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Currently, there exist different technologies applied in the world of medicine dedicated to the detection of health
problems such as cancer, heart diseases, etc. However, these technologies are not applied to the detection of
lower body pathologies. In this article, a Neural Network (NN)-based system capable of classifying pathologies
of the lower train by the way of walking in a non-controlled scenario, with the ability to add new users without
retraining the system is presented. All the signals are filtered and processed in order to extract the Gait Cycles
(GCs), and those cycles are used as input for the NN. To optimize the network a random search optimization

process has been performed. To test the system a database with 51 users and 3 visits per user has been collected.
After some improvements, the algorithm can correctly classify the 92% of the cases with 60% of training data.
This algorithm is a first approach of creating a system to make a first stage pathology detection without the
requirement to move to a specific place.

1. Introduction

Gait analysis consists of the study of the movement of the human
body. The obtained information can be used to identify people [1], for
medical [2] or for sports purposes [3]. Healthy walk pattern has been
already studied by Watelain et al. [4], any change in it can be used
to identify both physical [5] and neurological problems [6]. There are
also studies that use the gait analysis for rehabilitation purposes [7,
8]. In all previous cases, gait analysis is performed using devices that
register the body movements. Traditionally the analysis was conducted
by a specialist in a controlled laboratory with an optical system based
on cameras and infrared (IR) markers that are placed on the patient’s
body. The main problem of those systems is that are quite expensive
and force the patient to move to the place where the data is going to be
acquired.

Currently, new technologies have made possible to create new low-
cost systems with a suitable level of precision [9]. These new systems
are based in different technologies such as cameras [10, 11, 12], pres-
sure treadmills [13], insoles [14] and kinematic systems [15]. Those
technologies have allowed the human gait analysis using wearable sen-
sors [16] and the possibility of carrying out the gait analysis to non-
hospital environments [17]. These improvements are really significant
because the way of walking can be affected by the environment [18].
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So, for this paper, a fully portable system has been used. This system is
based in 3 dimensions (3D) kinematic sensors placed in the lower train.

Following this path, the goal of this paper is to present an algo-
rithm capable of distinguishing pathologies of the lower train with the
requirement of not needing to register previously to be able to use the
system in non-controlled environments. With this objective in mind a
database of healthy and pathological walks has been created. In this
case a clubfoot has been simulated as pathological walk, however due
to the results presented here we expect the system can be used for any
pathology. The signals have been processed in order to remove the
unnecessary information and to extract the GCs. Once the cycles are
prepared, a Recurrent Neural Network (RNN) has been used to classify
the walks.

This article presents first the evaluation database, the used device
and the proceeding and the final dataset. All this information can be
found in section 2. In section 3 the description of the proposed al-
gorithm is exposed. The explanation of the NN and the optimization
process are presented in section 4 and 5. The last sections correspond
with the performed experiments and the conclusions.

2. Evaluation database

A proper database is an essential requirement to evaluate an algo-
rithm as the quality of the signals in the database influences the results.
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Fig. 1. Different angle movements.

Table 1. Technical specification of the sensors.

Dynamic Range Sensibility
Accelerometer +34.9 m/s* 0.06 mV/0/S
Gyroscope +39.22 - 156.88 rad/s 0.122 mg
Magnetometer +810 uT 0.092 V/gauss

Due to the absence of databases with healthy and pathological walk
signals, for this study we collected our own database. Although any
pathology could be used, to evaluate the system this study uses club-
foot as simulated pathology. In this section, the used device to acquire
the signals, the protocol and the final dataset are explained.

2.1. Capture system

The device used to acquire the database is the Technaid Tech-MCS
v3 [19], a professional tool to register the movement and the ori-
entation of the human body. The Tech-MCS can be divided into the
Tech-IMUs and the Tech-HUB. The IMUs (Inertial Measurement Unit)
are small electronic devices based on MEMS (Micro Electro-Mechanical
Systems) technology. Inside of each IMU, there is an accelerometer, a
gyroscope and a magnetometer, all working in 3D. The Tech-HUB is the
device that collects and stores all the data from the IMUs. This system
can capture the acceleration (m/s*), angular acceleration (rad/s) and
the magnetic field (uT) for each IMU. All this information is merged us-
ing a Kalman Extended Filter (KEF) [20] to obtain the orientation of
each IMU. With these orientations, the joint angles can be obtained. In
Table 1 the dynamic range and the sensibility of each sensor are pre-
sented.

2.2. Evaluation protocol

Since the lower train movements are those we are interested in, the
IMUs have been placed in both legs in the following way: 2 at each foot,
2 at the middle of each shin, 2 at the middle of each thigh and one at
the middle of the lumbar. Before each walk the IMUs are calibrated by
the Tech-HUB, obtaining the relative position between them, thereby,
removing the differences in IMU positions on different visits.

In each walk 81 different signals are acquired with a sampling fre-
quency of 250 Hz. Sixty-three of these signals correspond to the infor-
mation from the sensors (acc, gyro, mag), the others 18 are the angle
values from the joints and correspond to different movements of the
leg. In Fig. 1 the different movements per plane that are obtained by
the system are presented. Fig. 3 shows an angle signal from the knee.
Analysing the angle signal, it can be clearly appreciate the GCs, further-
more it can be find out that the highest value is where the leg is totally
extended.

Because of the difficulty to have access to people with some pathol-
ogy and the reduced number of people with a common pathology, for

this study a simulated pathology is used. Due to comfortability for the
users and the easiness to replicate, clubfoot walk is used as a fake
pathology and a sole padding is used to simulate it.

To avoid spurious data and to maximize the amount of data each
user must do three visits within an established period (Table 2). Each
visit consists of sixteen walks: eight healthy walks, four left pathology
walks and four right pathology walks. There must be at least fifteen
days between the first and second visit, and two months between the
second and the third. The walks are performed in a twenty meters flat
surface, with the only restriction of wearing neither heels nor slippers.

3. Proposed algorithm

The objective of the system is to create an algorithm capable of
distinguishing between healthy walks, right pathology walks and left
pathology walks. As it is shown in Fig. 2 the algorithm is divided into
three different sections: pre-processing, cycle extraction and classifica-
tion.

Walking is a repetitive movement, right-step left-step and repeat.
These repetitions are called gait cycles. The frequency of these GCs de-
pends on the person, however Fernandez-Lopez et al. [1] have demon-
strated that the frequency is approximately 1 Hz. As a result of the low
frequency of the movements, the signals can be filtered in order to re-
move unnecessary information. After the filtering process the signal is
trimmed in order to obtain the GCs. Using those CGs the feature matrix
is created. In the following subsections, all the process is explained in
detail.

3.1. Pre-processing

As mentioned above, gait is a low-frequency signal, thus there is
information that can be filtered without losing discriminative informa-
tion. Due to the various positions and sensors, the main frequency can
vary from one to another, so to prevent losing valuable information in-
stead of setting a common cut-off frequency all the signals are evaluated
in the frequency domain. After running some tests, we set heuristically
the cut-off frequencies at the point where the power spectrum falls un-
der —20 dB. A third-order Butterworth filter is used due to its simplicity
and its flat response. In Table 3 the cut-off frequencies that accom-
plish the mentioned rule are presented. As we can see the values from
shin and feet are higher than those from the lumbar and thigh. This
is because the shin and the feet make small movements with a higher
frequency.

In Fig. 3 the frequency and time domain of the left knee signals
before (left) and after (right) filtering are showed. As it can be appre-
ciated thought this process the frequency information is reduced but
in the time domain the signal looks the same. So, filtering the signals
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Table 2. Dataset samples.
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Visit Users Pathological walks ~ Healthy walks Acc signals (3D) Mag signals (3D) Gyr signals (3D) Angle signals
1 51 408 408 5712 5712 5712 14688

2 32 256 256 3584 3584 3584 9216

3 21 168 168 2352 2352 2352 6048

Total 832 832 11648 11648 11648 29952
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Acc, Gyr, Mag and Filtered signals

Ang signals
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Left Knee angle signal

4 N
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Fig. 2. Algorithm schema.

Table 3. Cut-off frequencies.

Position Signal frequency (Hz)
All Angle 10
Lumbar and thigh Accelerometer 10
Gyroscope 5
Magnetometer 5
Shin and feet Accelerometer 20
Gyroscope 10
Magnetometer 10

have removed the unnecessary information which is located in high fre-
quency.

3.2. Data extraction

Each walk is formed by several GCs, so extracting and using those
GCs instead of the whole signal reduces the computational cost of the
algorithm, and increases the data significantly. The process of finding
the starting points of the cycles is performed once for each group as all
the signals from the same walk have the same timestamps. Because of
the clearness of the GCs, the flexion/extension movement from the left
knee (xx) is used as a guide for the data extraction process. Another
feature to bear in mind is the GC duration, so a minimum and maximum
length are set. Thanks to those characteristics the process of obtaining
the starting points of the CGs can be done in four steps:

1. The first step is to obtain the peaks that accomplish the next rela-
tionship (Vpk):

max(xy )+ |min(xy )|
5

This means that only the values placed in the upper part of the
signal are taken into consideration. These points are where the leg
is totally extended forward.

2. The next step is to guarantee that the distance between the peaks
is bigger than 0.9 seconds between the points [21] (f;, = sampling
rate, Py, = position of the n* peak).

@

Ve >max(xpg) =2

Py =Py >09f, )

3. The following step consists in discarding all the cycles that are
longer than a threshold empirically found, which corresponds to:
Z;’:l PPk,‘

Phnet ~ Foky < 8T ®3)
The purpose of this is to avoid those cycles that due to an error
were not correctly acquired, an example of one of those cycles can
be seen in Fig. 4d.

4. The last step is to discard all the points that are in the first and last
3 seconds to avoid GCs with an uncommon waveform.

P, <315 4

Py, > length(xpx) = 3f; (5)

Fig. 4 shows the process of extracting the GCs. In Fig. 4a, the result
of finding the peaks with any restriction can be observed. Fig. 4b shows
the process of looking for the peaks considering the equation (1). It is
hard to appreciate with naked eye but at each maximum point, there are
two peaks detected. To solve the problem the minimal distance between
peaks (equation (2)) is also applied in Fig. 4c. In Fig. 4c the peaks within
the three first and last seconds (equations (4) and (5)) are also removed.

As all the walk signals were acquired at the same time all of them
have the same timestamps, we can divide all the signals using the points
obtained in the process above explained. It should be noted that not all
the GCs have the same length, even between cycles in the same walk.
In order to solve the problem and avoid losing information, the length
of all the cycles is increased up to the length of the longer one by zero
padding. Finally, the last step is to sort all the data in a matrix, where
the rows correspond with the samples of the cycles and the columns
with the different sensors.

Any  Acy Gy, Mg,
Any Acy Gy Mg

Anp Acp Gy, Mgy
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Fig. 4. Data extraction process: a) peaks obtained without restriction. b) peaks obtained considering equation (1).

d) example of a signal with an incorrect cycle.

c) peaks obtained considering equations (1)-(5).
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Fig. 5. Neural network schema.

Where:

An,=|LHip, RHip, LKnee, RKnee, LAnkle, RAnkle,|
Ac,

n
=[Lumb, LThigh, RThigh, LShin, RShin, LFoot, RFoot,]

L is the maximum number of samples in the longest cycle.

The structure of the matrix is as follows. An, is a vector formed
by information from the left hip (LHip,), right hip (RHip,), left knee
(LKnee,), right knee (RKnee,), left ankle (LAnkle,) and right ankle
(RAnkle,) from the n'* GC. This information corresponds to the joint
angles shown in Fig. 1. Similarly, Ac, corresponds to the accelerometer
information, and it is formed by information from the Lumbar (Lumb,),
left thigh (LThigh,), right thigh (RThigh,), left shin (LShin,), right
shin (RShin,), left foot (L Foot,) and right foot (RFoot,). The structure
of Gy, and Mg, is the same as that of Ac,, but it contains the informa-
tion from the gyroscope and magnetometer.

3.3. Classifier: neural network

Neural networks are a set of algorithms that mimics the way the
human brain operates with the purpose of recognising patterns [22].
These algorithms have different attributes such as adaptive learning,
real-time operation and prognosis, which make NNs a powerful tool
to solve different problems. The capability of NN algorithms detecting
health problems has been widely demonstrated [23, 24].

As we are working with temporal signals, RNN are used, and in spe-
cial a Long-Short Term Memory (LSTM) layer [25]. RNNs have a high
configuration capability, the problem is that for a new approximation
there is no reference of the number of layers, number of neurons per
layers, activation algorithm, filters per layer, etc. Finding the best con-
figuration of these hyperparameters to solve the problem can be an
arduous task, but some techniques make the process easier such as Ran-
dom Search (RS).

In Fig. 5 a scheme of the NN is presented. An LSTM layer is used
as an input layer and dense layers are used as hidden layers. The num-
ber of hidden layers is established in the hyperparameter optimization
process. The output layer is also a dense layer with three neurons, co-
inciding with the number of classes (healthy, right pathology and left
pathology). In order to prevent overfitting and to increase the accuracy
a dropout of 0.2 is performed before every dense layer excluding the
output layer.

Once we have the procedures next step is to find the optimal NN
configuration. We can divide the process into two: split up the dataset
and optimise the hyperparameter using RS.

4. RNN hyperparameter optimization

The first step is to divide the original dataset into two, one for train-
ing and other for testing. To create the sub-datasets all the walks are
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Table 4. Hyperparameters range.

Variable Values
Number of hidden layers (HL) [1,5]
Number of filters (NF) 214101
Learning rate (LR) 10i=1-41
Relationship between layers (RL) [1,4]
First layer activation tanh
Hidden layers activation relu
Output layer activation softmax
Optimizer adam

Table 5. Different relationships used. n is the value
under study. m is the number of the layer.

Number Relationship
1 2"

2 on-m

3 2n+m

4 2n—(m+l)

randomly divided. In the hyperparameter optimization process, the NN
is trained using 60% of data and tested with the remaining 40%.

The process of creating the two datasets is different between train
and test. In the training dataset, the cycles from the walk are extracted
and used individually as an input to train the network. However, for
testing the cycles are extracted and grouped depending on the walk.
In the classification process, the cycles of the same walk are classified
individually, and the mean of the result of all the cycles is used as a
result of the walk.

4.1. Random search optimization

RS is a method to find the optimal hyperparameters combination.
Upper and lower limits are set for each hyperparameter, and in each
execution a value within the established range is chosen. When the pro-
cess has been executed enough times, hyperparameters limits can be
reduced by discarding those values which provides lower accuracy and
the process repeated. Once the resulting grid is small enough instead of
repeating the process, all the possible values are tested.

In the first place, to obtain a general idea about the hyperparame-
ter optimization, the algorithm is run 5% of the total cases. Once the
grid is reduced the number of executions grows up to 20% of the new
possibilities. After the second execution of RS, the hyperparameters are
fine tuned to find the optimal configuration. In order to prevent that
the hyperparameter optimization gets stuck in specific group of data,
the groups are randomly chosen for each iteration.

In each RS loop, one random value of each hyperparameter is cho-
sen, and the process of training/testing is performed 5 times. The taken
accuracy for that configuration is the mean value of those 5 executions.

In Table 4 the ranges of values of the hyperparameters are showed.
As both the number of layers and the number of neurons/filters per
layers are under study, the number of their combinations grows expo-
nentially. To reduce the complexity of the study, instead of trying all
the possibilities four different relationships between the number of fil-
ters of the first layer and the number of neurons of the hidden layers
are studied. Table 5 shows the different relationships studied.

After executing the RS algorithm few times we can have an idea
about which configurations work better. The accuracy results of these
executions are presented in Table 6. It can be seen that the config-
urations with one and five Hidden Layers(HL) do not show the best
accuracy, furthermore, a low number of neurons per layer do not give
a proper result, neither the higher one does it. So, we can see that the
central configurations are the most optimal. The Learning Rate (LR) and
Relation between Layers (RL) parameters do not show a clear relation
about which is better. Because of the results, we can set the limit of HL
between 2 and 4 and Number of Filters (NF) from 128 to 512, in addi-
tion the cases from HL=1 and RL=4 are also included. In the case of the
LR and the RL, we maintain the same limits. Once the new limitations
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Table 6. Accuracy results of the algorithm in the first random search execution. The red rectangle demarcate the new borders for the second execution of RS
algorithm. HL=hidden layers. RL=relationship between. NF=number of filters of the first layer. LR=Learning rate.

HL 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5
LR NE/RL 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 8] 4
107! 16 62.5
1072 16 51.6 44.7 69.7
1073 16 56.5
1074 16 61.2
10! 32 55.7
1072 32 60.3
1073 32 63.3
1074 32 65.3 71.6
107! 64 46.9
1072 64
1073 64 68.5 78.5 72.5
1074 64
107! 128 85.8 82.6
1072 128 72.5
1073 128 81.6
1074 128 67.8
107! 256 72.2
1072 256 85.6
103 256 66.3
1074 256 84.5 72.6
107! 512 79.6 81.5
1072 512 78.3
1073 512 75.8
1074 512 65.7
10! 1024 71.8
10-2 1024 46.8 68.4
1073 1024 65.2
1074 1024 41.6

are established, the RS algorithm is run to obtain the best configura-
tion. After the RS optimization process, we look for the configuration
with higher accuracy. The best configuration is the one with NF=128,
HL=3, RL=3, and LR = 10~2 which gives an accuracy of 86.2%.

4.2. Fine-tuning optimization

The next step is to fine-tune the hyperparameters using the results
of the last RS execution as reference. Due to the changes in LR does
not have an impact on the accuracy the value is fixed to the one in the
configuration above. In the case of the NF, the accuracy is higher with
NF=128, so in the fine-tuning process, it remains unchanged. The dif-
ferent relationships give quite different results, so only the RL=3 and
RL=4 are used, which are the two configurations with the highest ac-
curacy. As the best value for HL cannot be discerned the values of HL
goes from 2 to 4, in the last RS execution. Finally, the training/testing
ratio is added as a parameter under study to the fine-tuning process, in
that way, a better behaviour of the algorithm can be observed. More-
over, the algorithm is executed ten times and the mean value is the one
taken.

In Fig. 6 the accuracy results of the fine-tuning configurations are
shown. The first observation we make is that the accuracy grows
with the percentage of training data, this is a common behaviour in
RNN algorithms, however overtraining increases the risk of overfit-
ting phenomena. The configurations with worst results are the RNNs
with HL4 RL3 and HL4 RL4, i.e. the configurations with more layers.
It can also be seen that the configuration with RL=3 gives a bit bet-
ter results than the one with RS=4. The next configurations offering
better results are HL3_RL4 and HL2_RL4, and the results of both are
so close. Finally, we have the configurations HL3_RL3 and HL2 RL3,
if we compare them, we can see than with a low percentage of train-
ing data the configurations give similar results, but beyond the 40% of
training data HL2_RL2 is the best configuration. At the light of the out-
comes, we can say that the RNN offering the best results is the one with
NF128 HL2 RL3 LR1072.

100,0%
95,0%
90,0%
85,0%
80,0%

75,0%

Accuracy

70,0%

65,0%

60,0%
55,0%

50,0%
10% 20% 30% 40% 50% 60% 70% 80% 90%

% of training data

2 RL3 e====HL2 RL4 HL3 RL3 HL3 Rl4 em===H[4 RL3 e====HL4 RL4

Fig. 6. Accuracy results of the fine-tuning configurations.

5. Experiments

At this point we can say the optimal configuration is the one with
NF128 HL2 RL3_LR1072, so all the experiments are performed using
that configuration. Moreover, to have a more detailed behaviour of the
RNN all the experiments are performed using different ratios of train-
ing/testing data. The aim of the experiments is to evaluate the RNN
behaviour in different scenarios and to improve it if possible. If one of
the experiments improves the results, the changes are incorporated in
the main RNN and used in the following experiments. The experiments
that have been performed are the following:

1. To divide the dataset to train with some users and test with others.

2. Test whether adding the first and last 3 seconds improve the algo-
rithm and adding the physiological information of the users (age,
height, etc.).

3. Test whether it is possible reduce the quantity of signals without
worsen the system.
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Fig. 7. Accuracy results for experiment 1.

4. Test whether all the cycles in a walk have the same importance.
5.1. Experiment 1

The most common problem in pattern recognition systems based
on NN is when a new user is registered, the whole system must be
retrained. In other fields, as biometric recognition, it is the normal be-
haviour, as you cannot be identified if you are not inside the system.
However for medical purposes it is unviable to have samples of the
users before the pathology identification. To solve this problem, the
main objective of this paper is to create a valid system that uses differ-
ent users in the training and testing dataset. So, from this experiment,
all the datasets do not share users in the training and testing datasets.

The first step is to create the two datasets, to avoid the system always
training with the same users, the users are randomly chosen in each
iteration. Furthermore, as all the users do not have the same number
of walks, for each configuration of training/testing ratio the algorithm
is run 20 times, instead of the 10 as it was done in the optimization
process.

In Fig. 7 we can see that the accuracy of the new approach falls
sharply. This behaviour is due to the training and testing datasets no
longer share users.

Removing the user variable, the process of obtaining the pattern that
identifies the pathology becomes more complex. To solve this problem
two new approaches are going to be evaluated: removing the restriction
of the first and last 3 seconds and adding the physiological information
of the users.

The results of the experiment do not present an improvement with
respect to the initial configuration, however, the configuration is main-
tained in future experiments as this reflects the scalability system re-
quirement.

5.2. Experiment 2

The aim of this experiment is to improve the accuracy of the al-
gorithm presented in the last experiment by increasing the number of
GCs and adding extra information about the user. With the purpose of
adding more GCs, the data extraction process is modified: the limita-
tion of removing the first and last three seconds is deleted (equations
(4) and (5)), furthermore the physiological information is added.

Due to the cycles of the first and last three seconds are used, the
data in the dataset grows, however the length of the cycles still the
same. In this experiment, Matrix Mn is modified to include the following
information: height (Ht), weight (Wt), foot size (Fs), gender (Gd), age
(Ag) and sport activity (Sa). Each of these fields is introduced in each
row of the previous Mn matrix.

Any  Acy Gy, Mgy, Ht Wt Fs Gd Ag Sa
M= An;, Acy Gy, Mg, Ht Wt Fs Gd Ag Sa
n : H : : : : H : : H
An; Acp Gy, Mg, Ht Wt Fs Gd Ag Sa
Where:

Sa = Sport activity,

N =None
M = once a month or less
W = once a week
T = twice a week or more
D =daily

where

Fig. 8 shows the result of executing the algorithm with the new ap-
proaches. Blue line shows the results of the system when adding extra
cycles from the beginning and the end of the walk. These results shows
that the algorithm accuracy increases and that the response of the sys-
tem is flatter. Yellow line shows the result of including the physiological
information in addition to those extra seconds. As we can see the accu-
racy of the system has increased significatively, this can be explained
due to physiological differences provide useful information to the sys-
tem.

5.3. Experiment 3

In each walk, information of three different sensors and the joint an-
gles are captured. Some information can be not useful or lead to the
misidentification of the pathologies. Fig. 9 shows an example of all the
signals captured by the system. As we can see the signals from the mag-
netometer does not have a clear pattern, such as the gyroscope or the
accelerometer. In this experiment, the validity of different signals com-
binations of the data set are evaluated. Due to in the last experiment,
the accuracy of the system has been improved the system configuration
with the extra cycles and the physiological information is used.

In order to reduce the number of signals the module of the three
different axes is performed for each of the signals i.e. accelerometer,
gyroscope and magnetometer:

module = \/x2 + y? + z2 6)

To perform this experiment all the different combinations of the
signals with and without using the module are tested. A total of 29
different configurations have been tested. For clarity of the results only
the 6 best configurations are presented in Fig. 10.

In Fig. 10, the nomenclature used is the following. The different sig-
nals are accelerometer (Ac), gyroscope (Gy), magnetometer (Mg) and
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Fig. 8. Accuracy results for experiment 2.
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Fig. 9. Example of all the signals captured. Top-left accelerometer. Top-right gyroscope. Bottom-left magnetometer. Bottom-right angle.
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Fig. 10. Accuracy results for experiment 3.
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Fig. 11. Comparison of accuracy results.

angles (An). The “1” after the name indicates that the signal is used
and “0” indicates the opposite. The last parameter specifies if the mag-
nitude is used (1) or not (0). It can be seen accuracies of the different
configurations are quite similar, mostly in the range from 30% to 70%
of training data. If we observe the configurations, it can be appreciated
that none of them uses the magnetometer signals, so the magnetometer
signals do not provide relevant information. On the other side, the angle
signals are in all the configurations. Concerning the accelerometer and
gyroscope, the first one is in 50% of the configurations, and the other is
in 67% of them. To the light of these results, we can say that the more
important signals are the angles of the joints followed by the gyroscope
signals. The accelerometer signals are the less relevant, however, they
improve slightly the results. Regarding the signal module, there is no
clear pattern. One configuration to note is Ac0_Gy0_Mg0_An1_0, which
only using the angle signals is one of the best configurations. The two
best configurations are Acl_Gyl_Mg0_Anl_1 and Acl_Gyl_Mg0_Anl O,
the difference between both of them is that one uses the module and
the other one no. The Ac1_Gyl_Mg0_Anl_1 configuration has higher ac-
curacy in almost every ratio, and a flatter behaviour, so we take it as
the best configuration. Once we have the best configuration, we com-
pare it with the results of the previous experiment, Fig. 11. We can
see that the accuracy of the new configuration has increased from the
previous experiment, mostly with a low ratio of training data, but the
most important fact is that the configuration gives better results than
the original one. As the algorithm has been improved, the changes are
maintained for the following experiments.

5.4. Experiment 4

When classifying the walks, the GCs of a walk are individually clas-
sified, and the mean value is used as a result of the walk. Doing this,
all the cycles have the same importance in the final result, but it could
be that some CGs are more significant than others. The aim of this ex-
periment is to check if there are some CGs that provide better results
than others, and if necessary, to create a weighing schema better than
the mean value.

To do this the GCs of the walks are classified but instead of getting
the mean value of the cycles of the same walk, the accuracy result of
each GC is saved. Once all the walks are classified, the next step is to
obtain the mean value of all the cycles of the same time position. In
this experiment, all the training/testing ratios have been used and the
final result for each GC is the average of all the ratios. Fig. 12 shows
the mean of accuracy results for the different GCs positions.

As can be appreciated, the GCs from the beginning of the signal looks
like they are more representative than others. To the light of outcomes,

90%

80%

70%
60%
50%
40%
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20%
10%
0%
12 3 4 5 6 7 8

9 10 11 12 13 14 15 16 17
ne of cycle

Accuracy

Fig. 12. Accuracy results of the different GCs positions.

a weighted mean can be used. To obtain the weights the next formula
is used:

w; =1 — (max(a) — a;) (@)

Where:

a; is the accuracy from i’ cycle in the Fig. 12.
a are the accuracies of the different GCs positions.
i is the sub-index for the number of cycle.

Once all the weights are obtained the weighted mean is performed.
In Fig. 13, the results of the execution of the algorithm with the weights
are presented.

5.5. Final algorithm results

Once all the experiments are done the new system can be estab-
lished. This new system consists of a RNN, with the same structure
presented above. The hyperparameter configuration still the same,
NF128 HL2 RL3_LR1072. Regarding to the experiments extra informa-
tion the final configuration is the next:

+ The users in the training and testing dataset are different.

» Removed the rule of discarding the first and last three seconds.
« Physiological data is included

+ Magnetometer signals are discarded.

+ To obtain the final result a weighted mean is used.
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Fig. 14. Accuracy results of the classification with only one class.

Once the final algorithm is created it is necessary to evaluate if all
the cases are equally classified. In order to perform this evaluation,
the system is trained using different ratios of training and testing data.
Regarding to the testing, the system is tested three times for each con-
figuration, once using only right pathology walks, another one using
only left pathology walks and the last using only healthy walks. By
doing this, whether the system classifies equally all the walks can be
observed.

As it can be appreciated in Fig. 14 there are not big differences
classifying the cases, the maximum difference is around 4%. With these
results, we can assume that the algorithm classifies all the cases equally.

As it is shown in Fig. 14, the new configuration of the algorithm
(blue) is better than the original one (dotted grey). It can be observed
that the bigger change happens with lower training ratio, being the
improvement close to 10%. Beyond 30% of training ratio, the improve-
ment is reduced up to 2.5%.

6. Conclusions

This article presents a RNN-based algorithm capable of classifying
lower train pathologies with the restriction of not sharing users between
the training and testing datasets. Thereby, it is not necessary to re-train
the system when a new user arrives, giving scalability to the algorithm.
The system works with the kinematic signals as well as the joint angles
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which are processed in order to extract the GCs. The information of the
different sensors that corresponds with one gait cycle are sorted in a
matrix, and those matrices are used as a basic unit to feed the RNN.
In this paper a database with a simulated clubfoot pathology has been
used, but the algorithm could be used for any pathology.

Due to the complexity of the problem, in the first approach, a NN is
created to identify the clubfoot pathology without the restriction of not
sharing users in the datasets. To optimize the network a random search
method is performed. With this purpose, a range of values for some
hyperparameters is established and the optimization is executed. After
the first execution, the range of values is reduced, and the algorithm is
run again. Finally, the best configuration is obtained using fine-tuning.

After the optimization progress, we found that the best configura-
tion is the one with 128 filters in the first layer, 2 hidden layers, the
third relationship between neurons, and a learning ratio of 10~2. This
configuration gives 89.5% accuracy with a ratio of 70%-30% of train-
ing/testing data. It is a proper result, but the system is not real-world
appropriate, because for classifying a new user the whole system must
be retrained.

In order to solve this problem, a new system is created with the
restriction of not testing with the users used in the training. Due to
this change, the accuracy of the system falls by approximately 20%. To
improve the system some experiments have been performed.
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The first experiment performed is to include the first and last 3
seconds of the signals, that in the original experiment were excluded.
Result of this experiment the accuracy grows from 71.5% to 72.5%.
This improvement is due to the amount of data have been increased.
The next experiment is to add the physiological information of the users
(height, weight, foot size ...) to the system. This change improves the
accuracy of the system by up to 86.5%. This improvement is due to
the fact that the physiological differences affect the way of walking and
adding that information the system can identify those differences and
focus on the pathological patterns.

The following experiment evaluates whether all the used signals
have a positive impact on the system or not. From the observations done
in this work, magnetometer signal seems to worse the system results,
that it is the reason to remove it from the data matrix, but maintain
other signals such as accelerometer, gyroscope. Another interesting fact
is that doing the module of the x, y, and z signals of the accelerome-
ter and gyroscope improves a bit the algorithm. Applying these changes
the accuracy of the system is improved up to 91.7%

The last experiment performed consists on evaluation the cycle in-
fluence. The cycles from the beginning of a walk have more significance
than the rest. This may be due to the fact that at the beginning of the
walk the pathology is more pronounced, and when we walk a bit, we
get used to it. By entering this information into the system, the accuracy
increases by up to 93.7%.

After all the experiments performed, we got an algorithm capable of
classifying pathologies, without the limitation of previous registration
of the user and the retraining of the whole system. Although the system
is able to identify the pathologies, in the used database there only are
one faked pathology. So, it would be interesting to evaluate the system
with a real database with more than one real pathologies. Other facts
to have in mind to make the system closer to a real-world one are the
influence of all the sensors positions used, the importance of the surface,
and the minimum number of cycles needed to identify pathologies.

Although there still some improvements to be made to the system so
that it can be used in a real medical environment, with the contributions
presented in this article it is possible to have a scalable system to make
a first stage pathologies identification in an uncontrolled environment.
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