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Abstract
Adaptive importance samplers are adaptive Monte Carlo algorithms to estimate expectations with respect to some target
distribution which adapt themselves to obtain better estimators over a sequence of iterations. Although it is straightforward to
show that they have the sameO(1/

√
N ) convergence rate as standard importance samplers, where N is the number of Monte

Carlo samples, the behaviour of adaptive importance samplers over the number of iterations has been left relatively unexplored.
In this work, we investigate an adaptation strategy based on convex optimisation which leads to a class of adaptive importance
samplers termed optimised adaptive importance samplers (OAIS). These samplers rely on the iterative minimisation of the
χ2-divergence between an exponential family proposal and the target. The analysed algorithms are closely related to the
class of adaptive importance samplers which minimise the variance of the weight function. We first prove non-asymptotic
error bounds for the mean squared errors (MSEs) of these algorithms, which explicitly depend on the number of iterations
and the number of samples together. The non-asymptotic bounds derived in this paper imply that when the target belongs
to the exponential family, the L2 errors of the optimised samplers converge to the optimal rate of O(1/

√
N ) and the rate of

convergence in the number of iterations are explicitly provided. When the target does not belong to the exponential family,
the rate of convergence is the same but the asymptotic L2 error increases by a factor

√
ρ� > 1, where ρ� − 1 is the minimum

χ2-divergence between the target and an exponential family proposal.

Keywords Adaptive importance sampling · Convex optimization · Variational Inference · Importance sampling

1 Introduction

The class of adaptive importance sampling (AIS) methods is
a key Monte Carlo methodology for estimating integrals that
cannot be obtained in closed form (Robert and Casella 2004).
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This problem arises in many settings, such as Bayesian sig-
nal processing and machine learning (Bugallo et al. 2015,
2017) or optimal control, (Kappen and Ruiz 2016) where
the quantities of interest are usually defined as intractable
expectations. Adaptive importance samplers are versions of
classical importance samplers (IS) which iteratively improve
the proposals to generate samples better suited to the esti-
mation problem at hand. Its variants include, for example,
population Monte Carlo methods (Cappé et al. 2004) and
adaptive mixture importance sampling (Cappé et al. 2008).
Since there has been a surge of papers on the topic of AIS
recently, a comprehensive review is beyond the scope of this
article; see e.g. Bugallo et al. (2017) for a recent review.

Due to the popularity of the adaptive importance samplers,
their theoretical performance has also received attention in
the past fewyears. The same as conventional ISmethods,AIS
schemes enjoy the classical O(1/

√
N ) convergence rate of

the L2 error, where N is the number of Monte Carlo sam-
ples used in the approximations, see e.g. Robert and Casella
(2004) and Agapiou et al. (2017). However, since an adap-
tation is performed over the iterations and the goal of this
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adaptation is to improve the proposal quality, an insightful
convergence result would provide a bound which explicitly
depends on the number of iterations, t , (which sometimes
we refer to as time) and the number of samples, N . Although
there are convergence results of adaptive methods (see Douc
et al. (2007) for a convergence theory for population Monte
Carlo based on minimizing Kullback–Leibler divergence),
none of the available results yields an explicit bound of the
error in terms of the number of iterations and the number of
particles at the same time.

One difficulty of proving such a result for adaptive mix-
ture samplers is that the adaptivemixtures form an interacting
particle system, and it is unclear what kind of adaptation they
perform or whether the adapted proposals actually get closer
to the target for some metric. An alternative to adaptation
using mixtures is the idea of minimizing a cost function in
order to adapt the proposal. This idea has been popular in the
literature, in particular,minimizing the variance of theweight
function has received significant attention, see, e.g. Arouna
(2004a, b); Kawai (2008); Lapeyre and Lelong (2011); Ryu
and Boyd (2014); Kawai (2017, 2018). Relevant to us, in
particular, is the work of Ryu and Boyd (2014), who have
proposed an algorithm called Convex Adaptive Monte Carlo
(Convex AdaMC). This scheme is based on minimizing the
variance of the IS estimator, which is a quantity related to the
χ2 divergence between the target and the proposal. Ryu and
Boyd (2014) have shown that the variance of the IS estimator
is a convex function of the parameters of the proposal when
the latter is chosen within the exponential family. Based on
this observation, Ryu and Boyd (2014) have formulated Con-
vex AdaMC, which draws one sample at each iteration and
construct the IS estimator, which requires access to the nor-
malised target. They proved a central limit theorem (CLT)
for the resulting sampler. The idea has been further extended
for self-normalised importance samplers byRyu (2016), who
considered minimising the α-divergence between the target
and an exponential family. Similarly, Ryu (2016) proved a
CLT for the resulting sampler. Similar ideaswere also consid-
ered by Kawai (2017, 2018), who also aimed at minimizing
the variance expression. Similarly, Kawai (2018) showed
that the variance of the weight function is convex when the
proposal family is suitably chosen and provided general con-
ditions for such proposals. Kawai (2018) has also developed
an adaptation technique based on the stochastic approxima-
tion, which is similar to the scheme we analyse in this paper.
There have been other results also considering χ2 divergence
and relating it to the necessary sample size of the IS meth-
ods, see, e.g. Sanz-Alonso (2018). Following the approach
of Chatterjee et al. (2018), Sanz-Alonso (2018) considers
and ties the necessary sample size to χ2-divergence, in par-
ticular, shows that the necessary sample size grows with
χ2-divergence, hence implying that minimizing it can lead
to more efficient importance sampling procedures.

In this work, we develop and analyse a family of adaptive
importance samplers, coined optimised adaptive importance
samplers (OAIS), which relies on a particular adaptation
strategy based on convex optimisation.We adapt the proposal
with respect to a quantity (essentially the χ2-divergence
between the target and the proposal) that also happens to be
the constant in the error bounds of the IS [see, e.g. (Agapiou
et al. 2017)]. Assuming that proposal distributions belong to
the exponential family, we recast the adaptation of the pro-
posal as a convex optimisation problem and then develop a
procedure which essentially optimises the L2 error bound of
the algorithm. By using results from convex optimisation,
we obtain error rates depending on the number of itera-
tions, denoted as t , and the number of Monte Carlo samples,
denoted as N , together. In this way, we explicitly display
the trade-off between these two essential quantities. To the
best of our knowledge, none of the papers on the topic pro-
vides convergence rates depending explicitly on the number
of iterations and the number of particles together, as we do
herein.

The paper is organised as follows. In Sect. 2, we introduce
the problem definition, the IS and the AIS algorithms. In
Sect. 3, we introduce the OAIS algorithms. In Sect. 4, we
provide the theoretical results regarding optimised AIS and
show its convergence using results from convex optimisation.
Finally, we make some concluding remarks in Sect. 5.

Notation

For L ∈ N, we use the shorthand [L] = {1, . . . , L}. We
denote the state space as X and assume X ⊆ R

dx , dx ≥ 1.
The space of bounded real-valued functions and the set of
probability measures on space X are denoted as B(X) and
P(X), respectively. Given ϕ ∈ B(X) and π ∈ P(X), the
expectation of ϕ with respect to (w.r.t.) π is written as
(ϕ, π) = ∫

ϕ(x)π(dx) orEπ [ϕ(X)]. The variance of ϕ w.r.t.
π is defined as varπ (ϕ) = (ϕ2, π) − (ϕ, π)2. If ϕ ∈ B(X),
then ‖ϕ‖∞ = supx∈X |ϕ(x)| < ∞. The unnormalised den-
sity associated with π is denoted with Π(x). We denote the
proposal as qθ ∈ P(X), with an explicit dependence on the
parameter θ ∈ Θ . The parameter space is assumed to be a
subset of dθ -dimensional Euclidean space, i.e. Θ ⊆ R

dθ .
Whenever necessary, we denote both the probability mea-

sures, π and qθ , and their densities with the same notation.
To be specific, we assume that both π(dx) and qθ (dx) are
absolutely continuous with respect to the Lebesgue measure,
and we denote their associated densities as π(x) and qθ (x).
The use of either the measure or the density will be clear
from both the argument (sets or points, respectively) and the
context.
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2 Background

In this section, we review importance and adaptive impor-
tance samplers.

2.1 Importance sampling

Consider a target density π ∈ P(X) and a bounded function
ϕ ∈ B(X). Often, the main interest is to compute an integral
of the form

(ϕ, π) =
∫

X
ϕ(x)π(x)dx . (2.1)

While perfectMonteCarlo can be used to estimate this expec-
tation when it is possible to sample exactly from π(x), this
is in general not tractable. Hereafter, we consider the cases
when the target can be evaluated exactly and up to a normal-
ising constant, respectively.

Importance sampling (IS) uses a proposal distribution
which is easy to sample and evaluate. The method consists in
weighting these samples, in order to correct the discrepancy
between the target and the proposal, and finally constructing
an estimator of the integral. To be precise, let qθ ∈ P(X) be
the proposal which is parameterised by the vector θ ∈ Θ .
The unnormalised target density is denoted as Π : X → R+.
Therefore, we have

π(x) = Π(x)

Zπ

,

where Zπ := ∫
X Π(x)dx < ∞. Next, we define functions

wθ, Wθ : X × Θ → R+ as

wθ(x) = π(x)

qθ (x)
and Wθ (x) = Π(x)

qθ (x)
,

respectively. For a chosen proposal qθ , the IS proceeds as
follows. First, a set of independent and identically distributed
(iid) samples {x (i)}N

i=1 is generated from qθ . When π(x) can
be evaluated, one constructs the empirical approximation of
the probability measure π , denoted π N

θ , as

π N
θ (dx) = 1

N

N∑

i=1

wθ(x (i))δx (i) (dx),

where δx ′(dx) denotes the Dirac delta measure that places
unit probability mass at x = x ′. For this case, the IS estimate
of the integral in (2.1) can be given as

(ϕ, π N
θ ) = 1

N

N∑

i=1

wθ(x (i))ϕ(x (i)). (2.2)

However, in most practical cases, the target density π(x) can
only be evaluated up to an unknown normalizing proportion-
ality constant (i.e. we can evaluate Π(x) but not Zπ ). In this
case, we construct the empirical measure π N

θ as

π N
θ (dx) =

N∑

i=1

w(i)
θ δx (i) (dx),

where

w(i)
θ = Wθ (x (i))

∑N
j=1 Wθ (x ( j))

.

Finally, this construction leads to the so-called
self-normalizing importance sampling (SNIS) estimator

(ϕ, π N
θ ) =

N∑

i=1

w(i)
θ ϕ(x (i)). (2.3)

Although the IS estimator (2.2) is unbiased, the SNIS esti-
mator (2.3) is in general biased. However, the bias and the
MSE vanishwith a rateO(1/N ), therefore providing guaran-
tees of convergence as N → ∞. Crucially for us, the MSE
of both estimators. For clarity, below, we present an MSE
bound for the (more general) SNIS estimator (2.3) which is
adapted from Agapiou et al. (2017).

Theorem 1 Assume that (W 2
θ , qθ ) < ∞. Then for any ϕ ∈

B(X), we have

E

[(
(ϕ, π) − (ϕ, π N

θ )
)2] ≤ cϕρ(θ)

N
, (2.4)

where cϕ = 4‖ϕ‖2∞ and the function ρ : Θ → [ρ�,∞) is
defined as

ρ(θ) = Eqθ

[
π2(X)

q2
θ (X)

]

, (2.5)

where ρ� := infθ∈Θ ρ(θ) ≥ 1.

Proof See Appendix A.1 for a self-contained proof. ��
Remark 1 For the IS estimator (2.2), this bound can be
improved so that cϕ = ‖ϕ‖2∞. However, this improvement
does not effect our results in this paper; hence, we present a
single bound of the form in (2.4) for the estimators (2.2) and
(2.3) for conciseness. �

Remark 2 As pointed out by Agapiou et al. (2017), the func-
tion ρ is essentially the χ2 divergence between π and qθ ,
i.e.
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ρ(θ) := χ2(π ||qθ ) + 1.

Note that ρ(θ) can also be expressed in terms of the variance
of the weight function wθ , which coincides with the χ2-
divergence, i.e.

ρ(θ) = varqθ (wθ (X)) + 1.

Therefore, minimizing ρ(θ) is equivalent to minimizing χ2-
divergence and the variance of the weight function wθ , i.e.
varqθ (wθ (X)). �

Remark 3 Remark 2 implies that when both π and qθ belong
to the same parametric family (i.e. there exists θ ∈ Θ such
that π = qθ ), one readily obtains

ρ� := inf
θ∈Θ

ρ(θ) = 1. �

Remark 4 For the IS estimator (2.2), the bound in Theorem 1
can be modified so that it holds for unbounded test func-
tions ϕ as well; see, e.g. Ryu and Boyd (2014). Therefore, a
similar quantity to ρ(θ), which includes ϕ while still retain-
ing convexity, can be optimised for this case. Unfortunately,
obtaining such a bound is not straightforward for the SNIS
estimator (2.3) as shown by Agapiou et al. (2017). In order
to significantly simplify the presentation, we restrict our-
selves to the class of bounded test functions, i.e. we assume
‖ϕ‖∞ < ∞. �

Finally, we present a bias result from Agapiou et al. (2017).

Theorem 2 Assume that (W 2
θ , qθ ) < ∞. Then for any ϕ ∈

B(X), we have

∣
∣
∣E

[
(ϕ, π N

θ )
]

− (ϕ, π)

∣
∣
∣ ≤ c̄ϕρ(θ)

N
,

where c̄ϕ = 12‖ϕ‖2∞ and the function ρ : Θ → [ρ�,∞) is
the same as in Theorem 1.

Proof See Theorem 2.1 in Agapiou et al. (2017). ��

2.2 Parametric adaptive importance samplers

Standard importance sampling may be inefficient in prac-
tice when the proposal is poorly calibrated with respect to
the target. In particular, as implied by the error bound pro-
vided in Theorem 1, the errormade by the IS estimator can be
high if theχ2-divergence between the target and the proposal
is large. Therefore, it is more common to employ an itera-
tive version of importance sampling, also called as adaptive
importance sampling (AIS). The AIS algorithms are impor-
tance sampling methods which aim at iteratively improving
the proposal distributions. More specifically, the AIS meth-
ods specify a sequence of proposals (qt )t≥1 and perform

Algorithm 1 Parametric AIS
1: Choose a parametric proposal qθ with initial parameter θ = θ0.
2: for t ≥ 1 do
3: Adapt the proposal,

θt = Tt (θt−1),

4: Sample,

x (i)
t ∼ qθt , for i = 1, . . . , N ,

5: Compute weights,

w(i)
θt

= Wθt (x (i)
t )

∑N
i=1 Wθt (x (i)

t )
, where W (i)

θt
= Π(x (i)

t )

qθt (x (i))
.

6: Report the point-mass probability measure

π N
θt

(dx) =
N∑

i=1

w(i)
θt

δ
x (i)

t
(dx),

and the estimator

(ϕ, π N
θt

) =
N∑

i=1

w(i)
θt

ϕ(x (i)
t ).

7: end for

importance sampling at each iteration. The aim is to improve
the proposal so that the samples are better matched with the
target, which results in less variance andmore accuracy in the
estimators. There are several variants, the most popular one
being population Monte Carlo methods (Cappé et al. 2004)
which uses previous samples in the proposal.

In this section, we review one particular AIS, which we
refer to as parametric AIS. In this variant, the proposal distri-
bution is a parametric distribution, denotedqθ .Over time, this
parameter θ is updated (or optimised) with respect to a pre-
defined criterion resulting in a sequence (θt )t≥1. This yields
a sequence of proposal distributions denoted as (qθt )t≥1.

One iteration of the algorithm goes as follows. Assume at
time t − 1 we are given a proposal distribution qθt−1 . At time
t , we first update the parameter of this proposal,

θt = Tt (θt−1),

where {Tt : Θ → Θ, t ≥ 1}, is a sequence of (deterministic
or stochastic) maps, e.g. gradient mappings, constructed so
that they minimise a certain cost function. Then, in the same
way, we have done in conventional IS, we sample

x (i)
t ∼ qθt (dx), for i = 1, . . . , N ,

compute weights

w(i)
θt

= Wθt (x (i)
t )

∑N
i=1 Wθt (x (i)

t )
,

and finally construct the empirical measure
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π N
θt

(dx) =
N∑

i=1

w(i)
θt

δ
x (i)

t
(dx).

The estimator of the integral (2.1) is then computed as in Eq.
(2.3).

The full procedure of the parametric AIS method is sum-
marized in Algorithm 1. Since this is a valid IS scheme, this
algorithm enjoys the same guarantee provided in Theorem 1.
In particular, we have the following theorem.

Theorem 3 Assume that given a sequence of proposals
(qθt )t≥1 ∈ P(X), we have (W 2

θt
, qθt ) < ∞ for every t . Then

for any ϕ ∈ B(X), we have

E

[∣
∣
∣(ϕ, π) − (ϕ, π N

θt
)

∣
∣
∣
2
]

≤ cϕρ(θt )

N
,

where cϕ = 4‖ϕ‖2∞ and the function ρ(θt ) : Θ → [ρ�,∞)

is defined as in Eq. (2.5).

Proof The proof is identical to the proof of Theorem 1. We
have just re-stated the result to introduce the iteration index
t . ��
However, this theorem does not give an insight of what hap-
pens as the number of iterations increases, i.e. when t → ∞,
with the bound. Ideally, the adaptation of the AIS should
improve this bound with time. In other words, in the ideal
case, the error should decrease as t grows. Fortunately, The-
orem 3 suggests that the maps Tt : Θ → Θ can be chosen
so that the function ρ is minimised over time. More specifi-
cally, the sequence (θt )t≥1 can be chosen so that it leads to a
decreasing sequence (at least in expectation) (ρ(θt ))t≥1. In
the following sections, we will summarize the deterministic
and stochastic strategies to achieve this aim.

Remark 5 We define the unnormalised version of ρ(θ) and
denote it as R(θ). It is characterised as follows:

ρ(θ) = R(θ)

Z2
π

where Zπ =
∫

X
Π(x)dx < ∞.

Hence, R(θ) can also be expressed as

R(θ) = Eqθ

[
Π2(X)

q2
θ (X)

]

. (2.6)

�

2.3 AIS with exponential family proposals

Following Ryu and Boyd (2014), we note that when qθ is
chosen as an exponential family density, the function ρ(θ) is
convex. In particular, we define

qθ (x) = exp(θ�T (x) − A(θ))h(x), (2.7)

where A : Rdθ → R ∪ {∞} is the log of the normalization
constant, i.e.

A(θ) = log
∫

exp(θ�T (x))h(x)dx,

while T : Rdx → R
dθ and h : Rdx → R+. Then, we have

the following lemma adapted from Ryu and Boyd (2014).

Lemma 1 Let qθ be chosen as in (2.7). Then, ρ : Θ →
[ρ�,∞) is convex, i.e. for any θ1, θ2 ∈ Θ and λ ∈ [0, 1], the
following inequality holds

ρ(λθ1 + (1 − λ)θ2) ≤ λρ(θ1) + (1 − λ)ρ(θ2).

Proof See Appendix A.2 for a self-contained proof. ��
Lemma 1 shows that ρ is a convex function; therefore, opti-
mising it could give us provably convergent algorithms (as
t increases). Next lemma, borrowed from Ryu and Boyd
(2014), shows that ρ is differentiable and its gradient can
indeed be computed as an expectation.

Lemma 2 The gradient ∇ρ(θ) can be written as

∇ρ(θ) = Eqθ

[

(∇ A(θ) − T (X))
π2(X)

q2
θ (X)

]

. (2.8)

Proof The proof is straightforward since qθ is from an expo-
nential family and A(θ) is differentiable. ��
Remark 6 Note that Eqs. (2.6) and (2.8) together imply that

∇ R(θ) = Eqθ

[

(∇ A(θ) − T (X))
Π2(X)

q2
θ (X)

]

. (2.9)

We also note (see Remark 5) that

∇ R(θ) = Z2
π∇ρ(θ). (2.10)

�

In the following sections, we assume that ρ(θ) is a convex
function. Thus, Lemma1 constitutes an importantmotivation
for our approach. We leave general proposals which lead to
nonconvex ρ(θ) for future work.

3 Algorithms

In this section, we describe adaptation strategies based on
minimizingρ(θ). In particular,wedesignmapsTt : Θ → Θ ,
for t ≥ 1, for scenarios where

(i) the gradient of ρ(θ) can be exactly computed,
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(ii) an unbiased estimate of the gradient of ρ(θ) can be
obtained, and

(iii) an unbiased estimate of the gradient of R(θ) can be
obtained.

Scenario (i) is unrealistic in practice but gives us a guide-
line in order to further develop the idea. In particular, the
error bounds for the more complicated cases follow the same
structure as this case. Therefore, the results obtained in case
(i) provide a good qualitative understanding of the results
introduced later. Scenario (ii) can be realized in cases where
it is possible to evaluate π(x), in which case the IS leads
to unbiased estimators. Scenario (iii) is what a practitioner
would most often encounter: the target can only be evaluated
up to the normalizing constant, i.e. Π(x) can be evaluated
but π(x) cannot.

We finally remark that for the cases where we assume a
stochastic gradient can be obtained for ρ and R (namely,
the case (ii) and the case (iii) respectively), we consider
two possible algorithms to perform adaptation. The first
method is a vanilla SGD algorithm (Bottou et al. 2016) and
the second method is a SGD scheme with iterate averaging
(Schmidt et al. 2017). While vanilla SGD is easier to imple-
ment and algorithmically related to population-based Monte
Carlo methods, iterate averaged SGD results in a better the-
oretical bound and it has some desirable variance reduction
properties.

3.1 Exact gradient OAIS

We first introduce the OAIS scheme where we assume that
the exact gradients of ρ(θ) are available. Since ρ is defined
as an expectation (an integral), this assumption is unreal-
istic. However, the results we can prove for this procedure
shed light onto the results that will be proved for practical
scenarios in the following sections.

In particular, in this scheme, given θt−1, we specify Tt as

θt = Tt (θt−1) = ProjΘ(θt−1 − γ∇ρ(θt−1)), (3.1)

where γ > 0 is the step-size parameter of the map and ProjΘ
denotes projection onto the compact parameter spaceΘ . This
is a classical gradient descent scheme on ρ(θ). In Sect. 4.1,
we provide non-asymptotic results for this scheme. However,
as we have noted, this idea does not lead to a practical scheme
and cannot be used in most cases in practice as the gradients
of ρ in exact form are rarely available.

Remark 7 We use a projection operator in Eq. (3.1) because
we assume throughout the analysis in Sect. 4 that the param-
eter space Θ is compact. �

3.2 Stochastic gradient OAIS

Although it has a nice and simple form, exact-gradient
OAIS is often intractable as, in most practical cases, the gra-
dient can only be estimated. In this section, we first look at
the case where π(x) can be evaluated, which means that an
unbiased estimate of ∇ρ(θ) can be obtained. Then, we con-
sider the general case, where one can only evaluateΠ(x) and
can obtain an unbiased estimate of ∇ R(θ).

In the following subsections, we consider an algorithm
where the gradient is estimated using samples which can
also be used to construct importance sampling estimators.
The procedure is outlined in Algorithm 3 for the case in
which only Π(x) can be evaluated and ∇ R(θ) is estimated.

3.2.1 Normalised case

If we assume that the density π(x) can be evaluated exactly,
then the algorithm can be described as follows. Given
(θk)1≤k≤t−1, at iteration t , we compute the next parameter
iterate as

θt = ProjΘ(θt−1 − γt gt ),

where gt is an unbiased estimator of ∇ρ(θt−1). We note
that due to the analytical form of ∇ρ (see Eq. (2.8)),
the samples and weights generated at iteration t − 1, i.e.
{

x (i)
t−1, wθt−1(x (i)

t−1)
}N

i=1
can be reused to estimate the gradi-

ent. This makes an algorithmic connection to the population
Monte Carlo methods where previous samples and weights
are used to adapt the proposal (Cappé et al. 2004).

Given the updated parameter θt , the algorithm first sam-
ples from the updated proposal x (i)

t ∼ qθt , i = 1, . . . , N ,
and then proceeds to construct the IS estimator as in (2.2).
Namely,

(ϕ, π N
θt

) = 1

N

N∑

i=1

wθt (x (i)
t )ϕ(x (i)

t ). (3.2)

3.2.2 Self-normalised case

For the general case, where we can only evaluate Π(x), the
algorithm proceeds similarly. Given (θk)1≤k≤t−1, themethod
proceeds by first updating the parameter

θt = ProjΘ(θt−1 − γt g̃t ),

where g̃t is an unbiased estimator of ∇ R(θt−1). Given the
updated parameter, we first sample x (i)

t ∼ qθt , i = 1, . . . , N ,
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Algorithm 2 Stochastic gradient OAIS
1: Choose a parametric proposal qθ with initial parameter θ = θ0.
2: for t ≥ 1 do
3: Update the proposal parameter,

θt = ProjΘ(θt−1 − γt g̃t )

where g̃t is computed by approximating the expectation in Eq. (2.9)
using the samples x (i)

t−1 andweightsw
(i)
θt−1

= Π(x (i)
t−1)qθt−1 (x (i)

t−1)
−1,

i = 1, . . . , N .
4: Sample,

x (i)
t ∼ qθt , for i = 1, . . . , N ,

5: Compute weights,

w(i)
θt

= Wθt (x (i)
t )

∑N
i=1 Wθt (x (i)

t )
.

6: Report,

π N
θt

(dx) =
N∑

i=1

w(i)
θt

δ
x (i)

t
(dx),

and

(ϕ, π N
θt

) =
N∑

i=1

w(i)
θt

ϕ(x (i)
t ).

7: end for

and then construct the SNIS estimate as in (2.3), i.e.

(ϕ, π N
θt

) =
N∑

i=1

w(i)
θt

ϕ(x (i)
t ).

where

w(i)
θt

= Wθt (x (i))
∑N

j=1 Wθt (x ( j))
,

3.3 Stochastic gradient OAIS with averaged iterates

Next, we describe a variant of the stochastic gradient OAIS
that uses averages of the iterates generated by the SGD
scheme (Schmidt et al. 2017) in order to compute the pro-
posal densities, generate samples and compute weights. In
Sect. 4, we show that the convergence rate for this method is
better than the rate that can be guaranteed for Algorithm 2.

3.3.1 Normalised case

We assume first that the density π(x) can be evaluated. At
the beginning of the t-th iteration, the algorithm has gener-
ated the sequence (θk)1≤k≤t−1. First, in order to perform the

adaptive importance sampling steps, we set

θ̄t = 1

t

t−1∑

k=0

θk (3.3)

and sample x̄ (i)
t ∼ qθ̄t

for i = 1, . . . , N . Following the stan-
dard parametric AIS procedure (Algorithm 1), we obtain the
estimate of (ϕ, π) as,

(ϕ, π N
θ̄t

) = 1

N

N∑

i=1

wθ̄t
(x̄ (i)

t )ϕ(x̄ (i)
t ).

Next, we update the parameter vector using the projected
stochastic gradient step

θt = Tt (θt−1) = ProjΘ(θt−1 − γt gt ), (3.4)

where gt is an unbiased estimate of ∇ρ(θt−1), i.e. E[gt ] =
∇ρ(θt−1) and ProjΘ denotes projection onto the set Θ . Note
that in order to estimate this gradient using (2.8), we sample
x (i)

t ∼ qθt−1 for i = 1, . . . , N , and estimate the expectation in

(2.8). It isworth noting that the samples {x (i)
t }M

i=1 are different

from the samples {x̄ (i)
t }N

i=1 used to estimate (ϕ, π).

3.3.2 Self-normalised case

In general, π(x) cannot be evaluated exactly; hence, a
stochastic unbiased estimate of ∇ρ(θ) cannot be obtained.
When the target can only be evaluated up to a normalisa-
tion constant, i.e. only Π(x) can be computed, we can use
the SNIS procedure as explained in Sect. 2. Therefore, we
introduce here the most general version of the stochastic
method, coined stochastic gradient OAIS, which uses the
averaged iterates in (3.3) to construct the proposal functions.
The scheme is outlined in Algorithm 3.

To run this algorithm, given the parameter vector θ̄t in
(3.3), we first generate a set of samples {x̄ (i)

t }N
i=1 from the

proposal qθ̄t
. Then, the integral estimate given by the SNIS

can be written as,

(ϕ, π N
θ̄t

) =
N∑

i=1

w(i)
θ̄t

ϕ(x̄ (i)
t ),

where

w(i)
θ̄t

= Wθ̄t
(x̄ (i))

∑N
j=1 Wθ̄t

(x̄ ( j))
.

Finally, for the adaptation step, we obtain the unbiased esti-
mate of the gradient ∇ R(θ) and adapt the parameter as

θt = ProjΘ(θt−1 − γt g̃t ) (3.5)
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Algorithm3Stochastic gradientOAISwith averaged iterates
1: Choose a parametric proposal qθ with initial parameter θ = θ0.
2: for t ≥ 1 do
3: Compute the average parameter vector

θ̄t = 1

t

t−1∑

k=0

θk

4: Sample,

x̄ (i)
t ∼ qθ̄t

, for i = 1, . . . , N ,

5: Compute weights,

w(i)
θ̄t

= Wθ̄t
(x̄ (i)

t )
∑N

i=1 Wθ̄t
(x̄ (i)

t )
.

6: Report the point-mass probability measure

π N
θ̄t

(dx) =
N∑

i=1

w(i)
θ̄t

δ
x̄ (i)

t
(dx),

and the estimator

(ϕ, π N
θ̄t

) =
N∑

i=1

w(i)
θ̄t

ϕ(x̄ (i)
t ).

7: Update the parameter vector,

θt = ProjΘ(θt−1 − γt g̃t )

where g̃t is an estimate of ∇ R(θt−1) computed by approximating
the expectation in Eq. (2.9) using a set of iid samples x (i)

t ∼ qθt−1 ,
i = 1, . . . , N .

8: end for

where g̃t is an unbiased estimate of ∇ R(θt−1), i.e. E[g̃t ] =
∇ R(θt−1). Note that as in the normalised case, this gradient
is estimated by approximating the expectation in (2.9) using
iid samples x (i)

t ∼ qθt−1 , i = 1, . . . , N . These samples are

different, again, from the set {x̄ (i)
t }N

i=1 employed to estimate
(ϕ, π).

Remark 8 In Algorithm 3, the samples {x̄ (i)
t }N

i=1 drawn from
the proposal distribution qθ̄t−1

(dx) are not used to compute
the gradient estimator g̃t which, in turn, is needed to generate
the next iterate θt . Therefore, if we can afford to generate T
iterates, θ0, . . . , θT −1, with T known before hand, andwe are
only interested in the estimator (ϕ, π N

θ̄T
) obtained at the last

iteration (once the proposal function has been optimized),
then it is be possible to skip steps 3–6 in Algorithm 3 up
to time T − 1. Only at time t = T , we would compute the
average parameter vector θ̄T , sample x̄ (i)

T from the proposal
qθ̄T

(dx) and generate the point-mass probabilitymeasureπ N
θ̄T

and the estimator (ϕ, π N
θ̄T

).

4 Analysis

Theorem 1 yields an intuitive result about the performance
of IS methods in terms of the divergence between the tar-
get π and the proposal qθ . We now apply ideas from convex
optimisation theory in order to minimize ρ(θ) and obtain
finite-time, finite-sample convergence rates for the AIS pro-
cedures outlined in Sect. 3.

4.1 Convergence rate with exact gradients

Let us first assume that we can compute the gradient of ρ(θ)

exactly. In particular, we consider the update rule in Eq.
(3.1). For the sake of the analysis, we impose some regu-
larity assumptions on the ρ(θ).

Assumption 1 Let ρ(θ) be a convex function with Lipschitz
derivatives in the compact space Θ . To be specific, ρ is con-
vex and differentiable, and there exists a constant L < ∞
such that

‖∇ρ(θ) − ∇ρ(θ ′)‖2 ≤ L‖θ − θ ′‖2
for any θ, θ ′ ∈ Θ .

Remark 9 Assumption 1 holds when the density qθ (x)

belongs to an exponential family (see Sect. 2.3) and Θ is
compact (Ryu and Boyd 2014), even if it may not hold in
general for θ ∈ R

dθ . �

Lemma 3 If Assumption 1 holds and we set a step-size γ ≤
1/L, then the inequality

ρ(θt ) − ρ� ≤ ‖θ0 − θ�‖2
2γ t

, (4.1)

is satisfied for the sequence {θt }t≥0 generated by the recur-
sion (3.1) where θ� is a minimum of ρ.

Proof See, e.g. Nesterov (2013). ��
This rate in (4.1) is one of the most fundamental results

in convex optimisation. Lemma 3 enables us to prove the
following result for the MSE of the AIS estimator adapted
using exact gradient descent in Eq. (3.2).

Theorem 4 Let Assumption 1 hold and construct the sequence
(θt )t≥1 using recursion (3.1), where (qθt )t≥1 is the sequence
of proposal distributions. Then, the inequality

E

[(
(ϕ, π) − (ϕ, π N

θt
)
)2] ≤ cϕ‖θ0 − θ�‖22

2γ t N
+ cϕρ�

N
(4.2)

is satisfied, where cϕ = 4‖ϕ‖2∞, 0 < γ ≤ 1/L and L is the
Lipschitz constant of the gradient ∇ρ(θ) in Assumption 1.
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Proof See Appendix A.3. ��
Remark 10 Theorem 4 sheds light onto several facts. We first
note that ρ� in the error bound (4.2) can be interpreted as
an indicator of the quality of the parametric proposal. We
recall that ρ� = 1 when both π and qθ belong to the same
exponential family. For this special case, Theorem 4 implies
that

lim
t→∞

∥
∥
∥(ϕ, π) − (ϕ, π N

θt
)

∥
∥
∥
2

≤ O
(

1√
N

)

.

In otherwords,when the target and the proposal are both from
the exponential family, this adaptation strategy is leading to
an asymptotically optimal Monte Carlo estimator (optimal
meaning that we attain the same rate as a Monte Carlo esti-
mator with N iid samples from π ). On the other hand, when
π and qθ do not belong to the same family, we obtain

lim
t→∞

∥
∥
∥(ϕ, π) − (ϕ, π N

θt
)

∥
∥
∥
2

≤ O
(√

ρ�

N

)

,

i.e. the L2 rate is again asymptotically optimal, but the
constant in the error bound is worse (bigger) by a factor√

ρ� > 1. �

This bound shows that as t → ∞, what we are left with is
essentially the minimum attainable IS error for a given para-
metric family {qθ }θ∈Θ . Intuitively, when the proposal qθ is
from a different parametric family than π , the gradient OAIS
optimises the error bound in order to obtain the best possi-
ble proposal. In particular, the MSE has two components:
First an O(1/t N ) component which can be made to vanish
over time by improving the proposal and a second O(1/N )

component which is related to ρ�. The quantity ρ� is related
to the minimum χ2-divergence between the target and pro-
posal. Thismeans that the discrepancy between the target and
optimal proposal (according to the χ2-divergence) can only
be tackled by increasing N . This intuition is the same for the
schemes we analyse in the next sections, although the rate
with respect to the number of iterations necessarily worsens
because of the uncertainty in the gradient estimators.

Remark 11 When γ = 1/L , Theorem 4 implies that if t =
O(L/ρ�) and N = O(ρ�/ε), for some ε > 0, then we have

E

[(
(ϕ, π) − (ϕ, π N

θt
)
)2] ≤ O(ε).

We remark that once we choose the number of samples
N = O(ρ�/ε), the number of iterations t for adaptation is
independent of N and ε. �

Remark 12 One can use different maps Tt for optimisation.
For example, one can use Nesterov’s accelerated gradient

descent (which has more parameters than just a step size),
in which case, one could prove (by a similar argument) the
inequality (Nesterov 2013)

E

[(
(ϕ, π) − (ϕ, π N

θt
)
)2] ≤ O

(
1

t2N
+ ρ�

N

)

.

This is an improved convergence rate, going fromO(1/t) to
O(1/t2) in the first term of the bound. �

4.2 Convergence rate with averaged SGD iterates

While, for the purpose of analysis, it is convenient to assume
that the minimization of ρ(θ) can be done deterministically,
this is rarely the case in practice. The ‘best’ realistic case
is that we can obtain an unbiased estimator of the gradient.
Hence, we address this scenario, under the assumption that
the actual gradient functions ∇ρ and ∇ R are bounded in Θ

(i.e. ρ(θ) is Lipschitz in Θ).

Assumption 2 The gradient functions∇ρ(θ) and∇ R(θ) are
bounded in Θ . To be specific, there exist finite constants Gρ

and G R such that

sup
θ∈Θ

‖∇ρ(θ)‖2 < Gρ < ∞ and

sup
θ∈Θ

‖∇ R(θ)‖2 < G R < ∞.

Wenote that this is amild assumption in the case of interest
in this paper, where Θ ⊂ R

dθ is assumed to be compact.

4.2.1 Normalised target

First, we assume that we can evaluate π(x), which means
that at iteration t , we can obtain an unbiased estimate of
∇ρ(θt−1), denoted gt . We use the optimisation algorithms
called stochastic gradient methods, which use stochastic and
unbiased estimates of the gradients to optimise a given cost
function (Robbins and Monro 1951). Particularly, we focus
on optimised samplers using stochastic gradient descent
(SGD) as an adaptation strategy.

We start proving that the stochastic gradient estimates
(gt )t≥0 have a finite mean-squared error (MSE) w.r.t. the
true gradients. To prove this result, we need an additional
regularity condition.

Assumption 3 The normalised target and proposal densities
satisfy the inequality

sup
θ∈Θ

Eqθ

⎡

⎣

∣
∣
∣
∣
∣
π2(X)

q2
θ (X)

∂ log qθ

∂θ j
(X)

∣
∣
∣
∣
∣

2
⎤

⎦ =: D j
π < ∞.

for j = 1, . . . , dθ . We denote Dπ := max j∈{1,...,dθ } D j
π <

∞.
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Remark 13 Let us rewrite D j
π in Assumption 3 in terms of

the weight function, namely

D j
π = sup

θ∈Θ

Eqθ

[∣
∣
∣
∣w

2
θ (X)

∂ log qθ

∂θ j
(X)

∣
∣
∣
∣

2
]

.

When qθ (x) belongs to the exponential family, we readily
obtain

D j
π = sup

θ∈Θ

Eqθ

[

w4
θ (X)

(
∂ A(θ)

∂θi
− Ti (X)

)2
]

,

where Ti (X) is the i-th sufficient statistic for qθ (x). Let us
construct a bounding function for the weights of the form

K (θ) := sup
x∈X

wθ(x).

If we choose the compact space Θ in such a way that K (θ)

is bounded, then we readily have

D j
π ≤ sup

θ∈Θ

K 4(θ)Eqθ

[(
∂ A(θ)

∂θi
− Ti (X)

)2
]

≤ ‖K‖4∞Var(Ti (X)),

where we have used the fact that ∂m A(θ)
∂θi

= Eqθ

[
T m

i (X)
]
.

Therefore, if the weights remain bounded in Θ , a sufficient
condition forAssumption 3 to hold is that the sufficient statis-
tics of the proposal distribution all have finite variances, i.e.
maxi∈{1,...,dθ } Ti (X) < ∞.
There are alternative conditions that, when satisfied, lead to
Assumption 3 holding true. As an example, in Appendix A.4,
we provide an alternative sufficient condition in terms of the
function ρ2(θ) := E[w4

θ (X)].
Now,we show thatwhen gt is an iidMonteCarlo estimator

of ∇ρ, we have the following finite-sample bound for the
MSE.

Lemma 4 If Assumption 3 holds, the following inequality
holds,

E[‖gt − ∇ρ(θt−1)‖22] ≤ dθ cρ Dπ

N
,

where dθ is the parameter dimension and cρ, Dπ < ∞ are
constant w.r.t. N .

Proof See Appendix A.5. ��
In order to obtain convergence rates for the estimator

(ϕ, π N
θ̄t

), we first recall a classical result for the SGD [see,
e.g. Bubeck et al. (2015)].

Lemma 5 Let Assumptions 2 and 3 hold, apply recursion
(3.4) and let (gt )t≥0 be the stochastic gradient estimates in
Lemma 4. If we choose the step-size sequence γk = α/

√
k,

1 ≤ k ≤ t , for any α > 0, then

E[ρ(θ̄t ) − ρ�] ≤ E‖θ0 − θ�‖22
2α

√
t

+ αdθ cρ Dπ√
t N

+ αG2
ρ√
t

,

(4.3)

where θ̄t = 1
t

∑t−1
k=0 θk .

Proof See Appendix A.6 for a self-contained proof. ��
We can now state the first core result of the paper, which

is the convergence rate for the AIS algorithm using a SGD
adaptation of the parameter vectors θt .

Theorem 5 Let Assumptions 2 and 3 hold, let the sequence
(θt )t≥1 be computed using (3.4) and construct the averaged
iterates θ̄t = 1

t

∑t−1
k=0 θk . Then, the sequence of proposal

distributions (qθ̄t
)t≥1 satisfies the inequality

E

[(
(ϕ, π) − (ϕ, π N

θ̄t
)
)2] ≤ c1√

t N
+ c2√

t N 2
+ c3√

t N
+ c4

N
(4.4)

for t ≥ 1 and any ϕ ∈ B(X), where

c1 = cϕE‖θ0 − θ�‖22
2α

,

c2 = cϕcραdθ Dπ ,

c3 = cϕαG2
ρ,

c4 = cϕρ�,

and cϕ = 4‖ϕ‖2∞ are finite constants independent of t and
N.

Proof See Appendix A.7. ��
Remark 14 Note that the expectation on the left-hand side
of (4.4) is taken w.r.t. the distribution of the measure-valued
random variable π N

θ̄t
. �

Theorem 5 can be interpreted similarly to Theorem 4.
One can see that the overall rate of the MSE bound is
O

(
1/

√
t N + 1/N

)
. This means that as t → ∞, we are only

left with a rate that is optimal for the AIS for a given paramet-
ric proposal family. In particular, again, ρ� is related to the
minimal χ2-divergence between the target π and the para-
metric proposalqθ .When the proposal and the target are from
the same family, we are back to the case ρ� = 1, thus the
adaptation leads to the optimal Monte Carlo rate O(1/

√
N )

for the L2 error within this setting as well.
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4.2.2 Self-normalised estimators

We have noted that it is possible to obtain an unbiased esti-
mate of ∇ρ(θ) when the normalised target π(x) can be
evaluated.However, ifwe canonly evaluate the unnormalised
density Π(x) instead of π(x) and use the self-normalized
IS estimator, the estimate of ∇ρ(θ) is no longer unbiased.
We refer to Sec. 5 of Tadić and Doucet (2017) for stochas-
tic optimisation with biased gradients for adaptive Monte
Carlo, where the discussion revolves around minimizing the
Kullback–Leibler divergence rather than the χ2-divergence.
The results presented in Tadić and Doucet (2017), however,
are asymptotic, while herein we are interested in finite-time
bounds. Due to the structure of the AIS scheme, it is possible
to avoid working with biased gradient estimators. In par-
ticular, we can implement the proposed AIS schemes using
unbiased estimators of ∇ R(θ) instead of biased estimators
of ∇ρ(θ). Since optimizing the unnormalised function R(θ)

leads to the same minima as optimizing the normalised func-
tion ρ(θ), we can simply use∇ R(θ) for the adaptation in the
self-normalised case.

Similar to the argument in Sect. 4.2.1, we first start
the assumption below, which is the obvious counterpart of
Assumption 3.

Assumption 4 The unnormalized target Π(x) and the pro-
posal densities qθ (x) satisfy the inequalities

sup
θ∈Θ

Eqθ

⎡

⎣

∣
∣
∣
∣
∣
Π2(X)

q2
θ (X)

∂ log qθ

∂θ j
(X)

∣
∣
∣
∣
∣

2
⎤

⎦ =: D j
Π < ∞

for j = 1, . . . , dθ . We denote DΠ := 1
dθ

∑dθ

j=1 D j
Π < ∞.

Remark 13 holds directly for Assumption 4 as long as
Zπ < ∞. Next, we prove an MSE bound for the stochastic
gradients (g̃t )t≥0 employed in recursion (3.5), i.e. the unbi-
ased stochastic estimates of ∇ R(θ).

Lemma 6 If Assumptions 2 and 4 hold, the inequality

E[‖g̃t − ∇ R(θt−1)‖22] ≤ dθ cR DΠ

N
,

is satisfied, where cR, DΠ < ∞ are constants w.r.t. of N .

Proof The proof is identical to the proof of Lemma 4. ��

We can now obtain explicit rates for the convergence of
the unnormalized function R(θ̄t ), evaluated at the averaged
iterates θ̄t .

Lemma 7 If Assumptions 2 and 4 hold and the sequence
(θt )t≥1 is computed via recursion (3.5), with step-sizes γk =

β/
√

k for 1 ≤ k ≤ t and β > 0, we obtain the inequality

E[R(θ̄t ) − R�] ≤ E‖θ0 − θ�‖22
2β

√
t

+ βdθ cR DΠ√
t N

+ βG2
R√
t

(4.5)

where cR, DΠ < ∞ are constants w.r.t. t and N. Relation-
ship 4.5 implies that

E[ρ(θ̄t ) − ρ�] ≤ E‖θ0 − θ�‖22
2βZ2

π

√
t

+ βdθ cR DΠ

Z2
π

√
t N

+ βG2
R

Z2
π

√
t
.

(4.6)

Proof The proof of the rate in (4.5) is identical to the proof
of Lemma 5. The rate in (4.6) follows by observing that
ρ(θ) = R(θ)/Z2

π for every θ ∈ Θ . ��

Finally, using Lemma 7, we can state our main result: an
explicit error rate for the MSE of Algorithm 3 as a function
of the number of iterations t and the number of samples N .

Theorem 6 Let Assumptions 2 and 4 hold and let the
sequence (θt )t≥1 be computed via recursion (3.5), with step-
sizes γk = β/

√
k for 1 ≤ k ≤ t and β > 0. We have the

following inequality for the sequence of proposal distribu-
tions (qθ̄t

)t≥1,

E

[(
(ϕ, π) − (ϕ, π N

θ̄t
)
)2] ≤ C1√

t N
+ C2√

t N 2
+ C3√

t N
+ C4

N
,

(4.7)

where

C1 = cϕE‖θ0 − θ�‖22
2βZ2

π

,

C2 = cϕβcRdθ DΠ

Z2
π

,

C3 = cϕβG2
R

Z2
π

,

C4 = cϕρ�,

and cϕ = 4‖ϕ‖2∞ are finite constants independent of t and
N.

Proof The proof follows from Lemma 7 and mimicking the
exact same steps as in the proof of Theorem 5. ��

Remark 15 Theorem 6, as in Remark 10, provides relevant
insights regarding the performance of the stochastic gradient
OAIS algorithm. In particular, for a general target π , we
obtain
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lim
t→∞

∥
∥
∥(ϕ, π) − (ϕ, π N

θ̄t
)

∥
∥
∥
2

= O
(√

ρ�

N

)

.

This result shows that the L2 error is asymptotically optimal.
As in previous cases, if the target π is in the exponential
family, then the asymptotic convergence rate isO(1/

√
N ) as

t → ∞. �

Remark 16 Theorem6 also yields a practical heuristic to tune
the step-size and the number of particles together. Assume
that 0 < β < 1 and let N = 1/β (which we assume to be an
integer without loss of generality). In this case, the rate (4.7)
simplifies into

E

[(
(ϕ, π) − (ϕ, π N

θ̄t
)
)2] ≤ cϕE‖θ0 − θ�‖22

2Z2
π

√
t

+ cϕβ3cRdθ DΠ

Z2
π

√
t

+ cϕβ2G2
R

Z2
π

√
t

+ cϕρ�β

Now, if we let t = O(1/β2), we readily obtain

E

[(
(ϕ, π) − (ϕ, π N

θ̄t
)
)2] ≤ O(β).

Therefore, one can control the error using the step-size of
the optimisation scheme provided that other parameters of
the algorithm are chosen accordingly. The same argument
also holds for Theorem 5. �

Remark 17 It is not straightforward to compare the rates
in inequality (4.7) (for the unnormalized target Π(x)) and
inequality (4.4) (for the normalized targetπ(x)). Even if (4.7)
may “look better” by a constant factor compared to the rate
in (4.4), this is usually not the case. Indeed, the variance of
the errors in the unnormalised gradient estimators is typically
higher and this reflects on the variance of the moment esti-
mators. Another way to look at this issue is to realise that,
very often, Zπ << 1, which makes the bound in (4.7) much
greater than the bound in (4.4).

Finally, we can adapt Theorem 2 to our case, providing a
convergence rate of the bias of the importance sampler given
by Algorithm 3.

Theorem 7 Under the setting of Theorem 6, we have

∣
∣
∣E

[
(ϕ, π N

θ̄t
)
]

− (ϕ, π)

∣
∣
∣ ≤ 3C1√

t N
+ 3C2√

t N 2
+ 3C3√

t N
+ 3C4

N
,

(4.8)

where C1, C2, C3, C4 are finite constants given in Theorem 6
and independent of t and N.

Proof The proof follows from Theorem 2 and mimicking the
same proof technique used to prove Theorem 6. ��

4.3 Convergence rate with vanilla SGD

The arguments of Section 4.2 can be carried over to the anal-
ysis of Algorithm 2, where the proposal functions qθt (x) are
constructed using the iterates θt rather than the averages θ̄t .
Unfortunately, achieving the optimal O(1/

√
t) rate for the

vanilla SGD is difficult in general. The best available rate
without significant restrictions on the step-size is given by
Shamir andZhang (2013). In particular,we can adapt (Shamir
and Zhang 2013, Theorem 2) to our setting in order to state
the following lemma.

Lemma 8 Apply recursion (3.5) for the computation of the
iterates (θt )t≥1, choose the step-sizes γk = β/

√
k for 1 ≤

k ≤ t , where β > 0, and let Assumptions 2 and 4 hold. Then,
we have the inequality

E[R(θt ) − R�] ≤
(

D2

β
√

t
+ βdθ cR DΠ√

t N
+ βG2

R√
t

)

(2 + log t),

(4.9)

where D := supθ,θ ′∈Θ ‖θ − θ ′‖ < ∞. This in turn implies
that

E[ρ(θt ) − ρ�] ≤
(

D2

β
√

t
+ βdθ cR DΠ√

t N
+ βG2

R√
t

)
(2 + log t)

Z2
π

.

(4.10)

Proof It is straightforward to prove this result using (Shamir
and Zhang 2013, Theorem 2) and the proof of Lemma 5. ��

The obtained rate is, in general, O
(
log t√

t

)
. This is known

to be suboptimal, and it can be improved to the information-
theoretical optimalO(1/

√
t) rate by choosing a specific step-

size scheduling, see, e.g. Jain et al. (2019). However, in this
case, the scheduling of (γt )t≥1 depends directly on the total
number of iterates to be generated, in such a way that the
error O(1/

√
t) is guaranteed only for the last iterate, at the

final time t .
We can extend Lemma 8 to obtain the following result.

Theorem 8 Apply recursion (3.5) for the computation of
the iterates (θt )t≥1, choose the step-sizes γk = β/

√
k for

1 ≤ k ≤ t , where β > 0, and let Assumptions 2 and 4
hold. If we construct the sequence of proposal distributions
(qθt )t≥1 be the sequence of proposal distributions, we obtain
the following MSE bounds
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E

[(
(ϕ, π) − (ϕ, π N

θt
)
)2] ≤

(
C1√
t N

+ C2√
t N 2

+ C3√
t N

)

(2 + log t) + C4

N
,

(4.11)

where

C1 = cϕ D2

2βZ2
π

,

C2 = cϕβcRdθ DΠ

Z2
π

,

C3 = cϕβG2
R

Z2
π

,

C4 = cϕρ�,

and cϕ = 4‖ϕ‖2∞ are finite constants independent of t and
N.

Proof The proof follows from Lemma 8 with the exact same
steps as in the proof of Theorem 5. ��
Finally, it is also straightforward to adapt the bias result in
Theorem 7 to this case, which results in the similar bound.
We skip it for space reasons and also because it has the same
form as in Theorem 7 with an extra log t factor.

5 Conclusions

We have presented and analysed optimised parametric adap-
tive importance samplers and provided non-asymptotic con-
vergence bounds for the MSE of these samplers. Our results
display the precise interplay between the number of iterations
t and the number of samples N . In particular, we have shown
that the optimised samplers converge to an optimal proposal
as t → ∞, leading to an asymptotic rate ofO(

√
ρ�/N ). This

intuitively shows that the number of samples N should be set
in proportion to theminimumχ2-divergence between the tar-
get and the exponential family proposal, as we have shown
that the adaptation (in the sense ofminimisingχ2-divergence
or, equivalently, the variance of the weight function) cannot
improve the error rate beyondO(

√
ρ�/N ). The error rates in

this regime may be dominated by how close the target is to
the exponential family.

Note that the algorithmswehave analysed require constant
computational load at each iteration and the computational
load does not increase with t as we do not reuse the samples
in past iterations. Such schemes, however, can also be con-
sidered and analysed in the same manner. More specifically,

in the present setup the computational cost of each iteration
depends on the cost of evaluating Π(x).

Our work opens up several other paths for research. One
direction is to analyse the methods with more advanced
optimisation algorithms. Another challenging direction is to
consider more general proposals than the natural exponential
family, whichmay lead to non-convex optimisation problems
of adaptation. Analysing and providing guarantees for this
general case would provide foundational insights for general
adaptive importance sampling procedures. Also, as shown
by Ryu (2016), similar theorems can also be proved for α-
divergences.

Another related piece of work arises from variational
inference (Wainwright and Jordan 2008). In particular, Dieng
et al. (2017) have recently considered performing variational
inference byminimising the χ2-divergence, which is close to
the setting in this paper. In particular, the variational approx-
imation of the target distribution in the variational setting
coincides with the proposal distribution we consider within
the importance sampling context in this paper. This also
implies that our results may be used to obtain finite-time
guarantees for the expectations estimated using the varia-
tional approximations of target distributions.

Finally, the adaptation procedure can be modified to han-
dle the non-convex case as well. In particular, the SGD step
can be converted into a stochastic gradient Langevin dynam-
ics (SGLD) step. The SGLD method can be used as a global
optimiser when ρ and R are non-convex and a global conver-
gence rate can be obtained using the standard SGLD results,
see, e.g. Raginsky et al. (2017); Zhang et al. (2019). Global
convergence results for other adaptation schemes such as
stochastic gradient Hamiltonian Monte Carlo (SGHMC) can
also be achieved using results from nonconvex optimisation
literature, see, e.g. Akyildiz and Sabanis (2020).
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intended use is not permitted by statutory regulation or exceeds the
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A Appendix

A.1 Proof of Theorem 1

We first note the following inequalities,

|(ϕ, π) − (ϕ, π N
θ )| =

∣
∣
∣
∣
∣
(ϕWθ , qθ )

(Wθ , qθ )
− (ϕWθ , q N

θ )

(Wθ , q N
θ )

∣
∣
∣
∣
∣

≤
∣
∣(ϕWθ , qθ ) − (ϕWθ , q N

θ )
∣
∣

|(Wθ , qθ )|

+ |(ϕWθ , q N
θ )|

∣
∣
∣
∣
∣

1

(Wθ , qθ )
− 1

(Wθ , q N
θ )

∣
∣
∣
∣
∣

=
∣
∣(ϕWθ , qθ ) − (ϕWθ , q N

θ )
∣
∣

|(Wθ , qθ )|

+ ‖ϕ‖∞|(Wθ , q N
θ )|

∣
∣
∣
∣
∣

(Wθ , q N
θ ) − (Wθ , qθ )

(Wθ , qθ )(Wθ , q N
θ )

∣
∣
∣
∣
∣

=
∣
∣(ϕWθ , qθ ) − (ϕWθ , q N

θ )
∣
∣

(Wθ , qθ )

+ ‖ϕ‖∞|(Wθ , q N
θ ) − (Wθ , qθ )|

(Wθ , qθ )
.

We take squares of both sides and apply the inequality (a +
b)2 ≤ 2(a2 + b2) to further bound the rhs,

|(ϕ, π) − (ϕ, π N
θ )|2 ≤ 2

∣
∣(ϕWθ , qθ ) − (ϕWθ , q N

θ )
∣
∣2

(Wθ , qθ )2

+ 2
‖ϕ‖2∞|(Wθ , q N

θ ) − (Wθ , qθ )|2
(Wθ , qθ )2

We now take the expectation of both sides,

E

[(
(ϕ, π) − (ϕ, π N

θ )
)2] ≤

2E
[(

(ϕWθ , qθ ) − (ϕWθ , q N
θ )

)2]

(Wθ , qθ )2

+
2‖ϕ‖2∞E

[(
(Wθ , q N

θ ) − (Wθ , qθ )
)2]

(Wθ , qθ )2
.

Note that, both terms in the right-hand side are perfectMonte
Carlo estimates of the integrals. Bounding the MSE of these
integrals yields

E

[(
(ϕ, π) − (ϕ, π N

θ )
)2] ≤ 2

N

(ϕ2W 2
θ , qθ ) − (ϕWθ , qθ )

2

(Wθ , qθ )2

+ 2‖ϕ‖2∞
N

(W 2
θ , qθ ) − (Wθ , qθ )

2

(Wθ , qθ )2
,

≤ 2‖ϕ‖2∞
N

(W 2
θ , qθ )

(Wθ , qθ )2

+ 2‖ϕ‖2∞
N

(W 2
θ , qθ ) − (Wθ , qθ )

2

(Wθ , qθ )2
.

Therefore, we can straightforwardly write,

E

[(
(ϕ, π) − (ϕ, π N

θ )
)2] ≤ 4‖ϕ‖2∞

(Wθ , qθ )2

(W 2
θ , qθ )

N
.

Now, it remains to show the relation of the bound to χ2

divergence. Note that

(W 2
θ , qθ )

(Wθ , qθ )2
=

∫
Π2(x)

q2
θ (x)

qθ (x)dx
(∫

Π(x)
qθ (x)

qθ (x)dx
)2

=
Z2

∫
π2(x)

q2
θ (x)

qθ (x)dx

Z2
(∫

πdx
)2

= Eqθ

[
π2(X)

q2
θ (X)

]

:= ρ(θ).

Note that ρ is not exactly χ2 divergence, which is defined
as ρ − 1. Plugging everything into our bound, we have the
result,

E

[(
(ϕ, π) − (ϕ, π N

θ )
)2] ≤4‖ϕ‖2∞ρ(θ)

N
.

�

A.2 Proof of Lemma 1

We adapt this proof from Ryu and Boyd (2014) by following
the same steps. We first show that A(θ) is convex by first
showing that exp(A(θ)) is convex. Choose 0 < η < 1 and
using Hölder’s inequality,

exp(A(ηθ1 + (1 − η)θ2)) =
∫

exp((ηθ1 + (1 − η)θ2)
�T (x))h(x)dx

=
∫ (

exp(θ�
1 T (x))h(x)

)η (
exp(θ�

2 T (x))h(x)
)1−η

dx

≤
(∫

exp(θ�
1 T (x))h(x)dx

)η (∫
exp(θ�

2 T (x))h(x)dx

)1−η

.

Taking log of both sides yields

A(ηθ1 + (1 − η)θ2) ≤ ηA(θ1) + (1 − η)A(θ2),

which shows the convexity of A(θ). Note that A(θ)−θ�T (x)

is convex in θ since it is a sum of a convex and a linear
function of θ . Since exp is an increasing convex function and
the composition of convex functions is convex, M(θ, x) :=
exp(A(θ) − θ�T (x)) is convex in θ . Finally, we prove that
ρ(θ) is convex. First let us write it as

ρ(θ) =
∫

π2(x)

qθ (x)2
qθ (x)dx =

∫
π2(x)

h(x)
M(θ, x)dx .

Then, we have the following sequence of inequalities

ρ(ηθ1 + (1 − η)θ2) =
∫

π2(x)

h(x)
M(ηθ1 + (1 − η)θ2, x)dx

≤
∫

π2(x)

h(x)
(ηM(θ1, x) + (1 − η)M(θ2, x))dx
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= η

∫
π2(x)

h(x)
M(θ1, x)dx

+ (1 − η)

∫
π2(x)

h(x)
M(θ2, x)dx

= ηρ(θ1) + (1 − η)ρ(θ2),

which concludes the claim. �

A.3 Proof of Theorem 4

First note that using Theorem 3, we have

E

[(
(ϕ, π) − (ϕ, π N

θt
)
)2] ≤ cϕρ(θt )

N
,

= cϕ(ρ(θt ) − ρ�)

N
+ cϕρ�

N
,

≤ cϕ‖θ0 − θ�‖2
2γ t N

+ cϕρ�

N
,

where the last inequality follows from Lemma 3. �

A.4 A sufficient condition for Assumption 3 to hold

Recall that we have defined ρ2(θ) = E[w4
θ (X)] =

E

[
π4(X)

q4
θ (X)

]

andqθ (x) = exp
{(

θ�T (x) − A(θ)
)

h(x)
}
when-

ever qθ (x) belongs to the exponential family. We have the
following result.

Proposition 1 Let the ρ2 be Lipschitz with Lipschitz deriva-
tives, let qθ (x) belong to the exponential family and let Θ be
compact. If the sufficient statistics T (X) of the distribution
qθ all have finite variances, i.e.

max
i=1,...,dθ

Var(Ti (X)) < ∞,

then Assumption 3 holds.

Proof Using the fact that

∂qθ (x)

∂θi
= qθ (x)

∂ log qθ (x)

∂θi

one can readily calculate the second order derivatives of
ρ2(θ). In particular,

∂2ρ2(θ)

∂θ2i
= 9E

[

w4
θ (X)

(

Ti (X) − ∂ A(θ)

∂θi

)2
]

+3E
[
w4

θ (X)
] ∂2A(θ)

∂θ2i
< ∞, (A.1)

where the inequality holds because ρ2(θ) has Lipschitz

derivatives in Θ . However, ∂2 A(θ)

∂θ2i
= Var(Ti (X)) and, by

assumption,maxi Var(Ti (X)) < ∞.Moreover,E
[
w4

θ (X)
] =

ρ2(θ) < ∞ because ρ2(θ) is Lipschitz and the parameter
space Θ is compact. Therefore, it follows that

E

[

w4
θ (X)

(

Ti (X) − ∂ A(θ)

∂θi

)2
]

< ∞

and Assumption 3 holds. �

A.5 Proof of Lemma 4

We first note that the exact gradient can be written as

∇θEqθ

[
π2(X)

q2
θ (X)

]

= ∇θ

∫
π2(x)

qθ (x)
dx

= −
∫

π2(x)

q2
θ (x)

∇θ log qθ (x)qθ (x)dx .

Now, note that,

∇θ log qθ (x) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂ log qθ

∂θ1
∂ log qθ

∂θ2

...
∂ log qθ

∂θdθ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Given the samples x (i)
t ∼ qθt−1 for i = 1, . . . , N to estimate

the gradient, we can write the mean-squared error E‖gt −
∇ρ(θt−1)‖22 as

E

⎡

⎣

∥
∥
∥
∥
∥
∥

1

N

N∑

i=1

π2(x (i)
t )

q2
θt−1

(x (i)
t )

∇θ log qθt−1 (x (i)
t )

−
∫

π2(x)

q2
θ (x)

∇θ log qθt−1 (x)qθt−1 (x)dx

∥
∥
∥
∥
∥

2

2

⎤

⎦

=
dθ∑

j=1

E

⎡

⎣

⎛

⎝ 1

N

N∑

i=1

π2(x (i)
t )

q2
θt−1

(x (i)
t )

∂ log qθt−1

∂θ j
(x (i)

t )

−
∫

π2(x)

q2
θt−1

(x)

∂ log qθt−1

∂θ j
(x)qθt−1 (x)dx

)2
⎤

⎦ .

Now the expectation is a standard Monte Carlo error for the
test function,

ϕ j (x) = π2(x)

q2
θ (x)

∂ log qθ

∂θ j
(x).

Assumption 3 together with Lemma A.1 in Crisan and
Míguez (2014) yields

E[‖gt − ∇ρ(θ)‖22] ≤ dθ cρ Dπ

N
,
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where cρ < ∞ and Dπ = max j∈{1,...,dθ } D j
π < ∞ are con-

stants independent of N . �

A.6 Proof of Lemma 5

Since projections reduce distances, we have,

‖θk − θ�‖22 ≤ ‖θk−1 − γk gk − θ�‖22
= ‖θk−1 − θ�‖22 − 2γk g�

k (θk−1 − θ�) + γ 2
k ‖gk‖22.

Let Fk−1 = σ(θ0, . . . , θk−1, g1, . . . , gk−1) be the σ -algebra
generated by random variables θ0, . . . , θk−1, g1, . . . , gk−1
and take the conditional expectations with respect to Fk−1

E

[
‖θk − θ�‖22|Fk−1

]
≤ ‖θk−1 − θ�‖22 − 2γk∇ρ(θk−1)

�(θk−1 − θ�)

+ γ 2
k E

[
‖gk‖22|Fk−1

]
.

Next, using the convexity of ρ yields

E

[
‖θk − θ�‖22|Fk−1

]

≤ ‖θk−1 − θ�‖22 − 2γk[ρ(θk−1) − ρ(θ�)]
+ γ 2

k E

[
‖gk‖22|Fk−1

]
.

Finally, we take unconditional expectations of both sides,

E‖θk − θ�‖22 ≤ E‖θk−1 − θ�‖22
− 2γkE[(ρ(θk−1) − ρ(θ�)] + γ 2

k E‖gk‖22.

With rearranging, using E‖gk − ∇ρ(θk−1)‖22 = E‖gk‖2 −
‖∇ρ(θk−1)‖2 and invoking Assumption 2, we arrive at

E[ρ(θk−1) − ρ(θ�)] ≤ E‖θk−1 − θ�‖22 − E‖θk − θ�‖22
2γk

+ γk(σ
2
ρ + G2

ρ)

2
.

where σ 2
ρ = dθ Dπ/N as given in Lemma 4. Now summing

both sides from k = 1 to t and dividing both sides by t ,

E[ρ(θ̄t ) − ρ(θ�)] ≤ 1

t

t∑

k=1

E[ρ(θk−1) − ρ(θ�)] ≤ E‖θ0 − θ�‖22
2γt t

+
t∑

k=1

γk(σ
2
ρ + G2

ρ)

2t
,

since 1
γk

≤ 1
γt

for all k ≤ t . Substituting γk = α/
√

k and

noting that

t∑

k=1

1√
k

≤
∫ t

0

1√
τ
dτ = 2

√
t,

we arrive at

E[ρ(θ̄t ) − ρ(θ�)] ≤ E‖θ0 − θ�‖22
2α

√
t

+ α(σ 2
ρ + G2

ρ)√
t

,

where θ̄t = 1
t

∑t−1
k=0 θk . �

A.7 Proof of Theorem 5

Let Ft−1 = σ(θ0, . . . , θt−1, g1, . . . , gt−1) be the σ -algebra
generatedby the randomvariables θ0, . . . , θt−1, g1, . . . , gt−1.
Then

E

[(
(ϕ, π) − (ϕ, π N

θ̄t
)
)2

∣
∣
∣
∣Ft−1

]

≤ cϕρ(θ̄t )

N

= cϕ(ρ(θ̄t ) − ρ�)

N
+ cϕρ�

N
,

where θ̄t = 1
t

∑t−1
k=0 θk is an Ft−1-measurable random vari-

able.Now ifwe takeunconditional expectations of both sides,

E

[(
(ϕ, π) − (ϕ, π N

θ̄t
)
)2] ≤ cϕE

[
(ρ(θ̄t ) − ρ�)

]

N
+ cϕρ�

N
.

The result follows from applying Lemma 5 for
E
[
(ρ(θ̄t ) − ρ�)

]
. �

References

Agapiou, S., Papaspiliopoulos, O., Sanz-Alonso, D., Stuart, A.: Impor-
tance sampling: intrinsic dimension and computational cost. Stat.
Sci. 32(3), 405–431 (2017)

Akyildiz, ÖD., Sabanis, S.: Nonasymptotic analysis of Stochastic
Gradient HamiltonianMonte Carlo under local conditions for non-
convex optimization. (2020). arXiv preprint arXiv:2002.05465

Arouna, B.: Adaptative monte carlo method, a variance reduction tech-
nique. Monte Carlo Methods Appl. 10(1), 1–24 (2004a)

Arouna, B.: Robbins-Monro algorithms and variance reduction in
finance. J. Comput. Finance 7(2), 35–62 (2004b)

Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-
scale machine learning. (2016). arXiv:1606.04838

Bubeck, S., et al.: Convex optimization: algorithms and complexity.
Found. Trends® Mach. Learn. 8(3–4), 231–357 (2015)

Bugallo,M.F.,Martino, L., Corander, J.: Adaptive importance sampling
in signal processing. Digit. Signal Proc. 47, 36–49 (2015)

Bugallo, M.F., Elvira, V., Martino, L., Luengo, D., Miguez, J., Djuric,
P.M.: Adaptive Importance Sampling: The past, the present, and
the future. IEEE Signal Process. Mag. 34(4), 60–79 (2017)

Cappé, O., Guillin, A., Marin, J.M., Robert, C.P.: Population Monte
Carlo. J. Comput. Graph. Stat. 13(4), 907–929 (2004)

Cappé, O., Douc, R., Guillin, A., Marin, J.M., Robert, C.P.: Adaptive
importance sampling in general mixture classes. Stat. Comput.
18(4), 447–459 (2008)

Chatterjee, S., Diaconis, P., et al.: The sample size required in impor-
tance sampling. Ann. Appl. Probab. 28(2), 1099–1135 (2018)

Crisan, D., Míguez, J.: Particle-kernel estimation of the filter density in
state-space models. Bernoulli 20(4), 1879–1929 (2014)

Dieng, A.B., Tran, D., Ranganath, R., Paisley, J., Blei, D.: Variational
inference viaχ -upper boundminimization. In:Advances inNeural
Information Processing Systems, pp 2732–2741 (2017)

123

http://arxiv.org/abs/2002.05465
http://arxiv.org/abs/1606.04838


Statistics and Computing (2021) 31 :12 Page 17 of 17 12

Douc, R., Guillin, A., Marin, J.M., Robert, C.P.: Convergence of adap-
tive mixtures of importance sampling schemes. Ann. Stat. 35(1),
420–448 (2007)

Jain, P., Nagaraj, D., Netrapalli, P.: Making the Last Iterate of SGD
Information Theoretically Optimal. In: Conference on Learning
Theory, pp. 1752–1755 (2019)

Kappen, H.J., Ruiz, H.C.: Adaptive importance sampling for control
and inference. J. Stat. Phys. 162(5), 1244–1266 (2016)

Kawai, R.: Adaptive monte carlo variance reduction for lévy processes
with two-time-scale stochastic approximation.Methodol. Comput.
Appl. Probab. 10(2), 199–223 (2008)

Kawai, R.: Acceleration on adaptive importance sampling with sample
average approximation. SIAM J. Sci. Comput. 39(4), A1586–
A1615 (2017)

Kawai, R.: Optimizing adaptive importance sampling by stochas-
tic approximation. SIAM J. Sci. Comput. 40(4), A2774–A2800
(2018)

Lapeyre, B., Lelong, J.: A framework for adaptive monte carlo proce-
dures. Monte Carlo Methods Appl. 17(1), 77–98 (2011)

Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic
Course, vol. 87. Springer, Berlin (2013)

Raginsky, M., Rakhlin, A., Telgarsky, M.: Non-convex learning via
stochastic gradient Langevin dynamics: a nonasymptotic analysis.
In: Conference on Learning Theory, pp. 1674–1703 (2017)

Robbins, H., Monro, S.: A stochastic approximation method. Ann.
Math. Stat. 22, 400–407 (1951)

Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Wiley, New
York (2004)

Ryu, E.K.: Convex optimization for Monte Carlo: Stochastic optimiza-
tion for importance sampling. PhD thesis, Stanford University
(2016)

Ryu, E.K., Boyd, S.P. Adaptive importance sampling via stochastic
convex programming. (2014). arXiv:1412.4845

Sanz-Alonso, D.: Importance sampling and necessary sample size: an
information theory approach. SIAM/ASA J. Uncertain. Quantif.
6(2), 867–879 (2018)

Schmidt, M., Le Roux, N., Bach, F.: Minimizing finite sums with the
stochastic average gradient. Math. Program. 162(1–2), 83–112
(2017)

Shamir, O., Zhang, T.: Stochastic gradient descent for non-smooth opti-
mization: Convergence results and optimal averaging schemes. In:
International Conference on Machine Learning, pp 71–79 (2013)
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