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Abstract: We obtain inequalities involving many topological indices in classical graph products
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1. Introduction

Chemical compounds (like hydrocarbons) can be represented by means of graphs.
A topological index T is just a number that encapsulates some property of graphs and
such that T correlates with a certain molecular characteristic; therefore, it can be employed
to grasp chemical properties and physical properties of chemical substances. They play
an important role in mathematical chemistry, in particular, in the QSPR/QSAR (quantitative
structure-property relationship/quantitative structure-activity relationship) investigations.
Computational and mathematical properties of topological indices have been studied in
depth for more than 50 years (see, e.g., [1–8] and the references therein). In particular,
a main subject on this field is to obtain sharp bounds of topological indices.

See [9] for a review in a dialog manner discussing relevance of topological descriptors
to chemical/physical properties.

One of the main topological indices is the following index, called Randić index, defined
in [1] by

R(G) = ∑
uv∈E(G)

1√
dudv

,

where G is a graph and dw is the degree of the vertex w ∈ V(G).
Along the paper, G = (V(G), E(G)) will denote a (non-oriented) simple (without

loops and multiple edges loops) finite graph without isolated vertices. Hence, every vertex
has degree at least 1.

Two of the most popular alternatives to the Randić index are the first Zagreb and second
Zagreb indices, denoted by M1 and M2, respectively, and defined by

M1(G) = ∑
uv∈E(G)

(du + dv) = ∑
u∈V(G)

d2
u, M2(G) = ∑

uv∈E(G)

dudv.

These two indexes are very useful in mathematical chemistry and so, they have been
extensively studied, see [10–13] and the references therein. Further development of Zagreb-
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type indices deals with the applications to more complex chemical objects, e.g., large
carbon-based species with regular structures such as polycyclic aromatic hydrocarbons [14]
and carbon nanostructures [15].

Please note that there are topological indices of different types. They may treat only
vertices, only edges, or both edges and vertices of the graph to calculate an index. Thus,
the first Zagreb index belongs to the first class (every index in the first class, as the first
Zagreb index, also belongs to the second class).

Along this paper we obtain results for topological indices in this first class.
The so-called harmonic index, is defined in [16] by

H(G) = ∑
uv∈E(G)

2
du + dv

.

For more information about the properties of that index we refer to [17–22], and the
book [23].

The inverse degree index ID is defined as

ID(G) = ∑
u∈V(G)

1
du

= ∑
uv∈E(G)

( 1
d2

u
+

1
d2

v

)
.

This index first attracted attention through many conjectures obtained by the com-
puter programme called Graffiti [16]. Since then, several authors have studied its connec-
tions with other parameters of graphs: diameter, matching number, edge-connectivity,
Wiener index, etc.; also, its chemical applications have been studied by many researchers
(see [24–29]).

In [30–32] the general first Zagreb and general second Zagreb indices are defined by

Mα
1 (G) = ∑

u∈V(G)

dα
u, Mα

2 (G) = ∑
uv∈E(G)

(dudv)
α.

Please note that the first Zagreb index M1 is M2
1, the inverse degree index ID is M−1

1 ,
the forgotten index F is M3

1, . . . ; moreover, the Randić index R is M−1/2
2 , the second Zagreb

index M2 is M1
2, the modified Zagreb index is M−1

2 , . . . .
The variable topological indices were introduced as a new way of characterizing

heteroatoms (see [33,34]), and to assess the structural differences (see [35]). The idea behind
the variable topological indices is that the parameter is determined during the regression
in such a way that the error of estimate for a fixed property is minimized.

The sum lordeg index was introduced in [36]. It is defined as

SL(G) = ∑
u∈V(G)

du
√

log du .

This index is interesting from an applied viewpoint since it correlates very well
with the octanol-water partition coefficient for octane isomers [36], and so, it appears in
numerical packages for the computation of topological indices [37]. For these reasons,
in [38] is stated the open problem of finding appropriate bounds for this index.

In [39] the harmonic polynomial is introduced as

H(G, x) = ∑
uv∈E(G)

xdu+dv−1.

In [40–42] several properties of the harmonic polynomial are obtained. Please note
that 2

∫ 1
0 H(G, x) dx = H(G).
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In [41] the inverse degree polynomial is introduced as

ID(G, x) = ∑
u∈V(G)

xdu−1.

It should be noticed that
∫ 1

0 ID(G, x) dx = ID(G). Thus, the inverse degree polyno-
mial ID(G, x) can be used to obtain information about the inverse degree index ID(G) of
a graph G.

Given any function f : Z+ → R+, let us define the f -index

I f (G) = ∑
u∈V(G)

f (du),

and the f -polynomial of G by

Pf (G, x) = ∑
u∈V(G)

x1/ f (du)−1,

if x > 0. Also, let us define Pf (G, 0) = limx→0+ Pf (G, x). In particular, Pf (G, x) = ID(G, x)

if f (t) = 1/t. It is clear that
∫ 1

0 Pf (G, x) dx = I f (G).
Please note that many important indices can be obtained from I f by choosing ap-

propriate functions f : if f (t) = t2, then I f is the first Zagreb index; if f (t) = t−1, then I f

is the inverse degree index ID; if f (t) = t3, then I f is the forgotten index F; in general,
if f (t) = tα, then I f is the general first Zagreb index Mα

1 ; if f (t) = t
√

log t , then I f is the
sum lordeg index SL. Thus, each theorem in this paper about I f is a result for each one of
these indices.

The f -polynomial of other graph operations (e.g., join, corona product, Mycielskian
and line) is studied in [43].

Operations on graphs play an important role in Mathematical Chemistry, see
e.g., [44,45], since many chemical structures appear as operations of graphs: The crys-
tal structure of sodium chloride is the Cartesian product of two path graphs. The kernel of
the iron crystal structure is the join of the cube graph Q3 and an isolated vertex. The cyclobu-
tane is the Cartesian product of two path graphs P2. The alkane C3H6 can be represented as
the corona product of the path graph P3 and the null graph N2. The cyclohexane C6H12 can
be represented as the corona product of the cycle graph C6 and the null graph N2. The car-
bon nanotube TUC4(m, n) can be seen as the Cartesian product of the path graph P3 and
the cycle graph C5. The fence (respectively, the closed fence) is the lexicographic product
of P5 and P2 (respectively, C5 and P2). The zigzag polyhex nanotube TUHC6[2n, 2] is the
generalized hierarchical product of the path graph P2 and the cycle graph C2n. See [46,47].

Polynomials, in general, have lately proved to be useful in graph theory and, in partic-
ular, in Mathematical Chemistry (see [41,43,45,48–55]).

The main goal in this paper is to obtain information of many topological indices
(each case of I f for some particular choice of f ) of several graph products, from the
information on topological indices of these factors, which are much easier to calculate
than the products. Our approach is to obtain information about the corresponding f -
polynomials, which are easy to calculate (see for instance Theorems 1, 11 and 17); then,
we can deduce information on the I f index by using the formula

∫ 1
0 Pf (G, x) dx = I f (G)

(see for instance Theorems 4, 13 and 18). This is a good approach since the bounds of the
f -polynomial of a product of two graphs allow use of analytic tools to bound the I f index
of such a graph product, simplifying the proofs.

2. Background

The study of the effect of graph operations on topological indices is an active topic of
research (see, e.g., [41,54–56]). We study in this section the f -polynomial of several graph
products: lexicographic product, Cartesian sum and Cartesian product.



Symmetry 2021, 13, 292 4 of 20

The Cartesian product G1 × G2 of the graphs G1 and G2 has the vertex set
V(G1 × G2) = V(G1)×V(G2) and (ui, vj)(uk, vl) is an edge of G1 × G2 if ui = uk and
vjvl ∈ E(G2), or uiuk ∈ E(G1) and vj = vl .

The lexicographic product G1 � G2 of the graphs G1 and G2 has V(G1) × V(G2) as
vertex set, so that two distinct vertices (ui, vj), (uk, vl) of V(G1 � G2) are adjacent if either
uiuk ∈ E(G1), or ui = uk and vjvl ∈ E(G2).

The Cartesian sum G1 ⊕ G2 of the graphs G1 and G2 has the vertex set
V(G1 ⊕ G2) = V(G1)×V(G2) and (ui, vj)(uk, vl) is an edge of G1 ⊕ G2 if uiuk ∈ E(G1) or
vjvl ∈ E(G2).

In [57] is defined the following Zagreb polynomial

M∗1(G, x) := ∑
u∈V(G)

duxdu .

Please note that x(xID(G, x))′ = M∗1(G, x).
In ([43], Propositions 1, 2 and 3) appear the following useful results.

Proposition 1. If G is a graph of order n and f : Z+ → R+, then:

• Pf (G, x) is a polynomial if and only if 1/ f (du) ∈ Z+ for every u ∈ V(G),
• Pf (G, x) is a positive C∞ function on (0, ∞),
• Pf (G, x) is a continuous function on [0, ∞) if and only if Pf (G, 0) < ∞,
• Pf (G, x) is a continuous function on [0, ∞) if and only if f (du) ≤ 1 for every u ∈ V(G),

• Pf (G, x) is an integrable function on [0, A] for every A > 0, and
∫ 1

0 Pf (G, x) dx = I f (G),
• Pf (G, x) is increasing on (0, ∞) if and only if f (du) ≤ 1 for every u ∈ V(G),
• Pf (G, x) is strictly increasing on (0, ∞) if and only if f (du) ≤ 1 for every u ∈ V(G),

and f (dv) 6= 1 for some v ∈ V(G),
• Pf (G, x) is convex on (0, ∞) if f (du) ∈ (0, 1/2] ∪ [1, ∞) for every u ∈ V(G),
• Pf (G, x) is strictly convex on (0, ∞) if f (du) ∈ (0, 1/2] ∪ [1, ∞) for every u ∈ V(G),

and f (dv) /∈ {1/2, 1} for some v ∈ V(G),
• Pf (G, x) is concave on (0, ∞) if f (du) ∈ [1/2, 1] for every u ∈ V(G),
• Pf (G, x) is strictly concave on (0, ∞) if f (du) ∈ [1/2, 1] for every u ∈ V(G), and f (dv) /∈

{1/2, 1} for some v ∈ V(G),
• Pf (G, 1) = n.

If α ∈ R and f (t) = tα, then Proposition 1 gives
∫ 1

0 Pf (G, x) dx = Mα
1 (G).

Proposition 2. If G is a k-regular graph with n vertices and f : Z+ → R+, then Pf (G, x) =

nx1/ f (k)−1.

Next, we show the polynomial Pf for some important graphs: Kn (complete graph),
Cn (cycle graph), Qn (hypercube graph), Kn1,n2 (complete bipartite graph), Sn (star graph),
Pn (path graph), and Wn (wheel graph).

Proposition 3. If f : Z+ → R+, then

Pf (Kn, x) = nx1/ f (n−1)−1, Pf (Cn, x) = nx1/ f (2)−1,

Pf (Qn, x) = 2nx1/ f (n)−1, Pf (Kn1,n2 , x) = n1x1/ f (n2)−1 + n2x1/ f (n1)−1,

Pf (Sn, x) = x1/ f (n−1)−1 + (n− 1)x1/ f (1)−1, Pf (Pn, x) = (n− 2)x1/ f (2)−1 + 2x1/ f (1)−1,

Pf (Wn, x) = x1/ f (n−1)−1 + (n− 1)x1/ f (3)−1.
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Choose δ ∈ Z+ and f : Z+ → R+. f satisfies the δ-additive property 1 ( f ∈ AP1(δ)) if

1
f (a + b)

≥ 1
f (a)

+
1

f (b)

for every a, b ∈ Z+ with a, b ≥ δ.
f satisfies the δ-additive property 2 ( f ∈ AP2(δ)) if

1
f (a + b)

≤ 1
f (a)

+
1

f (b)

for every a, b ∈ Z+ with a, b ≥ δ.
f satisfies the δ-additive property 3 ( f ∈ AP3(δ)) if

1
f (a + b)

≤ min
{ 1

f (a)
,

1
f (b)

}
for every a, b ∈ Z+ with a, b ≥ δ.

3. Inequalities for Cartesian Products

First, we prove pointwise inequalities of Pf (G1 × G2, x) involving Pf (G1, x) and
Pf (G2, x).

Theorem 1. Let δ ∈ Z+, and let G1 and G2 be two graphs with minimum degree at least δ. For
x ∈ (0, 1], the f -polynomial of the Cartesian product G1 × G2 satisfies.

(1) If f ∈ AP1(δ), then

Pf (G1 × G2, x) ≤ x Pf (G1, x) Pf (G2, x).

(2) If f ∈ AP2(δ), then

Pf (G1 × G2, x) ≥ x Pf (G1, x) Pf (G2, x).

(3) If f ∈ AP3(δ) and G1 and G2 have n1 and n2 vertices, respectively, then

Pf (G1 × G2, x) ≥ max
{

n2Pf (G1, x), n1Pf (G2, x)
}

.

Proof. If (u, v) ∈ V(G1 × G2), we have d(u,v) = du + dv and its corresponding monomial
of the f -polynomial is

x1/ f (du+dv)−1.

Assume that f ∈ AP1(δ). Since du ≥ δ for every u ∈ V(G1) ∪V(G2), f ∈ AP1(δ) and
x ∈ (0, 1],

Pf (G1 × G2, x) = ∑
u∈V(G1)

∑
v∈V(G2)

x1/ f (du+dv)−1 ≤ ∑
u∈V(G1)

∑
v∈V(G2)

x1/ f (du)+1/ f (dv)−1

= x ∑
u∈V(G1)

x1/ f (du)−1 ∑
v∈V(G2)

x1/ f (dv)−1 = x Pf (G1, x) Pf (G2, x).

If f ∈ AP2(δ), then by a quite similar argument the result is obtained.
If f ∈ AP3(δ), then

Pf (G1 × G2, x) = ∑
u∈V(G1)

∑
v∈V(G2)

x1/ f (du+dv)−1 ≥ ∑
u∈V(G1)

∑
v∈V(G2)

x1/ f (du)−1

= ∑
u∈V(G1)

x1/ f (du)−1 ∑
v∈V(G2)

1 = n2Pf (G1, x).
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The inequality involving Pf (G2, x) is obtained in a similar way.

Remark 1. If δ = 1, then the condition G1 and G2 have minimum degree at least δ, is satisfied for
every graph G1, G2.

Theorem 1 has the following consequence when we consider f (t) = tα.

Theorem 2. Let G1 and G2 be two graphs of order n1 and n2, respectively, α ∈ R and f (t) = tα.
For x ∈ (0, 1], the f -polynomial of the Cartesian product G1 × G2 satisfies.

(1) If α ≤ −1, then f ∈ AP1(1) and

Pf (G1 × G2, x) ≤ x Pf (G1, x) Pf (G2, x).

(2) If α ∈ [−1, 0], then f ∈ AP2(1) and

Pf (G1 × G2, x) ≥ x Pf (G1, x) Pf (G2, x).

(3) If α ≥ 0, then f ∈ AP3(1) and

Pf (G1 × G2, x) ≥ max
{

n2Pf (G1, x), n1Pf (G2, x)
}

.

Proof. The inequalities are consequences of the following facts and Theorem 1.
If α ≤ −1, then −α ≥ 1 and

1
f (x + y)

= (x + y)−α ≥ x−α + y−α =
1

f (x)
+

1
f (y)

for every x, y > 0, and so, f ∈ AP1(1).
If α ∈ [−1, 0], then −α ∈ [0, 1] and

1
f (x + y)

= (x + y)−α ≤ x−α + y−α =
1

f (x)
+

1
f (y)

for every x, y > 0, and so, f ∈ AP2(1).
If α ≥ 0, then 1/tα is a decreasing function on (0, ∞) and

1
f (x + y)

=
1

(x + y)α
≤ min

{ 1
xα

,
1
yα

}
= min

{ 1
f (x)

,
1

f (y)

}
for every x, y > 0, and so, f ∈ AP3(1).

Theorem 2 yields for the inverse degree polynomial:

Corollary 1. Let G1 and G2 be two graphs, the ID polynomial of the Cartesian product G1 × G2 is

ID(G1 × G2, x) = x ID(G1, x) ID(G2, x).

Since f (t) = t
√

log t is an increasing function on [1, ∞), f ∈ AP3(2) and Theorem 1
has the following consequence. Recall that a vertex with degree 1 is called pendant vertex.
Please note that f (t) = t

√
log t is a positive function on Z+ \ {1}, and so, Pf (G, x) is

well-defined for every graph G without pendant vertices.
Please note that a graph has minimum degree at least 2 if and only if it does not have

pendant vertices.
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Theorem 3. Let G1 and G2 be two graphs with minimum degree at least 2 and of order n1 and n2,
respectively. If f (t) = t

√
log t, then f ∈ AP3(2) and the f -polynomial of the Cartesian product

G1 × G2 satisfies for x ∈ (0, 1]

Pf (G1 × G2, x) ≥ max
{

n2Pf (G1, x), n1Pf (G2, x)
}

.

Next, we obtain bounds for I f (G1 × G2) by using the previous inequalities for
Pf (G1 × G2, x). This is a good approach since the pointwise bounds of Pf (G1 × G2, x)
allow use of analytic tools to bound I f (G1 × G2). We start with the case f ∈ AP3(δ).

Theorem 4. Let δ ∈ Z+, G1 and G2 be two graphs of order n1 and n2, respectively, and minimum
degree at least δ. If f ∈ AP3(δ), then

I f (G1 × G2) ≥ max
{

n2 I f (G1), n1 I f (G2)
}

.

Proof. Theorem 1 gives

Pf (G1 × G2, x) ≥ max
{

n2Pf (G1, x), n1Pf (G2, x)
}

,

for every x ∈ (0, 1]. Thus, Proposition 1 leads to

I f (G1 × G2) =
∫ 1

0
Pf (G1 × G2, x) dx ≥ n2

∫ 1

0
Pf (G1, x) dx = n2 I f (G1).

The same argumentation gives I f (G1 × G2) ≥ n1 I f (G2).

To deal with the cases f ∈ AP1(δ) and f ∈ AP2(δ), we need some technical results.

Lemma 1. [58] If f1, . . . , fk are non-negative convex functions on [a, b], then

1
b− a

∫ b

a

k

∏
i=1

fi(x) dx ≥ 2k

k + 1

k

∏
i=1

1
b− a

∫ b

a
fi(x) dx.

Lemma 1 can be slightly improved as follows.

Proposition 4. If f1, . . . , fk are convex non-negative functions on (a, b), then

1
b− a

∫ b

a

k

∏
i=1

fi(x) dx ≥ 2k

k + 1

k

∏
i=1

1
b− a

∫ b

a
fi(x) dx.

Proof. If 0 < ε < (b − a)/2, then f1, . . . , fk are convex non-negative functions on
[a + ε, b− ε], and Lemma 1 gives

1
b− a− 2ε

∫ b−ε

a+ε

k

∏
i=1

fi(x) dx ≥ 2k

k + 1

k

∏
i=1

1
b− a− 2ε

∫ b−ε

a+ε
fi(x) dx.

Since f1, . . . , fk are non-negative on (a, b), the functions F, G : (0, (b− a)/2)→ [0, ∞)
defined by

F(ε) =
∫ b−ε

a+ε

k

∏
i=1

fi(x) dx, G(ε) =
k

∏
i=1

∫ b−ε

a+ε
fi(x) dx,

are decreasing, and so, there exist their limits as ε→ 0+ (although they can be ∞). By taking
ε→ 0+ in the above inequality, we obtain the result.
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Lemma 2. ([59], Corollary 5.2) If f1, . . . , fk are convex non-negative functions on [a, b], then

∫ b

a

k

∏
i=1

fi(x) dx ≤ 2
k + 1

(
k

∏
i=1

∫ b

a
fi(x) dx

)1/k( k

∏
i=1

(
fi(a) + fi(b)

))1−1/k

.

Since any non-negative concave function on (a, b) has finite lateral limits at a and b,
([59], Corollary 4.3) can be stated as follows.

Lemma 3. If f1, f2 are non-negative concave functions on (a, b), then

2
3

1
b− a

∫ b

a
f1(x) dx

1
b− a

∫ b

a
f2(x) dx ≤ 1

b− a

∫ b

a
f1(x) f2(x) dx

≤ 4
3

1
b− a

∫ b

a
f1(x) dx

1
b− a

∫ b

a
f2(x) dx.

With these technical results, we can deal now with the cases f ∈ AP1(δ) and
f ∈ AP2(δ).

Theorem 5. Let δ ∈ Z+, G1 and G2 be graphs of orders n1 and n2, respectively, and minimum
degree at least δ. If the f -polynomials of G1 and G2 are convex functions on (0, 1), then

(1) If f ∈ AP1(δ), then

I f (G1 × G2) ≤
1
2

(1
2
(
n1 + Pf (G1, 0)

)2(n2 + Pf (G2, 0)
)2 I f (G1) I f (G2)

)1/3
.

(2) If f ∈ AP2(δ), then

I f (G1 × G2) ≥ I f (G1) I f (G2).

Proof. Assume first that f ∈ AP1(δ). Theorem 1 gives

Pf (G1 × G2, x) ≤ x Pf (G1, x) Pf (G2, x),

for every x ∈ (0, 1].
If Pf (G1, 0) = ∞ or Pf (G2, 0) = ∞, then (1) trivially holds.
If Pf (G1, 0) < ∞ and Pf (G2, 0) < ∞, then Pf (G1, x) and Pf (G2, x) are continuous

functions on [0, 1] by Proposition 1, and so, they are convex on [0, 1]. Proposition 1 and
Lemma 2 give

I f (G1 × G2) =
∫ 1

0
Pf (G1 × G2, x) dx ≤

∫ 1

0
x Pf (G1, x) Pf (G2, x) dx

≤ 1
2

(∫ 1

0
x dx

∫ 1

0
Pf (G1, x) dx

∫ 1

0
Pf (G2, x) dx

)1/3

·
(
(0 + 1)

(
Pf (G1, 0) + Pf (G1, 1)

)(
Pf (G2, 0) + Pf (G2, 1)

))2/3

=
1
2

(1
2
(
n1 + Pf (G1, 0)

)2(n2 + Pf (G2, 0)
)2 I f (G1) I f (G2)

)1/3
.

Assume now that f ∈ AP2(δ). Theorem 1 gives

Pf (G1 × G2, x) ≥ x Pf (G1, x) Pf (G2, x),
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for every x ∈ (0, 1]. Since Pf (G1, x) and Pf (G2, x) are convex functions on (0, 1), Proposi-
tion 1 and Proposition 4 give

I f (G1 × G2) =
∫ 1

0
Pf (G1 × G2, x) dx ≥

∫ 1

0
x Pf (G1, x) Pf (G2, x) dx

≥ 2
∫ 1

0
x dx

∫ 1

0
Pf (G1, x) dx

∫ 1

0
Pf (G2, x) dx

= I f (G1) I f (G2).

If the f -polynomials of G1 and G2 are concave functions on (0, 1), we can obtain
simpler bounds for I f (G1 × G2).

Theorem 6. Let δ ∈ Z+, G1 and G2 be two graphs with minimum degree at least δ. If f ∈ AP1(δ)
and the f -polynomials of G1 and G2 are concave functions on (0, 1), then

I f (G1 × G2) ≤
4
3

I f (G1) I f (G2).

Proof. Since f ∈ AP1(δ), Theorem 1 gives

Pf (G1 × G2, x) ≤ x Pf (G1, x) Pf (G2, x).

for every x ∈ (0, 1]. Since Pf (G1, x) and Pf (G2, x) are concave functions on (0, 1), a simple
combination of Proposition 1 and Lemma 3 yields

I f (G1 × G2) =
∫ 1

0
Pf (G1 × G2, x) dx ≤

∫ 1

0
x Pf (G1, x) Pf (G2, x) dx

≤
∫ 1

0
Pf (G1, x) Pf (G2, x) dx ≤ 4

3

∫ 1

0
Pf (G1, x) dx

∫ 1

0
Pf (G2, x) dx

=
4
3

I f (G1) I f (G2).

We can obtain more bounds for I f (G1×G2) if the image of f does not intersect (a/2, a)
for some constant a > 0.

Theorem 7. Let δ ∈ Z+, G1 and G2 be two graphs of orders n1 and n2, respectively, and minimum
degree at least δ, and a > 0. If f : Z+ ∩ [δ, ∞)→ (0, a/2] ∪ [a, ∞), then

(1) If f ∈ AP1(δ), then

I f (G1 × G2) ≤
1
2

( a
2
(
n1 + Pf /a(G1, 0)

)2(n2 + Pf /a(G2, 0)
)2 I f (G1) I f (G2)

)1/3
.

(2) If f ∈ AP2(δ), then

I f (G1 × G2) ≥
1
a

I f (G1) I f (G2).

Proof. Let be the function g = f /a. Hence, g : Z+ ∩ [δ, ∞) → (0, 1/2] ∪ [1, ∞) and
Proposition 1 gives that Pg(G1, x) and Pg(G2, x) are convex functions on (0, ∞).
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If f ∈ AP1(δ), then f /a ∈ AP1(δ) and Theorem 5 gives

1
a

I f (G1 × G2) = I f /a(G1 × G2)

≤ 1
2

(1
2
(
n1 + Pf /a(G1, 0)

)2(n2 + Pf /a(G2, 0)
)2 I f /a(G1) I f /a(G2)

)1/3

=
1
2

(1
2
(
n1 + Pf /a(G1, 0)

)2(n2 + Pf /a(G2, 0)
)2 1

a
I f (G1)

1
a

I f (G2)
)1/3

.

If f ∈ AP2(δ), then f /a ∈ AP2(δ) and Theorem 5 gives

1
a

I f (G1 × G2) = I f /a(G1 × G2) ≥ I f /a(G1) I f /a(G2) =
1
a

I f (G1)
1
a

I f (G2).

The first inequality in Theorem 7 can be improved as follows.

Theorem 8. Let δ ∈ Z+, G1 and G2 be two graphs of orders n1 and n2, respectively, and minimum
degree at least δ, and a > 0. If f : Z+ ∩ [δ, ∞)→ (0, a/2], and f ∈ AP1(δ), then

I f (G1 × G2) ≤
1
2

( a
2

n2
1n2

2 I f (G1) I f (G2)
)1/3

.

Proof. Theorem 7 gives

I f (G1 × G2) ≤
1
2

( a
2
(
n1 + Pf /a(G1, 0)

)2(n2 + Pf /a(G2, 0)
)2 I f (G1) I f (G2)

)1/3
.

Since f ≤ a/2 on Z+ ∩ [δ, ∞), we have a/ f − 1 ≥ 1 and Pf /a(G1, 0) = Pf /a(G2, 0) = 0,
and so, we obtain the result.

Theorems 2, 8 (with a = 2), 7 (with a = 2) and 4 have the following consequence for
the general first Zagreb index.

Theorem 9. Let G1 and G2 be two graphs of orders n1 and n2, respectively, and α ∈ R.
(1) If α ≤ −1, then

Mα
1 (G1 × G2) ≤

1
2
(
n2

1n2
2 Mα

1 (G1) Mα
1 (G2)

)1/3.

(2) If α ∈ [−1, 0], then

Mα
1 (G1 × G2) ≥

1
2

Mα
1 (G1) Mα

1 (G2).

(3) If α ≥ 0, then

Mα
1 (G1 × G2) ≥ max

{
n2Mα

1 (G1), n1Mα
1 (G2)

}
.

As a rather simple consequence of the above theorem, we have for the first Zagreb,
forgotten and inverse degree indices:

Corollary 2. If G1 and G2 are two graphs with n1 and n2 vertices, respectively, then

M1(G1 × G2) ≥ max
{

n2M1(G1), n1M1(G2)
}

,

F(G1 × G2) ≥ max
{

n2F(G1), n1F(G2)
}

,
1
2

ID(G1) ID(G2) ≤ ID(G1 × G2) ≤
1
2
(
n2

1n2
2 ID(G1) ID(G2)

)1/3.
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Since f (t) = t
√

log t ∈ AP3(2), Theorem 4 gives the following result for the SL index.

Theorem 10. If G1 and G2 are graphs without pendant vertices and with n1 and n2 vertices,
respectively, then

SL(G1 × G2) ≥ max
{

n2SL(G1), n1SL(G2)
}

.

A particular consequence of Theorems 9 and 10 is the following.

Corollary 3. If Cn1 and Cn1 are the cycle graphs with n1 and n2 vertices, respectively, then

M1(Cn1 × Cn2) ≥ 4n1n2,

F(Cn1 × Cn2) ≥ 8n1n2,
1
8

n1n2 ≤ ID(Cn1 × Cn2) ≤
1

25/3 n1n2,

SL(Cn1 × Cn2) ≥ n1n22 log 2.

4. Inequalities for Lexicographic Products

We start this section by proving pointwise inequalities of Pf (G1 � G2, x) involving the
f -polynomials of G1 and G2.

Theorem 11. Let δ ∈ Z+, G1 and G2 be two graphs of orders n1 and n2, respectively, and
minimum degree at least δ. The f -polynomial of the lexicographic product G1 � G2 satisfies the
following inequalities for x ∈ (0, 1].

(1) If f ∈ AP1(δ), then

Pf (G1 � G2, x) ≤ xn2 Pf (G1, xn2)Pf (G2, x).

(2) If f ∈ AP2(δ), then

Pf (G1 � G2, x) ≥ xn2 Pf (G1, xn2)Pf (G2, x).

(3) If f ∈ AP3(δ), then

Pf (G1 � G2, x) ≥ max
{

n2Pf (G1, x), n1Pf (G2, x)
}

.

Proof. If (u, v) ∈ V(G1 � G2), then d(u,v) = n2du + dv.
Assume that f ∈ AP1(δ). Since du ≥ δ for every u ∈ V(G1) ∪V(G2), one can prove

by induction that
1

f (n2du + dv)
≥ n2

f (du)
+

1
f (dv)

.

Since x ∈ (0, 1],

Pf (G1 � G2, x) = ∑
u∈V(G1)

∑
v∈V(G2)

x1/ f (n2du+dv)−1

≤ ∑
u∈V(G1)

xn2/ f (du) ∑
v∈V(G2)

x1/ f (dv)−1

= ∑
u∈V(G1)

(
xn2
)1/ f (du)−1xn2 Pf (G2, x)

= xn2 Pf (G1, xn2)Pf (G2, x).

If f ∈ AP2(δ), then same argument allows obtaining of the result.
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If f ∈ AP3(δ), then

Pf (G1 � G2, x) = ∑
u∈V(G1)

∑
v∈V(G2)

x1/ f (n2du+dv)−1

≥ ∑
u∈V(G1)

∑
v∈V(G2)

x1/ f (du)−1 = n2Pf (G1, x).

A similar argument gives Pf (G1 � G2, x) ≥ n1Pf (G2, x).

Theorems 2 and 11 have the following consequence when f (t) = tα.

Proposition 5. Let G1 and G2 be two graphs with n1 and n2 vertices, respectively, α ∈ R
and f (t) = tα. The f -polynomial of the lexicographic product G1 � G2 satisfies the following
inequalities for x ∈ (0, 1].

(1) If α ≤ −1, then

Pf (G1 � G2, x) ≤ xn2 Pf (G1, xn2)Pf (G2, x).

(2) If α ∈ [−1, 0], then

Pf (G1 � G2, x) ≥ xn2 Pf (G1, xn2)Pf (G2, x).

(3) If α ≥ 0, then

Pf (G1 � G2, x) ≥ max
{

n2Pf (G1, x), n1Pf (G2, x)
}

.

Theorem 5 gives the following equality for the inverse degree polynomial.

Corollary 4. Given two graphs G1 and G2, of order n1 and n2, respectively, the ID polynomial of
the lexicographic product G1 � G2 is

ID(G1 � G2, x) = xn2 ID(G1, xn2)ID(G2, x).

Since f (t) = t
√

log t ∈ AP3(2), Theorem 11 has the following consequence.

Theorem 12. Let G1 and G2 be two graphs with minimum degree two and of order n1 and n2,
respectively. If f (t) = t

√
log t, then the f -polynomial of the lexicographic product G1 � G2

satisfies for x ∈ (0, 1]

Pf (G1 � G2, x) ≥ max
{

n2Pf (G1, x), n1Pf (G2, x)
}

.

Next, we obtain bounds for I f (G1 � G2) by using the previous inequalities for
Pf (G1 � G2, x). We start with f ∈ AP3(δ).

Theorem 13. Let δ ∈ Z+, G1 and G2 be two graphs of order n1 and n2, respectively, and minimum
degree at least δ. If f ∈ AP3(δ), then

I f (G1 � G2) ≥ max
{

n2 I f (G1), n1 I f (G2)
}

.

Proof. Theorem 11 gives
Pf (G1 � G2, x) ≥ n2Pf (G1, x).

for every 0 ≤ x ≤ 1. Thus, Proposition 1 leads to I f (G1 � G2) ≥ n2 I f (G1). A similar
argument gives the inequality I f (G1 � G2) ≥ n1 I f (G2).

We deal now with f ∈ AP1(δ) ∪ AP2(δ).
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Theorem 14. Let δ ∈ Z+, G1 and G2 be two graphs of orders n1 and n2, respectively, and
minimum degree at least δ, and a > 0. If f : Z+ ∩ [δ, ∞) → (0, a/2], then the following
inequalities hold.

(1) If f ∈ AP1(δ), then

I f (G1 � G2) ≤
1
2

(n2
1n2a
2

I f (G1)I f (G2)
)1/3

.

(2) If f ∈ AP2(δ), then

I f (G1 � G2) ≥
1

n2a
I f (G1)I f (G2).

Proof. Consider the function g = f /a. We have g : Z+ ∩ [δ, ∞) → (0, 1/2] and so,
Proposition 1 implies that Pg(G1, x) and Pg(G2, x) are convex functions on the open interval
(0, ∞) and continuous on the closed interval [0, ∞); hence, they are convex when x ∈ [0, 1].

If f ∈ AP1(δ), then f /a ∈ AP1(δ) and Theorem 11 implies

Pf /a(G1 � G2, x) ≤ xn2 Pf /a(G1, xn2)Pf /a(G2, x).

Notice that f /a ≤ 1/2 implies a/ f − 1 ≥ 1, and thus, Pf /a(Gi, 0) = 0 and
Pf /a(Gi, 1) = ni for i = 1, 2. Since x is a convex function when x ∈ [0, 1],
Lemma 2 implies

1
a

I f (G1 � G2) = I f /a(G1 � G2) =
∫ 1

0
Pf /a(G1 � G2, x) dx

≤
∫ 1

0
xn2 Pf /a(G1, xn2)Pf /a(G2, x) dx

≤ 1
2

( ∫ 1

0
x dx

∫ 1

0
xn2−1Pf /a(G1, xn2) dx

∫ 1

0
Pf /a(G2, x) dx

)1/3(
1 · n1 · n2

)2/3

=
1
2

(1
2

1
n2

∫ 1

0
Pf /a(G1, t) dt

1
a

I f (G2) n2
1n2

2

)1/3

=
1
2

(n2
1n2

2a2 I f (G1)I f (G2)
)1/3

.

If f ∈ AP2(δ), thus f /a ∈ AP2(δ) and Theorem 11 implies

Pf /a(G1 � G2, x) ≥ xn2 Pf /a(G1, xn2)Pf /a(G2, x).

Thus, Lemma 1 gives

1
a

I f (G1 � G2) = I f /a(G1 � G2) =
∫ 1

0
Pf /a(G1 � G2, x) dx

≥
∫ 1

0
xn2 Pf /a(G1, xn2)Pf /a(G2, x) dx

≥ 2
∫ 1

0
x dx

∫ 1

0
xn2−1Pf /a(G1, xn2) dx

∫ 1

0
Pf /a(G2, x) dx

= 2
1
2

1
n2a

I f (G1)
1
a

I f (G2) =
1

n2a2 I f (G1)I f (G2).

Now, we deduce several inequalities for many topological indices of lexicographic prod-
ucts.

Theorems 2, 14 (with a = 2) and 13 have the following consequence for the variable
first Zagreb index.
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Theorem 15. Let G1 and G2 be two graphs of orders n1 and n2, respectively, and α ∈ R.
(1) If α ≤ −1, then

Mα
1 (G1 � G2) ≤

1
2
(
n2

1n2Mα
1 (G1)Mα

1 (G2)
)1/3.

(2) If α ∈ [−1, 0], then

Mα
1 (G1 � G2) ≥

1
2n2

Mα
1 (G1)Mα

1 (G2).

(3) If α ≥ 0, then

Mα
1 (G1 � G2) ≥ max

{
n2Mα

1 (G1), n1Mα
1 (G2)

}
.

Theorem 15 has the following consequence for the first Zagreb, forgotten and in-
verse degree.

Corollary 5. If G1 and G2 are two graphs with n1 and n2 vertices, respectively, then

M1(G1 � G2) ≥ max
{

n2M1(G1), n1M1(G2)
}

,

F(G1 � G2) ≥ max
{

n2F(G1), n1F(G2)
}

,
1

2n2
ID(G1)ID(G2) ≤ ID(G1 � G2) ≤

1
2
(
n2

1n2 ID(G1)ID(G2)
)1/3.

Since f (t) = t
√

log t ∈ AP3(2), Theorem 13 allows deduction of the following result
for the SL index.

Theorem 16. If G1 and G2 are graphs without pendant vertices and with n1 and n2 vertices,
respectively, then

SL(G1 � G2) ≥ max
{

n2SL(G1), n1SL(G2)
}

.

5. Inequalities for Cartesian Sums

We start this last section by proving pointwise inequalities of Pf (G1⊕G2, x) involving
the f -polynomials of G1 and G2.

Theorem 17. Let δ ∈ Z+, G1 and G2 be two graphs of orders n1 and n2, respectively, and
minimum degree at least δ. For x ∈ (0, 1], the f -polynomial of the Cartesian sum G1 ⊕ G2 satisfies.

(1) If f ∈ AP1(δ), then

Pf (G1 ⊕ G2, x) ≤ xn1+n2−1Pf (G1, xn2)Pf (G2, xn1).

(2) If f ∈ AP2(δ), then

Pf (G1 ⊕ G2, x) ≥ xn1+n2−1Pf (G1, xn2)Pf (G2, xn1).

(3) If f ∈ AP3(δ), then

Pf (G1 ⊕ G2, x) ≥ max
{

n2Pf (G1, x), n1Pf (G2, x)
}

.

Proof. If (u, v) ∈ V(G1 ⊕ G2), then d(u,v) = n2du + n1dv.
Suppose that f ∈ AP1(δ). Since du ≥ δ for every u ∈ V(G1) ∪V(G2), one can prove

by induction that
1

f (n2du + n1dv)
≥ n2

f (du)
+

n1

f (dv)
.
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Since x ∈ (0, 1],

Pf (G1 ⊕ G2, x) = ∑
u∈V(G1)

∑
v∈V(G2)

x1/ f (n2du+dv)−1

≤ ∑
u∈V(G1)

xn2/ f (du) ∑
v∈V(G2)

xn1/ f (dv)x−1

= ∑
u∈V(G1)

(
xn2
)1/ f (du)−1xn2 ∑

v∈V(G2)

(
xn1
)1/ f (dv)−1xn1 x−1

= xn1+n2−1Pf (G1, xn2)Pf (G2, xn1).

If f ∈ AP2(δ), then a similar argument allows obtaining of the corresponding inequal-
ity.

Suppose that f ∈ AP3(δ). We deduce

Pf (G1 ⊕ G2, x) = ∑
u∈V(G1)

∑
v∈V(G2)

x1/ f (n2du+n1dv)−1

≥ ∑
u∈V(G1)

∑
v∈V(G2)

x1/ f (du)−1 = n2Pf (G1, x).

A similar argument gives Pf (G1 ⊕ G2, x) ≥ n1Pf (G2, x).

Theorems 2 and 17 have the following consequence for f (t) = tα.

Proposition 6. Let G1 and G2 be two graphs of orders n1 and n2, respectively, α ∈ R and
f (t) = tα. For x ∈ (0, 1], the f -polynomial of the Cartesian sum G1 ⊕ G2 satisfies the following
inequalities for .

(1) If α ≤ −1, then

Pf (G1 ⊕ G2, x) ≤ xn1+n2−1Pf (G1, xn2)Pf (G2, xn1).

(2) If α ∈ [−1, 0], then

Pf (G1 ⊕ G2, x) ≥ xn1+n2−1Pf (G1, xn2)Pf (G2, xn1).

(3) If α ≥ 0, then

Pf (G1 ⊕ G2, x) ≥ max
{

n2Pf (G1, x), n1Pf (G2, x)
}

.

Proposition 6 allows deduction of the following equality for the inverse degree poly-
nomial.

Corollary 6. Given two graphs G1 and G2, or order n1 and n2, respectively, the ID polynomial of
the Cartesian sum G1 ⊕ G2 is

ID(G1 ⊕ G2, x) = xn1+n2−1 ID(G1, xn2)ID(G2, xn1).

Since f (t) = t
√

log t ∈ AP3(2), Theorem 17 has the following consequence.

Corollary 7. Let G1 and G2 be two graphs with minimum degree two and of order n1 and n2,
respectively. If f (t) = t

√
log t, then the f -polynomial of the Cartesian sum G1 ⊕ G2 satisfies for

x ∈ (0, 1]
Pf (G1 ⊕ G2, x) ≥ max

{
n2Pf (G1, x), n1Pf (G2, x)

}
.

Next, we obtain bounds for I f (G1 ⊕ G2) by using the previous inequalities for
Pf (G1 ⊕ G2, x). We start when f ∈ AP3(δ).
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Theorem 18. Let δ ∈ Z+, G1 and G2 be two graphs of orders n1 and n2, respectively, and
minimum degree at least δ. If f ∈ AP3(δ), then

I f (G1 ⊕ G2) ≥ max
{

n2 I f (G1), n1 I f (G2)
}

.

Proof. Theorem 17 gives
Pf (G1 ⊕ G2, x) ≥ n2Pf (G1, x).

for every 0 < x ≤ 1. Hence, I f (G1 ⊕ G2) ≥ n2 I f (G1) by Proposition 1. A similar argument
gives the inequality I f (G1 ⊕ G2) ≥ n1 I f (G2).

We consider now the case f ∈ AP1(δ) ∪ AP2(δ).

Theorem 19. Let δ ∈ Z+, G1 and G2 be two graphs of orders n1 and n2, respectively, and
minimum degree at least δ, and a > 0. If f : Z+ ∩ [δ, ∞) → (0, a/2], then the following
inequalities hold.

(1) If f ∈ AP1(δ), then

I f (G1 ⊕ G2) ≤
1
2

(n1n2a
2

I f (G1)I f (G2)
)1/3

.

(2) If f ∈ AP2(δ), then

I f (G1 ⊕ G2) ≥
1

n1n2a
I f (G1)I f (G2).

Proof. Consider the function g = f /a. Therefore, g : Z+ ∩ [δ, ∞)→ (0, 1/2] and Proposi-
tion 1 implies that Pg(G1, x) and Pg(G2, x) are convex functions on the open interval (0, ∞)
and continuous on the closed interval[0, ∞); hence, they are convex when 0 ≤ x ≤ 1.

If f ∈ AP1(δ), then the function f /a belongs to AP1(δ) and Theorem 17 implies

Pf /a(G1 ⊕ G2, x) ≤ xn1+n2−1Pf /a(G1, xn2)Pf /a(G2, xn1).

Notice that f /a ≤ 1/2 implies a/ f − 1 ≥ 1, and thus, Pf /a(Gi, 0) = 0 and
Pf /a(Gi, 1) = ni for i = 1, 2. Since x is a convex function on the interval [0, 1],
Lemma 2 implies

1
a

I f (G1 ⊕ G2) = I f /a(G1 ⊕ G2) =
∫ 1

0
Pf /a(G1 ⊕ G2, x) dx

≤
∫ 1

0
xn1+n2−1Pf /a(G1, xn2)Pf /a(G2, xn1) dx

≤ 1
2

( ∫ 1

0
x dx

∫ 1

0
xn2−1Pf /a(G1, xn2) dx

∫ 1

0
xn1−1Pf /a(G2, xn1) dx

)1/3(
1 · n1 · n2

)2/3

=
1
2

(1
2

1
n2

∫ 1

0
Pf /a(G1, t) dt

1
n1

∫ 1

0
Pf /a(G2, t) dt n2

1n2
2

)1/3

=
1
2

(n1n2

2a2 I f (G1)I f (G2)
)1/3

.

If f ∈ AP2(δ), thus f /a belongs to AP2(δ) and Theorem 17 implies

Pf /a(G1 ⊕ G2, x) ≥ xn1+n2−1Pf /a(G1, xn2)Pf /a(G2, xn1).
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Thus, Lemma 1 gives

1
a

I f (G1 ⊕ G2) = I f /a(G1 ⊕ G2) =
∫ 1

0
Pf /a(G1 ⊕ G2, x) dx

≥
∫ 1

0
xn1+n2−1Pf /a(G1, xn2)Pf /a(G2, xn1). dx

≥ 2
∫ 1

0
x dx

∫ 1

0
xn2−1Pf /a(G1, xn2) dx

∫ 1

0
xn1−1Pf /a(G2, xn1) dx

= 2
1
2

1
n2a

I f (G1)
1

n1a
I f (G2) =

1
n1n2a2 I f (G1)I f (G2).

Theorems 2, 19 (with a = 2) and 18 have the following consequence for the general
first Zagreb index.

Theorem 20. Let G1 and G2 be two graphs of orders n1 and n2, respectively, and α ∈ R.
(1) If α ≤ −1, then

Mα
1 (G1 ⊕ G2) ≤

1
2
(
n1n2Mα

1 (G1)Mα
1 (G2)

)1/3.

(2) If α ∈ [−1, 0], then

Mα
1 (G1 ⊕ G2) ≥

1
2n1n2

Mα
1 (G1)Mα

1 (G2).

(3) If α ≥ 0, then

Mα
1 (G1 ⊕ G2) ≥ max

{
n2Mα

1 (G1), n1Mα
1 (G2)

}
.

Theorem 20 has the following consequence for the first Zagreb, forgotten and inverse
degree indices.

Corollary 8. If G1 and G2 are two graphs of orders n1 and n2, respectively, then

M1(G1 ⊕ G2) ≥ max
{

n2M1(G1), n1M1(G2)
}

.

F(G1 ⊕ G2) ≥ max
{

n2F(G1), n1F(G2)
}

.
1

2n1n2
ID(G1)ID(G2) ≤ ID(G1 ⊕ G2) ≤

1
2
(
n1n2 ID(G1)ID(G2)

)1/3.

Since f (t) = t
√

log t ∈ AP3(2), Theorem 18 implies the following result for the
SL index.

Theorem 21. If G1 and G2 are graphs without pendant vertices and of order n1 and n2, respec-
tively, then

SL(G1 ⊕ G2) ≥ max
{

n2SL(G1), n1SL(G2)
}

.

We obtain the following result by using the previous ideas.

Lemma 4. Let G be a graph and Γ a subgraph of G, f : Z+ → R+ an increasing function,
and x ∈ (0, 1]. Then

Pf (Γ, x) ≤ Pf (G, x), I f (Γ) ≤ I f (G).

If f is a decreasing function and V(Γ) = V(G), then we obtain the converse inequalities.
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Lemma 4 has the following consequence, relating the polynomials and indices of
Cartesian products, lexicographic products and Cartesian sums.

Proposition 7. Let G1 and G2 be two graphs, f : Z+ → R+ an increasing function, and
x ∈ (0, 1]. Then

Pf (G1 × G2, x) ≤ Pf (G1 � G2, x) ≤ Pf (G1 ⊕ G2, x),

I f (G1 × G2) ≤ I f (G1 � G2) ≤ I f (G1 ⊕ G2).

If f is a decreasing function, then we obtain the converse inequalities.

6. Conclusions

There are several graph products which play an important role in graph theory.
Three of these products are Cartesian product, lexicographic product and Cartesian sum.
Many topological indices can be written as I f (G) = ∑u∈V(G) f (du), for an appropriate
choice of the function f (e.g., first Zagreb, inverse degree, forgotten, general first Zagreb
and sum lordeg indices). By using the f -polynomial Pf (G, x) introduced in [43], we obtain
in this paper several inequalities of every topological index which can be written as I f for
a function f in these classical graph products, from the information on topological indices
of their factors, which are much easier to calculate than the products. These results are inter-
esting from the theoretical viewpoint, and also from the point of view of applications since
many chemical compounds can be represented by graph products (see the introduction).
Our approach is to obtain information about the corresponding f -polynomials, which are
easy to calculate (as in Theorems 1, 11 and 17); thus, we can deduce information on the I f

index by using the formula
∫ 1

0 Pf (G, x) dx = I f (G) (as in Theorems 4, 13 and 18). This is
a good approach since the bounds of the f -polynomial of a product of two graphs allow
the use of analytic tools to bound the I f index of such a product, simplifying the proofs.

In [43] appear similar results for corona product and join. Consequently, two natural
open questions are to study this problem for strong product and tensor product of graphs.
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