXP Ur); if flow l does not use this XPU, it may still use one of
its incoming links.

IXP U,l
r ≤

∑︂
i

Il
ijXP Ur ∀r ∈ X , ∀ l ∈ F (2.7)

Equation (2.8) captures the capacity constraint of an XPU r

∑︂
l

IXP U,l
r ≤ Nr ∀r ∈ X (2.8)

An XPU is considered to be utilized as long as at least one fronthaul source uses it.
On the other hand, an XPU has to be used by at least two fronthaul sources. These
constraints are captured by Equations (2.9) and (2.10).

IXP U,l
r ≤ IXP U

r ∀r ∈ X (2.9)

2.2 Problem Formulation 19

2 · IXP U
r ≤

∑︂
l

IXP U,l
r ∀r ∈ X (2.10)

A fronthaul flow l entering node jXP Ur hosting XPU r, will appear at an outgoing
link as either a transformed backhaul flow if it is processed by XPU r, or as the same
fronthaul flow otherwise; this is captured by Equation (2.11). A fronthaul flow l that has
been transformed into a backhaul flow (having been processed by another XPU) entering
node jXP Ur hosting XPU r, will appear unmodified at an outgoing link; this is captured
by Equation (2.12).

∑︂
i

Il
ijXP Ur =

(︄∑︂
i

Il+
jXP Ur i

)︄
· IXP U,l

r +
(︄∑︂

i

Il
jXP Ur i

)︄
·
(︂
1− IXP U,l

r

)︂
(2.11)

∑︂
i

Il+
ijXP Ur =

(︄∑︂
i

Il+
jXP Ur i

)︄
·
(︂
1− IXP U,l

r

)︂
(2.12)

Notice that the above constraints are non-linear and would increase the complexity
of the optimization machinery to be employed. Thus, in order to keep the computational
complexity low and use linear programming tools, we linearize these constraints as
described in Appendix A.1. To facilitate the presentation, we use the notation shown
below for the two terms in the right hand side of Equation (2.11), which is rewritten as
in Equation (2.13)

∑︂
i

Il
ijXP Ur = αrf l+ + αrf l (2.13)

where αrf l+ is bounded from above and below by the linear expressions shown in
Equations (2.14) and (2.15) and αrf l is bounded from above and below by Equations (2.16)
and (2.17). Notice that it is possible to linearize αrf l+ and αrf l because all the variables
involved in the above bounds are binary. The exact values of αrf l and αrf l+ are completely
determined from the bounds shown in Equations (2.14), (2.15), (2.16) and (2.17), all
involving binary variables.

αrf l+ ≤
(︄∑︂

i

Il+
jXP Ur i

+ IXP U,l
r

)︄
/2 (2.14)

(︄∑︂
i

Il+
jXP Ur i

+ IXP U,l
r − 1

)︄
/2 ≤ αrf l+ (2.15)

αrf l ≤
(︄∑︂

i

Il
jXP Ur i + 1− IXP U,l

r

)︄
/2 (2.16)

20 Optimization of an Integrated Fronthaul/Backhaul Network

(︄∑︂
i

Il
jXP Ur i + 1− IXP U,l

r − 1
)︄

/2 ≤ αrf l (2.17)

The additional constraints (2.18) and (2.19) linearize the constraint (2.12) involving
binary variables. ∑︂

i

Il+
ijXP Ur ≤

(︄∑︂
i

Il+
jXP Ur i

+ 1− IXP U,l
r

)︄
/2 (2.18)

(︄∑︂
i

Il+
jXP Ur i

+ 1− IXP U,l
r − 1

)︄
/2 ≤

∑︂
i

Il+
ijXP Ur (2.19)

Equations (2.20) to (2.22) capture the requirement of flow continuity in the
intermediate nodes of the access/edge network.

∑︂
i

Il
ij =

∑︂
i

Il
ji (2.20)

∑︂
i

Il+
ij =

∑︂
i

Il+
ji (2.21)

∑︂
i

Il
ijk =

∑︂
i

Il
jik (2.22)

Equations (2.23), (2.24) and (2.25) capture the requirement of single path routing
assumed in this chapter.

∑︂
j

Il
ij ≤ Il ∀i node, ∀ fronthaul flow l (2.23)

∑︂
j

Il+
ij ≤ Il ∀i node, ∀ fronthaul flow l (2.24)

∑︂
j

Il
ijk ≤ 1− Il ∀i node, ∀ backhaul flow k of source l (2.25)

Finally, we also impose that some of the variables of the model are binary,

Il ∈ {0, 1} ∀f l flow

Il
k ∈ {0, 1} ∀bl

k flow

Il
ij , Il+

ij ∈ {0, 1} ∀(i, j) link, ∀f l flow

Il
ijk ∈ {0, 1} ∀(i, j) link, ∀bl

k flow

IXP U,l
r ∈ {0, 1} ∀r XPU, ∀f l flow

IXP U
r ∈ {0, 1} ∀r XPU

2.2 Problem Formulation 21

A major challenge in the general C-RAN deployment problem considered in this
chapter is to accommodate the stringent delay requirements of the fronthaul traffic
(see Table 2.2). Consequently, the delay constraints should also be incorporated in the
optimization. The following subsection presents the formulation of the (non-linear) delay
constraints and the derivation of linear approximations to allow for employing linear
programming solution tools.

2.2.1. Incorporation of Delay constraints

There are 3 delay components that every packet experiences between the completion
of its arrival to a network node, say i, and that to the next node along its path, say
node j. These delays will be attributed to link/port (i, j) and are determined by the
transmission capacity (referred to as the transmission delay), the length (referred to as
the propagation delay) and the queuing phenomena (referred to as the queuing delay)
of link (i, j). Other sources of additional delay, such as that of processing time at the
nodes or an XPU, will be considered to be relatively small and will be ignored. The
consideration of the aforementioned 3 components will establish the impact of distances,
capacities and traffic loads in a C-RAN environment, which is of utmost interest to the
network operators. The transmission and propagation delays are easily derived, as the
packet sizes, link distances and transmission capacities are assumed to be known. The
challenge here is to derive the queuing delay in a way that is easily incorporated in the
optimization formulation.

As the challenge in the C-RAN deployment is to ensure that the stringent delay
constraints of the fronthaul flows are satisfied, a priority queuing scheme will be adopted
giving non-preemptive priority to fronthaul packets over the backhaul ones. Although the
sizes of the packets are considered to be fixed, we will adopt a queuing model with general
service time, to keep the treatment more general. On the other hand, the arrival process
will be considered to be Poisson, which is considered to be a reasonable model capturing
the superposition of independent packet streams arriving over different input links to an
outgoing link. Thus, we will consider an M/G/1 queuing model with 2 priority classes [50].
The packet arrival rates of priority n, λn

ij , can be expressed by Equation (2.26).

λ1
ij =

∑︂
l

f l/pl · Il
ij , λ2

ij =
∑︂

l

f l+/pl · Il+
ij +

∑︂
k,l

bl
k/pl

k · Il
ijk (2.26)

Let ρn
ij = λn

ij/µij denote the traffic intensity at link (i, j) due to the incoming flows
of priority class n. The classical queuing results provide for the mean queuing delay of
packets of priority n, denoted by W n

ij , described in Equations (2.27) and (2.28), where Rij

describes the mean remaining time till the completion of the transmission of the packet
being transmitted upon a packet’s arrival to node i; notice that since the packet size and
link capacities are fixed, the second moment of the service time in Equation (2.28) is equal

22 Optimization of an Integrated Fronthaul/Backhaul Network

to and has been replaced by 1/µ2
ij .

W n
ij = Rij

(1− ρ1
ij − . . .− ρn

ij)(1− ρ1
ij − . . .− ρn−1

ij)
(2.27)

Rij =
∑︁

n λn
ij/µ2

ij

2 (2.28)

Considering the packet transmission, queuing and propagation delay components over
all links traversed by the flow (given by Equation (2.27)), the delay of a fronthaul packet
in reaching its XPU is derived and given by Equation (2.29). This delay is subject to the
most stringent constraint, as shown in Table 2.1. Considering the corresponding delay
components similarly, the delay of a packet generated by a fronthaul source in reaching its
destination is given by Equation (2.30), considering also its path (as a backhaul packet)
from its XPU to its destination. Similarly, the delay experienced by a packet generated
by a backhaul source is derived and given by Equation (2.31). Notice that a fronthaul
packet has priority n = 1 while a backhaul packet has priority n = 2.

dl− =
∑︂
i,j

Il
ij

µij
+
∑︂
i,j

W 1
ij · Il

ij +
∑︂
i,j

Lij

vl
· Il

ij (2.29)

dl =dl− +
∑︂
i,j

Il+
ij

µij
+
∑︂
i,j

W 2
ij · Il+

ij +
∑︂
i,j

Lij

vl
· Il+

ij (2.30)

dl
k =

∑︂
i,j

Il
ljk

µij
+
∑︂
i,j

W 2
ij · Il

ijk +
∑︂
i,j

Lij

vl
· Il

ijk (2.31)

Notice that the delay expressions above include the non-linear functions W n
ij (with

respect to ρn
ij or λn

ij) which would not allow for the incorporation of linear programming
tools for the solution of our optimization problem, even if most of the variables involved
are binary. To address this problem, a linear approximation based on Taylor expansion
along with an iterative procedure are adopted and are described next.

By considering the first terms of a Taylor expansion of W n
ij around some point

(ρ1,0
ij , ρ2,0

ij) we get the approximation W̃
n
ij shown in Equation (2.32).

W̃
n
ij = 1

2µij
·
{︂

an0 + an1 · (ρ1
ij − ρ1,0

ij) + an2 · (ρ2
ij − ρ2,0

ij)
}︂

(2.32)

By substituting W n
ij by W̃

n
ij in Equations (2.29), (2.30) and (2.31) we end up with some

products of variables. Since one of them is bounded (ρn
ij), and the other one is binary (Il

ij

or Il+
ij or Il

ijk) we can linearize such products by introducing some additional variables,
as expressed in Appendix A.2, and shown for the case of the product in Equation (2.29)
next.

2.3 Heuristic Algorithm 23

yl,n
ij = Il

ij · ρn
ij (2.33)

yl,n
ij ≤ Il

ij (2.34)

yl,n
ij ≤ ρn

ij =
λn

ij

µij
(2.35)

Il
ij + ρn

ij − 1 ≤ yl,n
ij (2.36)

Finally, the following constraints are imposed on the delay of the fronthaul packets
in reaching their XPU and their destination and the backhaul packets in reaching their
destination.

dl− ≤ Dl− · Il (2.37)

dl ≤ Dl · Il (2.38)

dl
k ≤ Dl

k ·
(︂
1− Il

)︂
(2.39)

Since the linearized formula for the queuing delays shown in Equation (2.32)
requires some (arbitrary) initial input for the class 1 and 2 traffic, some discussion
on the impact of the particular approximation on the accuracy of the solution derived
through the optimization framework is in order. A (first) solution to the optimization
problem is obtained by considering an arbitrary initial value for the loads (ρ1,0

ij , ρ2,0
ij) in

Equation (2.32). This solution determines also the loads and delays associated with all
links. In the sequel, these loads are used for the calculation of the link delays based on
the exact formula in Equation (2.27) and the result is compared with that returned by
the solution to the optimization problem. If the deviation exceeds some threshold, then
the new loads are considered as the initial values in Equation (2.32) and a new solution
to the optimization problem is obtained yielding new loads and delays. The procedure
continues until the aforementioned delay deviation is below some accuracy threshold and
the solution regarding the determined DUs and XPUs remains unchanged. A specific
application of this approach is reported in Section 2.4.1.

The developed optimization framework suffers from an exponential explosion of
variables with respect to network size and the number of flows. By relating it to the
multi-commodity flow problem with integer constraints (known to be NP-complete), it is
shown in Appendix B.1 to be NP-complete.

2.3. Heuristic Algorithm

As a consequence of the NP-completeness, the computational complexity would be
very high when large scale environments are considered. For such environments, an

24 Optimization of an Integrated Fronthaul/Backhaul Network

efficient heuristic of low computational complexity is proposed for solving the optimization
problem prescribed in Equation (2.1). The efficiency of the heuristic, which may yield
the optimal or a suboptimal solution, is assessed in Section 2.4. The heuristic algorithm
is described in detail in Algorithm 1 and it is outlined next.

Algorithm 1 Heuristic 1: Heuristic algorithm for flexible RAN elements

1: procedure HeuristicFlexibleRAN
2: All sources← DUs
3: DUsNotUsed← DUs
4: while (UsedXP Us < MaxXP Us)&&(maxDUhit > 1)&&(DUsNotUsed > NumberSources) do
5: maxDUhit← 0
6: for all r ∈ XP UP lacement do
7: maxDUXP U ← 0
8: for all l ∈ DUsNotUsed do
9: P ath1fl ← ShortestP ath(DUl, XP Ur)

10: while (Capacity(link)+f l > MaxCapacity(link), link ∈ P ath1) and (Not All Links Removed)
do

11: Remove links that cannot transport f l

12: P ath1fl ← ShortestP ath(DUfl , XP Ur)
13: P ath2fl ← ShortestP ath(XP Ur, Destination)
14: while (Capacity(link) + f l+ > MaxCapacity(link), link ∈ P ath2) and

(Not All Links Removed) do
15: Remove links that cannot transport f l

16: P ath2fl ← ShortestP ath(XP Ur, Destination)
17: Recompute delays for flows already routed
18: if Recomputed delays satisfy their maximum delay then
19: Keep the paths and the DUs that are placed for the current XPU
20: maxDUXP U ← maxDUXP U + 1
21: if maxDUXP U > maxDUXP Usaved then
22: maxDUXP Usaved← maxDUXP U
23: Save the information for all the DUs that uses this XPU
24: if maxDUXP Usaved > 1 then
25: maxDUXP Uit← maxDUXP Usaved
26: Save the information for all the DUs that uses this XPU
27: Update DUsNotUsed removing the ones that uses the selected XPU
28: flag ← 1
29: while flag == 1 do
30: flag ← 0
31: for all l ∈ DUsNotUsed do
32: for all k ∈ BackhaulF lowsOfSource(l) do
33: P athbl

k
← ShortestP ath(sourcel, Destination)

34: while (Capacity(link)+bl
k > MaxCapacity(link), link ∈ P ath) and (Not All Links Removed)

do
35: Remove links that cannot transport bl

k
36: P athbl

k
← ShortestP ath(sourcel, Destination)

37: Recompute delays for flows already routed
38: if Recomputed delays satisfy their maximum delay then
39: Keep the path of the new backhaul flow and update the loads in the links
40: else
41: flag ← 1
42: Remove one DU from the XPU that accommodates more DUs
43: if The XPU selected contains only 2 DUs then
44: Remove the two DUs
45: Add the selected DUs to DUsNotUsed
46: Update all the information saved for those DUs

The algorithm aims at determining the best placements for the XPUs (supporting 2 or
more DUs) while trying to accommodate as many DUs as possible. The algorithm starts

2.3 Heuristic Algorithm 25

by trying to accommodate the largest possible number of DUs that can be supported by
one only XPU and determine the (best) placement of that one XPU. To accomplish this,
the algorithm starts assuming that all the sources are DUs and the algorithm computes
the paths and the associated loads/delays from the sources to each candidate XPU
placement. The placement determined and the supported DUs are kept as the baseline
for the next round of the algorithm. In the next round, the placement of one XPU that
can accommodate the largest number of the remaining DUs is determined. Following
this, the new loads and delays are recalculated and the latest solution is accepted only
as long as previous solutions are not invalidated; that is, the delay requirements of the
flows whose paths were determined previously are not violated due to the new loads of
the paths determined by the latest round. These rounds are repeated until the sources
are exhausted or no more XPUs can be placed without invalidating previous placements.

At this point the XPUs and the supported DUs have been determined, including the
paths from the DUs to the supporting XPU (fronthaul flow) and the path from the XPU
to the destination (backhaul flow). The backhaul flows from the remaining sources (which
are eNBs) are then routed to their destination; notice that the delay constraints are not
as stringent for backhaul flows and that their loads are substantially less than that of
the DU sources (fronthaul). Shortest path routing is considered for these backhaul flows,
taking into account the remaining capacity of the links after having accommodated the
flows of the DU sources. If the delay requirement of previously routed flows is not violated
due to the shortest path routing of a backhaul flow, the determined path is accepted for
the current flow. If the delay requirement of a previously routed flow is violated, the
responsible links are "removed" (i.e., cannot be part of the route for the current flow) and
the shortest path algorithm is reapplied until a path is found.

If no path is found for at least one (eNB) flow, we consider the XPU that
accommodates the largest number of DUs and we switch one of those DUs to an eNB.
The flow of that DU is removed, as well as the flows of all the eNBs routed before. If
that XPU accommodates only two DUs, the XPU is removed and both DUs are removed
since an XPU cannot support only one DU. The procedure for routing the eNB flows is
then started again and is repeated until all such flows are routed.

At the end of this heuristic algorithm we obtain the largest possible number of DUs
that can be accommodated, the number and placement of the supporting XPUs and
the routes for all flows. This solution (regarding the number of DUs and XPUs) will be
compared for some network topologies and scenarios against that returned by the optimal
one obtained with a much higher computational complexity.

26 Optimization of an Integrated Fronthaul/Backhaul Network

2.4. Validation and Application of the Approaches

The optimization framework and the heuristic approach developed in this work are
validated and evaluated by applying them over some topologies of practical interest in a
Matlab environment.

During the research to find the best topology for the testing of our algorithms, we
found that there is no single common topology used for the transport network of operators.
Based on the available fiber deployment and geographical characterization, the operator
may choose one topology or another. The only common rule followed is the use of
aggregation of ring topologies, in which rings with lower bandwidths are aggregated in
larger rings with higher capacity. Hence, following this spirit, we have selected a ring
topology that is computationally feasible to validate the heuristic results compared with
the linearized problem results. Moreover, to test the algorithm proposed we have selected
a synthetic topology that follows the same principles given by the operators and the
works [51] and [52], and can be characterized by a set of parameters which can be modified
to assemble an operator deployment. Thus, the topology used for the experiments can be
perfectly an example of a real operator deployment or can be parametrized to be similar
to a real one.

2.4.1. Small-Scale Topology

First, a relatively small scale environment is considered in order to derive results under
the optimization framework in reasonable computational time. That is, to determine the
maximum number of DUs that can be accommodated with the minimum number of
necessary XPUs each of which supporting two or more DUs. The derived solution is
compared against that obtained under the heuristic approach introduced in Section 2.3
to assess the potential effectiveness of the heuristic. The network topology considered
consists of a ring of 7 nodes connected with 10Gbps (per direction) bi-directional links
and each of these nodes is connected to 3 traffic sources via a 1Gbps access link to each
one of them, as shown in Figure 2.2.

A quick back-of-the-envelop calculation easily reveals that for the capacities and
topology shown in Figure 2.2, the maximum number of DUs is 21 (all of the sources
can be DUs) and the minimum number of XPUs is 1 (supporting all 21 DUs). Due
to the symmetry in the topology, this XPU may be placed in any of the 7 nodes of
the ring. The XPU will receive 9 of the non-local fronthaul flows (of a rate of 0.9Gbps
each) over the clock-wise 10Gbps ring and the other 9 non-local fronthaul flows over the
counter-clock-wise ring of 10Gbps; the 3 local DUs are supported by the XPU without
creating fronthaul traffic over the ring. Without loss of generality it is assumed that
the 21 backhaul flows exiting the XPU facility are forwarded to destinations outside the
shown network topology.

2.4 Validation and Application of the Approaches 27

The aforementioned back-of-the-envelop result is just a way of explaining the results
obtained by simulation and are the same as the ones obtained by solving the optimization
problem and by applying the heuristic approach, validating both approaches. The back-
of-the-envelop results are shown in Figure 2.3 and correspond to the value of ρ = 1
(denoting that the full capacity of the 10Gbps links is available, see discussion below).
Notice that the number of XPUs is 1 and the total Air Bandwidth is equal to 4200
Mbps under both the optimization and the heuristic approaches. Assuming a cell Air
Bandwidth of approximately 150 Mbps (Long Term Evolution (LTE) eNB node using
2x2 MIMO and 20MHz channel) and that a 33% Air Bandwidth gain is achieved when
the eNB is replaced by a DU (which benefits from coordinated processing of its signals
with those from at least one more cell [53]), then the total Air Bandwidth achieved by
the 21 DUs is 21x200=4200Mbps, as shown in Figure 2.3 for ρ = 1.

As an iterative approach is needed for obtaining the optimization solution due to the
queuing delay approximation (see discussion at the end of Section 2.2.1), the following
may be reported for the solution obtained under the aforementioned experiment. The
initial value for the loads are set to (ρ1,0

ij , ρ2,0
ij) = (0.25, 0.25). Then, the loads in all

links are determined. Their average values over all ρij tuples were equal to (ρ1,1
ij , ρ2,1

ij) =
(0.2280, 0.0101) and the maximum value for ρ1,1

ij appeared in the tuple of (ρ1,1
ij , ρ2,1

ij) =
(0.9900, 0.0750); notice the lower values of load for the backhaul traffic (class 2) as this
traffic imposes a lighter load and the solution determines that all the sources become DUs
(generating fronthaul traffic till their CUs). With the new load values we iterate one more
time and the final solution is reached and remains there after unchanged.

In order to test the performance of the developed approaches further, we expand
the scenario considered in Figure 2.2 by considering that only ρ, 0.5 ≤ ρ ≤ 1, of the
ring capacity is available. As observed in Figure 2.3, the results obtained under both
approaches coincide, demonstrating again the effectiveness of the heuristic approach. It
may be noted that all 21 sources can be DUs, as the achieved Air Bandwidth remains
equal to 4200Mbps, for 0.5 ≤ ρ ≤ 1. This fact, indicates that the same level of DU
aggregation results are obtained by the application of the heuristic approach and the
optimization framework. On the other hand the number of XPUs (i.e. XPU locations)
required increases from 1 to 3, as the ring capacity decreases and the resulting fronthaul
traffic cannot be forwarded to a single node any more. Note that although the numbers
of XPUs and Air Bandwidth are the same for both approaches, some result details such
as the location of the XPUs differ in both solutions. In addition, the resulting graphs in
Figure 2.3 completely overlap due to the designed topology, which allows the deployment
of all base stations as DUs.

28 Optimization of an Integrated Fronthaul/Backhaul Network

Figure 2.2: Small Scale Validation Environment.

0.5 0.6 0.7 0.8 0.9 1
Maximum allowed load in the links ()

3800

3900

4000

4100

4200

4300

4400

4500

4600

Ai
r B

an
dw

id
th

 (M
b/

s)

0

0.5

1

1.5

2

2.5

3

3.5

N
um

be
r o

f X
PU

s

Air Bandwidth Optimization
Air Bandwidth Heuristic 1
Number of XPUs Optimization
Number of XPUs Heuristic 1

Figure 2.3: Optimization vs Heuristic 1 cite.

2.4.2. Large-Scale Topology / Practical Crosshaul Transport Network

In this subsection a large-scale network topology - that is likely to encounter in real
environments - and some scenarios of potential interest to operators are considered.
Due to the high computational complexity of the optimization framework, results are
obtained by employing the heuristic approach of Section 2.3. These results turn out to
provide for efficient deployment of C-RAN (that is, improved placement of the XPUs and
accommodation of a large number of DUs). To this end, the Crosshaul transport network

2.4 Validation and Application of the Approaches 29

depicted in Figure 2.4 is considered that represents a real production transport network
deployed in the north of Italy. This network was provided by an operator involved in
the 5G-Crosshaul project [10]. It is based on a number of optical rings where the base
stations are connected to. Each blue point in the rings of Figure 2.4 corresponds to an
Edge data center (potential host of an XPU facility). The length of each ring varies
depending on the geographical area, ranging from 3Km to 100Km. This is the reference
topology considered in this subsection.

Figure 2.4: Reference topology.

Based on the scenario depicted in Figure 2.4, we have generated synthetic Ring-Tree
based topologies as shown in Figure 2.5. Their configuration parameters (number of base
stations, possible location for Edge data centers, radius of the links, etc.) are generated
randomly. The generation process begins by forming hexagonal cells that form groups of
size A1. Each of these hexagonal cells are supported by either a complete eNB node or
by a DU.

Each of these cells is connected via a 1 Gbps link to one of the A2 nodes that reside
on a ring of capacity of 10Gbps, which node is common to all the cells belonging to the
same A1 group. A3 of those rings of A2 nodes are connected via a ring of capacity of

30 Optimization of an Integrated Fronthaul/Backhaul Network

CR

A3

A3

A3

A2

A2

A2

A2

A2 A2

A2

A2

A2

A1

A1

A1

A1

A1

A1

A1

A1

CR

A3

A3

A3

A2

A2

A2

A2

A2 A2

A2

A2

A2

A1

A1

A1

A1

A1

A1

A1

A1

10 Gbps

40 Gbps

100 Gbps

1 Gbps

Figure 2.5: Synthetic Ring-Tree based topology.

40 Gbps. Finally, CR of those rings of A3 nodes are connected via a single ring CR (of
capacity of 100 Gbps). Any of these CR nodes of the central ring would be considered
to be the exit to the Internet where the destination of any flow generated within this
topology would reside. Finally, any of the nodes residing in any of the rings is a potential
host of an XPU. For the rest of the section we will assume a topology with 339 nodes in
total (CR = 3, A3 = 5, A2 = 4, A1 = 6). The objective of this section is to evaluate how
a large scale operator network can be optimized based on our approach. In order to do
so, we will stress the network based on 2 scaling parameters: i) the maximum end to end
propagation delay in the network and ii) the maximum allowed capacity used in the links
of the network, ρ, as we also did in the small scale environment case. With the first of
these parameters we control the diameter of the network. This way, we can possibly have
all XPUs placed in the central ring if the propagation delay is below the stringent delay
constraint and the available capacities permit it. With the second parameter we control
the available capacities in the network, which would also affect the placement of XPUs,
depending on the induced queuing delays.

In the first of the experiments of this section, we derive and present results by applying
Heuristic 1 (see Section 2.3) to the large scale network described above. Heuristic
1 determines the deployment mix of eNBs and DUs (and their placement) aiming at

2.4 Validation and Application of the Approaches 31

maximizing the Air Bandwidth (or number of DUs deployed), while minimizing the
number of deployed XPUs. Figure 2.6 presents the results of Heuristic 1 for the
Air Bandwidth (Figure 2.6(a)) and the Number of XPUs required (Figure 2.6(b)).
Considering the Number of XPUs, Figure 2.6(b) shows how the number of XPUs deployed
increases with the maximum propagation delay. The main reason for this behavior is that
due to the delay increase, the aggregation of the flows of a high number of DUs in the
higher aggregation rings (A3 and CR, in Figure 2.5) is not possible, requiring more XPUs
and distributing them over the lower aggregation rings (A2 in Figure 2.5) to meet the
fronthaul delay constraints. To illustrate this, consider the curve for ρ = 1 and compare
the result corresponding to a propagation delay of 250µs with that of 1ms. For the case
of 1ms, Heuristic 1 results in 12 XPUs: 3 XPUs placed in rings A3 and 9 in A2. For
the case of 250µs, Heuristic 1 places a total of 3 XPUs, placed 1 in the central ring and
2 in the A3 rings. As explained earlier, the reason for this difference is that when delay
constraints are met, the best solution is to aggregate in the higher aggregation rings.

Following a similar line of reasoning, when the maximum capacity of the links is
reduced, from ρ = 1 to ρ = 0.25, the fronthaul traffic cannot be pushed deeper into the
network, due to the saturation of the links in the aggregation rings. For this reason, the
number of XPUs required increases while ρ decreases. To illustrate this, consider the
result under a propagation delay of 500µs for ρ = 0.25 and ρ = 1. For the case of ρ = 1,
the total number of XPUs is 6, placing 1 in a A3 ring and 5 of them in the A2 rings. For
the case of ρ = 0.25, Heuristic 1 results in 27 XPUs, placing 1 in the central ring, 5 in A3
rings and 21 in A2 rings. As explained, the lower the bandwidth available (lower ρ), the
more the XPUs required and the less the aggregation.

Figure 2.6(a) shows the resulting total Air Bandwidth of all DUs and eNBs, whose
numbers are determined by Heuristic 1. As expected, Heuristic 1 achieves a higher level
of aggregation under lower maximum propagation delay, determining a lower number
of XPUs placed deeper in the network. For instance, under 500µs and 1ms maximum
propagation delays, the number of XPUs increases (and they are pushed towards the
edge of the network), compared with that under 250µs. As a result, the number of DUs
deployed will be decreased under low maximum propagation delay, since the fronthaul
flows will share the bandwidth with backhaul flows for longer paths deeper into the
network and the total Air Bandwidth will decrease, for all values of ρ. In addition, as
expected, as ρ decreases, the resulting Air Bandwidth decreases accordingly. Note that
this seems a different behavior from the one in Figure 2.3 where the air bandwidth does
not decrease, it remains the same (4200 Mbps) for every value of ρ. It is not a different
behavior, but in Figure 2.3 for the values of ρ selected the transport capacity still allows
that all the sources are DUs, but due to the lack of transport bandwidth (lower ρ means
lower link capacity) when ρ decreases the number of XPUs required to maintain the same
air bandwidth has to increase. Here, in Figure 2.6(a) the lack of bandwidth in the links

32 Optimization of an Integrated Fronthaul/Backhaul Network

affects to the number of sources that can be DUs also and this is the reason it modifies
the Air Bandwidth.

Finally, in Figure 2.6, we also provide a base-line to compare to. The line
corresponding to the Operator topology represents the results that will be obtained by
an operator deploying the same networks as used for Heuristic 1, but considering that the
operator deploys just 1 XPU in the first point aggregating the DUs (point corresponding
to A1 in Figure 2.5), resulting in a higher number of XPUs (see Figure 2.6(a) and
Figure 2.6(b)) compared to the case under Heuristic 1. In addition, since the operator does
not try to aggregate DUs, the pooling gain and Air Bandwidth gains based of cooperative
signal processing cannot be obtained and the total Air Bandwidth is lower.

250 500 1000
Maximum propagation delay in the network (s)

40

45

50

55

60

65

Av
er

ag
e

ai
r b

an
dw

id
th

 (G
b/

s)

Heuristic 1, = 0.25
Heuristic 1, = 0.5
Heuristic 1, = 1
Operator topology

(a) Air Bandwidth

250 500 1000
Maximum propagation delay in the network (s)

0

10

20

30

40

50
N

um
be

r o
f X

PU
s

Heuristic 1, = 0.25
Heuristic 1, = 0.5
Heuristic 1, = 1
Operator topology

(b) Number of XPUs required

Figure 2.6: Cite of Heuristic 1 and a generic Operator deployment.

The proposed Heuristic 1 tries to optimize the network both in terms of Air Bandwidth
(by choosing if a RAN element must be deployed as an eNB or a DU) and reduced number
of XPUs. This is possible only if the RAN has not been already deployed or if the deployed
RAN elements can be flexibly configured as eNBs or DUs. Since this is not always possible,
as part of this work we have also developed a modification of Heuristic 1, called Heuristic
2 (see Appendix C.1), which takes as input a given topology with fixed RAN elements
(i.e., whether they are eNB or DUs and their positions) and computes the minimum
number of required XPUs. Results for Heuristic 2 are presented in Figure 2.7. As in
Figure 2.6, we derive and present the Number of XPUs deployed in Figure 2.7(b) and
the achievable total Air Bandwidth in Figure 2.7(a), for different values of the maximum
propagation delay and different values of ρ. In order to build the simulated topologies we
use the same ones as in Figure 2.6, but considering a probability of choosing eNB or DU
pDU = 0, 5, resulting in an average of 144 DUs. The results in Figure 2.7(b) show that
the Number of XPUs can be significantly reduced by applying the solution obtained by
Heuristic 2, compared with the generic Operator deployment. Notice also a similar trend
and for the same reasons as for Heuristic 1: the number of required XPUs increases with

2.5 Conclusion 33

the maximum propagation delay and ρ. Regarding the Air Bandwidth, since all RAN
elements are fixed, the bandwidth obtained by Heuristic 2 is similar to the Operator
deployment, with a small gain due to the higher aggregation of DUs achieved. This small
gain is already obtained with the lower value of ρ, thus the only value that changes when
we increase the ρ is the number of XPUs required.

250 500 1000
Maximum propagation delay in the network (s)

38

40

42

44

46

48

50

52

54

56

Av
er

ag
e

ai
r b

an
dw

id
th

 (G
b/

s)

Heuristic 2, = 0.25
Heuristic 2, = 0.5
Heuristic 2, = 1
Operator topology

(a) Air bandwidth

250 500 1000
Maximum propagation delay in the network (s)

0

10

20

30

40

50

N
um

be
r o

f X
PU

s

Heuristic 2, = 0.25
Heuristic 2, = 0.5
Heuristic 2, = 1
Operator topology

(b) Number of XPUs required

Figure 2.7: Cite of Heuristic 2 and a generic Operator deployment.

2.5. Conclusion

This chapter has focused on the development of a framework for the joint optimization
of an integrated networking and edge/cloud environment supporting two diverse classes
of flows (fronthaul/backhaul) under path and delay constraints. This framework is
directly applicable to the optimal design or dynamic management of a mixed RAN and
C-RAN environments, foreseen on the road to 5G networking. These mixed environments
emerge as operators attempt to maximize their adoption of the C-RAN technology in
the most effective way, subject to the constraints imposed by the available supporting
infrastructure. Or, such environments may emerge in a more dynamic (operation-level)
case, where operators may switch on/off DUs, such as Remote Radio Heads (RRH),
or aggregate them in a lower number of CUs, such as Base Band Units, according to
the demand to reduce OPEX, necessitating the re-optimization of the resulting mixed
RAN / C-RAN environment. The 5G networks incorporating a mixed RAN and C-RAN
environment (where some nodes are split while others are not), will face planning and
deployment challenges, requiring mechanisms to decide on the most appropriate RAN
element to split and the placement of the supporting CUs in the edge/cloud. It is
also important to highlight that the use of split RAN elements requires the transport
of the generated fronthaul flows characterized by more stringent throughput and delay
requirements (than the RAN-generated backhaul flows) all the way to their CUs.

34 Optimization of an Integrated Fronthaul/Backhaul Network

This chapter provides an optimization framework and computationally more efficient
heuristics to tackle exactly the aforementioned problems. The main contributions of
this work are: i) an optimization framework for joint routing and resource placement
is developed, taking into account delay, capacity and path constraints, maximizing the
degree of DU deployment while minimizing the supporting CUs, ii) an efficient heuristic
approach for solving the optimization problem in large scale environments, allowing
the operator to derive solutions aiming at maximizing the Air Bandwidth (that is
boosted by properly splitting a RAN element) while minimizing the number of XPUs
(edge/cloud nodes hosting an array of CUs) by determining the placement of XPUs
and the RAN elements that can be split into DUs and iii) a heuristic allowing the
operator to compute the minimum number of XPUs and their placement for a given
mixed RAN/C-RAN deployment. The approaches have been applied to both small scale
and large scale/production level environments, demonstrating the effectiveness of the
heuristics and the optimization approach and yielding potentially large gains in terms of
reduced number of required Edge data-centers and increased Air Bandwidth.

3
Virtual Network

Function (VNF) Placement on
Mobile Cloud/Edge

Environments

5th generation of telecommunications networks (5G) (& beyond) systems have been
promising several appealing sometimes unbelievable future use cases and applications
which could reshape our society. The vast number of Internet of Things (IoT) devices,
autonomous vehicles and different types of robots collaborating with each other and with
humans are expected to be part of our lives. These devices usually require coordination
or fine granular, dynamically programmable control from a reliable and permanently
available platform. Coordination of collaborating robots, drone swarms, self-driving cars
or any types of unmanned vehicles are good examples with several fields of application
from industry to agriculture and from logistics to emergency management. The envisioned
use cases typically pose serious challenges on the underlying networks and cloud platforms
in terms of latency and reliability. For example, 3rd Generation Partnership Project
(3GPP) specified a dedicated set of features for mission critical applications referred to
as Ultra-Reliable Low-Latency Communication (URLLC) [54].

Edge and fog computing, Multi-access Edge Computing (MEC) are key enablers
of these applications. The main concept is to extend traditional cloud computing by
deploying compute resources closer to customers and end devices. By these means, both
end devices and central cloud servers can offload computational tasks to resources at the
edge or the fog resulting in lower delays and in reduced network load. In order to meet the
strict delay and reliability requirements of mission critical applications, a distributed and
heterogeneous infrastructure and the encompassed compute and network resources should
be managed carefully. The underlying infrastructure includes both public and private
cloud/edge resources [55] providing execution environments for VNF interconnected by
public 5G networks and privately operated domains. In this environment, resource
orchestration is a challenging task which aims at always finding the proper placement of
software components realizing the service. Moreover, robots or different vehicles equipped
with sensors, actuators and local computation environments, provide capabilities which

35

36 VNF Placement on Mobile Cloud/Edge Environments

can or must be consumed by certain applications. More exactly, now we can run VNFs
on these continuously moving mobile devices, and the uninterrupted communication to
other service components should also be guaranteed. Beside mobility, the limited battery
capacity and the VNFs power consumption are novel aspects to be considered in the
placement decision.

Due to the widespread of virtualization technologies, the problem of allocating VNFs
on top of physical resources has been of interest in recent years. In most of the existing
research the allocation of VNFs is envisioned as an optimization problem, that is generally
NP-hard [56].

A common technique is to solve the VNF allocation problem as a variation of the
bin packing problem, taking the VNFs as items, and the bins as servers. Particularly,
the first steps of this chapter’s proposed heuristic are build upon the basis defined in the
algorithm of [57], which minimizes a data center energy consumption using a generalized
bin packing problem. Works as [58] solve the VNF allocation using the variable size
bin packing problem [59], which provides an efficient solution to minimize both response
time, and resource utilization. Other research projects have studied different and relevant
generalizations for variable sized bin-dependent costs [60].

A recent survey categorizes bin packing problem generalizations which might be
relevant to VNF placement solutions [61]. In general, algorithms for bin packing problems
do not consider delays on the sequence of items, nor any topological constraint among
the bins, so using their results for VNF placement problems is not trivial; our heuristic
builds on such results.

Solutions of the VNF allocation problem must reshape with the new 5G networks,
which bring computational capabilities closer to the user thanks to MEC [62], and fog
computing [63]. Indeed, servers are way closer to antennas, or even co-located with
them in the edge, and IoT devices are becoming part of a dense network. Thus, 5G comes
with the urge of a more dense radio coverage, and the possibility of sharing public/private
network infrastructure [55] [64] can help to achieve it. Orchestration in the edge of 5G has
motivated solutions [65] that benefit from edge servers to asses the mapping and migration
of VNF resources upon users’ mobility. Additionally, edge computing has popped up
the quest of deploying Network Service (NS) with very strict latency requirements, and
recent research as [66], [67], [68], [69], and [70] study solutions about how to allocate
VNFs to meet low latency requirements. [66] uses a genetic algorithm to obtain a fixed
allocation that minimizes/maximizes latency/availability, [70] provides a stopping theory
solution that migrates the allocated VNFs as time passes, such that latency restrictions
are not violated. [67] formulates an optimization problem to allocate VNFs demanded
by end-users attached to antennas, so as to maximize/minimize resources re/usage, by
imposing latency constraints. [68] proposes a deep learning agent that assigns VNFs to
servers maximizing the requests’ throughput, while they meet latency constraints. [69]

3.1 Mobile Robotics Use Case 37

presents a solution that maximizes the throughput of services in 5G slices, while meeting
latency requirements of each slice. The solution idea relies on preventing the performance
interference caused by co-locating multiple VNFs in the same server.

There is some research that focus on VNF allocation in fog environments. [71] presents
an allocation model accounting for the computational overhead of fog devices, based on
the assigned workload; and [72] studies how to satisfy End-to-End (E2E) delay by reducing
the distance of the deployed service, to the users consuming the service (envisioned as
traffic generators). Another approach to allocate VNFs is to deploy them jointly using
cloud and fog devices, as [73] does. In that work, service providers derive a wireless and
resource sharing model of fog devices, and the allocation is done using a student project
allocation algorithm. There are other results [74] related to low energy IoT devices, that
study the trade-off between the energy requirement for computation, and transmitting
data, as a computation task outsourcing pipeline is proposed.

Although the literature already provides solutions to perform the VNF allocation on
edge and fog scenarios, the work exposed in this chapter contributes to the state-of-the-
art by tackling all at once the (i) radio coverage; (ii) battery consumption; and (iii) E2E
delay restrictions present in 5G use cases with mobile compute nodes.

The rest of the chapter is organized as follows. Section 3.1 introduces a future use
case motivating the work. Sections 3.2 and 3.3 are devoted to the detailed description
of the model and the optimization problem. Section 3.4 describes the proposed heuristic
algorithm. Section 3.5 presents the algorithms’ evaluation from different aspects based
on extensive simulations.

3.1. Mobile Robotics Use Case

This work tackles the mobile robotics use case [75, Table 5.3.1.1-1], as a warehousing
solution for future factories [76, Section 3.1.2]. In particular, it deals with the transport
of goods from boats to specific locations of Valencia city haven.

The use case considers a cluster of robots, that move in a master-slave fashion to
deliver goods arriving to the haven. Each of the robots carries containers from a pick
up point (S in Figure 3.1) to a drop off point (D1 and D2). In particular, the master
robot is followed by the other slave robots (represented in Figure 3.1) of the cluster along
its way towards the drop off point. Robots communicate among themselves to report
position status, or other context information useful for the master-slave coordination.
Thus, robots have device-to-device communication between them, and computational
capabilities so they can execute lightweight VNFs [77] as the driving and follow VNFs
represented in Figure 3.1. The driving VNF runs in the master robot to drive it towards
the drop off point, and the follow VNFs run in the slave robots to follow the master robot
movements until it reaches a drop off point. The driving VNF receives driving instructions

38 VNF Placement on Mobile Cloud/Edge Environments

slave

S

M1

6x RUs
per M1 node

6x M1 nodes
per access ring

M2

4x access rings
per M2 node

Access ring Aggregation ring

6x M2 nodes in
aggregation ring

edge
server

cloud
server

radio
coverage

D1

master slave

driving
VNF

follow
VNF

follow
VNF remote

ctrl VNF
DB

VNF

driving path

D2

Figure 3.1: Deployment of a cloud robotics warehousing NS.

from the remote ctrl VNF running in the edge server in Figure 3.1, and reports sensor
data like the speed to the Database (DB) VNF running in the cloud.

To enhance the robots’ remote driving, the communication between the remote ctrl
VNF and the driving VNF is crucial, indeed, resources proximity is needed as Mobile
robotics demand communications with cycle times between 1ms and 100ms (for machine
control, and video operated remote control cases) [75]. Thus, the placement of both
driving and remote ctrl VNFs should satisfy latencies below 100ms.

While moving, robots may run out of battery or switch between Radio Unit (RU)
coverage area (see Figure 3.1). Whenever the master robot enters a new coverage area, it
attaches to a new RU to keep the connectivity with the servers running the remote driving
VNF, and DB VNF (edge, and cloud servers in Figure 3.1). Therefore, it is important to
take into account that a robot is not selected for goods delivery if (i) it may run out of
battery; or (ii) it may lose RU connectivity as it moves towards the drop off point.

To increase the RUs coverage and improve the E2E delay, the use case presented
in this section considers that the haven is covered by Long Term Evolution (LTE) RUs
managed by a network operator, and New Radio (NR) RUs belonging to its Non Public
Network (NPN), which is called an NPN deployment in a public network [55]. That is,
Valencia city haven only owns the NR RUs, and its management (subscription, gateways,
control plane) is done by the public network, i.e., a network operator.

For the public network infrastructure, a 5G transport network is assumed based on [78]
and [79]. All the RUs present in the use case transmit their traffic up to an access ring
composed of several switches connected in a ring fashion. The traffic of the access rings is
latter gathered by the aggregation rings which forward traffic up to the core of the public
infrastructure. The presented use case, assumes that cloud servers are in the core of the
public network, edge servers are co-located next to the access ring and the aggregation
ring switches. Regarding computational resources (i.e., Central Processing Unit (CPU),
memory and disk), edge servers in access rings are less powerful than edge servers in

3.2 System Model 39

aggregation rings, and cloud servers are more powerful than edge servers.
It is worth highlighting that the problem formulation presented in this work holds

for public and private deployments, being the only consideration the cost of connection,
that may vary depending on the type of management. The mention here is for a better
understanding on the real situation in the mentioned city haven.

3.2. System Model

This section presents the architecture, elements and dependencies considered for the
problem formulation in Section 3.3. The network infrastructure is represented by a graph
GI , where the nodes V (GI) contain NR and LTE RUs, generally referred to as Access
Point (AP) VAP (GI), server nodes (representing edge or cloud servers) VS(GI), and mobile
nodes VM (GI). Hence, the vertex set of the graph is built up as V (GI) = VAP (GI) ∪
VS(GI)∪VM (GI). Host nodes Ni with computation capacities CNi are stored in VH(GI) =
VS(GI) ∪ VM (GI), and their corresponding unitary price is represented by pNi . As a
realistic generalization to the mobile robotics use case, the concurrent management of
multiple robot clusters is assumed. The subsets of VM (GI) define the clusters of robots
VRCq (GI) ⊆ VM (GI), 1 ≤ q ≤ Q, where Q refers to the number of clusters. Moreover,
graph edges E(GI) represent the connections between the infrastructure nodes, which are
annotated by their transmission delays.

Due to the mobile clusters’ mobility, their connections to the static part of the
infrastructure are not represented by edges in GI .

The mobile nodes VM (GI) are connected to access points VAP (GI) in order to
communicate with other nodes of the infrastructure. However, the nodes are moving
and may encounter areas with overlapping access point coverage or areas where handover
between different access points is needed to guarantee the connection to the servers deeper
in the infrastructure. Thus, this work assumes that each AP has an associated coverage
area APk, and the mobility pattern of robot cluster q is modeled by the probability
distribution of being in the AP coverage areas PAP q

k
(t), referred as coverage probability

throughout the chapter. Notice that a cluster can be in an area where several access
points have coverage, with a different probability for each of them. Each value models the
probability of a robot cluster q to fall inside the coverage area of each AP in each moment
t. This model is able to compute the placement of NSs with guarantees of communication
between the mobile and fixed parts of the infrastructure, while considering any model
of coverage areas, such as [80] or a linear model, by using precomputed values of the
coverage.

The parameter t is a time instant within an interval (t0, t1) in which the network service
will be running. For the sake of simplicity in the model, the time interval is discretized in
subintervals, thus continuous time t ∈ (t0, t1) becomes discrete time tu ∈ {t0, ta, tb . . . , t1}

40 VNF Placement on Mobile Cloud/Edge Environments

with t0 ≤ ta ≤ tb ≤ . . . ≤ t1. Subintervals help to identify the moments when handovers
may occur during the service time. The time division guarantees the communication
between robots and APs selected in each subinterval. Note that VNFs are deployed on
the same servers during all the service time, thus, they must have communication with
the APs selected in each subinterval.

The cost of using an AP for a single subinterval tu by any single cluster is pAPk
.

The energy consumption of the mobile nodes is modeled by the distribution Pbat(Ni, CNi)
depending on the allocated load to node Ni, which represents the probability of having a
not depleted battery for the whole interval (t0, t1).

Both PAP q
k
(t) and Pbat(Ni, CNi), are used in the optimization problem to ensure robots’

radio coverage, and battery needs are met during the interval (t0, t1).
The requested NSs are represented with a NS graph GS , with the nodes being VNFs

v ∈ V (GS) and their capacity requirements Cv. Each Service Function Chain (SFC) is
a subgraph Gs ⊆ GS with its own set of VNFs and path, as the one depicted in the NS
graph of Figure 3.1, and expressed in Equation (3.1).

CSF C =
{︁
(Gs, ∆Gs) | V (Gs) ⊆ V (GS), E(Gs) ∈ P(GS), ∆Gs ∈ R+}︁ (3.1)

where CSF C represents the set of SFCs in NS GS , and P(GS) represents the paths of
the NS graph GS . Each SFC has a corresponding delay requirement ∆Gs which defines
an upper bound of the total delay of the SFC path E(Gs).

For a better understanding of the model, all the notations used for the mathematical
formulation of the optimization problem are gathered in Tables 3.1 and 3.2.

3.3. Problem Formulation

This section presents the formulation of the use case to tackle the VNF allocation as
an optimization problem. The problem is solved using an integer program solver to gain
optimality and scalability insights. The optimization must decide which infrastructure
node Ni ∈ V (GI) should host which VNF v ∈ V (GS), which is represented by the binary
decision variable x(v, Ni) and constraints Equation (3.2) and Equation (3.3).

x(v, Ni) ∈ {0, 1} ∀v ∈ V (GS),∀Ni ∈ V (GI) (3.2)

∑︂
Ni∈V (GI)

x(v, Ni) = 1 ∀v ∈ V (GS) (3.3)

The resource capacities CNi must be respected by the load allocation on each node
Ni. This requirement is gathered in Equation (3.4), where CNi stands for the allocated

3.3 Problem Formulation 41

Parameters Definition
GI Network infrastructure graph

GI

V (GI) All infrastructure nodes

V∗(GI) Nodes of type ∗ in the infrastructure
∗ ∈ {AP, S, M, H, RCq}

E(GI) Edges of the infrastructure
GS NS graph

GS

V (GS) All VNFs of the network service
P(GS) All paths of the service graph

Gs Graph of SFC Gs

V (Gs) VNFs of SFC Gs

E(Gs) Edges of SFC path Gs

∆Gs Delay requirement of SFC Gs

ths
bat Battery threshold for SFC Gs

CSF C Set of all SFCs
VNF v VNF v

VNF v
Cv Capacity demand of VNF v
L Locality matrix V (GS)× V (GI)

Ni

CNi Total resource capacity of node Ni

pNi Cost per resource unit used of node Ni

DAP,S(Ni, Nj) Delay between Ni and Nj ∈ VAP (GI) ∪ VS(GI)
DMq (Ni, Nj) Delay between Ni and Nj ∈ VRCq (GI)

Pbat(Ni, CNi)
Probability of having battery for the whole

time interval using CNi resources

APk

dAPk
Delay for the coverage area of APk

PAP q
k
(tu) Probability of cluster q to be in the coverage

area of APk in time subinterval tu

pAPk
Cost of usage of APk

κq Coverage probability threshold for cluster q

Table 3.1: Parameters of the optimization formulation.

Variables Definition
dGs(tu) Delay of SFC Gs in time tu

d(Ni, Nj , tu) Delay between nodes Ni and Nj in time tu

x(v, Ni) Placement of VNF v in node Ni

CNi Resource usage in node Ni

AP q
k (tu) Usage of APk by cluster q time tu

µ : V (GS) ↦→ VH(GI) VNF to host node mapping structure
α : {tu} × {q} ↦→ VAP (GI) AP selection structure for all clusters

Table 3.2: Variables of the optimization formulation.

resources in infrastructure node Ni as presented in Equation (3.5).

CNi ≤ CNi , ∀Ni ∈ VH(GI) (3.4)

CNi =
∑︂

v∈V (GS)
x(v, Ni)Cv, ∀Ni ∈ VH(GI) (3.5)

Furthermore, there may be a necessity of applying placement policies and VNF
functional types. In order to include those policies in the model, the matrix L(v, Ni)
expresses locality constraints between the VNFs v ∈ V (GS) and infrastructure node

42 VNF Placement on Mobile Cloud/Edge Environments

Ni ∈ VH(GI). Each element of the matrix is a binary constant, identifying whether the
VNF can be located in an infrastructure node, as expressed in Equation (3.6).

x(v, Ni) ≤ L(v, Ni), ∀v ∈ V (GS),∀Ni ∈ VH(GI) (3.6)

In the use case presented in Section 3.1, L(v, Ni) enforces the deployment of the driving
and follow VNFs in the robots (i.e., mobile nodes). This requirement may be useful for
other use cases, such as Unmanned Aerial Vehicles (UAVs) running virtual access points
that forward traffic to the cloud (see [77,81]). Under such scenarios, L(v, Ni) can be used
to enforce virtual access points to run on top of UAVs.

3.3.1. Radio Coverage Constraints

The deployment must also decide at each time interval to which access point each
cluster of robots is attached to, that is, AP q

k (tu) = 1 in case robot cluster RCq is connected
to access point APk at time tu. Equation (3.7) reflects the assumption that each cluster
can only be attached to one AP at each interval.

∑︂
APk∈VAP (GI)

AP q
k (tu) = 1, ∀1 ≤ q ≤ Q,∀tu ∈ (t0, t1) (3.7)

The deployment decision must also ensure that the coverage probability is above the
imposed threshold κq for mobile cluster q, representing the requirements each cluster
needs to guarantee connectivity during the time interval, as stated in Equation (3.8).

∑︂
APk∈VAP (GI)

AP q
k (tu) · PAP q

k
(tu) ≥ κq, ∀1≤q≤Q

tu∈(t0,t1) (3.8)

Notice that this optimization problem only needs to know whether cluster q has radio
coverage of APk at time tu, which makes it agnostic about how PAP q

k
(tu) is obtained, and

the values could be derived from any radio access model. For instance, Section 3.5 obtains
PAP q

k
(tu) with a linear function directly proportional to the distance between q and APk.

3.3.2. Delay Constraints

In order to measure the distances between infrastructure nodes, the metric used is the
delay, which in the case of the static nodes is given in a matrix containing the precomputed
and the time-independent delays, DAP,S(Ni, Ni) ∀Ni, Nj ∈ VS(GI) ∪ VAP (GI).

Similarly, the distances inside each mobile cluster are time invariant, precalculated
and stored in matrix DMq (Mi, Mj) ∀Mi, Mj ∈ VRCq (GI), 1 ≤ q ≤ Q.

Each access point APk ∈ VAP (GI) provides a time- and distance-independent delay
to its whole coverage area, its value is denoted by dAPk

, while delay between APs is

3.3 Problem Formulation 43

given with the value DAP,S(APk1 , APk2). The delay value between a mobile cluster and
the static part of the infrastructure and between mobile nodes belonging to two different
clusters might vary according to the assigned APs during the time interval (t0, t1). A
mobile cluster q has an appointed relay node N (rq) (in our case the master robot), which
is connected to the APs, and all the traffic of other mobile nodes of the same cluster
towards the fixed part of the infrastructure goes through the corresponding relay mobile
node. Thus, the orchestration system can execute the handover of the cluster by only
connecting the relay node to a different AP. This way the delay of device-to-device
communication is accounted in a different variable than the AP delays.

Hence, the general delay function which covers any pair of infrastructure node types
is expressed in Equation (3.9).

d(Ni, Nj , tu) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑︂
APk∈VAP (GI)

AP q
k (tu)[DMq (Ni, N (rq)) + dAPk

+ DAP,S(APk, Nj)], if Ni ∈ VRCq (GI) ∧Nj ∈ VS(GI);

d(Nj , Ni, tu), if Nj ∈ VRCq (GI) ∧Ni ∈ VS(GI);
DAP,S(Ni, Nj), if Ni, Nj ∈ VS(GI) ∪ VAP (GI);
DMq (Ni, Nj), if Ni, Nj ∈ VRCq (GI);∑︂

APk1 ,APk2
∈VAP (GI)

AP qi
k1

(tu)AP
qj

k2
(tu)

⎛⎝DAP,S(APk1 , APk2) + dAPk1
+ dAPk2

+
∑︂

n∈{i,j}
DMqn

(Nn, N (rqn))

⎞⎠ , if Ni ∈ VRCqi
(GI) ∧ Nj ∈ VRCqj

(GI)

(3.9)

Equation (3.9) is a piece-wise function that depends on the type of node hosting the
different VNFs of the NS. The delay between two mobile nodes of the same cluster
is accounted in DMq (Ni, Nj). Delay between two nodes of the fixed infrastructure is
DAP,S(Ni, Nj), while delay between a node of the fixed infrastructure and a mobile cluster
depends on the AP that the cluster uses in that moment, which is gathered in∑︂
APk∈VAP (GI)

AP q
k (tu)[DMq (Ni, N (rq))+ dAPk

+ DAP,S(APk, Nj)]. Thus, the delay of a service is

composed by the different delays between the nodes that host the different VNFs and the
order in which they must be performed.

The overall delay of a SFC Gs ∈ CSF C in time tu is formulated in Equation (3.10),
where the delays between the hosts of each SFC edge are summed.

dGs(tu) =
∑︂

(vi,vj)∈E(Gs)
Ni,Nj∈V (GI)

x(vi, Ni)x(vj , Nj)d(Ni, Nj , tu) (3.10)

The upper bound of the SFCs’ total permitted delay ∆Gs for the whole optimization
interval is expressed in constraint Equation (3.11).

dGs(tu) ≤ ∆Gs , ∀(Gs, ∆Gs) ∈ CSF C , ∀tu ∈ (t0, t1) (3.11)

44 VNF Placement on Mobile Cloud/Edge Environments

3.3.3. Battery Constraints

In order to place VNFs in mobile nodes it is necessary to ensure the mobile node will
not run out of battery during the time interval (t0, t1). This is introduced in the problem
formulation, in Equation (3.12), as the probability of having battery for the whole time
interval considered, based on the resources used in the node.

Pbat(Ni, CNi) = Pbat(Ni, 0)− CNi

CNi

(︂
Pbat(Ni, 0)− Pbat(Ni, CNi)

)︂
, ∀Ni ∈ VM (GI) (3.12)

CNi is the consumed capacity of mobile node Ni, and Pbat(Ni, CNi) is the probability of
having battery on Ni by the end of time interval (t0, t1) when using CNi resources as
allocated capacity. Note that the optimization problem is agnostic of the used battery
consumption model, as Pbat(Ni, CNi) values could be derived by any battery consumption
model. For example, Section 3.5 derives Pbat(Ni, CNi) as a linear function between the
empty CNi = 0 and the fully loaded states CNi = CNi . To ensure the proper performance
of the mobile nodes, the battery life is guaranteed in Equation (3.13) by a threshold ths

bat

given per SFC Gs, for all nodes hosting VNFs.

Pbat(Ni, CNi) ≥ ths
batx(v, Ni), ∀Ni ∈ VM (GI), ∀v ∈ V (Gs), ∀Gs ∈ CSF C (3.13)

This threshold takes into account the battery of all the mobile nodes hosting the VNFs of
the service and guarantees each of the nodes hosting a VNF will have battery during the
whole time interval with a probability higher than the threshold, for example a ths

bat = 0.9.

3.3.4. Cost Minimization

Finally, the problem minimizes the total cost of allocating all the services demanded,
and gathered in GS , as well as the cost of the APs used by all of the mobile clusters along
the service duration. Hence, the objective function is shown in Equation (3.14).

min
∑︂

Ni∈V (GI)
CNi · pNi +

∑︂
tu,q,k

AP q
k (tu) · pAPk

(3.14)

The VNF mapping µ and AP selection structures α are defined by the variables x(v, Ni)
and AP q

k (tu) of a solution to the optimization problem. This model is not linear in some
equations as the one representing the delay in Equation (3.10), but each product of two
variables can be easily linearized due to the fact that all the variables involved are binary
variables. Thus, the linearization is performed by substituting each product of two binary
variables by one extra binary variable, as expressed in Property 5 in Appendix A.1.

3.4 Heuristic Algorithm 45

3.4. Heuristic Algorithm

This section details the design of the heuristic which exploits the peculiarities of the
system model to design an efficient and practical algorithm. The core idea of the heuristic
algorithm proposed to solve the optimization problem is to use the fractional optimal
solution of a bin packing problem of the VNFs and host nodes, which is deterministically
rounded to an invalid integer solution. Next, the algorithm iteratively resolves the
capacity, delay, battery and coverage constraint violations by changing the mapping
location of VNFs in the initial invalid integer solution until a feasible mapping is found.

First, Formulation 1 introduces the bin packing problem variation with variable bin
and item sizes supporting linear usage costs [57].

Formulation 1 Bin Packing with Usage Cost [57]
Input: VNFs V (GS) as items with weight, host nodes VH(GI) as bins with capacity
Output: VNF placement respecting only capacity constraints

∑︂
Ni∈VH(GI)

x(v, Ni) = 1 ∀v ∈ V (GS) (3.15)

∑︂
v∈V (GS)

x(v, Ni)Cv ≤ CNi ∀Ni ∈ VH(GI) (3.16)

x(v, Ni) ∈ {0, 1} ∀v ∈ V (GS), Ni ∈ VH(GI) (3.17)
min

∑︂
Ni∈VH(GI)

CNi · pNi (3.18)

Lemma 1 states how to construct a fractional optimal solution for this bin packing
variant, relaxing the integrality constraint. The proof of Lemma 1 can be found in the
original source [57].

Lemma 1 (Fractional optimal solution of Formulation 1 [57]). Let {ai} be a permutation
of all host infrastructure nodes Ni ∈ VH(GI) in ascending order by their unit costs of
computation capacity pa1 ≤ pa2 ≤ · · · ≤ pa|VH (GI)|. Let WC =

∑︁
v∈V (GS) Cv be the sum

of all VNF capacities. Let b be the minimum number of host nodes in order {ai} where∑︁b
i=1 CNai

≥ WC . The fractional optimal solution (discarding the integrality constraint
(3.17)) of Formulation 1 is

x̃(v, Nai) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
CNai
WC

if i < b,

WC−
∑︁b−1

i=1 CNai
WC

if i = b,

0 if i > b;

∀v ∈ V (GS).

The pseudo-code of the proposed heuristic for this problem is shown in Algorithm 2.

46 VNF Placement on Mobile Cloud/Edge Environments

Algorithm 2
Input: service graph GS , infrastructure GI , improvement score limit Υ, and all constraints
from Section 3.3
Output: VNF placement µ : V (GS) ↦→ VH(GI) and AP selection α : {tu} × {1 . . . Q} ↦→
VAP (GI) satisfying all constraints

1: procedure PlaceVNFsSelectAPs(GS , GI , Υ)
2: x̃(v, Ni), b, {ai} ← fractional solution based on

Lemma 1 for host nodes VH(GI) and VNFs
V (GS)

3: for v ∈ V (GS) do ▷ Round initial solution
4: µ(v) ← argmaxNi∈VH(GI)x̃(v, Ni) which

obeys locality constraints (3.6)
5: for b′ ∈ {b . . . |VH(GI)|} do ▷ In order of {ai}
6: V,R ← violatingVNFMappins(µ)
7: while V ̸= ∅ do
8: I ← ∅ ▷ Allowed improving VNF moves
9: for v ∈ V, i ∈ {1 . . . b′} do

10: if µ(v) ̸= Nai and µ(v) = Nai obeys
11: locality constraints (3.6) then
12: if Υ ≤ improveScore(µ, v, Nai) then
13: impr_cost← Cv(pNai

− pµ(v))
14: I ← I ∪ {(v, Nai , impr_cost)}
15: if I ≠ ∅ then
16: µ(v) ← Nai | (v, Nai , impr_cost) ∈ I

and impr_cost is minimal
17: V,R ← violatingVNFMappins(µ)
18: α ← retrieve AP selection from

violation record R
19: else break
20: if AP selection α is valid and
21: VNF placement µ is valid then
22: return µ, α ▷ Solution found
23: return ∅, ∅ ▷ Solution not found

Intuitively, the heuristic reallocates VNFs that violate any constraint, and measures
the goodness of the reallocation with the improvement score (see Algorithm 4). The
higher the improvement score, the better the VNF reallocation. Initially, the fractional
optimal solution is retrieved and rounded to initial constraint-violating VNF placement,
obeying only the locality constraints (3.6) as shown in lines 2-4. The cost increasing order
{ai} of mobile and server nodes are used from Lemma 1 to involve additional hosts to
the VNF placement pool, starting only from the first b cheapest hosts. In each iteration
a set of violating items, respecting all constraints is calculated based on the temporary
decisions stored in the current VNF placement function µ. Next, the iteration in lines 9-
14 collects improvement scores for moving a VNF which is involved in any constraint

3.4 Heuristic Algorithm 47

violation to any currently considered host node (i.e. until index b′). Line 12 heuristically
filters only the VNF relocations whose improvement score is higher than a configured
improvement score limit Υ. The improvement cost is calculated by the cost difference
of VNF v on the current host µ(v) and the possible new host Nai . If any allowed VNF
replacement is found, update actions are taken and a current AP selection α is retrieved
as shown in lines 16-18. Otherwise, the algorithm exits the improvement operations, and
the next cheapest mobile or server node is included in the search by increasing b′. If a
feasible solution is found after any inner iteration (see Line 22), the procedure returns
the current VNF placement function µ and AP selection structure α. The presented
algorithm could be easily extended to continue searching for better quality solutions at
the price of increased running time.

All subsequently presented subroutines take the input of Algorithm 2, but these are
omitted from the pseudo-codes for readability. violatingVNFMappings takes as input
the current VNF placement function µ and returns a set of violating VNFs V and an
information storage of the actual constraint violations R. Based on the current VNF
placement µ, the feasibility of AP selection for each robot cluster q ∈ {1 . . . Q} is checked
using the subroutine chooseAPs. If the AP selection is not possible, all VNFs of the
causing SFC Gs are added to V and the violation information is stored in constraint
violation record R.

Algorithm 3
Input: Current VNF placemnet µ, current (possibly incomplete or invalid) AP selection
α, robot cluster index q
Output: Extended and/or ivalidated AP selection α, AP selection violation record RAP

1: procedure chooseAPs(µ, α, q)
2: for tu ∈ (t0, t1) do
3: if ∃Gs ∈ CSF C ,∃v ∈ V (Gs),
4: where µ(v) ∈ VRCq (GI) then
5: dGs , APl ←

delayDistWithCoverageAndAPSelection(E(Gs), µ, tu, q, κq)

6: if dGs ≤ ∆Gs and ∃APl then
7: Let α(tu, q) = APl ▷ Same AP for all SFCs
8: else
9: Let α(tu, q) = ⌈

10: Add result dGs and SFC Gs to RAP

11: else
12: Let α(tu, q) = APl, where

APl ∈ VAP (GI) and obeys coverage
constraint Equation (3.8) and pAPl

is
minimal

13: return α, RAP

48 VNF Placement on Mobile Cloud/Edge Environments

Algorithm 3 shows the details of how the AP selection and its feasibility based on the
placement function µ are derived for a given robot cluster q ∈ {1 . . . Q} for all temporal
subintervals. Line 4 chooses the affected SFCs Gs, which have any VNF mapped to
the mobile nodes of the robot cluster q. Given the current VNF placement µ, the
total delay used by the path of the whole SFC E(Gs) can be calculated using the delay
expression (3.9). Access points are chosen by discarding the ones which do not meet the
coverage requirement κq and finding the one with minimal delay among the remaining
ones:

APl = argminAPk∈VAP (GI)∩{APϕ:P
AP

q
ϕ

(tu)≥κq}(dAPk
) (3.19)

These operations are done by the function delayDistWithCoverageAndAPSelection,
which also ensures that the same AP is chosen for a given input robot cluster q ∈ {1 . . . Q}
in subinterval tu, no matter which input SFC it gets. The algorithm discards the
impractical option of placing the VNFs of a single SFC to distinct mobile clusters. This
simplification is only applied for the delay bounded VNFs, not to the other VNFs of the
network service GS . If an access point APl is found for subinterval tu with the given
requirements, the selection is saved in AP selection function α, otherwise the structure
is invalidated and the reason is saved in RAP , as shown by the logical structure starting
at Line 6. In case the computation capacities of a robot cluster are not used by any
VNFs of any SFC, an access point still needs to be selected for the cluster, which is done
by minimizing the cost instead of the unbounded delay and similarly filtering to the
coverage probability (see Line 12).

Finally, the improvement score calculation is shown in Algorithm 4, which takes
the current VNF placement µ and a possible relocation of VNF v to Nai as input,
and outputs an integer whose higher value represents a more significant improvement.
The improveScore procedure uses the previously presented violatingVNFMappings
function to evaluate how the mapping would change by the VNF mapping modification.
The mapping structure µ with less violating constraints is considered better, as shown
in lines modifying the improvement score y. In case of capacity constraints, total
improvement score y would decrease, keep unchanged or increase if the number of hosts
with more than their max capacity allocated would increase, stay or decrease by the VNF
movement, respectively (see Line 5). A similar score modification is done for each SFC,
using the change in the number of temporal subintervals tu where the coverage or delay
constraints are violated as shown by the iteration starting at Line 6. In the case of the
battery constraints, the number of VNFs mapped to mobile nodes with violated battery
thresholds are used.

3.4 Heuristic Algorithm 49

Algorithm 4
Input: Current VNF placement µ, movement of VNF v to host Nai

Output: Integer in interval [−|CSF C | − 2, |CSF C |+ 2], the improvement score of the VNF
movement

1: procedure improveScore(µ, v, Nai)
2: y ← 0 ▷ Init. improvement score of moving v to Nai

3: V,R ←violatingVNFMappings(µ)
4: V ′,R′ ←violatingVNFMappings(µ | µ(v) = Nai)
5: y ← y − 1/ + 0/ + 1 if number of

hosts Ni with violated constraint (3.4)
increases/stays/decreases inR′ compared toR

6: for Gs ∈ CSF C do
7: y ← y − 1/ + 0/ + 1 if number of

subintervals tu with any invalid mappings
(i.e. where ∃tu, q : α(tu, q) =
⌈) increases/stays/decreases in R′
compared to R

8: y ← y − 1/ + 0/ + 1 if number
of VNFs v which are mapped to any
mobile node VM (GI) with violated battery
constraint (3.13) increases/stays/decreases in
V ′ compared to V

9: return y

3.4.1. Complexity Analysis

A brief analysis on the heuristic’s complexity and its termination is presented in
Theorem 1 and its corresponding proof.

Theorem 1 (Complexity of heuristic). The overall complexity of the heuristic with
positive improvement score limit Υ > 0 is:

O
(︂
|V (GS)|4|V (GI)|3|CSFC |QT

)︂
(3.20)

where Q and T are the number of clusters and the number of subintervals tu in the
optimization time frame (t0, t1), respectively.

Proof : Looking at Algorithm 2, the fractional solution construction and its rounding
are dominated by the iteration starting at Line 5, which is executed at most |V (GI)|
times. Assuming a positive improvement score limit Υ, the violating VNFs set V =
O(|V (GS)|) decreases at least by one element in each iteration of the while cycle. At
most every iteration runs violatingVNFMappings. Filtering for the allowed VNF
movements in Line 11 is done at most O(|V (GS)||V (GI)|) times, and in worst case
for each of them we execute a improveScore subroutine call. These observations
make Algorithm 2’s complexity to be O

(︂
|V (GS)||V (GI)|

{︁
|V (GS)||V (GI)|improvScore

50 VNF Placement on Mobile Cloud/Edge Environments

Mobile
node VNF .25 .50 .75 1

%vCPUVirtual
Link

VNF

Figure 3.2: A service graph generated with a series-parallel graph. This instance contains
x8 VNFs bounded to mobile nodes, and is used in the battery experiment (Figure 3.4).

+ violatingVNFMappings
}︁)︂

. The violatingVNFMappings’s complexity is
dominated by QO(chooseAPs), because the other constraints can be checked
in O(|V (GI)||V (GS)|) time. Access point filtering for sufficient coverage in a
longest SFC can be done in O(|V (GI)||V (GS)|) time, which is done for all
SFCs |CSF C |, all SFC edges O(|V (GS)|) for all time subintervals T . Which
gives O(violatingVNFMappings) = O(QT |V (GS)2||V (GI)||CSF C |). Similarly,
improvScore is dominated by violatingVNFMappings’s complexity. Finally, a
Floyd-Warshall algorithm is used to pre-calculate the all the delay matrices DAP,S and
DMq with complexity O(|V (GI)|3), which is dominated by the previous operations.
Substituting and ordering the O(·) notations, the statement follows. ■

3.5. Validation and Application of the Approaches

This section compares the performance of Section 3.4 heuristic, with the optimal
solution of Section 3.3 formulation from various aspects. As integer programs are generally
impractical due to the hardness of the problem, our heuristic is extensively evaluated
to demonstrate its applicability. The heuristic solutions are compared to the optimal
solution obtained with Gurobi which finds a solution within a gap optimality of 3%. Such
comparison is done for the mobile robotics use case of Section 3.1, where scalability is a
critical issue due to the size of the infrastructure and service graphs.

Additionally, this section compares Section 3.4 heuristic against ”Follow Me Chain”
(FMC) [65], a heuristic that tackles mobility by triggering VNF migrations upon AP
handovers, but does not consider battery constraints. Our implementation of FMC (i)
replaces [65, Algorithm 1] VNF-based Breadth-First Search (BFS) with a virtual-link-
based BFS, so as to ensure the mapping of every virtual link; (ii) uses a k-shortest paths
in [65, Algorithm 2:line 1] to avoid getting stucked in the search of all paths between two

3.5 Validation and Application of the Approaches 51

nodes1; (iii) considers mobile compute nodes as well as edge servers; and (iv) can map
service graphs with unconnected components.

3.5.1. Experiment Setup

The presented evaluation scenario scales up the mobile robotics use case of Valencia
city haven. A realistic 5G network infrastructure topology is considered with multiple
types of wireless access points, while the service graph instances are random graphs. Many
parameters of the experiment setting are examined during the presented simulations,
varying the size of the input, SFC delay requirements, coverage probabilities and battery
thresholds.

In order to generalize the service graphs and gain confidence in our simulations, series-
parallel graphs are used to generate the network service topology GS . Figure 3.2 shows
an example of such graph. This graph class covers the structure of many data streaming
applications, such as map-reduce topologies, and have been used in other realistic,
industrial case studies for fog application allocation [82]. The round-trip time experienced
by every robot running a VNF must stay below the delay restriction, therefore, SFCs
correspond to loops starting and ending in mobile node VNFs, and each SFC must satisfy
the delay restriction. Among all the VNFs of the SFC, some of them are forced to run on
top of the mobile robots’ hardware VM (GI) (denoted as Mobile node VNF in Figure 3.2),
and the rest can run on top of any server VS(GI) or robot VM (GI). It is up to the heuristic
and the optimization formulation, to decide where to deploy them.

Every experiment uses the 5G infrastructure characterization of [79] and [78], which
considers URLLC. Table 3.3 shows every infrastructure element considered in the
experiments, and Figure 3.1 illustrates the interconnection of the network infrastructure.
Each M1 switch is located in the access ring of the network, and it gathers the traffic of
up to x6 LTE or NR RUs. Access rings have x6 M1 switches and x1 M2 switch, all of
them interconnected in a ring fashion. Every M2 switch belongs to x4 access rings, and it
steers the traffic up to the aggregation ring, where it is connected in a ring fashion with
another x5 M2 switches. Experiments consider that edge and cloud servers are reachable
using M1 and M2 switches, respectively.

Each point in the operation area of the robot cluster is covered at least by one LTE
RU and at least by one NR RU. The coverage probabilities for each time instance are
derived by a function which maps the distance of the RU and the cluster to the coverage
probability. The probability slightly decreases until the end of the RU coverage area,
and steeply drops to 0 at 120% of the RU reach. If a NR RU and the mobile cluster
are not in LoS, the coverage probability is 0, independent of their distance. To achieve
E2E delays demanded by the mobile robotics use case (between 1ms and 100ms), the

1FMC builds a full-mesh servers’ graph, and even the proposed range-based Depth-Fist Search (DFS)
incurs into a O(|V (Gi)|!) search space

52 VNF Placement on Mobile Cloud/Edge Environments

Element Characteristics
x2 LTE RU [83] 8km radio coverage, 5ms one way delay [84], 5.5 cost units OPEX [85]
x36 NR RU [86] 700m LoS coverage [87], 1ms one way delay, 11 cost units OPEX
x10 robots x2 CPUs, 15.27 cost units/CPU [88]
x6 edge server x12 CPUs, 5.83 cost units/CPU [88]
x2 cloud rack 200 CPUs, 2.46 cost units/CPU [88]
x8 M1 switch x8 dedicated CPUs
x6 M2 switch x238 dedicated CPUs
x2 access rings fiber ring connection, ≤6 M1 switches
x1 aggregation ring fiber ring connection, x6 M2 switches

Table 3.3: Infrastructure used for experimentation.

experiment infrastructure assumes that aggregation and access ring switches introduce
packet processing delays between 1ms and 10ms, under the same characterisation as
performed in [79].

To derive this section’s results, a network infrastructure with just one cluster of robots
has been generated with the 5GEN R package [89]. Then, a Python script generates
series-parallel NS graphs GS from which loop SFCs are selected. Robot cluster paths are
encoded by coordinates which are used to calculate RUs coverage probabilities as robots
move along the path. Next, the Python script runs Section 3.4 heuristic to decide each
VNF mapping on top of the infrastructure graph. Section 3.3 formulation is encoded
in AMPL [90], and the Python script invokes Gurobi 8.1 solver [91] through the amplpy
API to obtain the optimal mapping. All the experiments have been executed on two
identical Virtual Machine (VM) with x4 virtual Central Processing Unit (vCPU), 32GB
of memory, and 132GB of disk.

3.5.2. Simulation Results

This section presents the results of the extensive simulations performed with
Algorithm 4, AMPL solver, and the state of the art FMC solution; denoted as impr-
Υ, AMPL, and FMC ; respectively. The details of the simulation parameters are shown
in Table 3.4 for each of the experiments. The cluster paths in the Valencia haven are
represented by their source and target locations.

All evaluation figures present boxplots, where the middle line shows the median (a.k.a.
second quartile) of the dataset, while the body of the boxplots show the first and third
quartiles (a.k.a. the medians of the first half and the second half of the dataset separated
by its median). The whiskers of the boxplots represent the datum which deviates from the
boxplot body at most by 1.5 times the inter-quartile range, while outliers are individually
plotted by circles which fall beyond the whiskers.

An input VNF placement problem with all previously presented constraints is deemed
feasible, if the AMPL implementation finds a valid solution that respects all constraints in

3.5 Validation and Application of the Approaches 53

Parameter name/explanation Value/range
Experiment name Scalability Coverage Delay Battery

Robot cluster path, see Figure 3.1 S → D1 S → D2 S → D2 S → D1
Path total distance [meters] 678 488 488 678

Time interval count tu ∈ (t0, t1) 24 24 24 24
Unloaded battery probability Pbat(Ni, 0),∀Ni ∈ VM (GI) 99% 99% 99% 99%

Full loaded battery probability Pbat(Ni, CNi),∀Ni ∈ VM (GI) 50% 80% 80% 50%
Battery probability threshold ths

bat 40% 70% 70% 72% & 75%
Infrastructure delay sample count 1 4 4 1

SFC delay [ms] ∆Gs 1000 5 Varies 1000
Randomized VNF vCPU requirement Cv∀v ∈ V (GS) 0.5 x {0, . . . 4} 0.5 x {0, . . . 4} 0.5 x {0, . . . 4} 0.25 x {0, . . . 4}

hline VNF count |V (GS)| Varies 10 10 26
VNF count bound to robots 6 4 1 Varies

Coverage probability threshold κq 94% Varies 94% 70%
Scenario repetition with different randomization seed 14 24 20 14

Table 3.4: Experiment parameters.

30 minutes (measured in wall-clock time). In case of the heuristic, the timeout is reduced
to 20 minutes. All experiments were executed with 3% optimality gap for AMPL, various
improvement score limit values for the heuristic, and k = 10 for FMC.

First of all, the scalability of the algorithms are compared depending on the number
of VNFs to be placed; results in terms of cost and runtime are shown in Figure 3.3(a)
and Figure 3.3(b), respectively. The time-bound feasibility is shown on top of the figures
for each randomized scenario repetition corresponding to the dependant value on the
horizontal axis. The scalability experiment is repeated multiple times for each input
size, varying the distribution of VNF capacity requirements, the service graph’s concrete
topology, and the selection of the VNFs bound to the mobile cluster (see Table 3.4). The
scenario parameters allow a solution to be found in any randomized generation, due to
loose SFC delay, coverage and battery probability thresholds; though the 30mins time
limit may not be enough in all cases. Figure 3.3(a) shows the time-bound feasibility
ratio calculated on the randomized repetitions. A steep drop of feasibility of the AMPL
implementation occurs at the VNF count of 60, which is due to reaching the computation
timeout in each case. The reason behind the timeouts is the exponential runtime of
the AMPL solution, which is shown by Figure 3.3(b) in logarithmic time scale. On the
contrary, both heuristics find feasible solutions in every possible setup. In terms of cost,
our heuristic with Υ = 1 outperforms FMC, with the former staying between 15% and
30% away of the optimal costs, and the latter increasing the cost gap with respect to
our solution as the number of Network Function (NF) bound to mobile nodes grows.
Furthermore, our heuristic always find solutions below 100ms for all tests, whilst FMC
takes around 10s.

Second, the effect of the coverage probability threshold κq is studied. Figure 3.3(c)
shows how the cost varies by increasing the threshold, i.e. making the AP selection more
strict. As the coverage probability requirement increases, deployment costs become more
expensive, because the solutions impose the selection of the closer and more expensive NR
antennas, rather than the cheap LTE antennas. Figure 3.3(c) depicts as well the feasibility,

54 VNF Placement on Mobile Cloud/Edge Environments

10 20 30 40 50 60 70 80 90 100 110 120
NF count bound to mobile nodes

200

400

600

800

1000

C
o
st

 U
n
it

s

Feasib.
100% 100% 7% 0% 0% 0%
100% 100% 100% 100% 100% 100%
100% 100% 100% 100% 100% 100%

FMC

impr-1

AMPL

FMC
impr-1
AMPL

(a) Scalability test: costs

10 20 30 40 50 60 70 80 90 100 110 120
NF count bound to mobile nodes

10 2

10 1

100

101

102

103

R
u
n
ti

m
e
 [

s]

FMC

impr-1

AMPL

(b) Scalability test: runtimes

0.9 0.94 0.95 0.96 0.97 0.98 0.99
Coverage probability

225

250

275

300

325

350

375

400

C
o
st

 U
n
it

s
Fe

a
si

b
.

100% 100% 100% 95% 100% 120% 0%
85% 85% 85% 90% 90% 100% 0%
80% 80% 80% 80% 80% 80% 0%
0% 0% 0% 0% 0% 0% 0%

FMC

impr-2

impr-1

AMPL

FMC
impr-2
impr-1
AMPL

(c) Coverage threshold variation test: costs

0.9 0.94 0.95 0.96 0.97 0.98 0.99 0.999
Coverage probability

10 2

10 1

100

101

102

103

R
u
n
ti

m
e
 [

s]

FMC

impr-2

impr-1

AMPL

(d) Coverage threshold variation test: runtimes

3 5 10 15 1000
Delays of SFCs [ms]

200

225

250

275

300

325

350

375

C
o
st

 U
n
it

Feasib.
85% 50% 35% 5% 100%
20% 40% 100% 100% 100%
0% 0% 25% 100% 100%

FMC

impr-1

AMPL

FMC
impr-1
AMPL

(e) SFC delay variation test: costs

3 5 10 15 1000
Delays of SFCs [ms]

2

4

6

8

10

N
u
m

b
e
r

o
f

h
a
n
d

o
v
e
rs

FMC

impr-1

AMPL

(f) SFC delay variation test: handover counts
Figure 3.3: Results of scalability, coverage probability and SFC delay experiments.

3.5 Validation and Application of the Approaches 55

and shows that for κq = 0.99 all scenarios are infeasible, because there exists at least one
subinterval in which the cluster is not covered by any antennas with such high probability.
Regarding the impact of the improvement score Υ, Figure 3.3(c) and Figure 3.3(d) show
that Υ = 2 (impr-2 time series) finds cheaper solutions faster. This is due to the
heuristic design, which goes faster by shrinking the solution space and considering only
VNF relocations with higher improvement score. The heuristic finds cheaper deployments
faster, because they require less steps to make the rounded fractional solution feasible.
Additionally, Figure 3.3(c) shows that FMC cannot find feasible solutions with the studied
coverage thresholds κq ≥ 0.9, since one or more migrations failed during the experienced
handovers.

Next, the results of simulations varying the SFC delay are shown in Figure 3.3(e) and
Figure 3.3(f). FMC cannot find feasible solutions for 3ms scenarios, as it is designed to
try to map one VNF per compute node, and therefore, its mappings have to traverse
more network links. The heuristic impr-1 struggles with finding feasible solutions in the
allocated time for the 3ms scenarios, while AMPL manages to prove the existence of
valid solutions as shown by the feasibility percentages of Figure 3.3(e). This could be
easily addressed by introducing a search space pruning step in addition to the locality
constraints. In the 3ms scenarios the usage of the cheap and high capacity cloud nodes
is not an option because their RTTs from all APs are above this value. Excluding
these compute nodes from the allocation options for the VNFs contained in the strict
SFCs would dramatically decrease the running time and thus increase the time-bound
feasibility of the heuristic. Although, additional pruning steps decrease solution quality
in the cases of more permissive delay requirements. On the other hand, the heuristic
greatly outperforms the optimal solution search in the 10-15ms scenarios, where the
AMPL algorithm fails to find any feasible solution before the 30 minutes timeout. This
is due to the growth of the search space as the delay restriction is relaxed. Additionally,
impr-1 finds cheaper deployments than FMC, since the latter tries to use one compute
node per VNF, and does not account for cloud nodes by design. Note that cloud nodes
are cheap and strong candidates used by impr-1 when the delay requirement relaxes (see
the SFC delay case of 1000ms).

Another interesting aspect of the solutions is the number of required handovers
needed for the whole optimization time interval. A lower handover count requires less
management operations and results in a more stable service. Handover comparison
between the cost-optimal and the heuristic solutions are shown in Figure 3.3(f). The
heuristic outperforms the optimal solution, which is especially relevant when the scenario
could be solved by a few handovers as shown by the 10ms experiment scenarios with 100%
heuristic feasibility. The AMPL algorithm could be modified to minimize the number of
handovers, but it would further worsen its scalability, while the heuristic performs well
by design. Furthermore, impr-1 required less handovers than FMC in all the simulated

56 VNF Placement on Mobile Cloud/Edge Environments

0 8 16 18 20 22 24 26
VNF count bound to mobile nodes

200

225

250

275

300

325

350

375

400

C
o
st

 U
n
it

s

Feasibility

100% 100% 100% 93% 93% 86% 86% 86%
100% 100% 100% 93% 86% 86% 86% 86%
100% 7% 7% 7% 7% 7% 7% 7%

100% 21% 21% 21% 21% 21% 21% 21%
100% 21% 21% 21% 21% 21% 21% 21%

impr-1-battery_th-75%

AMPL-cost-battery_th-75%

FMC

impr-1-battery_th-72%

AMPL-battery_th-72%

AMPL-72%

AMPL-75%
impr-1-75%

impr-1-72%

100% 7% 7% 7% 7% 7% 7% 7%
FMC-72%
FMC-75%

Figure 3.4: Impact of battery probability threshold on cost and feasibility.

scenarios.
Last, the results of the conducted experiments to examine the battery threshold

parameter’s effects are shown in Figure 3.4. The figure depicts cost values for both
algorithms in cases of 72% and 75% battery alive probability requirements, as the number
of VNFs to be placed on the mobile cluster increases. Note that FMC is agnostic of
battery constraints and it reports the same solution, no matter the imposed battery
alive probability. However, the feasibility of the FMC solution is depicted for battery
alive cases. These scenarios challenge constraint (3.13), discovering the critical battery
threshold to be around 72%-75%. In the 72% case the scenarios are vastly feasible with a
slight decrease as the VNF bound to mobile nodes increase. The heuristic finds close to
optimal allocations in almost all scenarios, except in the extreme case of much freedom.
In the more strict case of 75%, besides the no location-bound VNF experiment which
is essentially the same as the 72% case, the heuristic always finds all optimal solutions
where it exists. Last of all, Figure 3.4 shows that FMC only finds solutions in the 7% of
the simulations with more than 8 VNFs bound to mobile nodes. Indeed, it reports same
feasibility ratios for both 72%, 75% battery thresholds, as it could only find deployments
with Pbat(Ni, CNi) ≥ 0.75. As in previous results, FMC reports higher deployment costs
because it tries to map each VNF to a different compute node.

3.6 Conclusion 57

3.6. Conclusion

This chapter has analyzed the notoriously hard problem of VNF placement in a
realistic use case based scenario: mobile robotics for warehousing solution in the Valencia
city haven, where an NPN deployment in a public network is assumed. In this scenario,
mobile compute nodes act as an extension of the cloud and edge computing infrastructure,
which triggers the need for VNF placement solutions with strict delay bounds and
reliability constraints, while taking into account radio coverage, mobility and battery
conditions.

The chapter has introduced a system model and a mathematical formulation of the
problem, to then propose an efficient heuristic building on the fractional optimal solution
of a bin packing variant. The heuristic has been extensively evaluated via simulations in
terms of scalability and the strictness of constraints which are relevant to the use case.
Results show that the proposed heuristic outperforms a state of the art mobility-aware
algorithm, and achieves close to optimal deployments’ in terms of cost, while improving
the convergence speed to the solution (therefore the number of time-feasible solutions is
increased) and minimizing the number of required handovers.

4 Network Optimization for
Distributed Machine Learning

Owing to the ever-increasing scale and complexity of the learning tasks to perform,
Machine Learning (ML) algorithms have swiftly been extended to work in a distributed
fashion, with the purpose of leveraging the computational capability of multiple nodes,
possibly across multiple datacenters [92–95] and/or allowing nodes belonging to different
parties to cooperate in a learning task without sharing sensitive data [96–98].

More recently, distributed ML has emerged also as an excellent match for new
generation (5G-and-beyond) networks. It can be used for the management of the network
(as envisioned by such initiatives as ETSI ZSM [99], ENI [100], and O-RAN [101]), as
well as to enable user services within the so-called intelligent edge [102]. In general, new
generation networks can (i) integrate a wide number of heterogeneous nodes, including
those that can provide the data used for ML tasks, (ii) provide a distributed computational
infrastructure needed to run the ML algorithms (see e.g., [103]), and (iii) be dynamically
reconfigured so as to perform the ML task at hand with the required performance.

However, implementing a ML task in a 5G-and-beyond network also poses important
challenges such as defining the logical topology of the nodes that cooperate towards the
ML task. Specifically, it requires to decide on: (i) which computing nodes in the different
locations of the network edge should interact during the learning process and; (ii) how
many (and which) data sources to exploit, and which computing nodes should receive
their data.

The above decisions influence each other, often in counterintuitive ways: as an
example, seeking information from too many nodes may result in longer learning
times, due to the additional waiting. Furthermore, a given target learning error
(e.g., classification accuracy) may be reached through alternative, completely different
approaches, e.g., collecting a significant quantity of information or performing more
iterations to process a smaller set of data.

In spite of the wide usage of ML in mobile networks and the considerable attention
devoted to it, most of the works aim at exploiting the network more efficiently, e.g.,
reducing the overhead [92,104] or dealing with straggling nodes [105]. Just a small number

59

60 Network Optimization for Distributed Machine Learning

of recent works [96, 106] have characterized the impact of the network topology on the
performance of distributed ML, providing interesting insights on, e.g., the optimal network
connectivity. However, none of such works tackles the problem of defining the logical
network topology around the ML task to perform.

Furthermore, the nature of the task to solve can be very diverse and approach
considered to solve it will be very different, affecting the needs of the system to gather
and process the data. Thus, the distributed learning approach has been studied from
simple to complex cases. In the simplest cases [107], all training data is known before
the training itself starts, and the purpose of performing distributed learning is simply to
leverage more computational power. A more complex variation is represented by active
learning where new information arrives during the learning process, and is combined with
the offline training set [108, 109]. Applications include drone planning [93] and network
management [110,111].

A more recent trend is Federated learning, which tackles scenarios where participating
devices are not required to share potentially sensitive data [98,112]. Depending upon the
specific scenario, new data may or may not arrive during the training process.

Several works propose generic methodologies to mitigate common hurdles of
distributed ML, including scaling the parameter servers [92], dealing with slower
nodes [105], and trading learning efficiency for convergence speed [104]. All these works
propose novel algorithms and/or approaches to adapt to the existing network structure,
e.g., by limiting the overhead, to perform the learning task at hand as efficiently as
possible. Again, none of them envisions to do the opposite, i.e., adapting the nodes
interaction to the learning task.

Some works seek to theoretically characterize the convergence of supervised ML
and how it is influenced by the cooperation among learning nodes. The study in [95]
characterizes the convergence of a wide class of multi-agent algorithms. Using tools from
spectral graph analysis, it establishes a relation between the topology formed by pairs
of cooperating nodes and the convergence of the algorithm they run. [106] focuses on
distributed ML over regular topologies, and seeks to establish the graph degree associated
with the shortest convergence time – as opposed to the lowest number of iterations –,
finding that such a degree depends on the distribution of the nodes’ computing time.
Through similar steps and targeting a resource-constrained edge-computing scenario, [96]
searches for the optimal trade-off between local computation and global parameter
exchange in federated learning scenarios.

Hence, the goal of the work exposed in this chapter focuses on distributed, supervised
learning, and aims at filling the gap and extending the literature by (i) adapting the
logical network topology to the learning task, and (ii) considering not only learning nodes
(in charge of processing information), but also information nodes, where data comes from.
The latter is especially critical, as it allows to characterize and study the trade-off between

4.1 System Model 61

gathering information and extracting knowledge from it.
The rest of the chapter is organized as follows. The system model and how it

can represent different supervised ML tasks is described in Section 4.1. Section 4.2
presents the formulation of the problem tackled and discusses its complexity. Section 4.3
characterizes the learning performance, while important properties of the problem are
proven in Section 4.4. Then, the DoubleClimb algorithm is developed in Section 4.5 and
its complexity is analyzed before evaluating its performance in Section 4.6.

4.1. System Model

The system model of this work addresses a generic distributed, supervised ML task
where multiple nodes cooperatively seek to minimize a loss function, via gradient descent
approaches such as the stochastic gradient descent (SGD) algorithm [94,96,106,113]. The
behavior of individual nodes and their interactions are the most important characteristics
described by this system model, with reference to different real-world ML approaches. A
unique feature of our model is its ability to capture the presence of two different types of
nodes:

learning nodes, or L-nodes for short, that, having computational capabilities,
run the ML algorithm and can exchange gradient data during learning; we denote
their set by L;

information nodes, or I-nodes for short, which can provide information to the
L-nodes; we denote their set by I.

Real-world counterparts of L-nodes include physical servers and virtual machines
running at the intelligent network edge [102] or in the cloud. I-nodes, on the other
hand, represent such entities as monitoring platforms, network nodes, and sensors.

In our system model, L-nodes behave in a similar way to their equivalents in [96,
106]. Their high-level goal is to cooperatively train a ML model network, and do so by
minimizing a loss function via distributed optimization. The computation time at each
iteration of the learning process at a generic node l ∈ L follows an arbitrary distribution
with Probabiliy Density Function (pdf) τk

l (t). Note that, in the most general case, such
a pdf depends on the current iteration (k) of the learning process, since the amount
of samples used for learning may vary from an iteration to the next one. This reflects
the need to exploit all the available data as soon as it becomes available [109, 114], as
opposed to training on a fixed number of samples as in more static scenarios. L-nodes
are logically connected to form an arbitrary logical topology, i.e., a graph where vertices
represent L-nodes and edges, hereinafter referred to as L-L edges, represent the logical
links connecting them. As exemplified in Figure 4.1 (steps 3–4), after every iteration,
each L-node sends its gradient data to its neighboring L-nodes on the logical topology,
and waits for them to do the same before moving on. The logical topology, i.e., which

62 Network Optimization for Distributed Machine Learning

pairs of L-nodes are neighbors and exchange gradient data, is one of the main decision
variables of this problem.

Figure 4.1: Scheme of the interactions between L- and I-nodes in a general case.

Each L-node can be logically connected to one or more I-nodes, through the so-called
I-L edges. Only I-nodes that are connected to at least one L-node are added to the
logical topology. After each iteration of the learning process, an L-node receives data
from the I-nodes it is connected to (steps 5 and 7 in Figure 4.1). Each I-node i may
provide new samples after a sample generation time since the end of the previous iteration,
with ri being the average number of provided samples and ρi(t) the pdf describing the
sample generation time. The received samples are used by an L-node l to perform the
next learning iteration, in addition to the data it received in the previous iterations and
the number X0

l of (offline) samples initially available at l. Note that this behavior is
compatible with current, widely deployed applications (e.g., IoT) using publish/subscribe
mechanisms, such as MQTT [115], or Zenoh [116], or even the notification mechanisms
included in the 3GPP Service Based Architecture [117] of Release 15 and above.

Both L-nodes and I-nodes have per-iteration operational costs, denoted by cl and ci,
respectively. Moreover, communication between nodes that are neighbors in the logical
topology involve additional costs, denoted by cl,l′ or ci,l depending on the type of nodes.
The notation used to model the problem is gathered in Table 4.1 and Table 4.2.

4.1 System Model 63

Parameter Meaning

L, I L-nodes and I-nodes set (resp.)
ρi(t) pdf of sample generation time at I-node i ∈ I

ri ave. no. of samples per iteration by I-node i

Xk
l

amount of samples at the beginning of iteration k

at L-node l

cl, ci operational cost of L-node l and I-node i (resp.)
cl,l′ communication cost between L-nodes l, l′

ci,l communication cost between I-node i and L-node l

ϵmax maximum learning error
T max maximum duration of the learning process

Table 4.1: Main parameters of the model.

Variable Meaning

p(l, l′)
binary variable determining if L-nodes

l and l′ cooperate (matrix P)

q(i, l)
binary variable determining if L-node node l obtains

samples from I-node i (matrix Q)
K number of iterations to run

τk
l (t) pdf of the computation time at L-node l and iteration k

ϵk
l (P, Q) local error at L-node l and iteration k

ϵK(P, Q) global error at the end of the whole learning process
T K(P, Q) expected time to complete the whole learning process
CK(P, Q) global cost for running the whole learning process

Table 4.2: Main variables of the model.

4.1.1. Modeling Real-World Supervised ML tasks

As mentioned, the proposed model can describe a wide range of real-world ML tasks,
falling in the category of supervised learning, for which a ground truth is available.
The most prominent examples of supervised learning tasks are classification (where the
quantity to predict is discrete, e.g., whether or not a given transaction is fraudulent) and
regression (where the quantity to predict is continuous).

In a distributed setting, supervised learning can be performed in two main modes: (i)
distributed learning with static data, where no new data arrive during the learning process.
In this case there are no I-nodes (hence, no such steps as 5 and 7 in Figure 4.1), and each
L-node learns from its X0

l initial samples, as well as the gradient data from the other

64 Network Optimization for Distributed Machine Learning

L-nodes; and (ii) active learning [108], where new samples can be collected from data
sources (e.g., sensors) during the learning process so as to improve the learning quality.
In this latter case, the network topology includes both L- and I-nodes.

Importantly, our model can also capture federated learning [96, 97, 118], an emerging
paradigm whereby different devices (e.g., smartphones) cooperatively train a model
without sharing (potentially sensitive) data. In this case, each device is modeled as an L-
node; if, in the specific scenario at hand, devices collect or generate additional information
while learning, an I-node per device is added, only connected to the corresponding L-node.

For all tasks and approaches, our model can capture the cases where the
communication between nodes happens in a peer-to-peer fashion [95, 106], as well as
those when it is mediated by a parameter server, also known as broker [96, 104, 118]. In
the latter case, the logical topology created by the L-nodes is fully connected.

4.2. Problem Formulation

Our decisions concern which nodes’ interactions should be enabled, and the number
of iterations to execute during the learning process. We thus define the following decision
variables:

the set of binary variables p(l, l′) ∈ {0, 1}, expressing whether L-nodes l and l′

cooperate during learning;

the set of binary variables q(i, l) ∈ {0, 1}, expressing whether L-node l ∈ L
obtains samples from I-node i ∈ I;

the total number of iterations, K, to perform so that the learning task meets
the desired learning quality and execution time.

For compactness of notation, we will collect the p- and q-variables in matrices P =
{p(l, l′)} and Q = {q(i, l)}, respectively. Given the decisions P, Q, and K, we can
compute the following system performance metrics:

the expected time required to the system to complete the learning process,
denoted by T K(P, Q);

the total cost CK(P, Q), incurred by the system to complete the learning
process;

the (system-wide) learning error ϵK(P, Q) at the end of the learning process
(i.e., after K iterations).

It is important to point out that in general the concrete definition of error ϵ depends on
the type of learning task being performed, e.g.,

4.3 Characterizing the Performance of the Learning Process 65

for classification tasks, ϵ ≜ 1 − α, where α is the classification accuracy (i.e.,
the rate of correctly labeled items);

for regression tasks, ϵ ≜ 1 − R2, where R2 is the coefficient of
determination [119].

In both cases, ϵ = 0 corresponds to perfect learning, while larger ϵ values identify
worse learning quality, i.e., higher error. In the remainder of the chapter, we use learning
error or learning quality when referring to generic machine learning, and more precise
terms (e.g., accuracy for classification) when discussing specific learning tasks.

Our objective is to minimize the total cost, while ensuring that the final learning
error does not exceed the limit ϵmax, i.e., ϵK(P, Q) ≤ ϵmax, and the learning is completed
within the target time, i.e., T K(P, Q) ≤ T max. The problem can then be synthetically
formulated as:

min
P,Q,K

CK(P, Q), (4.1)

s.t. min
{︃

ϵmax

ϵK(P, Q) ,
T max

T K(P, Q)

}︃
≥ 1. (4.2)

The problem is combinatorial in nature and includes a large number of binary
variables (the elements of matrices P and Q). This makes it very hard to solve, even
without considering the complexity of computing the quantities CK(P, Q), ϵK(P, Q),
and T K(P, Q). Specifically, the problem is NP-hard and the proof can be found in
Appendix B.2.

Remarkably, in spite of the problem complexity, we can design an efficient and provably
effective solution strategy. It is done by first characterizing the system performance as
functions of the problem decision variables (Section 4.3), and then showing that the
problem in Equation (4.1) and Equation (4.2) is submodular (Section 4.4). Leveraging
this result, we can devise the DoubleClimb algorithm (Section 4.5), which has cubic
worst-case time complexity and proves to be 1 + 1/|I| competitive.

4.3. Characterizing the Performance of the Learning
Process

This section is devoted to characterize the learning error, execution time, cost, and
number of iterations of the learning task at hand. We denote the number of samples
available at L-node l at iteration k with Xk

l . Notice that such data is obtained by
enhancing the amount of samples initially available at l, X0

l , with the samples that l

receives at each iteration from the I-nodes it is connected to.
To perform the characterization, we blend together results from the literature and our

own experiments. Specifically, we performed and profiled the following learning tasks:

66 Network Optimization for Distributed Machine Learning

(i) a classification task on the famous MNIST digit database [120]; and (ii) a regression
task on the dataset used for the ITU AI Challenge [121], with the goal of predicting the
throughput of a set of Wi-Fi nodes leveraging their position and settings.

Through these two datasets, we can show how our methodology works for the two
most common and relevant types of supervised learning. While the numerical results we
obtain (e.g., the coefficient values) are specific to the concrete learning algorithm at hand,
our approach is general and can be effortlessly extended to any supervised learning task.

Experiments have been performed using the Python language and the sklearn library,
specifically, the MLPClassifier and MLPRegressor objects. The sklearn library does not
support GPU, hence, only CPU is used for their training, which makes them easier to
profile. All tests were run on a server based on a twenty-core Intel Xeon E5-2630V4
processor with 64 GByte of RAM.

4.3.1. Learning Time

In general, the learning error at each iteration depends on (i) the number of already
performed iterations, and (ii) the number of available samples [96, 106]. To characterize
such a dependence, we proceed in four steps:

1. we first focus on a single L-node, l, in a scenario where there are no I-nodes, and
characterize the relation between the per-iteration error ϵk

l (P, Q) and iteration k;

2. for the same scenario, we establish a relationship between the quantity X0
l of offline

training data available at l and its final error ϵK
l (P, Q);

3. we extend such a relation to account for I-nodes, i.e., the case where new samples
arrive at each iteration;

4. we generalize the error to the case of multiple L-nodes.

With regard to step 1), Figure 4.2 shows how the error (defined in terms of
classification accuracy in Figure 4.2(a) and of coefficient of determination in the regression
experiments in Figure 4.2(b)) evolves across iterations, when only X0

l offline data are used.
The evolution of the error as a function of iteration k is well captured by the following

square-root relationship:
ϵk
l (P, Q) = ϵK

l + 1√
k

. (4.3)

The relation in Equation (4.3) matches experimental data very well, with an Root Mean
Square Error (RMSE) of 0.007 and 0.006 for the classification and regression tasks,
respectively, in addition to conforming to the theoretical findings in [96,106].

For step 2), we focus on the final value taken by the error at the end of the process,
and on how this depends on the quantity X0

l of offline samples.

4.3 Characterizing the Performance of the Learning Process 67

0 200 400 600 800 1000
Iteration k

0.2

0.4

0.6

0.8

1.0

Le
ar

ni
ng

 e
rro

r ε
l (

1-
ac

cu
ra

cy
) X0=50

X0=100
X0=500
X0=1000

(a) Classification using MNIST dataset [120].

0 500 1000 1500 2000 2500
Iteration k

0.0

0.2

0.4

0.6

0.8

1.0

Le
ar

ni
ng

 e
rro

r ε
l (

1-
R2

 s
co

re
)

X0=5000
X0=10000

X0=20000
X0=25000

(b) Regression using ITU challenge
dataset [121].

Figure 4.2: Evolution of the learning error for different values of X0
l when there are no

I-nodes.

0 1000 2000 3000 4000 5000
Number of offline training samples X0

l

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fi
na

l e
rro

r ε
K l

experimental data
log. fit, β=0.112, ξ=28

(a) Classification using MNIST dataset [120].

5000 10000 15000 20000 25000
Number of offline training samples X0

l

0.2

0.3

0.4

0.5

0.6

0.7

Fi
na

l e
rro

r ε
K l

experimental data
log. fit, β=0.072, ξ=4780

(b) Regression using ITU challenge
dataset [121].

Figure 4.3: Values ϵK
l when there are no I-nodes and obtained fit.

As shown in Figure 4.3, the relationship between ϵK
l (P, Q) and X0

l follows a
logarithmic law:

ϵK
l (P, Q) = 1− β log

(︂
X0

l − ξ
)︂

. (4.4)

In our experiments, the best fit is obtained with β = 0.112, ξ = 28 for the classification
task (RMSE 0.021) and β = 0.072, ξ = 4780 for the regression task (RMSE 0.029).
Importantly, similar logarithmic laws can also be found in the literature [94,108,122].

In step 3), we move to a generic scenario where new data arrive at every iteration,
i.e., Xk

l ≥ Xk−1
l ≥ X0

l . We then update the above expression for ϵK
l (P, Q) to account

for the average number of samples available at the generic iteration at L-node l, X l =

68 Network Optimization for Distributed Machine Learning

1
K+1

(︂
X0

l +
∑︁K

k=1 Xk
l

)︂
, as:

ϵK
l (P, Q) = 1− β log

(︂
X l − ξ

)︂
. (4.5)

As summarized in Figure 4.4, using Equation (4.5) instead of Equation (4.4) also results
in a very good fit, with RMSE of 0.022 for the classification task and of 0.023 for the
regression one.

2500 5000 7500 10000 12500 15000
Average number of samples Xl

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fi
na

l e
rro

r ε
K l

experimental data
log. fit, β=0.104, ξ=0

(a) Classification using MNIST dataset [120].

10000 20000 30000 40000 50000
Average number of samples Xl

0.2

0.3

0.4

0.5

0.6

0.7

Fi
na

l e
rro

r ε
K l

experimental data
log. fit, β=0.071, ξ=4852

(b) Regression using ITU challenge
dataset [121].

Figure 4.4: Values ϵK
l when I-nodes are present and obtained fit.

For step 4), we have to characterize the aggregate learning error of the whole set of
L-nodes, each of which can have a different value of ϵK

l (P, Q). To this end, we leverage
existing works [95, 106], linking the effectiveness of the distributed learning process with
the graph formed by cooperating L-nodes, and more precisely with its spectral gap1 γ.
According to [95,106], we can then write:

ϵK(P, Q) = 1
γ|L|

∑︂
l∈L

ϵK
l (P, Q). (4.6)

4.3.2. Learning Time and Cost

We now consider that the total number of iterations K, the pdfs ρi(t) of the sample
generation time at each I-node i, and the pdfs τk

l (t) of the computation time of each L-
node l at iteration k are given. Recall that τk

l (t) depends on k, as the presence of I-nodes
in our system model implies that the computation time distribution must account for the
quantity Xk

l of available data at L-node l and iteration k.
Backed by our experiments reported in Figure 4.5, as well as by the high efficiency and

scalability of modern supervised ML algorithms, we consider the following relationship:

1The spectral gap of a graph is the difference between the moduli of the two largest eigenvalues of its
adjacency matrix.

4.3 Characterizing the Performance of the Learning Process 69

2500 5000 7500 10000 12500
Number of samples Xl

0.0

2.5

5.0

7.5

10.0

12.5

15.0
Ite

ra
tio

n
tim

e
[s

]
actual average
linear fit
actual

(a) Classification task using the MNIST
dataset [120].

20000 40000 60000
Number of samples Xl

0

5

10

15

20

25

Ite
ra

tio
n

tim
e

[s
]

actual average
linear fit
actual

(b) Regression task using the ITU challenge
dataset [121].

Figure 4.5: Duration of single iterations (each dot corresponds to one iteration) and linear
fit.

τk
l (t) = Xk

l
X0 τ0

l (t). Also, we define the sets Il = {i ∈ I : q(i, l) = 1} and Ll = {l′ ∈
L : p(l, l′) = 1} of I-nodes and L-nodes (resp.) each L-node is connected with. Our goal is
to compute T K(P, Q), i.e., the total time required to complete the whole learning process.

As highlighted in Figure 4.1, at every iteration each L-node must perform the following
steps: (i) wait for the information coming from the I-nodes i ∈ Il; (ii) perform its own
gradient computation; and (iii) wait for the gradient data coming from the other L-
nodes l′ ∈ Ll it is cooperating with.

The first step is complete when all nodes in Il send their samples. Recalling that
each I-node has a sample generation time distributed with pdf ρi(t), we can derive the
Cumulative Distribution Function (CDF) of the maximum of a set of independent random
variables as the product of individual CDFs Ri(t), i.e.,

∏︁
i∈Il

Ri(t). Once all data arrive,
l can perform its own gradient computation, whose duration is distributed according to
pdf τk

l (t). Recalling that the pdf of the sum of two independent random variables is the

convolution of individual pdfs, we can write: hk
l (t) = τk

l (t) ∗
d(
∏︁

i∈Il
Ri(t))

dt .
For the system as a whole to move to the next iteration, all L-nodes must have received

the gradient data they need. This, in turn, requires the slowest L-node to have obtained
its information and have performed the computation. Working again with CDFs, the
time taken by such a node is distributed according to: Hk(t) =

∏︁
l∈LHk

l (t), where Hk
l (t)

denotes the CDF of the time to complete iteration k at L-node l. By letting hk(t) = dHk(t)
dt ,

the expected duration of the learning process is then given by:

T K(P, Q) =
K∑︂

k=1

∫︂ ∞
0

xhk(t)dt. (4.7)

70 Network Optimization for Distributed Machine Learning

4.3.2.1. A numerical example.

Figure 4.6 exemplifies our methodology in a case where both the I-node sample
generation times and the L-node computation times are uniformly distributed;
specifically, ρi(t) ∼ U(0.1, 1.9) and τk

l (t) ∼ U(1.35, 1.65). Furthermore, there are |L| = 10
L-nodes, each connected to |I| = 5 I-nodes.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time

0

1

2

3

4

5

pd
f

info time i(t)
slowest I-node
compute time k

l (t)

local iteration hk
l (t)

global iteration hk(t)

Figure 4.6: Toy scenario with |L| = 10 and |I| = 5 where both I-node sample generation
times and L-node computation times are uniformly distributed. Left: pdfs of the I-node
generation time ρi(t) (blue), of the time required by the slowest I-node (red) and of the
compute time τk

l (t) (yellow). Right: pdfs of the time taken by local (green) and global
(gray) iterations.

We begin from the blue line in the plot, representing ρi(t). To obtain the pdf of the
sample generation time of the slowest I-node, we have to integrate ρi(t) (obtaining Ri(t), a
ramp-like function), then raise it to the |I|-th power (obtaining a 5th-degree polynomial),
and finally derive it, obtaining the fourth-degree polynomial shown by the red line in
Figure 4.6.

We next perform the convolution between the latter pdf and τk
l (t), represented by the

yellow line in the plot. The result is hk
l (t), represented by the green line in Figure 4.6. The

last step consists in computing the distribution of the time taken by the whole learning
iteration, hence, by the slowest L-node. Integrating hk

l (t), we obtain Hk
l (t), which we

raise to the |L| = 10-th power, and then derive it, obtaining the pdf hk(t) shown by the
gray curve in Figure 4.6.

4.3.2.2. Closed-form Expression for Special Cases

The methodology outlined above does not require any assumption on the τk
l (t)

and ρi(t) distributions, nor on the logical links between nodes, and the computations

4.3 Characterizing the Performance of the Learning Process 71

it requires can always be performed numerically. However, closed-form expressions are
available in relevant special cases. As an example, when each L-node receives information
from all I-nodes, the computation and the sample generation times are Independent and
Identically Distributed (i.i.d.) and exponentially distributed with parameter λk

L and λI ,
respectively, we get:

T K=−
K∑︂

k=1

∑︂
A⊂N :
|A|=|I|+2∑︁

a∈A a=|L|

(︄
|L|
A

)︄ ∏︁|I|+2
w=1 (Ak(A, w))aw

λI
∑︁|I|

w=1 waw + λk
La|I|+2

. (4.8)

In the above expression, the sum over k accounts for all iterations, k = 1, . . . , K. The
inner sum comes from the multinomial expansion [123] of a sum of |I|+ 2 terms (one for
each I-node, one for the L-node connected to them, and one representing the coefficient)
raised to the |L|-th power, where each term is a polynomial (see also the expression of
hk

l (t)). Therefore, the inner summation is over all sets A of natural numbers such that
their size is |I|+ 2 and their sum is |L|, and

(︁|L|
A
)︁

= |L|!∏︁
a∈A a! is the multinomial coefficient.

The term Ak(A, w) associated with the w-th element of each set A is:

Ak(A, w) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑︁|I|

z=1
(︁|I|

z

)︁
(−1)z+1, if w=|I|+ 1∑︁|I|

z=1
(︁|I|

z

)︁
(−1)z+1 zλI

λk
L−wλI

, if w=|A|(︁|I|
w

)︁
(−1)w+1 λk

L

wλI−λk
L

, otherwise.

A closed-form expression for the expected duration of the learning process can also be
obtained when each L-node receives information from all I-nodes, and the I-nodes’ sample
generation times and the L-nodes’s computation times are i.i.d. and uniformly distributed
over (aI , bI) and (ak

L, bk
L), respectively. For simplicity and without loss of generality, let

72 Network Optimization for Distributed Machine Learning

us assume ak
L ≤ aI ≤ bI ≤ bk

L, ∀k; then, we have:

T K=
K∑︂

k=1

∑︂
A⊂N :
|A|=|I|+2∑︁

a∈A a=|L|

(︄
|L|
A

)︄ ∑︁|I|+1
w=1 waw∑︁|I|+1

w=1 waw + 1
× (4.9)

×
[︄|I|+2∏︂

w=1
(Ak

1(A, w))aw

(︂
Z

|I|+1∑︁
w=1

waw+1

1 −Z

|I|+1∑︁
w=1

waw+1

2

)︂

+
|I|+2∏︂
w=1

(Ak
2(A, w))aw

(︂
Z

|I|+1∑︁
w=1

waw+1

3 −Z

|I|+1∑︁
w=1

waw+1

4

)︂

+
|I|+2∏︂
w=1

(Ak
3(A, w))aw

(︂
Z

|I|+1∑︁
w=1

waw+1

5 −Z

|I|+1∑︁
w=1

waw+1

6

)︂]︄

where Z1 = ak
L+bI , Z2 = ak

L+aI , Z3 = bk
L+aI , Z4 = ak

L+bI , Z5 = bk
L+bI , Z6 = bk

L+aI . As
in the previous case, the above expression comes from the multinomial expansion [123],
and, after some algebra, one can obtain the terms Ak

1(A, w), Ak
2(A, w), and Ak

3(A, w)
associated with the w-th element of each set A, as:

Ak
1(A, w)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−2aI)|I|−(ak
L−aI)|I|

(bI−aI)|I|(bk
L−ak

L)
, if w=1

(ak
L−aI)|I|(|I|(ak

L+aI)+2aI)+(−2aI)|I|+1

(|I|+1)(bI−aI)|I|(bk
L−ak

L)
, if w=|A|

(|I|+1
w)(−2aI)|I|+1−w

(|I|+1)(bI−aI)|I|(bk
L−ak

L)
, else.

Ak
2(A, w)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ak
1(A, |A|)+

|I|+1∑︁
z=1

Ak
1(A, z)(ak

L+bI)z+

+(ak
L−aI)|I|+1−(ak

L+bI−2aI)|I|+1

(|I|+1)(bI−aI)|I|(bk
L−ak

L)
+

+ (bI+aI)|I|+1−(2aI)|I|+1

(|I|+1)(bI−aI)|I|(bk
L−ak

L)
, if w=|A|

−(|I|+1
w)((−bI−aI)|I|+1−w−(−2aI)|I|+1−w)

(|I|+1)(bI−aI)|I|(bk
L−ak

L)
, else.

4.3 Characterizing the Performance of the Learning Process 73

Ak
3(A, w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(bk
L−aI)|I|−(bI+aI)|I|(−1)|I|

(bI−aI)|I|(bk
L−ak

L)
, if w=1

Ak
2(A, |A|)+

|I|+1∑︁
z=1

Ak
2(A, z)(bk

L+aI)z−

− (|I|+1)(bk
L−aI)|I|(bk

L+aI)
(|I|+1)(bI−aI)|I|(bk

L−ak
L)

+

+(−bk
L−aI)|I|+1−(bk

L−bI)|I|+1

(|I|+1)(bI−aI)|I|(bk
L−ak

L)
, if w=|A|

(|I|+1
w)(−bI−aI)|I|+1−w

(|I|+1)(bI−aI)|I|(bk
L−ak

L)
, else.

Intuitively, the three different terms Ak
∗(A, w) are due to the convolution of the pdfs,

which results in a piecewise function (see also the expression of hk
l (t)). The support of

the different pieces of the function are as follows:
[︂
ak

L + aI , ak
L + bI

)︂
for the first piece

where only one pdf is active,
[︂
ak

L + bI , bk
L + aI

]︂
for the second piece where both pdfs are

active and overlap, and
(︂
bk

L + aI , bk
L + bI

]︂
for the third piece where only the other pdf is

active.

4.3.3. Learning Cost

We define the per-iteration cost as the sum of operational and communication costs
of the L- and I- nodes contributing to each iterations, i.e.,

C(P, Q)=
∑︂
l∈L

⎛⎝cl+
∑︂
l′∈L

cl,l′p(l, l′)+
∑︂
i∈I

ci,lq(i, l)

⎞⎠+
∑︂
i∈I

ci1∃q(i,l)>0. (4.10)

Then, we can write the total learning cost over the K iterations as CK(P, Q) = K ·
C(P, Q).

4.3.4. Number of Iterations

The number K of iterations needed to reach the target error ϵmax depends on two
factors. The first is the quantity of available training data: the more data is available,
the more the learning quality improves at each iteration. The second is the level of
cooperation between L-nodes: the more nodes cooperate, the higher the quality achieved
at each iteration. As shown in [106, Eq. (7)], we have K ∝ 1

γ , where γ is the spectral gap of
the graph formed by L-nodes. Combining the two factors and denoting by X the average
number of samples available at the generic iteration and L-node, as per Equation (4.5),
we get:

K ∝ − log X

γ
. (4.11)

As already noted in [106], on the one hand, a high degree of L-nodes makes the learning

74 Network Optimization for Distributed Machine Learning

process faster, as convergence requires fewer iterations; on the other hand, each iteration
takes longer to complete as there are more nodes to wait for.

4.4. Problem Analysis

The problem at hand, formulated in Section 4.2, is NP-hard and the proof can be
found in Appendix B.2. However, we also show that the problem objective function is
submodular and non-decreasing, while the constraint is submodular and exhibits only one
maximum (we prove the latter part separately for I-L and L-L edges).

In spite of its complexity, the problem of minimizing Equation (4.1) subject to
constraint Equation (4.2) presents several features that can be exploited to solve it
efficiently and effectively. Specifically, both the objective in Equation (4.1) and the
constraint in Equation (4.2) are submodular (intuitively, the set-wise equivalent of
convex [124]). Submodular optimization problems can often be solved with polynomial-
or even linear-time greedy algorithms, with very good, even constant, competitive
ratios [125].

Let us indicate with f(Y) the objective function in Equation (4.1), and with g(Y) the
constraint in Equation (4.2). In our case, the set X of elements to choose from is given by
X = L×L∪L×I, i.e., the set of possible I-L and L-L edges we can create, and Y is the
subset of actually selected edges. The objective f(Y) and constraint g(Y) of our problem
have several interesting and useful properties. Concerning the former, it is possible to
prove the following result.

Property 1. The objective function in Equation (4.1) is submodular and non-decreasing.

Proof : Let j = (a, b) be an edge in our logical topology graph, with a ∈ L and b ∈ L∪I;
let S ⊂ X be the set of currently selected edges. By adding j, we incur the per-edge
communication cost ca,b; also, we may incur per-node operational costs ca or cb, depending
on whether or not there are already edges in S with a or b as endpoints. Similar arguments
hold for the cost of adding j to T ⊃ S. Thus,

f(S ∪ {j})− f(S) = ca,b + ca1a̸∈S + cb1b̸∈S

f(T ∪ {j})− f(T) = ca,b + ca1a̸∈T + cb1b̸∈T .

Since S is a subset of T , it also holds that 1a̸∈S ≥ 1a̸∈T and 1b̸∈S ≥ 1b̸∈T , from which it
follows that f(S∪{j})−f(S) ≥ f(T ∪{j})−f(T), i.e., the very definition of submodularity
[124]. The fact that Equation (4.1) is non-decreasing trivially comes from the observation
that, as more I-L or L-L edges are added, the cost always increases. ■

As for the constraint, the analysis is a little more complex, and we perform it separately
for I-L and L-L edges. For simplicity of notation, we drop the dependency on P and Q
while presenting our derivations.

4.4 Problem Analysis 75

Property 2. When the choices are limited to I-L edges, i.e., X = L × I, then the
constraint in Equation (4.2) is submodular and has exactly one maximum.

Proof : Let us study the two parts of the constraint Equation (4.2) separately,
writing g1 = ϵmax

ϵK , g2 = T max

T K , and g(Y) = min{g1, g2}, as exemplified in Figure 4.7.
From Equation (4.5), g1 = ϵmax

1−β log Xl
; also, adding an I-L edge increases X l for at least

an L-node l. Recalling that the logarithm is a concave function, the denominator of g1

is convex, and g1 itself is concave, which implies submodularity [124]. For analogous
reasons, g1 is also monotonically increasing.

The behavior of g2 is more complex: we know from Equation (4.11) that the number of
iterations decreases as X (hence, Xk

l) increases, according to an inverse-log law. Also, as
shown in Section 4.3, τk

l (t) and dHk(t)
dt are proportional to Xk

l and
∏︁

l∈I Xk
l , respectively.

Thus, T K is proportional to K and
∏︁

l∈I Xk
l . Replacing K with Equation (4.11), we get

that T K behaves like
∏︁

l∈I Xk
l

log X
, i.e., it can be shown that it decreases until it reaches a

minimum, and then increases. It follows that g2 = T max

T K is concave, hence, submodular.
Looking now at g(Y), the minimum of two submodular functions is not guaranteed to

be submodular in general; however, since g1 is not only submodular but also monotonically
increasing, the submodularity of g2 also implies that g(Y) as a whole is submodular [124].
Next, consider the maximum of g(Y), with the latter being equal to min{g1, g2}. As
exemplified in Figure 4.7(left), we know that g1 starts from a value close to ϵmax and then
monotonically increases towards infinity, while g2 starts with a small value, increases
until it has a global maximum, and then decreases again. If g2 is always smaller than g1,
then g(Y) = g2 has exactly one global maximum, consistently with the hypothesis. If they
cross (as in Figure 4.7)), they do so in exactly two points, say A and B, such that the
maximum of g2 is between A and B. Then, the following holds: (i) before A, g(Y) = g2,
which is increasing before its maximum; (ii) between A and B, g(Y) = g1, which is always
increasing; (iii) after B, g(Y) = g2 and, since we are after its maximum, g(Y) is decreasing
– hence, B is g(Y)’s only maximum. Therefore, in all cases g(Y) is submodular and has
exactly one maximum, and, until such a maximum is reached, g(Y) is also monotonically
non-decreasing. ■

As for L-L edges, their influence on the learning process can be quantified by studying
the graph they form. Specifically, [95, 106] have shown that both the learning error and
the learning time are inversely proportional to the spectral gap of such a graph, indicated
by γ. Following the lead of [106] and restricting our attention to regular graphs, we can
state the following result:

Proposition 1. When the choices are limited to sets of L-L edges such that the graph
created by L-nodes is uniform, then the constraint Equation (4.2) is submodular and has
exactly one maximum.

The arguments in support of Proposition 1 can be summarized as follows: 1) the error

76 Network Optimization for Distributed Machine Learning

Number of active edges

Va
lu

e
of

 c
on

st
ra

in
t g

(x
)

A

B

g1= εmax/εK
g2= Tmax/TK

g() =min{g1, g2}

Figure 4.7: Qualitative example of the constraint in Equation (4.2) and its components.

reached after a given number K of iterations is proportional to 1/γ [106, Eq. (7)]; 2) the
learning time is proportional to 1/γ [106, Eq. (18)]; 3) based on our own experiments,
summarized in Figure 4.8, the link between the graph degree and the spectral gap γ is
expressed by a concave function. Recalling that concavity is the continuous equivalent
of submodularity, the first part of the proposition follows. The second part follows from
the fact that, as exemplified in Figure 4.8, Equation (4.2) is the minimum between a
monotonic function (as we add more L-L edges, the error decreases) and a function with
at most one maximum (the inverse of the learning time, which decreases until an optimal
degree is reached and then increases, as shown in [106]).

20 40 60 80
Graph degree

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

sp
ec

tra
l g

ap
 γ

Figure 4.8: Experiments on the relation between the degree of a random graph with 100
vertices and uniform degree, and its spectral gap γ.

4.5. Heuristic Algorithm

In order to solve the problem stated in Section 4.2, i.e., determining the P, Q and K

resulting in the lowest cost Equation (4.1) subject to the constraint in Equation (4.2),
in a practical and efficient way, we first extend existing results on the performance of
greedy algorithms when optimizing submodular problems, in Section 4.5.1. Based on

4.5 Heuristic Algorithm 77

such results, we present our own DoubleClimb algorithm in Section 4.5.2, and analyze its
properties in Section 4.5.3.

4.5.1. Greedy Solutions to Submodular Problems

Algorithm 5 Greedy algorithm for submodular problems
1: S ← ∅
2: while g(S) ≥ c do
3: j∗ ← arg minX\S

cj

g(S∪{j})−g(S)
4: S ← S ∪ {j}
5: return S

Let us consider Algorithm 5, which solves submodular problems with non-decreasing
objective and constraints. More formally, it selects a subset S ⊆ X of elements subject to
a submodular non-decreasing constraint g(S) ≥ 1, while minimizing a submodular non-
decreasing cost function f(S). At every iteration, Line 3 selects the element minimizing
the cost to benefit ratio f(S∪{j})−f(S)

g(S∪{j})−g(S) ; such an element is then added to S (Line 4). As
shown in [126, Thm. 4.7], Algorithm 5 is 1 + 1

|X | -competitive. However, the original proof
requires both the objective and the constraint to be submodular and non-decreasing. In
our case, Property 2 and Proposition 1 prove weaker properties, in that our constraint is
not guaranteed to be non decreasing, as in Figure 4.7; therefore, the result in [126] cannot
immediately be applied to our problem.

None the less, it is possible to prove that a less restrictive condition than being non-
decreasing, namely, having only one maximum, is sufficient for the result to hold:

Property 3. If f(Y) is submodular non-decreasing and g(Y) is submodular and has only
one maximum, then the above algorithm minimizes f(Y) s.t. g(Y) > 0, with a competitive
ratio of 1 + 1

|X | .

Proof : The property generalizes the results in [126, Thm. 4.7]. The proof
therein follows from analyzing the steps of the above algorithm until its convergence,
and leveraging the fact that the sequences of marginal cost increases and constraint
improvements are (resp.) monotonically non-decreasing and monotonically non-
increasing. This is of course true if, as in the original hypotheses, g(Y) is monotonically
non-decreasing. However, this also holds if g(Y) has only one maximum, as per the
hypothesis of our property. This is because, if the algorithm cannot find a feasible solution
before the maximum of g(Y), i.e., as constraints become closer to being satisfied, it will
also be impossible to find a feasible solution after the maximum, i.e., when constraints
will get farther from being met. Thus, the sequences of marginal costs and improvements
of the selected elements of X have the required behavior. Indeed, the behavior of g(Y)

78 Network Optimization for Distributed Machine Learning

for the non-selected items of X has no impact on the validity of [126, Thm. 4.7], nor of
this property. ■

4.5.2. The DoubleClimb

Property 3 implies that the algorithm in Section 4.5.1 could efficiently select P and Q,
if such decisions could be made independently. However, they are clearly interlinked;
thus, we propose a more complex solution strategy, called DoubleClimb, which operates
as follows.

First, based on the nodes capabilities defined in Section 4.1, DoubleClimb
determines P and Q. It does so by selecting I-L and L-L edges in two nested
loops, with L-L edges resulting in a uniform graph [106]. It also selects the most
appropriate value of K for each set of selected edges.

Given such decisions, it computes the system performance characterized in
Section 4.3, thus yielding the error ϵK(P, Q), the learning time T K(P, Q), as well
as the cost CK(P, Q).

It then compares the obtained values for the learning time and error against
the limits ϵmax and T max, and evaluates whether a sufficiently low cost has been
achieved. If so, DoubleClimb returns the problem solution; otherwise, it tries to
improve the decisions until the system constraints are met and the cost is further
reduced.

Algorithm 6 The DoubleClimb algorithm
1: dL ← 0
2: best_sol← ∅
3: while dL < |L| do
4: dL ← dL + 1
5: ll← cheapest_uniform(dL)
6: il← ∅
7: while Equation (4.2) is not verified ∧il ̸≡ I × L do
8: i∗, j∗← arg mini,l

ci,l

g(il)−g(il∪{(i,l)})
9: il← il ∪ {(i∗, j∗)}

10: if Ccurr < Cbest then
11: best_sol← ll ∪ il
12: else if Ccurr

LL > Cbest
LL ∧ Ccurr

IL > Cbest
IL then

13: break
14: return best_sol

The DoubleClimb algorithm is presented in Algorithm 6 and detailed below. It begins
(Line 1) by setting to zero the degree dL of the subgraph made of L-L edges, and to the

4.5 Heuristic Algorithm 79

empty set the best solution best_sol. Then, while dL < |L|, i.e., while such a subgraph
is not a clique, dL is first incremented by one (Line 4), and then the cheapest L-L uniform
subgraph of degree dL is chosen in Line 5.

Given such a choice of L-L edges, the algorithm selects the I-L edges essentially in the
same way as described in Section 4.5.1: for all possible edges, the cost/benefit ratio – i.e.,
the ratio between the cost of adding the edge and how closer to feasibility the problem
becomes by doing so – is computed in Line 8, and the edge associated with the lowest
ratio is chosen. The loop continues until either all I-L edges are exhausted, or a feasible
solution, satisfying constraint Equation (4.2), is found (Line 7). In the latter case, the
cost of the current solution Ccurr, computed as per Equation (4.10), is compared to the
one of the best solution found so far (Cbest); note that, by convention, the cost of the
empty set is equal to ∞. If warranted, the best solution is updated (Line 11), otherwise
we perform the check in Line 12 to assess whether other solutions should be explored.
Indeed, as proven in Proposition 2 below, the submodularity of costs implies that trying
higher values of dL does not lead to cheaper solutions.

If neither happens, the next value of dL is tried. After all values of dL are exhausted,
the best solution best_sol is returned in Line 14. If no feasible solution has been found,
the problem instance is infeasible and the algorithm returns ∅.

4.5.3. Algorithm Analysis

We now prove that Algorithm 6 has an excellent competitive ratio as well as low
complexity. As first step, we show that the stopping condition in Line 12 is valid, i.e., no
solution better than best_sol is ignored by halting the algorithm when the condition is
met.

Proposition 2. If the condition specified in Line 12 of Algorithm 6 is met, then no
solution cheaper than best_ sol will be found for higher values of dL.

Proof : Let dbest
L be the value of dL for which the current best solution was found, and

Cbest
LL and Cbest

IL the corresponding costs for L-L and I-L edges (resp.). At the current
iteration, we have dL = Lcurr > Lbest, and the corresponding costs are Ccurr

LL > Cbest
LL

and Ccurr
IL > Cbest

IL . Let us now consider a future iteration where the value of dL is
dnext

L > dcurr
L > dbest

L . Cnext
LL depends on two effects: if we increase the number of L-L

edges, the cost due to L-L edges will increase. However, more L-L edges also imply fewer
iterations, thus they may lead to a reduced cost. Since similar observations hold for Cnext

IL ,
which effect prevails depends on how strong the benefit of increasing dL is. However, as
per the submodularity property (Proposition 1), the benefit of adding L-L edges and I-L
edges decreases as dL increases: if moving from dbest

L to dcurr
L actually increased the cost

of L-L and I-L edges, it is not possible that moving to dnext
L will provide a better solution.

■

80 Network Optimization for Distributed Machine Learning

Thanks to Proposition 2 and Property 3, we can now prove our main result about
Algorithm 6.

Theorem 2. Algorithm 6 has 1 + 1
|I| competitive ratio.

Proof : There are two possible sources of suboptimality, namely, the choice of dL and
that of the I-L edges to select. By Proposition 2 and considering that, if the condition
in Line 12 is never triggered, all possible values of dL are tried out, the choice of dL is
optimal. As for the I-L edges, Line 7–Line 9 of Algorithm 6 reflect exactly the same
algorithmic steps reported in Section 4.5.1 which, as per Property 3, lead to a 1 + 1

|I|
competitive ratio in our case. ■

Finally, we can prove that Algorithm 6 has a very low, namely, cubic worst-case
computational complexity.

Property 4. Algorithm 6 has a worst-case computational complexity of O(|L|2|I|).

Proof : From inspection of the nested loops in Algorithm 6, one can see that the outer
one is run at most once for each value of dL, i.e., at most |L| times. The inner one is ran
at most once for each possible I-L edge, i.e., at most |L||I| times. As for the set of edges
to activate for each value of dL (function cheapest_uniform in Line 5), they can be
pre-computed and thus do not influence the overall complexity. ■

It is also worth stressing that Property 4 concerns the worst-case complexity, but the
actual one is often much lower. Indeed, in Line 7–Line 9 we are likely to compute the
same costs in different iterations; if such costs are cached, à la dynamic programming,
run time can be dramatically decreased, to be slightly more than linear in |L|+ |I|.

4.6. Validation and Application of the Approaches

In the following, we describe the reference scenario and benchmark solutions we
consider (Section 4.6.1), before studying the performance of DoubleClimb (Section 4.6).

4.6.1. Reference Scenario

We consider an Internet-of-things (IoT) environment similar to the one referred in [96],
whereby:

individual sensors produce samples, either periodically or as a reaction to an
external event;

aggregators, also known as gateways, collect and summarize the samples, before
forwarding them in uplink;

distributed ML algorithms, running at the edge of the network, leverage the
samples to gather insights on the changes in external conditions.

4.6 Validation and Application of the Approaches 81

In terms of our system model, aggregators correspond to I-nodes, and edge nodes
running the ML algorithms correspond to L-nodes. New samples arrive every few seconds,
and updating the gradient computations takes a comparable time. Note that similar
approaches have been proposed for such applications as smart-city monitoring [127],
support of connected vehicles [128], and attack/anomaly detection [129].

With reference to the taxonomy of approaches for supervised learning exposed at the
begining of the chapter, we fall in the active learning case, as the data arrival and gradient
computation are interleaved but not synchronized, e.g., new data can arrive both before
and after a gradient computation is complete.

We refer to the real-world urban topology presented in [10] and shown in Figure 4.9,
depicting the network of a major operator. Specifically, the network nodes represented in
brown act as aggregators, hence, as I-nodes, while those in blue are edge nodes acting as
L-nodes. As shown in Figure 4.9, all L-nodes can be connected with one another, while
each I-node can only be connected to one L-node.

Normalized sample generation and gradient computation times are distributed
exponentially with mean 1, while the I-L and L-L edges are randomly assigned a
normalized cost between 0 and 1 units. I- and L-nodes have no operational cost,
reflecting the fact that, in our reference environment, they cannot be switched off without
discontinuing the service. In the basic version of the scenario, at every iteration each I-
node generates between 10 and 100 samples; such a value is proportional to the traffic
served by each node in the real-world topology [10]. In the rich scenario, representing
applications where data is more plentiful, such a value is multiplied by five.

Benchmark solutions. We compare DoubleClimb against two benchmark solutions.
The first, called Opt-Unif, follows the approach used (among others) by [106], and returns
the cheapest solution among the feasible ones such that both the graphs formed by L-L
and I-L edges have uniform degree.

The second benchmark, labeled as ”Optimum/GA” in the plots, performs the selection
of the I-L edges (i.e., the inner loop in Algorithm 6) leveraging a Genetic Algorithm (GA)
approach with the following parameters:

number of generations: 50;

solutions per population 100;

parents mating: 4;

mutation probability: 15%;

crossover type: single point;

gene space: {0, 1};

number of genes: |I||L|.

82 Network Optimization for Distributed Machine Learning

Figure 4.9: Our reference topology, depicting the network of a major operator (source:
[10]).

Each solution corresponds to a string of binary values whose length equals the number
of possible I-L edges: having a 1 in a given position means that the corresponding I-L
edge is activated. The relatively large mutation probability reflects the importance of
exploring multiple different solutions (i.e., exploration), given the combinatorial nature
of the problem at hand and the fact that similar strings do not necessarily yield similar
performance. When the size of the problem made it possible (i.e., dL ≤ 6), we have
compared the performance of the genetic algorithm against the optimum obtained through
brute force, and found that the two closely match.

4.6.2. Performance Comparison

The first plot in Figure 4.12 shows the cost of DoubleClimb and its benchmarks, for
different numbers of L-nodes. As expected, the cost increases with |L| and decreases
in the rich scenario, where the higher quantity of data results in faster convergence.
Also, it is clear that DoubleClimb outperforms Opt-Unif and matches the performance
of Optimum/GA. GA approaches are not, in general, guaranteed to yield optimal
performance; therefore, we cannot conclude that DoubleClimb makes optimal decisions
other than for dL ≤ 6, when the comparison with brute force was possible. However,
GA approaches have long been known to be remarkably good at finding optimal or near-
optimal solutions for combinatorial problems such as the one at hand, at the price of long

4.6 Validation and Application of the Approaches 83

0 20 40 60 80 100 120
No. solutions explored

0.0

0.2

0.4

0.6

0.8

1.0

1.2
No

rm
al

ize
d

tim
e

an
d

er
ro

r

time error

10 15 20 25 30 35 40
No. solutions explored

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
tim

e
an

d
er

ro
r

time error

0 2000 4000 6000 8000 10000 12000
No. solutions explored

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
tim

e
an

d
er

ro
r

time error

Figure 4.10: Normalized time and error of the solutions examined at each iteration by
DoubleClimb (left), Opt-Unif (center), and GA (right), in the basic scenario. Different
colors correspond to different values of dL, as in Figure 4.13.

0 5 10 15 20 25
No. solutions explored

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
tim

e
an

d
er

ro
r

time error

10 15 20 25 30 35 40
No. solutions explored

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
tim

e
an

d
er

ro
r

time error

0 2000 4000 6000 8000 10000 12000
No. solutions explored

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
tim

e
an

d
er

ro
r

time error

Figure 4.11: Normalized time and error of the solutions examined at each iteration by
DoubleClimb (left), Opt-Unif (center), and GA (right), in the rich scenario. Different
colors correspond to different values of dL, as in Figure 4.13.

run times, as shown in Figure 4.10 and Figure 4.11 next. Observing that DoubleClimb
matches Optimum/GA in all scenarios and for all values of dL therefore boosts our
confidence in the algorithm’s effectiveness.

We now look deeper into the decisions made by each strategy. The second plot in
Figure 4.12 depicts the selected value of dL, normalized to |L|. Interestingly, such a value
is lower in the rich scenario, confirming our intuition that a tighter cooperation between
L-nodes and more data coming from I-nodes are, to an extent, alternative solutions to
achieve faster learning. DoubleClimb and Opt-Unif make exactly the same decisions in all
cases, which suggests that the difference in cost shown in the first plot only comes from
the choice of I-L edges. Accordingly, the third plot in Figure 4.12, depicting the fraction of
I-L edges selected by each strategy, highlights how DoubleClimb uses substantially fewer
edges than Opt-Unif. This highlights how the greater flexibility in the choice of I-L edges
is an important asset of our approach, allowing us to beat state-of-the-art alternatives.

The fourth plot in Figure 4.12 shows how DoubleClimb not only uses fewer I-L edges,
but also chooses the right ones. The plot depicts the number of new samples arriving at
each iteration and highlights how, in spite of the substantially smaller number of selected
I-L edges, DoubleClimb obtains a similar number of samples as Opt-Unif. Such an effect
is especially evident for the basic scenario, where the number of samples provided by each
I-node is smaller.

84 Network Optimization for Distributed Machine Learning

4 6 8 10 12 14 16
Number || of L-nodes

0

100

200

300

400

500

Co
st

 [u
ni

ts
]

Opt-Unif
DoubleClimb
Optimum/GA

rich
basic

(a) Comparison experiment: total cost.

4 6 8 10 12 14 16
Number || of L-nodes

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

. l
ea

rn
in

g
de

gr
ee

 d
L/|


| Opt-Unif

DoubleClimb
Optimum/GA

rich
basic

(b) Comparison experiment: selected value of
dL, normalized (to the maximum).

4 6 8 10 12 14 16
Number || of L-nodes

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 a

ct
iv

e
I-

L
ed

ge
s Opt-Unif

DoubleClimb
Optimum/GA

rich
basic

(c) Comparison experiment: fraction of selected
I-L edges.

4 6 8 10 12 14 16
Number || of L-nodes

0

200

400

600

800

1000
To

ta
l e

xt
ra

 s
am

pl
es

 p
er

 it
er

at
io

n

Opt-Unif
DoubleClimb
Optimum/GA

rich
basic

(d) Comparison experiment: total number of
extra samples per iteration.

Figure 4.12: Comparison between DoubleClimb, Opt-Unif and the optimum (obtained
via brute-force) in the basic and rich scenarios, for different values of |L|.

Comparing the DoubleClimb and Optimum/GA curves, we can observe that in some
cases Optimum/GA can activate slightly fewer I-L edges than the base scenario, e.g., for
dL = 8. This corresponds to solutions that DoubleClimb is unable to reach due to its hill-
climbing nature; however, the impact on the overall cost (see the first plot in Figure 4.12)
is negligible. Interestingly, DoubleClimb and Optimum/GA make the very same decisions
in the rich scenario, confirming the somehow counterintuitive notion stated in Property 3,
i.e., that, the solutions yielded by DoubleClimb tend to be closer to the optimum.

In Figure 4.13, we seek to better understand how DoubleClimb and Opt-Unif operate.
Every marker in the plots corresponds to one solution examined by the algorithms; feasible
solutions are denoted by a silver circle, the cheapest of such solutions is denoted by
a black star. Note that Opt-Unif explores fewer solutions than DoubleClimb, as it is
restricted to creating uniform logical topologies. Also, under the rich scenario it is easier
for DoubleClimb to reach a high-quality solution, hence, the algorithm ends earlier.

4.6 Validation and Application of the Approaches 85

0 20 40 60 80 100 120
No. solutions explored

0

100

200

300

400

500

To
ta

l c
os

t [
un

its
]

dL=3
dL=4
dL=5

dL=6
dL=7
dL=8

0 5 10 15 20 25
No. solutions explored

0

100

200

300

400

500

To
ta

l c
os

t [
un

its
]

dL=3
dL=4
dL=5

dL=6
dL=7
dL=8

10 15 20 25 30 35 40
No. solutions explored

0

100

200

300

400

500

To
ta

l c
os

t [
un

its
]

dL=3
dL=4
dL=5

dL=6
dL=7
dL=8

10 15 20 25 30 35 40
No. solutions explored

0

100

200

300

400

500

To
ta

l c
os

t [
un

its
]

dL=3
dL=4
dL=5

dL=6
dL=7
dL=8

Figure 4.13: Cost of the solutions examined at each iteration by DoubleClimb (first two
plots) and Opt-Unif (last two plots), in the basic (first and third plot) and rich (second
and fourth plot) scenarios.

The first two plots, representing DoubleClimb in the basic and the rich scenario,
respectively, clearly depict the behavior of Algorithm 6. The algorithm begins with the
lowest possible value of dL and no I-L edges, hence, with a low cost. Then, new edges
are added until either a feasible solution is found, or all I-L edges are exhausted (as it
happens in the first plot, representing the basic scenario). The double vertical lines in the
first two plots correspond to the triggering of the condition in Line 12 of Algorithm 6; the
plots confirm that enforcing such a condition does not result in ignoring cheaper feasible
solutions.

The last two plots in Figure 4.13 represent Opt-Unif (again in the basic and the rich
scenario, resp.), and clearly highlight its differences from DoubleClimb. As mentioned,
Opt-Unif tries fewer solutions; also, multiple feasible solutions are tried out for the same
value of dL, since there is no stopping criterion analogous to the one in Line 13 in
Algorithm 6. Importantly, the feasible solutions explored by Opt-Unif are more costly
than those explored by DoubleClimb for the same value of dL, a further confirmation of
the importance of a flexible choice of I-L edges.

Last, in Figure 4.10 and Figure 4.11, we examine the error and learning time associated
with each of the solutions examined by DoubleClimb and its benchmark solutions,

86 Network Optimization for Distributed Machine Learning

respectively in the basic and rich scenarios. Both quantities are normalized to their
respective limits, thus both lines do not exceed 1 if the corresponding solution is feasible.
It is interesting to note how adding I-L edges (moving from one solution to the next)
affects error and time. The former (dotted lines) steadily decreases until its limit is
reached, and then stays constant – recall that the learning process is interrupted upon
reaching ϵmax, so the normalized error never drops substantially below 1. The time (solid
lines) increases at first, owing to the need to wait for more I-nodes; then, it decreases
due to the fact that learning can be completed with fewer iterations. Importantly, both
behaviors exactly match those described in Property 2 for g1 and g2. The third plots
of both Figure 4.10 and Figure 4.11 highlight the behavior of GA approaches, which try
multiple different solutions of varying quality and, in the interest of exploration, tend not
to abandon low-quality solutions, on the grounds that they may mutate into high-quality
solutions at some later stage.

Finally, the x-axis in those plots reminds us of the very high efficiency of
DoubleClimb, where the number of examined solutions is orders of magnitude lower than
in Optimal/GA. Recalling that GA algorithms themselves examine a number of solutions
that is orders of magnitude lower than exact algorithms, the plots further highlight the
efficiency of DoubleClimb, coupled with the effectiveness shown in Figure 4.12.

4.7. Conclusion

This chapter addressed the problem of defining an optimal level of cooperation among
network nodes performing a supervised learning task. First, a system model was developed
accounting for the presence of both learning nodes and information nodes interacting
with each other. Then, it has been formulated the problem of choosing which learning
nodes should cooperate to complete the learning task, and the information nodes that
should provide them with data, as well as the number of iterations to perform. Although
being NP hard, some important properties of the presented problem have been shown,
most notably its submodularity, which allowed to define a solution algorithm that has
cubic worst-case time complexity and is 1 + 1/|I|-competitive, with I being the set
of information nodes. Numerical results also show that the proposed approach closely
matches the optimum and outperforms state-of-the-art solutions, for both classification
and regression tasks.

5 Conclusions

In this thesis, we have presented several works that aim at optimizing different
aspects of the telecommunication networks in order to help the future 5th generation
of telecommunications networks (5G) deployments to be more efficient both for the users
and the operators. As defined in Chapter 1, the thesis is structured from the core of
the network to the users matching with the timeline of the research and development of
the 5G as well as with the moment of improving each part of the network. Thus, as a
logical order, the first part that needed to be redefined was the core of the network to be
flexible to address the continuous changes in the future demands. Once the most critical
part was redefined, the challenge moved to reduce the overload in the central segment by
offloading part of the load closer to the user, through a cloud/edge network able to host
and perform the demands of end users. After reducing the load of the core and moved
functionalities to the cloud/edge networks, new challenges appeared in those decentralized
networks in which the processing of the services is split among different servers. The next
challenge appreared on those edge networks, in particular to determine the connections
of the distributed nodes to optimize the joint learning tasks of IoT devices. Thus, this
thesis as a whole presents an optimization of the network, supporting the transition from
the previous generation of networks to the new one in an optimized manner. Hence, the
different chapters of this document have provided a solution to the different challenges
exposed in Chapter 1.

First of all, Chapter 2 has addressed the first challenge exposed in Chapter 1 of
optimizing the core of the networks by developing a framework for the joint optimization
of an integrated networking and edge/cloud environment supporting two diverse classes of
flows (fronthaul/backhaul) under path and delay constraints. This framework is directly
applicable to the optimal design or dynamic management of a mixed Radio Access
Network (RAN) and Cloud or Centralized Radio Access Network (C-RAN) environments.
Thus, it has been tested over a synthetic small-scale network validating the utility of
the framework. However, due to its computational complexity, computationally less
intensive heuristics have been developed to tackle exactly the aforementioned problem.

87

88 Conclusions

The heuristics have been applied to both small scale and large scale/production level
environments, demonstrating their effectiveness and yielding potentially large gains in
terms of reduced number of required Edge data-centers and increased Air Bandwidth. In
particular, the results show that the number of Crosshaul Processing Unit (XPU) can
be significantly reduced by applying the solution obtained by the heurisitics, compared
with a generic Operator deployment. It is also shown that the number of required XPUs
increases with the maximum propagation delay and the available capacity of the links.
Regarding the Air Bandwidth of all DUs and eNBs, Heuristic 1 achieves a higher level
of aggregation under lower maximum propagation delay, determining a lower number of
XPUs placed deeper in the network, since the fronthaul flows would share the bandwidth
with backhaul flows for longer paths deeper into the network and the total Air Bandwidth
would decrease.

Once, the most critical part of the network, the core, has been optimized, the
focus moves to the second challenge exposed in Chapter 1, the service placement on
cloud/edge environments. In particular, Chapter 3 has analyzed in scenarios with mobile
actors the problem of Virtual Network Function (VNF) placement in a realistic use case
based scenario: mobile robotics for warehousing solution in the Valencia city haven,
where mobile compute nodes act as an extension of the cloud and edge computing
infrastructure. Thus, the problem has been addressed by designing a system model
and a mathematical formulation of the problem that considers strict delay bounds and
reliability constraints, while taking into account radio coverage, mobility and battery
conditions. The proposed solution includes the development of an efficient heuristic
requiring less computational complexity. The heuristic has been extensively evaluated
via simulations showing that it outperforms a state of the art mobility-aware algorithm.
It achieves close to optimal deployments in terms of cost, staying between 15% and 30%
away of the optimal costs, while the state of the art algorithm increases the cost gap with
respect to our solution as the number of Network Function (NF) bound to mobile nodes
grows. The proposed solution of this work was the first to tackle the VNF placement
problem simultaneously respecting battery, coverage and delay constraints over a mobile
and volatile 5G infrastructure, offering an efficient solution for providers dealing with
these type of scenarios.

Finally, the optimization has focused on the part of the network closer to the end users
and aplication environments. In Chapter 4 it has been addressed the problem of defining
an optimal level of cooperation among network nodes performing a supervised learning
task. In this chapter, a system model has been defined accounting for the presence of both
learning nodes (with capability of perform ML models and learn from their result) and
information nodes (providing the data to the learning nodes in order to train the models
and extract the learning) interacting with each other. Then we formulated the problem
of choosing which learning nodes should cooperate to complete the learning task, and the

89

information nodes that should provide them with data, as well as the number of iterations
to perform. Although being NP hard, some important properties of our problem, most
notably its submodularity, allowed to define a solution algorithm that has cubic worst-
case time complexity and is 1 + 1/|I|-competitive, with I being the set of information
nodes. Numerical results also has shown that our approach closely matches the optimum
and outperforms state-of-the-art solutions, for both classification and regression tasks,
the most important tasks of supervised learning.

Appendices

91

A Linearization of the product of
two variables

A.1. Linearization of the product of two binary variables

Property 5 (Linearization of the product of two binary variables). Let z = x · y, where
z, x and y are binary, then the product can be linearized as follows:

z ≤ x,

z ≤ y,

z ≥ x + y − 1

A.2. Linearization of the product of one binary variable and
one real bounded variable

Property 6 (Linearization of the product of one binary variable and one real bounded
variable). Let z = x · y, where x is binary and y, z ∈ R, 0 ≤ y ≤ B, then the product can
be linearized as follows:

z ≤ B · x,

z ≤ y,

z ≥ y −B · (1− x)

z ≥ 0

93

B NP-Hardness

B.1. NP-Completeness proof of the problem defined in
Chapter 2

This section proves the NP-completeness of the problem exposed in Section 2.2.
A multi-commodity flow problem involves a collection of several networks whose

flows must independently satisfy conservation of flow constraints, but are coupled through
some other constraints or the cost function. Consider a directed graph (N ,A), and a finite
collection of flow vectors x(m), m = 1, ..., M , on that graph, where M is a given integer.
Let x(m) denote the flow vector of commodity m, and let x = (x(1), ..., x(M)) denote
the collection of all commodity flow vectors. Each flow vector x(m) must satisfy its own
conservation of flow constraints ∀i ∈ N, m = 1, ..., M ,

∑︂
{j|(i,j)∈A}

xij(m)−
∑︂

{j|(j,i)∈A}
xji(m) = si(m) (B.1)

where si(m) are given supply scalars. Furthermore, the commodity flows must together
satisfy x = (x(1), ..., x(M)) ∈ X, where X is a constraint set, which may impose additional
restrictions on the various commodities. For example, to force a commodity m to avoid
some arc (i, j), the constraint xij(m) = 0 may be introduced. In this way, one can model
situations where each commodity is restricted to use only a subgraph of the given graph.

The feasible set is

F = {x ∈ X|x satisfies Equation (B.1)},

and the cost function is of the form f(x) = f(x(1), ..., x(M)).

95

96 NP-Hardness

The general convex multi-commodity flow problem is defined as

minimize f(x)

subject to x ∈ F

where it is assumed that F is convex and f is convex over F.
Note that x may be viewed as a flow vector in an expanded graph consisting of M

(disconnected) copies of the original graph (N ,A). With this interpretation, it is seen
that the only coupling between the commodities comes through the cost function and the
constraint x ∈ X.

The version of the multi-commodity problem that is most amenable to analysis and
algorithmic solution is the convex separable multi-commodity flow problem. In this
problem the set X has the form

X = {x|xij(m) ∈ Xij(m),∀(i, j) ∈ A, m = 1, ..., M} (B.2)

where Xij(m) are intervals of the real line and the cost function has the form

f(x) =
∑︂

(i,j)∈A

fij(yij) (B.3)

where yij is the total flow of arc (i, j), yij =
∑︁M

m=1 xij(m) and each fij : R → R is a
convex function of yij . Note here that the cost function is not separable with respect to
the commodity flows xij(m), but only with respect to the total flows yij . There is also a
constraint-separable version of the multi-commodity flow problem, where the constraint
set X has the form of Equation (B.2) but the cost function f does not have the separable
form of Equation (B.3).

In the separable multi-commodity flow problem, commodities are coupled only through
the total arc flows yij that appear in the separable cost function. Another type
of commodity coupling in multi-commodity problems arises when the set X includes
additional upper bounds on the total flows of the arcs:

X = {x|xij(m) ∈ Xij(m), yij ≤ cij},

for all (i, j) ∈ A, m = 1, ..., M , where Xij(m) are given intervals of the real line, and
cij are given scalars representing arc "capacities". The convex separable version of the
resulting problem is referred to as a convex separable multi-commodity flow problem with
arc capacities. This problem may also be viewed as a special case of the convex network
problem with side constraints, where the side constraints are the capacity constraints
yij ≤ cij . The described multi-commodity flow problem is NP-complete when integer
binary constraints are imposed on the side constraints.

B.1 NP-Completeness proof of the problem defined in Chapter 2 97

In the sequel, the optimization problem considered here will be reduced to the multi-
commodity flow problem to establish its NP-completeness. To this end, we employ the
definition of the problem we know is NP-complete, the definition we have just given
from [130], and then we construct our problem from the definition of the multi-commodity
flow problem. In fact, the variant of this problem we use is the un-splittable flow problem
because our flows have to follow a single path; that is, each flow can leave a node only
through one link and cannot be split to follow several links or paths. The definition is
the same but adding the constraint that flows cannot be split.

On one hand, we consider three types of flows (a fronthaul flow before reaching a CU
(1), after leaving a CU (2) and backhaul flow (3)), and we consider one source that mixes
all our sources, one destination that mixes all our destinations and one XPU that mixes
all the XPUs, so the collection of all commodity flow vectors will be x = (x(1), x(2), X(3))
(x(1) = x(2)), then each vector ∀i ∈ N, m = 1, 2, 3

∑︂
{j|(i,j)∈A}

xij(m)−
∑︂

{j|(j,i)∈A}
xji(m) = si(m) (B.4)

si(1) =

⎧⎪⎪⎨⎪⎪⎩
0 if i is an intermediate node

x(1) if i is a source,

−x(1) if i is a XPU

si(2) =

⎧⎪⎪⎨⎪⎪⎩
0 if i is an intermediate node

x(2) if i is a XPU,

−x(2) if i is a destination

si(3) =

⎧⎪⎪⎨⎪⎪⎩
0 if i is an intermediate node or XPU

x(3) if i is a source,

−x(3) if i is a destination

In addition, we need to add a constraint in the set of constraints X to prevent the
backhaul flows from entering XPUs,

∑︂
{j|(i,j)∈A}

xij(m) = 0, ∀i a XPU, m = 3 (B.5)

On the other hand, we need to add the constraint for the capacities of the links as in
the multi-commodity flow problem with arc capacities. The constraint will be introduced
as follows: yij is the total flow of arc (i, j) yij =

∑︁3
m=1 xij(m) and the side constraints

are the capacity constraints yij ≤ cij , where cij is the capacity of the link (i, j). Also, the
rest of the constraints in our framework will be introduced in the set X as constraints of
each type of commodity.

Furthermore, as with the multi-commodity flow problem, the commodity flows must
together satisfy x = (x(1), x(2), x(3)) ∈ X, where X is a constraint set, which may impose

98 NP-Hardness

additional restrictions on the various commodities beyond those in Equation (B.5).
The feasible set is

F = {x ∈ X|x satisfies (B.4) and the capacities of links}

and the cost function is of the form f(x) = f(x(1), x(3)).

f(x(m)) =

⎧⎪⎪⎨⎪⎪⎩
−1 if the source is a DU

1 if the node is an XPU

0 otherwise

And the general multi-commodity flow problem becomes

minimize f(x)

subject to x ∈ F

where we assume that F is convex and f is convex over F .
Concluding, since we can reduce the multi-commodity flow problem with side

constraints with integer values to our problem and the first one is NP-complete, our
problem is also NP-complete.

B.2. NP-Hardness proof of the problem defined in
Chapter 4

This section proves that the problem formulated in Section 4.2, i.e. the problem
of optimally configuring the system for an ML task, expressed in Equation (4.1) and
Equation (4.2), is NP hard.

Proof : The proof can be obtained via a reduction from the knapsack problem [131],
a combinatorial optimization problem where a set of N numbered items is given, each of
them associated with a weight ωs and a value νs. The goal is to select a subset of items
with maximum total value and total weight less or equal to a maximum given capacity,
Ω.

Our reduction maps any given instance of the knapsack problem to a simpler, special-
case instance of our own, as set forth next.

The sets of L-nodes and I-nodes are respectively L = {l1 . . . lN} and I = {i1 . . . iN},
i.e., there are as many L-nodes as there are items in the knapsack problem, and as many
I-nodes as there are L-nodes. Further, we connect all L-nodes in a logical full mesh, and
impose that each I-node is ∈ I can only be connected to the corresponding L-node ls ∈ L.
We also set the number of iterations to an arbitrary number K̂ > 0, and the number of
samples generated by each I-node to an arbitrary number r > 0.

B.2 NP-Hardness proof of the problem defined in Chapter 4 99

Given the above, matrix P is fixed and the decisions concern only matrix Q, which
is now a diagonal matrix with elements q(is, ls), mapping into the xs variables in the
knapsack problem. Specifically, we activate edge (is, ls) in our problem if and only if
xs = 1, i.e., q(is, ls) ← xs. Furthermore, we map edge costs in our problem into item
weights in the knapsack problem. In particular, let νs correspond to the opposite of
the link cost cis,ls , then we have a perfect correspondance between the objective of the
knapsack problem and that in Equation (4.1).

Next, we need to map the capacity constraint in the knapsack problem to constraint
Equation (4.2). To this end, we first set T max ← ∞. Then, given that P is fixed, γ is
also known and fixed, and each L-node can only receive data from one I-node only, the
amount of data received by L-node is in each iteration is r or 0, depending on the value
of xs. A correspondence between the constraint in the knapsack problem and that in our
problem is then established by fixing ϵmax ← Ω, and setting β and ξ in the expression of
the learning error at a single L-nodes in such a way that:

ϵK
ls

(P, Q)
γ|L|

=
1− β log

(︂
K̂ − ξ

)︂
γ|L|

= ωs. (B.6)

Last, we need the reduction to take (at most) polynomial time. In our case, it is
straightforward to see that the mapping takes linear time, namely O(|L| + |I|), hence,
the condition is fulfilled.

In summary, any instance of an NP-hard problem can be transformed into a special-
case instance of our own, which proves the thesis. ■

C Algorithms Pseudo-codes

101

C.1 Algorithm for fixed RAN elements (Heuristic 2) 103

C.1. Algorithm for fixed RAN elements (Heuristic 2)

Algorithm 7 Heuristic 2 of Chapter 2: Heuristic algorithm for fixed RAN elements
1: procedure HeuristicFixedRAN
2: DUsNotUsed← DUs
3: while (UsedXP Us < MaxXP Us)&&(maxDUit > 1)&&(DUsUsed < NumberDUs) do
4: maxDUit← 0
5: for all r ∈ XP UP lacement do
6: maxDUXP U ← 0
7: for all l ∈ DUsNotUsed do
8: P ath1fl ← ShortestP ath(DUl, XP Ur)
9: while (Capacity(link)+f l > MaxCapacity(link), link ∈ P ath1) and (Not All Links Removed)

do
10: Remove links that cannot transport f l

11: P ath1fl ← ShortestP ath(DUfl , XP Ur)
12: P ath2fl ← ShortestP ath(XP Ur, Destination)
13: while (Capacity(link) + f l+ > MaxCapacity(link), link ∈ P ath2) and

(Not All Links Removed) do
14: Remove links that cannot transport f l

15: P ath2fl ← ShortestP ath(XP Ur, Destination)
16: Recompute delays for flows already routed
17: if Recomputed delays satisfy their maximum delay then
18: Keep the paths and the DUs that are placed for the current XPU
19: maxDUXP U ← maxDUXP U + 1
20: if maxDUXP U > maxDUXP Usaved then
21: maxDUXP Usaved← maxDUXP U
22: Save the information for all the DUs that uses this XPU
23: if maxDUXP Usaved > 1 then
24: maxDUXP Uit← maxDUXP Usaved
25: Save the information for all the DUs that uses this XPU
26: Update DUsNotUsed removing the ones that uses the selected XPU
27: flag ← 1
28: while flag == 1 do
29: flag ← 0
30: for all l ∈ eNBs do
31: for all k ∈ BackhaulF lowsOfeNB(l) do
32: P athbl

k
← ShortestP ath(sourcel, Destination)

33: while (Capacity(link)+bl
k > MaxCapacity(link), link ∈ P ath) and (Not All Links Removed)

do
34: Remove links that cannot transport bl

k
35: P athbl

k
← ShortestP ath(sourcel, Destination)

36: Recompute delays for flows already routed
37: if Recomputed delays satisfy their maximum delay then
38: Keep the path of the new backhaul flow and update the loads in the links
39: else
40: flag ← 1
41: Remove one DU from the XPU that accommodates more DUs
42: if The XPU selected contains only 2 DUs then
43: Remove the two DUs
44: Accommodate to other XPU
45: Update all the information saved for those DUs
46: Remove the information of the backhaul flows placed
47: Look for another XPU to accommodate the DU

References

[1] N. Molner, A. de la Oliva, I. Stavrakakis, and A. Azcorra, “Optimization of
an integrated fronthaul/backhaul network under path and delay constraints,”
Ad Hoc Networks, vol. 83, pp. 41–54, 2019. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1570870518306206

[2] B. Nemeth, N. Molner, J. M. Pérez, C. J. Bernardos, A. D. la Oliva, and
B. Sonkoly, “Delay and reliability-constrained vnf placement on mobile and volatile
5g infrastructure,” IEEE Transactions on Mobile Computing, pp. 1–1, 2021.

[3] F. Malandrino, C. F. Chiasserini, N. Molner, and A. De La Oliva, “Network
support for high-performance distributed machine learning,” arXiv preprint
arXiv:2102.03394, 2021.

[4] N. Molner, S. González, T. Deiß, and A. de la Oliva, “The 5g-crosshaul
packet forwarding element pipeline: Measurements and analysis,” in 2017 Fifth
International Workshop on Cloud Technologies and Energy Efficiency in Mobile
Communication Networks (CLEEN), 2017, pp. 1–6.

[5] A. Tzanakaki, M. Anastasopoulos, N. Gomes, P. Assimakopoulos, J. M. Fàbrega,
M. S. Moreolo, L. Nadal, J. Gutiérrez, V. Sark, E. Grass, D. Camps-Mur, A. de la
Oliva, N. Molner, X. C. Perez, J. Mangues, A.Yaver, P. Flegkas, N. Makris,
T. Korakis, and D. Simeonidou, Transport network architecture. John Wiley &
Sons, 2018.

[6] C. Casetti, C. F. Chiasserini, T. Deiß, P. A. Frangoudis, A. Ksentini, G. Landi,
X. Li, N. Molner, and J. Mangues, “Network slices for vertical industries,”
in 2018 IEEE Wireless Communications and Networking Conference Workshops
(WCNCW), 2018, pp. 254–259.

[7] C. Casetti, C. F. Chiasserini, J. M. Pérez, N. Molner, T. Deiß, J. E. B. González,
G. L. C.T. Phan, F. Messaoudi, N. Serrano, J. Mangues, and C. Turyagyenda,
“The vertical slicer: Verticals’ entry point to 5g networks,” in The 27th European
Conference on Networks and Communications (EuCNC 2018), 2018.

105

https://www.sciencedirect.com/science/article/pii/S1570870518306206
https://www.sciencedirect.com/science/article/pii/S1570870518306206

106 REFERENCES

[8] C. Casetti, C. F. Chiasserini, N. Molner, J. M. Pérez, T. Deiß, C. Phan,
F. Messaoudi, G. Landi, and J. B. Baranzano, “Arbitration among vertical services,”
in 2018 IEEE 29th Annual International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC), 2018, pp. 153–157.

[9] K. Antevski, J. M. Pérez, N. Molner, C. F. Chiasserini, F. Malandrino,
P. Frangoudis, A. Ksentini, X. Li, J. S. Lozano, R. Martínez, I. Pascual, J. Mangues-
Bafalluy, J. Baranda, B. Martini, and M. Gharbaoui, “Resource orchestration of 5g
transport networks for vertical industries,” in 2018 IEEE 29th Annual International
Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC),
2018, pp. 158–163.

[10] 5G-Crosshaul, “D1.2: Final 5G-Crosshaul system design and economic analysis,”
December 2017.

[11] Cisco Visual Networking Index, “Cisco annual internet report 2018-2023,” Cisco
white paper, 2020.

[12] ——, “2020 global networking trends report,” Cisco white paper, 2020.

[13] ——, “Global mobile data traffic forecast update, 2016-2021,” Cisco white paper,
2017.

[14] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti, “A
survey of software-defined networking: Past, present, and future of programmable
networks,” IEEE Communications surveys & tutorials, vol. 16, no. 3, pp. 1617–1634,
2014.

[15] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: an intellectual history
of programmable networks,” ACM SIGCOMM Computer Communication Review,
vol. 44, no. 2, pp. 87–98, 2014.

[16] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., “A view of cloud computing,”
Communications of the ACM, vol. 53, no. 4, pp. 50–58, 2010.

[17] T. Dillon, C. Wu, and E. Chang, “Cloud computing: issues and challenges,” in
2010 24th IEEE international conference on advanced information networking and
applications. Ieee, 2010, pp. 27–33.

[18] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE internet of things journal, vol. 3, no. 5, pp. 637–646, 2016.

REFERENCES 107

[19] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A survey on
the edge computing for the internet of things,” IEEE access, vol. 6, pp. 6900–6919,
2017.

[20] D. Evans, “The internet of things: How the next evolution of the internet is changing
everything,” CISCO white paper, vol. 1, no. 2011, pp. 1–11, 2011.

[21] Mobile, China, “C-RAN: the road towards green RAN,” White Paper, ver, vol. 2,
2011.

[22] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and
L. Dittmann, “Cloud RAN for mobile networks - a technology overview,” IEEE
Communications Surveys Tutorials, vol. 17, no. 1, pp. 405–426, First Quarter 2015.

[23] B. Guo, W. Cao, A. Tao, and D. Samardzija, “Cpri compression transport for lte
and lte-a signal in c-ran,” in 7th International Conference on Communications and
Networking in China. IEEE, 2012, pp. 843–849.

[24] A. de la Oliva and J. A. Hernandez and D. Larrabeiti and A. Azcorra, “An overview
of the CPRI specification and its application to C-RAN-based LTE scenarios,” IEEE
Communications Magazine, vol. 54, no. 2, pp. 152–159, February 2016.

[25] C. P. R. I. eCPRI Interface Specification, “eCPRI specification v1.0,” August 2017.

[26] J. Bartelt, P. Rost, D. Wubben, J. Lessmann, B. Melis, and G. Fettweis, “Fronthaul
and backhaul requirements of flexibly centralized radio access networks,” IEEE
Wireless Communications, vol. 22, no. 5, pp. 105–111, Oct 2015.

[27] 3GPP RAN3, “TR 38.801 V14.0.0,” Mar 2017, Available at: http://www.3gpp.org/
ftp/Specs/archive/38_series/38.801/.

[28] X. Costa-Perez, A. Garcia-Saavedra, X. Li, T. Deiss, A. de la Oliva,
A. di Giglio, P. Iovanna, and A. Moored, “5g-crosshaul: An sdn/nfv
integrated fronthaul/backhaul transport network architecture,” IEEE Wireless
Communications, vol. 24, no. 1, pp. 38–45, February 2017.

[29] M. Shafi, A. F. Molisch, P. J. Smith, T. Haustein, P. Zhu, P. D. Silva,
F. Tufvesson, A. Benjebbour, and G. Wunder, “5G: A tutorial overview of standards,
trials, challenges, deployment, and practice,” IEEE Journal on Selected Areas in
Communications, vol. 35, no. 6, pp. 1201–1221, Jun 2017.

[30] M. Peng, Y. Sun, X. Li, Z. Mao, and C. Wang, “Recent advances in cloud radio
access networks: System architectures, key techniques, and open issues,” IEEE
Communications Surveys Tutorials, vol. 18, no. 3, pp. 2282–2308, Third Quarter
2016.

http://www.3gpp.org/ftp/Specs/archive/38_series/38.801/
http://www.3gpp.org/ftp/Specs/archive/38_series/38.801/

108 REFERENCES

[31] K. Sundaresan, M. Y. Arslan, S. Singh, S. Rangarajan, and S. V. Krishnamurthy,
“FluidNet: A flexible cloud-based radio access network for small cells,” IEEE/ACM
Transactions on Networking, vol. 24, no. 2, pp. 915–928, April 2016.

[32] A. Checko, A. P. Avramova, M. S. Berger, and H. L. Christiansen, “Evaluating C-
RAN fronthaul functional splits in terms of network level energy and cost savings,”
Journal of Communications and Networks, vol. 18, no. 2, pp. 162–172, Apr 2016.

[33] D. S. Reeves and H. F. Salama, “A Distributed Algorithm for Delay-Constrained
Unicast Routing,” INFOCOM ’97. Sixteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Driving the Information Revolution.,
Proceedings IEEE, vol. 1, pp. 84–91, April 1997.

[34] A. Orda and R. Rom, “Shortest-Path and Minimum-Delay Algorithms in Networks
with Time-Dependent Edge-Length,” August 1989.

[35] R. Widyono, “The Design and Evaluation of Routing Algorithms for Real-time
Channels,” June 1994.

[36] M. R. Kabat, M. K. Patel, and C. R. Tripathy, “An Efficient Algorithm for Delay
Delay-variation Bounded Least Cost Multicast Routing,” International Journal of
Computer, Electrical, Automation, Control and Information Engineering, vol. 3,
no. 3, 2009.

[37] J. M. Smith and T. van Woensel, “Topological network design of general, finite,
multi-server queueing networks,” European Journal of Operational Research, March
2009.

[38] M. Garetto and D. Towsley, “Modeling, Simulation and Measurements of Queuing
Delay under Long-tail Internet Traffic,” ACM 2003, June 2003.

[39] M. Olvera-Cravioto, J. Blanchet, and P. Glynn, “On the Transition from Heavy
Traffic to Heavy Tails for the M/G/1 Queue: The regularly varying case,” The
Annals of Applied Probability, vol. 21, no. 2, pp. 645–668, 2011.

[40] J. M. Smith, “M/G/c/K blocking probability models and system performance,”
Performance Evaluation, vol. 52, pp. 237–267, 2003.

[41] J. MacGregor Smith, “Properties and performance modelling of finite buffer
M/G/1/K networks,” Computers & Operations Research, vol. 38, pp. 740–754, 2011.

[42] A. Gowda, J. A. Hernández, D. Larrabeiti, and L. Kazovsky, “Delay
analysis of mixed fronthaul and backhaul traffic under strict priority queueing
discipline in a 5g packet transport network,” Transactions on Emerging

REFERENCES 109

Telecommunications Technologies, vol. 28, no. 6, 6 2017. [Online]. Available:
http:https://doi.org/10.1002/ett.3168

[43] S. Agarwal and F. Malandrino and C. F. Chiasserini and S. De, “Joint VNF
Placement and CPU Allocation in 5G,” IEEE INFOCOM 2018, April 2018.

[44] A. Chakrabartiy and C. Chekuriz and A. Guptax and A. Kumar, “Approximation
Algorithms for the Unsplittable Flow Problem,” September 2005.

[45] H. Cho and A. Wein, “Unsplittable Flows,” in Final Project. MIT.

[46] A. Karandikar, “Approximation Algorithms for Stochastic Unsplittable Flow
Problems,” in Master Thesis. School of Computer Science Computer Science
Department Carnegie Mellon University Pittsburgh, PA, December 2015.

[47] T.-W. Kuo, B.-H. Liou, K. C.-J. Lin, and M.-J. Tsai, “Deploying chains of virtual
network functions: On the relation between link and server usage,” in Computer
Communications, IEEE INFOCOM 2016-The 35th Annual IEEE International
Conference on. IEEE, 2016, pp. 1–9.

[48] T. Wan and P. Ashwood-Smith, “A performance study of cpri over ethernet with
ieee 802.1 qbu and 802.1 qbv enhancements,” in Global Communications Conference
(GLOBECOM), 2015 IEEE. IEEE, 2015, pp. 1–6.

[49] 3GPP RAN3, “Small cell virtualization functional splits and use cases version
SCF159.07.02 Release 7,” January 2016, Available at: http://www.3gpp.org/ftp/
Specs/archive/38_series/38.801/ (Accessed 29 May 2018).

[50] D. P. Bertsekas and R. Gallager, in Data Networks, 1987, p. 186.

[51] N. Bram, K. Mario, V. Sofie, C. Didier, and P. Mario, “How can a mobile
service provider reduce costs with software-defined networking?” International
Journal of Network Management, vol. 26, no. 1, pp. 56–72. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.1919

[52] Ruiquan Jing and Jianjun Tang and Luis Miguel Contreras Murillo and Rui Tang
and Qiuyou Wu and Jean-Michel Caia and Yuanbin Zhang, “Consideration on 5G
transport network reference architecture and bandwidth requirements,” January
2018.

[53] F. Capozzi, G. Piro, L. A. Grieco, G. Boggia, and P. Camarda, “Downlink
packet scheduling in lte cellular networks: Key design issues and a survey,” IEEE
Communications Surveys & Tutorials, vol. 15, no. 2, pp. 678–700, 2013.

http:https://doi.org/10.1002/ett.3168
http://www.3gpp.org/ftp/Specs/archive/38_series/38.801/
http://www.3gpp.org/ftp/Specs/archive/38_series/38.801/
https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.1919

110 REFERENCES

[54] 3GPP, “Study on Scenarios and Requirements for Next Generation Access
Technologies,” 3rd Generation Partnership Project (3GPP), Technical Specification
(TS) 38.913, 08 2017, version 14.3.0.

[55] 5GACIA, “5G Non-Public Networks for Industrial Scenarios,” 5G Alliance for
Connected Industries and Automation, White Paper, 7 2019.

[56] M. Rost and S. Schmid, “Charting the complexity landscape of virtual network
embeddings,” in 2018 IFIP Networking Conference (IFIP Networking) and
Workshops, May 2018, pp. 1–9.

[57] H. Cambazard, D. Mehta, B. O’Sullivan, and H. Simonis, “Bin Packing
with Linear Usage Costs - An Application to Energy Management in Data
Centres,” Principles and Practice of Constraint Programming - 19th International
Conference, p. ?, 2013, best Application Paper Award. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-00858159

[58] Q. Zhang, Y. Xiao, F. Liu, J. C. Lui, J. Guo, and T. Wang, “Joint optimization of
chain placement and request scheduling for network function virtualization,” in 2017
IEEE 37th International Conference on Distributed Computing Systems (ICDCS).
IEEE, 2017, pp. 731–741.

[59] D. K. Friesen and M. A. Langston, “Variable sized bin packing,” SIAM journal on
computing, vol. 15, no. 1, pp. 222–230, 1986.

[60] M. M. Baldi, D. Manerba, G. Perboli, and R. Tadei, “A Generalized Bin
Packing Problem for parcel delivery in last-mile logistics,” European Journal of
Operational Research, vol. 274, no. 3, pp. 990–999, 2019. [Online]. Available:
https://ideas.repec.org/a/eee/ejores/v274y2019i3p990-999.html

[61] E. G. Coffman Jr., J. Csirik, G. Galambos, S. Martello, and D. Vigo,
Bin Packing Approximation Algorithms: Survey and Classification. New
York, NY: Springer New York, 2013, pp. 455–531. [Online]. Available:
https://doi.org/10.1007/978-1-4419-7997-1_35

[62] S. Kekki, W. Featherstone, Y. Fang, P. Kuure et al., “MEC in 5G networks,”
European Telecommunications Standards Institute (ETSI), White paper 28, 6 2018.

[63] Z. Wen, R. Yang, P. Garraghan, T. Lin, J. Xu, and M. Rovatsos, “Fog orchestration
for internet of things services,” IEEE Internet Computing, vol. 21, no. 2, pp. 16–24,
2017.

[64] 3GPP, “Service requirements for the 5G system; Stage 1,” 3rd Generation
Partnership Project (3GPP), Technical Specification (TS), 06 2018, version 15.5.0.

https://hal.archives-ouvertes.fr/hal-00858159
https://ideas.repec.org/a/eee/ejores/v274y2019i3p990-999.html
https://doi.org/10.1007/978-1-4419-7997-1_35

REFERENCES 111

[65] Y.-T. Chen and W. Liao, “Mobility-aware service function chaining in 5g wireless
networks with mobile edge computing,” in ICC 2019-2019 IEEE International
Conference on Communications (ICC). IEEE, 2019, pp. 1–6.

[66] L. Yala, P. A. Frangoudis, and A. Ksentini, “Latency and availability driven
vnf placement in a mec-nfv environment,” in 2018 IEEE Global Communications
Conference (GLOBECOM). IEEE, 2018, pp. 1–7.

[67] P. Jin, X. Fei, Q. Zhang, F. Liu, and B. Li, “Latency-aware vnf chain deployment
with efficient resource reuse at network edge,” in IEEE INFOCOM 2020-IEEE
Conference on Computer Communications. IEEE, 2020, pp. 267–276.

[68] Y. Xiao, Q. Zhang, F. Liu, J. Wang, M. Zhao, Z. Zhang, and J. Zhang, “NFVdeep:
Adaptive online service function chain deployment with deep reinforcement
learning,” in Proceedings of the International Symposium on Quality of Service,
2019, pp. 1–10.

[69] Q. Zhang, F. Liu, and C. Zeng, “Adaptive interference-aware VNF placement for
service-customized 5G network slices,” in IEEE INFOCOM 2019-IEEE Conference
on Computer Communications. IEEE, 2019, pp. 2449–2457.

[70] R. Cziva, C. Anagnostopoulos, and D. P. Pezaros, “Dynamic, latency-optimal vnf
placement at the network edge,” in Ieee infocom 2018-ieee conference on computer
communications. IEEE, 2018, pp. 693–701.

[71] K. Intharawijitr, K. Iida, and H. Koga, “Analysis of fog model considering
computing and communication latency in 5g cellular networks,” in 2016 IEEE
International Conference on Pervasive Computing and Communication Workshops
(PerCom Workshops). IEEE, 2016, pp. 1–4.

[72] A. Santoyo-González and C. Cervelló-Pastor, “Latency-aware cost optimization
of the service infrastructure placement in 5g networks,” Journal of Network and
Computer Applications, vol. 114, pp. 29–37, 2018.

[73] Y. Gu, Z. Chang, M. Pan, L. Song, and Z. Han, “Joint radio and computational
resource allocation in iot fog computing,” IEEE Transactions on Vehicular
Technology, vol. 67, no. 8, pp. 7475–7484, 2018.

[74] F. Samie, V. Tsoutsouras, L. Bauer, S. Xydis, D. Soudris, and J. Henkel,
“Computation offloading and resource allocation for low-power iot edge devices,” in
2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), Dec 2016, pp. 7–12.

[75] 3GPP, “Study on Communication for Automation in Vertical Domains,” 3rd
Generation Partnership Project (3GPP), Technical Specification (TS) 22.804, 07
2020, version 16.3.0.

112 REFERENCES

[76] A. Mourad, P.-H. Kuo, D. Rapone, L. Cominardi et al., “5g-coral initial system
design, use cases, and requirements,” Tech. Rep. deliverable D1.1, 2018.

[77] B. Nogales, V. Sanchez-Aguero, I. Vidal, and F. Valera, “Adaptable and automated
small uav deployments via virtualization,” Sensors, vol. 18, no. 12, p. 4116, 2018.

[78] ITU-T, “Consideration on 5G transport network reference architecture
and bandwidth requirements,” International Telecommunication Union -
Telecommunication Standardization Sector (ITU-T), Study Group 15 Contribution
0462, 2 2018.

[79] L. Cominardi, L. M. Contreras, C. J. Bcrnardos, and I. Berberana, “Understanding
QoS Applicability in 5G Transport Networks,” in 2018 IEEE International
Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), June
2018, pp. 1–5.

[80] V. Suryaprakash, J. Møller, and G. Fettweis, “On the modeling and analysis
of heterogeneous radio access networks using a poisson cluster process,” IEEE
Transactions on Wireless Communications, vol. 14, no. 2, pp. 1035–1047, 2015.

[81] V. Sanchez-Aguero, F. Valera, I. Vidal, C. Tipantuña, and X. Hesselbach, “Energy-
Aware Management in Multi-UAV Deployments: Modelling and Strategies,”
Sensors, vol. 20, no. 10, p. 2791, 2020.

[82] M. Suter, R. Eidenbenz, Y.-A. Pignolet, and A. Singla, “Fog application allocation
for automation systems,” in 2019 IEEE International Conference on Fog Computing
(ICFC). IEEE, 2019, pp. 97–106.

[83] 3GPP, “Overview of 3GPP Release 8,” 3rd Generation Partnership Project (3GPP),
Technical Specification (TS), 09 2016.

[84] R. Stuhlfauth, “UMTS Long Term Evolution(LTE),” 11 2012.

[85] V. Nikolikj and T. Janevski, “A cost modeling of high-capacity lte-advanced and
ieee 802.11 ac based heterogeneous networks, deployed in the 700 mhz, 2.6 ghz and
5 ghz bands,” Procedia Computer Science, vol. 40, pp. 49–56, 2014.

[86] N. Patriciello, S. Lagen, L. Giupponi, and B. Bojovic, “5g new radio numerologies
and their impact on the end-to-end latency,” in 2018 IEEE 23rd International
Workshop on Computer Aided Modeling and Design of Communication Links and
Networks (CAMAD), Sep. 2018, pp. 1–6.

[87] B. Halvarsson, A. Simonsson, A. Elgcrona, R. Chana, P. Machado, and H. Asplund,
“5g nr testbed 3.5 ghz coverage results,” in 2018 IEEE 87th Vehicular Technology
Conference (VTC Spring), June 2018, pp. 1–5.

REFERENCES 113

[88] T. Toukabri, G. R. Barbara Martini, C. J. Bernardos, X. Li et al., “5G-
TRANSFORMER final system design and Techno-Economic Analysis,” Tech. Rep.
deliverable D1.4, 2019.

[89] J. Martín-Pérez, L. Cominardi, C. J. Bernardos, and A. Mourad, “5gen: A tool
to generate 5g infrastructure graphs,” in 2019 IEEE Conference on Standards for
Communications and Networking (CSCN), 2019.

[90] R. Fourer, D. M. Gay, and B. W. Kernighan, “Ampl. a modeling language for
mathematical programming,” 1993.

[91] I. Gurobi Optimization, “Gurobi optimizer reference manual,” URL http://www.
gurobi. com, 2015.

[92] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed machine learning with
the parameter server,” in USENIX OSDI, 2014.

[93] H. X. Pham, H. M. La, D. Feil-Seifer, and A. Nefian, “Cooperative and
distributed reinforcement learning of drones for field coverage,” arXiv preprint
arXiv:1803.07250, 2018.

[94] H. Y. Ong, K. Chavez, and A. Hong, “Distributed deep q-learning,” CoRR, 2015.

[95] A. Nedić, A. Olshevsky, and M. G. Rabbat, “Network topology and communication-
computation tradeoffs in decentralized optimization,” Proceedings of the IEEE,
2018.

[96] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and K. Chan,
“Adaptive federated learning in resource constrained edge computing systems,”
IEEE Journal on Selected Areas in Communications, 2019.

[97] H. H. Zhuo, W. Feng, Y. Lin, Q. Xu, and Q. Yang, “Federated deep reinforcement
learning,” arXiv preprint arXiv:1901.08277, 2019.

[98] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon,
“Federated learning: Strategies for improving communication efficiency,” arXiv
preprint arXiv:1610.05492, 2016.

[99] ETSI, “Zero touch network & Service Management (ZSM),” https://www.etsi.org/
committee/zsm, online; accessed July 2020.

[100] ——, “Experiential Networked Intelligence (ENI),” https://www.etsi.org/
committee-activity/eni, online; accessed July 2020.

https://www.etsi.org/committee/zsm
https://www.etsi.org/committee/zsm
https://www.etsi.org/committee-activity/eni
https://www.etsi.org/committee-activity/eni

114 REFERENCES

[101] Operator Defined Next Generation RAN Architecture and Interfaces, “O-RAN
Working Group 2: AI/ML workflow description and requirements,” Tech. Rep.
O-RAN.WG2.AIML-v01.01, online; accessed July 2020.

[102] Y. Xiao, G. Shi, Y. Li, W. Saad, and H. V. Poor, “Towards self-learning edge
intelligence in 6g,” IEEE Communications Magazine, 2020.

[103] ETSI, “MEC Working Item 36, MEC in resource constrained terminals, fixed
or mobile,” https://portal.etsi.org/webapp/WorkProgram/, online; accessed July
2020.

[104] A. Kadav and E. Kruus, “Asap: asynchronous approximate data-parallel
computation,” arXiv preprint arXiv:1612.08608, 2016.

[105] S. Li, S. M. M. Kalan, A. S. Avestimehr, and M. Soltanolkotabi, “Near-optimal
straggler mitigation for distributed gradient methods,” in IEEE IPDPSW, 2018.

[106] G. Neglia, G. Calbi, D. Towsley, and G. Vardoyan, “The role of network topology
for distributed machine learning,” in IEEE INFOCOM, 2019.

[107] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement
learning: Tutorial, review, and perspectives on open problems,” arXiv preprint
arXiv:2005.01643, 2020.

[108] A. A. Abdellatif, C. F. Chiasserini, and F. Malandrino, “Active learning-based
classification in automated connected vehicles,” in IEEE INFOCOM PERSIST-IoT
Workshop, 2020.

[109] K. Yang, J. Ren, Y. Zhu, and W. Zhang, “Active learning for wireless iot intrusion
detection,” IEEE Wireless Communications, 2018.

[110] T. Chen, K. Zhang, G. B. Giannakis, and T. Başar, “Communication-efficient
distributed reinforcement learning,” arXiv preprint arXiv:1812.03239, 2018.

[111] Y. Li, I.-J. Liu, Y. Yuan, D. Chen, A. Schwing, and J. Huang, “Accelerating
distributed reinforcement learning with in-switch computing,” in ISCA, 2019.

[112] J. Konečný, B. McMahan, and D. Ramage, “Federated optimization: Distributed
optimization beyond the datacenter,” arXiv preprint arXiv:1511.03575, 2015.

[113] O. Shamir and T. Zhang, “Stochastic gradient descent for non-smooth optimization:
Convergence results and optimal averaging schemes,” in International conference on
machine learning, 2013.

https://portal.etsi.org/webapp/WorkProgram/

REFERENCES 115

[114] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augenstein,
H. Eichner, C. Kiddon, and D. Ramage, “Federated learning for mobile keyboard
prediction,” arXiv preprint arXiv:1811.03604, 2018.

[115] OASIS Standard, “MQTT Version 5.0, Mar. 2019,” https://docs.oasis-open.org/
mqtt/mqtt/v5.0/mqtt-v5.0.html, online; accessed July 2020.

[116] “zenoh: Zero Overhead Pub/sub, Store/Query and Compute,” http://zenoh.io,
online; accessed July 2020.

[117] 3GPP, “TS23.501, System architecture for the 5G System (5GS), Rel. 15,”
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?
specificationId=3144, online; accessed July 2020.

[118] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept and
applications,” ACM Transactions on Intelligent Systems and Technology, 2019.

[119] N. J. Nagelkerke et al., “A note on a general definition of the coefficient of
determination,” Biometrika, 1991.

[120] L. Deng, “The mnist database of handwritten digit images for machine learning
research,” IEEE Signal Processing Magazine, 2012.

[121] ITU, “AI/ML in 5G Challenge 2020,” https://www.itu.int/en/ITU-T/AI/
challenge/2020/, online; accessed November 2020.

[122] C. Perlich, F. Provost, and J. S. Simonoff, “Tree induction vs. logistic regression:
A learning-curve analysis,” Journal of Machine Learning Research, 2003.

[123] D. Bolton, “The multinomial theorem,” The Mathematical Gazette, pp. 336–342,
1968.

[124] L. Lovász, “Submodular functions and convexity,” in Mathematical Programming
The State of the Art. Springer, 1983.

[125] M. Conforti and G. Cornuéjols, “Submodular set functions, matroids and the greedy
algorithm: tight worst-case bounds and some generalizations of the rado-edmonds
theorem,” Discrete applied mathematics, 1984.

[126] R. K. Iyer and J. A. Bilmes, “Submodular optimization with submodular cover and
submodular knapsack constraints,” in Advances in Neural Information Processing
Systems, 2013.

[127] L. Valerio, M. Conti, and A. Passarella, “Energy efficient distributed analytics
at the edge of the network for iot environments,” Elsevier Pervasive and Mobile
Computing, 2018.

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
http://zenoh.io
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3144
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3144
https://www.itu.int/en/ITU-T/AI/challenge/2020/
https://www.itu.int/en/ITU-T/AI/challenge/2020/

116 REFERENCES

[128] H. Ye, L. Liang, G. Y. Li, J. Kim, L. Lu, and M. Wu, “Machine learning for vehicular
networks: Recent advances and application examples,” IEEE Vehicular Technology
Magazine, 2018.

[129] A. A. Diro and N. Chilamkurti, “Distributed attack detection scheme using deep
learning approach for internet of things,” Future Generation Computer Systems,
2018.

[130] D. P. Bertsekas, in Network Optimization: Continuous and Discrete models, 1998,
p. 349.

[131] G. J. Woeginger, “Exact algorithms for NP-hard problems: A survey,” in
Combinatorial optimization—eureka, you shrink! Springer, 2003.

	Acknowledgements
	Published Content
	Other Publications and Submitted Content
	Resumen
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Main Contributions
	Thesis Outline

	Optimization of an Integrated Fronthaul/Backhaul Network
	System Model
	Problem Formulation
	Incorporation of Delay constraints

	Heuristic Algorithm
	Validation and Application of the Approaches
	Small-Scale Topology
	Large-Scale Topology / Practical Crosshaul Transport Network

	Conclusion

	Virtual Network Function (VNF) Placement on Mobile Cloud/Edge Environments
	Mobile Robotics Use Case
	System Model
	Problem Formulation
	Radio Coverage Constraints
	Delay Constraints
	Battery Constraints
	Cost Minimization

	Heuristic Algorithm
	Complexity Analysis

	Validation and Application of the Approaches
	Experiment Setup
	Simulation Results

	Conclusion

	Network Optimization for Distributed Machine Learning
	System Model
	Modeling Real-World Supervised ML tasks

	Problem Formulation
	Characterizing the Performance of the Learning Process
	Learning Time
	Learning Time and Cost
	Learning Cost
	Number of Iterations

	Problem Analysis
	Heuristic Algorithm
	Greedy Solutions to Submodular Problems
	The DoubleClimb
	Algorithm Analysis

	Validation and Application of the Approaches
	Reference Scenario
	Performance Comparison

	Conclusion

	Conclusions
	Appendices
	Linearization of the product of two variables
	Linearization of the product of two binary variables
	Linearization of the product of one binary variable and one real bounded variable

	NP-Hardness
	NP-Completeness proof of the problem defined in Chapter 2
	NP-Hardness proof of the problem defined in Chapter 4

	Algorithms Pseudo-codes
	Algorithm for fixed RAN elements (Heuristic 2)

	References

