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Abstract
The characterization of transformations among entangled pure states via local operations assisted
by classical communication (LOCC) is a crucial problem in quantum information theory for both
theoretical and practical reasons. As LOCC has a highly intricate structure, sometimes the larger
set of separable (SEP) maps is considered, which has a mathematically much simpler description.
In the literature, mainly SEP maps consisting of invertible Kraus operators have been taken into
account. In this paper we show that the consideration of those maps is not sufficient when
deciding whether a state can be mapped to another via general SEP transformations. This is done
by providing explicit examples of transformations among pure three- and five-qubit states, which
are feasible via SEP maps containing singular Kraus operators, however, not possible via SEP maps
containing solely regular Kraus operators. The key point that allows to construct the SEP maps is
to introduce projective measurements that occur with probability zero on the input state. The fact
that it is not sufficient to consider SEP maps composed out of regular Kraus operators even in the
case of pure state transformations, also affects the results on LOCC transformations among pure
states. However, we show that non-invertible Kraus operators do not help in state transformations
under LOCC with finitely many rounds of classical communication, i.e. the necessary and
sufficient condition for SEP transformations with invertible Kraus operators is still a necessary
condition for convertibility under finite-round LOCC. Moreover, we show that the results on
transformations via SEP that are not possible with LOCC (including infinitely many rounds of
classical communication) presented in Hebenstreit et al 2016 Phys. Rev. A 93, 012339 are not
affected.

1. Introduction

Understanding the entanglement properties of multipartite quantum systems plays a major role in both
quantum information theory and condensed-matter physics. On the one hand, this allows to derive
protocols for quantum communication such as secret sharing [1] and schemes for quantum computation
such as measurement-based computation [2] to cite some examples. On the other hand, the entanglement
structure of many-body systems can be used to characterize phase transitions [3] and to devise schemes for
numerical simulation using tensor network states [4]. In general, entanglement is considered to be one of
the non-classical ingredients that allows quantum technologies to outperform their classical counterparts.
For this reason, a resource theory of entanglement has been developed over the last two decades [5]. This
theory provides a rigorous framework that makes it possible to qualify and quantify this resource and to
understand the fundamental possibilities and limitations behind its manipulation. However, many
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questions that have been long answered for bipartite systems turn out to be much more difficult when more
parties are taken into account. Besides its fundamental interest, advancing further the resource theory of
entanglement in the multipartite regime might lead to new genuinely many-body applications of quantum
information theory.

Entanglement theory is formulated as a resource theory [6]. Such theories are built from the notion of
the so-called free operations, which, due to the physical setting, are easily implementable and are therefore
considered to be accessible at no cost. States that cannot be prepared with free operations acquire the status
of a resource, in the sense that they might allow to overcome the limitations of what is possible by means of
the free operations alone. Furthermore, the notion of free operations allows to define an operational partial
order in the set of resource states: if there exists a free operation Λ such that Λ(ρ) = σ, then ρ is not less
resourceful than σ. This is because any protocol that can be successfully implemented in this scenario (i.e.
with free operations) starting from σ can also be implemented successfully starting from ρ. Functionals that
preserve this ordering are considered to be resource quantifiers. Entanglement is a resource shared by
different possibly space-separated parties. In this context, local operations assisted by classical
communication (LOCC) arise as a natural and operationally motivated choice of free operations. LOCC
maps are built from local completely positive, trace preserving (CPTP) maps which the parties can correlate
by exchanging classical communication. On the one hand, understanding LOCC allows to order and
quantify the set of entangled states and to identify those that are potentially more useful. On the other
hand, it provides protocols for the manipulation of this resource in practice.

A milestone result in this context is Nielsen’s theorem [7], which characterizes LOCC convertibility
among pure bipartite states in terms of majorization. Unfortunately, the extension of Nielsen’s theorem to
the multipartite case is not straightforward at all. The mathematical characterization of the set of LOCC
maps and LOCC transformations is extremely complicated due to the intricacies that arise when
considering a potentially unbounded number of rounds of classical communication [8]. Indeed, it is known
that in contrast to bipartite pure state transformations [9], no simplification can be placed on the number
of rounds of classical communication that is sufficient to consider in general [10, 11]. Notwithstanding,
several different works over the last years have led to considerable progress in our understanding of the rich
entanglement structure of pure multipartite states. Reference [12] characterizes when pure multipartite
qubit-states are related by local unitary (LU) transformations. Since LUs are invertible LOCC
transformations, this defines equivalence classes of states with the same entanglement [13]. Reference [14]
introduces the notion of stochastic-LOCC (SLOCC) classes, which provides a coarse-grained classification
of states with different entanglement properties. In more detail, two pure states are said to be in the same
SLOCC class if they can be interconverted with non-vanishing probability by probabilistic LOCC. Thus,
although this classification is based on an equivalence relation and, therefore, provides no sense of ordering,
it tells us that LOCC manipulation can only occur within these classes. Indeed, LOCC convertibility has
been later characterized within SLOCC classes with a simple mathematical structure such as the GHZ [15]
or the W [16] family. Another fruitful approach is to consider inner or outer approximations of the set of
LOCC maps with a mathematically more tractable set of maps within a fixed SLOCC class. A natural and
physically motivated inner approximation to LOCC is LOCCN, the set of LOCC maps implementable with a
finite number of rounds of classical communication. The fact that such protocols have to terminate has
allowed to characterize all states that are reachable by this class of transformations within a given (generic)
SLOCC class and has allowed to identify multipartite protocols which cannot be boiled down to a
concatenation of deterministic one-round protocols as in the bipartite and the aforementioned multipartite
case [17]. A particularly useful superset of LOCC is that of separable (set of separable (SEP)) maps, which
are those CPTP maps that admit a Kraus decomposition in which all Kraus operators factorize in tensor
products for each party [18]. Although it is known that the inclusion is strict, instances of protocols in
which SEP outperforms LOCC are rare [19] and, moreover, for certain tasks such as bipartite pure-state
transformations they are known to be effectively the same [20]. In [21] transformations among multipartite
pure, fully entangled states (i.e. states for which the local density matrices are of full rank) within the same
SLOCC class have been considered. There, a necessary and sufficient condition for the existence of a SEP
map which transforms the pure initial to the pure final state has been provided. However, there has been a
constraint on the SEP map, which has been overlooked so far [22]. The criterion holds for SEP maps, whose
Kraus operators are invertible. In the following we refer to this set of CPTP maps as SEP1. Until now (with
the exception of [23, 24]) SEP1 has been considered as a superset of LOCC. The main reason why singular
Kraus operators have not been considered (in the context of LOCC) is that they map the initial state into a
state which is no longer in the same SLOCC class as the final state. However, the fact that the initial state
could be annihilated by the Kraus operator has been ignored. Due to that, the condition on the existence of
a SEP1 map has been subsequently used to characterize LOCC convertibility among pure multipartite fully
entangled states in several general systems such as three-qubit states, four-qubit states and three-qutrit states
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Figure 1. Summary of the inclusion relations of possible pure state transformations among fully entangled states. As explained
in section 2, we use the subscript T to indicate that a relation should be understood in this sense. Surprisingly, there exist pure
state transformations that are possible via SEP, but not via SEP1, i.e. when considering only regular Kraus operators (see
section 4.1). Hence, SEP1 �T SEP. It is an open problem whether there exist pure state transformations among fully entangled
states that are possible via LOCC, but not via LOCCN. There do exist pure state transformations that are possible via SEP, but not
via LOCC (which is proven here by adapting the proof of [28], in which SEP was considered to coincide with SEP1). In fact, these
examples show that SEP1 �T LOCC. It is currently not clear, whether there exist LOCC transformations which are not possible
via SEP1. In this article, we answer a related question by showing that finite round LOCC transformations among fully entangled
states are always possible via SEP1, i.e. LOCCN⊆T SEP1.

[25–28]. In [23, 24], however, it has been proven that generic pure fully entangled states, i.e. almost all fully
entangled states, of more than three parties with arbitrary equal local dimension are isolated, i.e. they
cannot be obtained from nor transformed to inequivalent pure fully entangled states by SEP and, hence, by
LOCC.

In this work we explore the differences in what comes to fully-entangled pure-state transformations
between SEP1 and SEP and its consequences for deciding LOCC convertibility. Remarkably, we show that
necessary and sufficient conditions for SEP1 convertibility are only sufficient for SEP convertibility. Note
that this implies that SEP1 is not necessarily a superset of LOCC. In order to prove this, we construct
explicit examples of SEP transformations which are infeasible via SEP1. Interestingly, these instances exist
for systems of very small size and dimension such as three-qubit and five-qubit states. The crucial
observation behind these constructions is that SEP transformations can contain, in contrast to SEP1,
projective Kraus operators which annihilate the initial state. Stated more operationally, since one can see
that non-invertible Kraus operators which occur with non-zero probability do not need to be taken into
account, the difference is given by measurement operators whose outcomes have zero probability when
applied to the initial state. This does not only shed light on the role of the outcomes that cannot occur but,
as explained above, it is important to decide how to interpret results that have been obtained previously
based on the condition of [21]. Importantly, we show here that for LOCCN transformations among fully
entangled states non-invertible Kraus operators do not need to be taken into account. In other words, the
necessary and sufficient condition for SEP1 convertibility remains a necessary condition for LOCCN

convertibility. Furthermore, we will also provide a general condition under which the conditions for the
existence of a SEP state transformation coincide with those for the existence of a SEP1 map. This is used to
show that the examples given in [28] using the SEP1 condition indeed provide pure state transformations
which are possible via SEP but not via LOCC. On the other hand, the question of whether LOCC
transformations in this context are only possible if they can be be implemented by SEP1 remains
unanswered, i.e. it is not clear whether the necessary and sufficient condition for SEP1 convertibility is also a
necessary condition for LOCC convertibility if one allows infinitely many rounds of classical
communication. Figure 1 summarizes the relation between aforementioned sets of pure state
transformations incorporating the findings of this paper.

Our results go far beyond mere mathematical statements on the inclusion of different sets of operations
and the extension of a previously obtained condition. They form a profound basis on which LOCC
convertibility can be decided in a systematic fashion in the future. Under the practical constraint of finitely
many rounds of classical communication we show here that the condition observed in [21] is indeed
necessary for LOCC convertibility. However, when addressing questions concerning the entanglement of
states the possibility of infinitely many classical communications rounds has to be taken into account. It is
not yet clear whether SEP1 can be considered to be a superset of LOCC. Therefore, it is necessary to include
singular Kraus operators when studying entanglement with the use of separable maps as we show here that
SEP and SEP1 do not coincide, even for pure states transformations. Moreover, we can reassure on the
examples of pure state transformations that are possible via SEP but not via LOCC found in [28] that the
separation between SEP and SEP1 does not imply that previously obtained results are obsolete.

3



New J. Phys. 23 (2021) 033046 M Hebenstreit et al

The structure of this paper is as follows. We will first define our notation. Then we will review the result
of [21] and provide necessary and sufficient conditions for transformations via SEP. We will then discuss
the relations among the different separable classes of operations. In particular, we will provide examples for
transformations that are only possible if singular Kraus operators are taken into account and we will show
that LOCCN transformations among fully entangled pure states are included in SEP1. Moreover, we will
derive a sufficient condition for SEP transformations to be implementable via SEP1 and we will provide an
adaptation of the proof for the examples of [28]. Finally we will give a conclusion and an outlook.

2. Notation and preliminaries

In this work we consider pure states of an arbitrary number of parties n and arbitrary local dimensions {di}
which are fully entangled. That is, states |ψ〉 in the Hilbert space H =

⊗n
i=1 C

di such that the reduced
density matrix for each party i, ρi, fulfills rankρi = di. We call a state critical if ρi ∝ 𝟙 for all parties i. We
will consider transformations among fully entangled states, which are given by CPTP maps
Λ : B(H) →B(H), where B(H) is the set of bounded linear operators acting on H [34]. Every CPTP map
admits a Kraus decomposition, i.e. it can be written as

Λ(X) =
∑

i

KiXK†
i , (1)

for some set of operators {Ki} ⊂ B(H) fulfilling
∑

iK
†
i Ki = 𝟙 referred to as Kraus operators. As mentioned

above, we will be interested in transformations among fully entangled pure states with particular subsets of
the set of CPTP maps: SEP, SEP1, LOCCN and LOCC, whose definitions we provide in the following.

A CPTP map Λ is said to be in SEP if it admits a Kraus decomposition with Kraus operators {Ki} such
that for all i Ki =

⊗n
j=1 K(j)

i with K(j)
i ∈ M(dj,C) ∀j, the last symbol referring to square matrices of size dj

with complex entries. A SEP map Λ is said to be in SEP1 if there exists a Kraus decomposition of the above
form which fulfills moreover that K(j)

i ∈ GL(dj,C) ∀i, j, i.e. every Kraus operator is regular. A CPTP map Λ

is said to be in LOCC if spatially separated parties can implement it using local generalized measurements
and classical communication. If an LOCC map can be realized with finitely many rounds of classical
communication, it is said to be in LOCCN. Formal definitions of LOCC and LOCCN are provided in
appendix A.

Whenever there exists a map Λ in SEP, SEP1 or LOCCN such that Λ(|ψ〉〈ψ|) = |φ〉〈φ|, we say that |ψ〉
can be converted into |φ〉 by SEP, SEP1 or LOCCN operations (the analogous claim for LOCC with infinitely
many rounds of classical communication can be made by means of a limiting procedure, cf appendix A).
From the definitions it should be clear that SEP1 ⊂ SEP and LOCCN ⊂ LOCC ⊂ SEP. However, we want to
understand here whether the inclusion X ⊂ Y translates into the existence of a transformation among fully
entangled pure states by the operations given by Y but not by the operations given by X or whether both
sets of transformation are equally powerful in this context. For this, we write X =T Y if whenever there
exists a map Λ in Y that transforms |ψ〉 into |φ〉, there exists a map Λ′ in X that transforms |ψ〉 into |φ〉 and
vice versa. On the other hand, we write X �T Y if X ⊂ Y and for some states |ψ〉 and |φ〉 the conversion |ψ〉
into |φ〉 is possible within Y but there exists no map in X that transforms |ψ〉 into |φ〉.

As explained in the introduction the considered transformations can only occur within SLOCC classes.
Two states |ψ〉, |φ〉 ∈ H are said to be in the same SLOCC class if |φ〉 =

⊗n
i=1 gi|ψ〉 with gi ∈ GL(di,C). We

will consider for each SLOCC class a representative which we will refer to as |ψ〉. Other states in the SLOCC
class are then identified by regular local operators acting on |ψ〉. Usually, we will use g |ψ〉 with g = ⊗igi to
denote the initial state and h |ψ〉 with h = ⊗ihi as the final state of a potential state transformation. Here, gi

and hi are regular operators which reflects that we are interested in transformations among fully entangled
states. Moreover, we will use the notation G = g†g and H = h†h.

The stabilizer (or symmetry group) of |ψ〉, i.e. the set of local invertible operators leaving |ψ〉 invariant,
will be denoted by Sψ . More precisely, we have that

Sψ =
{

S : S |ψ〉 = |ψ〉 , S = S(1) ⊗ · · · ⊗ S(n), S(i) ∈ GL(di,C)
}
. (2)

Furthermore, we will denote by Nψ the set of local operators which annihilate the state |ψ〉, i.e.

Nψ =
{

N : N |ψ〉 = 0, N = N(1) ⊗ · · · ⊗ N(n), N(i) ∈ M(di,C)
}
. (3)

As we will see, the stabilizer and the set annihilating the representative define which state
transformations are possible via SEP. In the next section we will discuss in detail the necessary and sufficient
condition for such transformations, as well as the condition introduced previously in [21].
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3. State transformations

In [21] state transformation via separable maps which only involve regular matrices as Kraus operators have
been considered. In particular, the following necessary and sufficient condition for the existence of
transformations among pure states via SEP1 has been shown [21].

Theorem 1. ([21]). The state g |ψ〉 can be transformed to h |ψ〉 via SEP1 if and only if there exists a finite set of
probabilities {pk}, i.e. pk � 0,

∑
k pk = 1, and symmetries {Sk} ⊆ Sψ such that

∑

k

pkS†kHSk = rG, (4)

where r = ‖h |ψ〉 ‖2/‖g |ψ〉 ‖2.

It is currently unclear whether a pure state transformation that is possible via LOCC is always possible
via SEP1. However, we will show in the following that there exist state transformations via SEP which are
impossible via SEP1 and therefore SEP is strictly larger than SEP1, i.e. SEP1 �T SEP. In order to see this, let
us note that the Kraus operators occurring in a separable map might also annihilate the initial state, leading
to more general maps. That is, operators Mk, with Mkg |ψ〉 = 0 need to be taken into account. Hence, we
have the following theorem characterizing SEP transformations.

Theorem 2. The state g |ψ〉 can be transformed to h |ψ〉 via SEP if and only if there exists a finite set of
probabilities {pk}, i.e. pk � 0,

∑
k pk = 1, symmetries {Sk} ⊆ Sψ , and local singular matrices Nq ∈ Ngψ such

that
1

r

∑

k

pkS†kHSk + g†
∑

q

N†
q Nqg = G, (5)

where r = ‖h |ψ〉 ‖2/‖g |ψ〉 ‖2.

Proof. The proof of this theorem is analogous to the proof of theorem 1 presented in [21]. However, here
non-invertible matrices have to be taken into account. We will first show that equation (5) necessarily holds,
if the transformation is possible via SEP. Let Mk (Nq) denote those Kraus operators, which reach the final
state with non-vanishing probability (annihilate the initial state) respectively, i.e.

Mkg |ψ〉 /n1 =
√

pkh |ψ〉 /n2, (6)

Nqg |ψ〉 = 0 (7)

where pk > 0 and n1 = ‖g |ψ〉 ‖, n2 = ‖h |ψ〉 ‖. Note that only finitely many measurement operators
have to be taken into account (even if the stabilizer contains infinitely many elements) due to
Caratheodory’s theorem. The first equation leads to Mk =

√
pkn1/n2hSkg−1 where Sk is an element of the

stabilizer Sψ of |ψ〉. The completeness relation,
∑

kM†
k Mk +

∑
qN†

q Nq = 𝟙 is hence equivalent to

1

r

∑

k

pkS†kHSk + g†
∑

q

N†
q Nqg = G, (8)

which proves that equation (5) has to be necessarily satisfied. That this condition is sufficient follows using
the argument above in the reverse order. �

As we will see in the following there exist separable transformations which solely become possible when
taking Kraus operators with vanishing probability into account. Note, however, that the results presented in
[23, 24], where it has been shown that almost all n-qudit states possess only the trivial stabilizer and are
hence not convertible into any other state are not affected, as already proven in [23].

4. Relations among classes of separable operations

Whereas it is currently not clear whether pure state transformations that are possible via LOCC are always
possible via SEP1, we will show here that SEP1 does not coincide with SEP. Furthermore, we will show that a
pure state transformation among fully entangled states that is possible via LOCCN is necessarily possible via
SEP1 and therefore, any such pure state transformation via LOCCN necessarily has to obey the conditions in
theorem 1. Moreover, we will derive sufficient conditions for which pure state transformations that are
possible via SEP coincide with those via SEP1. Finally, we will revisit the example presented in [28] of SEP1

pure state transformations which cannot be realized via LOCC (taking infinitely many rounds into
account). We show that the statement remains true if one takes into account that there may be more
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transformations possible via SEP than SEP1, implying that these are indeed examples of pure state
transformations which can be achieved with SEP, however not with LOCC.

4.1. Examples of SEP transformation that are not possible via SEP1

Let us start by presenting two distinguished examples of state transformations which are possible via SEP,
but not via SEP1. The first example is notable because the considered initial state has solely unitary
stabilizer. The second example is found among three-qubit states and thus within the smallest possible
multipartite quantum system [35].

Let us first consider the five-qubit ring graph state, |ψ〉. A graph state is a special type of stabilizer state.
For an introduction to graph states and stabilizer states we refer the reader to [30]. The Pauli stabilizer of
the state |ψ〉 is generated by Ai = Zi−1XiZi+1, for 1 � i � 5 and Z0 = Z5, Z6 = Z1. For this state we find
that Sψ =

〈
{Ai}5

i=1

〉
. To show this statement we use that if a critical state has finitely many unitary

symmetries, then it has no other regular symmetries [31] and that any graph state is a critical state.
Considering the reduced density operators of three qubits it is straightforward to show that all LU
symmetries of |ψ〉 are contained in its Pauli stabilizer and thus that there are only finitely many symmetries
(for details see appendix B). We then consider the state transformation from |ψ〉 to a state h |ψ〉. Hence, we
have that G = 𝟙 and h will be specified below. Using that the Pauli stabilizer is abelian, we obtain that
equation (4) is fulfilled only if tr(HP) = 0 for any non-trivial element P of the Pauli stabilizer. Choosing
H = h†h = (1/21 + aZ) ⊗ (1/21 + aX) ⊗ (1/21 + aZ) ⊗ 1/21 ⊗ 1/21, for some a ∈ (0, 1/2), it holds that
tr(HA2) �= 0 and therefore the transformation is not possible via SEP1.

We construct now the SEP map which transforms |ψ〉 into h |ψ〉. In order to do so, we use the following
projectors, which annihilate the initial state,

Q1 =
1

8
(𝟙+ Z) ⊗ (𝟙+ X) ⊗ (𝟙− Z) ⊗ 𝟙⊗2 (9)

Q2 =
1

8
(𝟙+ Z) ⊗ (𝟙− X) ⊗ (𝟙+ Z) ⊗ 𝟙⊗2 (10)

Q3 =
1

8
(𝟙− Z) ⊗ (𝟙+ X) ⊗ (𝟙+ Z) ⊗ 𝟙⊗2 (11)

Q4 =
1

8
(𝟙− Z) ⊗ (𝟙− X) ⊗ (𝟙− Z) ⊗ 𝟙⊗2. (12)

The Kraus operators for the separable map are then given by: Mi = a1hQi, for i = 1, 2, 3 and with
a1 = 2

√
2a3/((1/2 + a)2(1/2 − a)(1/8 + a3)), M4 = 2

√
2a3/((1/2 − a)3(1/8 + a3))hQ4, and

M5 =
√

1/(1/8 + a3)h;M6 = M5A1, M7 = M5A3, M8 = M5A1A3. It is straightforward to verify the

completeness relation
∑

kM†
kMk = 𝟙 and that the separable map corresponding to these Kraus operators

indeed implements the transformation.
State transformations which are possible via SEP, but not via SEP1, can be also found among three-qubit

states. The following example is an adaption of the five-qubit example presented above. Here, we consider a
transformation from the three-qubit ring graph state |ψ〉, which is LU equivalent to the three-qubit GHZ
state, to h1 ⊗ h2 ⊗ h3 |ψ〉. As before, G = 𝟙 and we choose h such that H = h†h = (1/2𝟙+ aZ) ⊗ (1/2𝟙
+ aX) ⊗ (1/2𝟙+ aZ), for some a ∈ (0, 1/2). The stabilizer of the considered representative, |ψ〉, contains
(by definition) the operators Ai = Zi−1XiZi+1, for 1 � i � 3 and Z0 = Z3, Z4 = Z1 and products thereof.
However, in contrast to the five-qubit state above, the state considered here does possess additional
symmetries, i.e. more than its Pauli stabilizer. Hence, in order to show that the considered transformation is
not possible via SEP1, we cannot use the same argument as above. However, we can resort to previous
results on SEP1 transformations among three-qubit states [25], instead. In order to do so, we write the final
state in the standard form introduced in [25]. One obtains that the final state is up to local unitaries of the
form

hx ⊗ hx ⊗ hx |GHZ〉 , (13)

with h†
xhx ∝ 1/2𝟙+ aX. As has been shown in [25] it is not possible to reach states of the form above via

SEP1.
Let us now show that the inclusion of singular Kraus operators allows to derive a map in SEP, which

maps |ψ〉 into h |ψ〉. We use the projectors Q′
1, Q′

2, Q′
3, Q′

4 defined such that Q′
j ⊗ 𝟙⊗2 = Qj, for Qj as in

equations (9)–(12). Any of these operators annihilates the initial state. The Kraus operators for the
separable map then take a similar form as in the previous example, namely: Mi = a1hQ′

i, for i = 1, 2, 3 and
with a1 =

√
2a3/((1/2 + a)2(1/2 − a)(1/8 + a3)), M4 =

√
2a3/((1/2 − a)3(1/8 + a3))hQ′

4, and
M5 = (1/2)

√
1/(1/8 + a3)h;M6 = M5A1, M7 = M5A3, M8 = M5A1A3. Again it is straightforward to verify

the completeness relation
∑

kM†
k Mk = 𝟙 and that the separable map corresponding to these Kraus
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operators indeed implements the transformation. Hence, already for three qubits one can observe a
difference among these sets of operations. In the next section we will see that finite-round LOCC
transformations among pure states are contained in SEP1.

4.2. State transformations using finitely many rounds of communication
Finite-round LOCC protocols constitute a subset of LOCC that is of particular practical relevance. In this
subsection we will show that there exists an LOCCN transformation among fully entangled states only if
equation (4) holds, as stated in the following lemma.

Lemma 3. If there exists a map in LOCCN which transforms a pure, fully entangled state into another, then
there also exists a map in SEP1 which accomplishes this transformation, i.e. LOCCN⊆TSEP1.

Proof. First, note that if an LOCCN protocol is solely composed of measurements with regular
measurement operators, then a Kraus decomposition of the map containing only local invertible Kraus
operators exists. In this case, operators Nq which contain singular matrices are thus not present in
equation (5). Let us now show that the case, in which measurements including a singular measurement
operator are performed, cannot occur. In order to see this, note that any local operator that annihilates a
fully entangled state must be singular at not less than two sites. Any local operator that is singular at only
one site, acting on a fully entangled state, thus yields a state with strictly positive norm, which, moreover,
must have a rank deficient reduced density matrix at some site. Let us now consider the first round in which
one of the parties implements a measurement containing a singular measurement operator. Due to the
considerations above, the resulting state corresponding to the singular measurement operator occurs with a
strictly positive probability and, furthermore, the resulting state is no longer in the same SLOCC class as the
final state. Hence, it is impossible to transform this state via LOCC into the final state [36]. Hence, there is
always a non-vanishing probability to obtain a state which is not in the same SLOCC class as the target
state, which shows that it is impossible to deterministically transform one fully entangled state into another
utilizing in any step of an LOCCN protocol a singular matrix. This completes the proof. �

Whether the same holds true also when one includes the possibility of infinitely many rounds of classical
communication is currently not clear. When dealing with infinite round protocols, many reasonings that
apply to finite round protocols do not hold any more. Hence, the investigation of these protocols is more
complicated. In particular, the proof of lemma 3 cannot be straightforwardly generalized to cover LOCC
protocols with infinitely many rounds of classical communication. This is because such protocols could in
principle implement a SEP transformation with non-invertible Kraus operators through a sequence of
LOCCN maps {Λi} in which every Λi has invertible Kraus operators. In fact, notice that if |ψ〉 cannot be
transformed into |φ〉 by SEP1, this does not forbid the existence of a sequence of SEP1 maps {Λi} such that
‖Λi(|ψ〉〈ψ|) − |φ〉〈φ‖| → 0 as i →∞.

4.3. States with unitary stabilizer
In this section we will focus on state transformations within an SLOCC class for which a representative with
solely unitary local symmetries can be found. It has been shown that whenever there exists a state in an
SLOCC class which has a finite stabilizer, then there exists a state in the same SLOCC class which has a
unitary stabilizer [21, proposition 5]. Moreover, in case a critical state exists, this state is the critical state
[21, proposition 6]. We derive a necessary condition for SEP-transformations to be possible as well as a
sufficient condition under which singular Kraus operators need not be taken into account, as stated in the
following lemma.

Lemma 4. Let Sψ be unitary. Consider an initial state g |ψ〉 and a final state h |ψ〉, where we choose w.l.o.g.
‖g |ψ〉 ‖ = ‖h |ψ〉 ‖ = 1. Then, if g |ψ〉 can be transformed into h |ψ〉 via SEP, it necessarily holds that
tr(G) � tr(H). Moreover, in case tr(G) = tr(H), the SEP transformation is possible if and only if equation (4)
holds, i.e. if and only if a SEP1 transformation is possible.

Proof. Consider theorem 2 for states with unitary stabilizers, i.e. Sψ ⊂ U(d1) ⊗ · · · ⊗ U(dn). Taking the
trace of equation (5) and using that r = 1 we obtain

tr(H) + p = tr(G), (14)

where p = tr(g†
∑

qN†
q Nqg). Note that p � 0. The assertion follows from the fact that p = 0 iff Nq = 0∀q, as

the trace of positive operators is positive and as g is regular. �
Hence, for normalized initial and final states, projective measurements need not be taken into account as

long as tr(H) = tr(G) (in case the stabilizer is unitary). Note that in the examples presented in section 4.1,
tr(H) = tr(G) is obviously not fulfilled, when one normalizes the states.
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In the following we will use lemma 4 to provide an adaptation of the proof of the examples of pure state
transformation that are possible via SEP1 but not via LOCC given in [28]. In particular, we will take into
account that there might exist transformations that can be implemented via SEP but not via SEP1.

4.4. Examples of pure state transformations that are possible via SEP, but not via LOCC
In [28], some of us have considered examples of pure state transformations that are possible via SEP, but
not (infinite-round) LOCC. There, however, restricted LOCC operations have been considered, as SEP1 was
considered to be a superset of LOCC, instead of SEP. We will first briefly review the examples, as well as the
main idea of the proof. Then, we will present an adaptation of the proof to show that, indeed, these
examples of state transformations are possible via SEP, but not LOCC. Let us mention here that these
examples further show that SEP1 �T LOCC.

Let |ψ〉 denote the 3 qutrit seed states presented in [28]. As shown in [28] (see also [32]), we have that
Sψ contains only (nine) unitary elements. We consider the transformation from |ψ〉 to h |ψ〉 (both
normalized), where h = h1 ⊗ h2 ⊗ 𝟙 as given in lemma 9 in [28]. In order to keep the flow of reading, we
defer recalling additional details on h and |ψ〉 to appendix C, as they are unnecessary to follow the
subsequent reasoning. However, it will become important that tr(H) = tr(𝟙) for ‖h |ψ〉 ‖ = 1, as can be
easily verified. As shown in [28] |ψ〉 can be mapped to h |ψ〉 via SEP1 (and therefore also via SEP). However,
the proof that the transformation is not possible via LOCC has to be adapted. The reason for that is that in
[28], we have argued that the transformation is not possible via LOCC as

(a) |ψ〉 cannot be transformed to h |ψ〉 in a single round of classical communication (not even
probabilistically) and

(b) |ψ〉 is the only state that can be transformed to h |ψ〉 via SEP1.

However, statement (b) might no longer hold for SEP if one takes operators Nq into account, i.e. if one
considers the most general SEP operations.

Let us now assume that there exists an LOCC protocol transforming |ψ〉 into h |ψ〉 and show a
contradiction. The LOCC protocol must be non-trivial, hence there must exist a first round, in which a
non-trivial measurement is performed. The state at hand before this round is still (LU-equivalent to) |ψ〉
and all intermediate states afterward are of the form gi |ψ〉, where gi acts trivially on all parties but i, and are
normalized such that ‖gi |ψ〉 ‖ = 1. It is important to note that for any such gi, it can be shown that
trGi = tr 𝟙 = tr H. Here, the first equality follows from the fact that gi acts trivially on all but one parties
and the special form of |ψ〉. The second equality follows from the special form of the considered h and |ψ〉
as in [28] (see also appendix C). As the protocol must be deterministic, all intermediate states gi |ψ〉 must be
convertible to h |ψ〉 via LOCC and thus via SEP. As all the conditions for lemma 4 are satisfied, this lemma
implies that gi and h must satisfy equation (4). However, in [28] it is shown that the only state which fulfills
(up to LU) this condition is |ψ〉 itself. Hence, all gi |ψ〉 are LU-equivalent to |ψ〉. This contradicts the fact
that we were considering a non-trivial round and proves that these transformations cannot be implemented
via LOCC.

5. Conclusion and outlook

In this work we considered state transformations among pure fully entangled states via separable maps and
certain subsets of SEP. In particular, we showed that for the most general transformation via SEP, it is
essential to include Kraus operators that occur with zero probability when applied to the initial state as
there exist state transformations which are not possible otherwise. This can already be observed in the three
qubit and five-qubit scenario. Moreover, we proved that finite-round LOCC protocols do neither require
nor even allow for local measurements containing singular measurement operators in case the initial and
the final state are fully entangled. In case the stabilizer is unitary we found a necessary condition for the
existence of pure state transformations via SEP that is independent of the stabilizer. Moreover, we found
constraints under which the existence of pure state transformations via SEP coincides with those via SEP1.
The latter we used to prove that the examples given in [28] indeed correspond to pure state transformations
which are possible via SEP and not via LOCC (including infinitely many rounds of classical
communication). The main open question is whether LOCC ⊆T SEP1 holds or not. The answer to it would
not only shed light on how results of previous works need to be interpreted but in case it is negative, it
would also show that there are pure state transformations which only become possible if infinite rounds of
classical communication are utilized.
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Appendix A. Formal details on LOCC

In this section we give precise definitions of the terms LOCC and LOCCN. A CPTP map Λ is said to be in
LOCCN with m rounds of classical communication if it admits a Kraus decomposition with Kraus operators
{Ki} in which the index i can be decomposed as a multi-index i = (i1, . . . , im) so that

Ki = K(i1,...,im) =

m∏

k=1

Lik ({ij}j<k), (A1)

where the product should be understood from right to left (e.g.
∏2

k=1 Lik = Li2 Li1 ) and

Lik ({ij}j<k) = U(1)
ik

({ij}j<k) ⊗ · · · ⊗ U(sk−1)
ik

({ij}j<k) ⊗ P(sk)
ik

({ij}j<k)

⊗ U(sk+1)
ik

({ij}j<k) ⊗ · · · ⊗ U(n)
ik

({ij}j<k), (A2)

where all the matrices labeled with U are unitary, sk = sk({ij}j<k) and

∑

ik

(P(sk)
ik

({ij}j<k))†P(sk)
ik

({ij}j<k) = 𝟙 (A3)

for all the possible values of {ij}j<k. That is, every element of the multi-index ik corresponds to a round, in
which party sk implements a generalized measurement with measurement operators {Pik}. The identity of
this party and the particular map he/she implements depend on all previous values of the elements of the
multi-index {ij}j<k, which are known to every party through the use of classical communication. Then,
party sk transmits to all other parties the precise outcome ik he/she obtains implementing the generalized
measurement. Based on this value and all previous values of the elements of the multi-index, the remaining
parties implement a unitary transformation to their share of the state, which concludes the round.

In order to define the set LOCC allowing for infinitely many rounds of classical communication, we first
need to introduce the notion of composable LOCCN maps. An LOCCN map Λ with m rounds of classical
communication and an LOCCN map Λ′ with m + 1 rounds of classical communication are said to be
composable if they admit a Kraus decomposition as above with respective Kraus operators {Ki} and {K′

i}
such that

K ′
(i1,...,im+1) = Lim+1 ({ij}j<m+1)K(i1,...,im), (A4)

where Lim+1 ({ij}j<m+1) can be written as in equation (A2). Thus, a CPTP map Λ is said to be in LOCC if it
is in LOCCN or if it is the limit of a sequence of LOCCN maps {Λi} in which the maps Λi and Λi+1 are
composable ∀i and in the latter case we say that |ψ〉 can be converted into |φ〉 if limi→∞ ‖Λi(|ψ〉〈ψ|) − |φ〉
〈φ‖| = 0 in any matrix norm ‖ · ‖ of choice.

Appendix B. Local stabilizer of the 5 qubit ring graph

Let |ψ〉 be the five-qubit ring graph state and let Tψ = 〈{Ai}i〉 be its Pauli stabilizer. For an introduction to
graph states see [30]. We show here that Sψ = Tψ . For a more general form of this proof see [33].
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First we use that |ψ〉 is a connected graph state and thus a critical state. For critical states it holds that if
the number of unitary elements in Sψ is finite, then these are the only elements of Sψ [31]. Hence, showing
that any unitary element of Sψ is an element of Tψ (which is a finite group) implies the statement. In order
to see that, note that for a graph state, |ψ〉 it holds that ρ ≡ |ψ〉 〈ψ| ∝

∑
T∈Tψ

T. Taking the partial trace

over system 4, 5 and over system 3, 4, the condition

UρU† = ρ, (B1)

with U = U1 ⊗ · · · ⊗ U5 implies that

U1ZU†
1 ⊗ U2XU†

2 ⊗ U3ZU†
3 = Z ⊗ X ⊗ Z (B2)

U1XU†
1 ⊗ U2ZU†

2 ⊗ U5ZU†
5 = X ⊗ Z ⊗ Z. (B3)

Hence, U1 has to leave X and Z invariant under conjugation (up to a proportionality factor). It is
straightforward to see that this implies that U1 ∈ 〈X, Z〉 (up to a phase factor). A similar argument holds
for any other Uj (j �= 1) due to the symmetry of the state. Next, we show that there exists no Pauli operator,
σ1 ⊗ · · · ⊗ σ5 /∈ Tψ, which is a symmetry of the graph state. To demonstrate this, we note that the action of

any Pauli operator on a graph state coincides with the action of an operator Z
�k, with ki ∈ {0, 1} (up to

some phase) (see e.g. [30]), i.e.

U |ψ〉 = eiγσ1 ⊗ · · · ⊗ σ5 |ψ〉 = eiγ̃Z
�k |ψ〉 !

= |ψ〉 . (B4)

For�k �= �0 we have that |ψ〉 is orthogonal to Z
�k |ψ〉 (see e.g. [30]) and thus for equation (B4) to hold

necessarily U ∈ Tψ .

Appendix C. Details on the states considered in section 4.4

In this appendix we recall some details on the states |ψ〉 and h |ψ〉 from [28], which we use in section 4.4 in
the main text.

The state |ψ〉 is defined as

|ψ〉 = a
(
|000〉+ |111〉+ |222〉

)
+ b

(
|012〉+ |201〉+ |120〉

)
+ c

(
|021〉+ |210〉+ |102〉

)
, (C1)

for some a, b, c ∈ C s.t. |ψ〉 is normalized. Excluding certain particular choices a, b, c which are listed below
equation (4) in [28], the stabilizer of |ψ〉 is given by a discrete set of nine unitary operators, as mentioned in
the main text.

The operator h which we use in section 4.4 is given in lemma 9 of [28]. Let us recall here the definition
of h. To do so, we make use of the nine generalized Pauli matrices of dimension 3, which form a basis for
3 × 3 matrices. As mentioned in the main text, the considered operator h acts non-trivially on two sites, i.e.
h = h1 ⊗ h2 ⊗ 𝟙. Decomposing the operators H1 = h†

1h1 and H2 = h†
2h2 into the basis of the nine

generalized Pauli matrices and disregarding the 𝟙 component, we have eight components for H1 and H2,
respectively (note that some of the components are not independent as H1, H2 must be Hermitian). See also
equations (9), (10) and (13) in [28]. We now have that considering H1, four of the components must vanish
while the remaining four components must not vanish. The same is true for H2. Moreover, there is a
constraint specifying which of the components are the vanishing ones. Namely, the components that vanish
for H1 must not vanish for H2 and vice versa. This completes the definition of h [28]. As stated in the main
text, considering the normalization 〈ψ|ψ〉 = 〈ψ| h†h |ψ〉 = 1, the specific form of |ψ〉, as well as the specific
form of h it may be easily verified that tr H = tr 𝟙.
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