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1. Introduction 

Classification of time series is an important tool in several fields.
Time series can be studied from both time and frequency domains. For short
stationary series, a time domain approach based on usual multivariate tech-
niques can be applied. Nevertheless, the frequency point of view is particu-
larly important for nonstationary series (Huang, Ombao, and Stoffer 2004),
which justifies why our proposal follows a frequency domain approach.
There exist many papers on supervised classification methods for station-
ary processes in both domains (see e.g. references in Chapter 7 of Taniguchi
and Kakizawa 2000). Several authors have already proposed methods for
discriminating between nonstationary models. By using optimal scoring,
Hastie, Buja, and Tibshirani (1995) cast the classification problem into the
regression framework, where a penalized technique can be applied to the
coefficients. As they wrote, “it is natural, efficient and sometimes essential
to impose a spatial smoothness constraint on the coefficients, both for im-
proved prediction performance and interpretability”. Their proposal is de-
signed for situations where the discriminant variables (predictors) are highly
correlated, e.g. when a function is discretized. The following approaches are
based on Dahlhaus’s (1996; 1997) local stationarity framework. Shumway
(2003) uses the Kullback-Leibler discrimination information measure (it is
not a real distance), which is evaluated by using the smoothed time-varying
spectral estimator. For clustering, they consider the symmetrized version of
that measure. In a first step, Huang, Ombao, and Stoffer (2004) select from
SLEX a basis explaining the difference between the classes of time series as
well as possible; in a second step, they construct a discriminant criterion that
is related to the SLEX spectra of the different classes: a time series is as-
signed to the class minimizing the Kullback-Leibler divergence between the
estimated spectrum and the spectrum of the class. Sakiyama and Taniguchi
(2004) use a consistent classification criterion that is an approximation of
the Gaussian likelihood ratio. By introducing an influence function, they
investigate the behavior of their measure with respect to infinitesimal per-
turbations of the spectra. In Hirukawa (2004) the approximation of the mea-
sure introduced by Sakiyama and Taniguchi for multivariate, non-Gaussian,
locally stationary process is generalized to nonlinear time-varying spectral
measures (including the Kullback-Leibler and Chernoff discrimination in-
formation measures). For non-Gaussian processes, Hirukawa proposes a
specific asymptotically optimal criterion based on the concept of quasi-log-
likelihood ratio, instead of the log-likelihood ratio. The discrimination of
Chandler and Polonik (2006) is based on some features – shape measures
or, better, measures of concentration of the variance function – that are mea-
sured for each time series. Since it is not distance-based, their approach
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does not require aligning the series. Both time and frequency domains are
connected in Maharaj and Alonso (2007), who combine the techniques of
wavelet analysis with those of discriminant analysis. Other related line of
research is unsupervised classification of time series – see Liao (2005) for a
comprehensive survey.

In this paper, we propose using the integrated periodogram for clas-
sifying (locally stationary) time series. The integrated periodogram has the
following properties that improve the classification procedure: i) it is a non-
decreasing, smooth curve; ii) it presents good asymptotic properties: while
the periodogram is an asymptotically unbiased but inconsistent estimator
of the spectral density, the integrated periodogram is a consistent estimator
of the spectral distribution (see Chapter 6 of Priestly 1981); iii) although for
stationary processes the integrated spectrum is usually estimated through the
spectrum, from a theoretical point of view, the spectral distribution always
exists whereas the spectral density only exists under absolutely continuous
distributions.

Since the integrated periodogram is a function, we shall use specific
techniques for functional data. There is a vast body of literature on the
statistical analysis of functional data and, particularly, on their classifica-
tion. For example, a penalized discriminant analysis is proposed in Hastie,
Buja, and Tibshirani (1995); it is adequate for situations with many highly
correlated predictors, as those obtained by discretizing a function. Non-
parametric tools to classify a set of curves have been introduced in Ferraty
and Vieu (2003), where the authors calculate the posterior probability of
belonging to a given class of functions by using a consistent kernel estima-
tor. A new method for extending classical linear discriminant analysis to
functional data has been analyzed in James and Hastie (2001): this tech-
nique is particularly useful when only fragments of the curves are observed.
The problem of unsupervised classification or clustering of curves is ad-
dressed in James and Sugar (2003), who elaborate a flexible model-based
approach for clustering functional data; it is effective when the observations
are sparse, irregularly spaced or occur at different time points for each sub-
ject. In Abraham, Cornillon, Matzner-Løber, and Molinari (2003), unsuper-
vised clustering of functions is considered; they fit the data using B-splines
and the partition is done over the estimated model coefficients using a k-
means algorithm. In a related problem, Hall, Poskitt, and Presnell (2001)
explore a functional data-analytic approach to perform signal discrimina-
tion. Nonetheless, many of these procedures are highly sensitive to outliers.
A natural, simple way to classify functions is to minimize the distance be-
tween the new curve and a reference function of the group. The technique
presented in this paper follows this approach. We first consider the mean of
the integrated periodograms as the group representative element and then,
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as a second approach, we use the idea of “deepest” curves to robustify the
method.

The notion of statistical depth has already been extended to functional
data (see e.g. López-Pintado and Romo 2009). In López-Pintado and Romo
(2006) the concept of depth is used to classify curves. A statistical depth
expresses the “centrality” or “outlyingness” of an observation within a set of
data and provides a criterion to order observations from the center outward.
Since robustness is an interesting feature of statistical methods based on
depth, we have applied the ideas in López-Pintado and Romo (2006) to add
robustness to our time series classification procedure. Their method orders
the curves within a sample, based on a notion of depth for functions, and
works with the α-trimmed mean as a reference curve of each group.

The paper is organized as follows. In Section 2 we include some
definitions and describe the classification algorithm based on the integrated
periodogram. Section 3 explains how depth can be used to make the method
robust. Next two sections, 4 and 5, show the behavior of the procedure with
simulated and real data, respectively. A brief summary of conclusions is
given in Section 6.

2. Classifying Time Series

We propose transforming the initial time series into functional data by
considering the integrated periodogram of each time series (see e.g. Figure
1). This permits us to use functional data classification techniques. Let {Xt}
be a stationary process with autocovariance function σh = cov(Xt,Xt−h),
such that ∑+∞

h=−∞ |σh| <+∞, and autocorrelation function ρh = σh/σ0. The
spectral density is f (ω) = ∑+∞

h=−∞ ρh exp(−2πihω), and it holds that ρh =∫ +1/2
−1/2 exp(2πihω)dF(ω), where F is the spectral distribution function.

The periodogram is the corresponding sample version of the spectral
density and it expresses the contribution of the frequencies to the variance of
the series. Let X = (x1, . . . ,xT ) be a time series. The periodogram is given
by

IT (ωk) =
(T−1)

∑
h=−(T−1)

ρ̂h exp(−2πihωk), (1)

where ρ̂h denotes the sample autocorrelation at lag h and ωk takes values
in {k/T | k = 0, . . . , [T/2]}, the discrete Fourier frequencies set. The inte-
grated or cumulative periodogram is defined as FT (ωk) = ∑k

i=1 IT (ωi) or, in
its normalized version
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FT (ωk) =
k

∑
i=1

IT (ωi)/
m

∑
i=1

IT (ωi), (2)

where m is the number of Fourier frequencies. Notice that the denominator
in (2) is proportional to the variance of the time series, since 2∑m

i=1 IT (ωi)=

∑T
t=1(xt − x̄)2. Therefore, the nonnormalized version of the cumulative pe-

riodogram considers not only the shape of the integrated spectrum but also
the scale, whereas the normalized version of the cumulative periodogram
emphasizes the shape of the curves instead of the scale. For instance, if two
time series have spectral densities such that fX (ω) = c fY (ω) for some c> 1,
then they will have different integrated periodograms but equal normalized
integrated periodograms. See Diggle and Fisher (1991) for details on the
comparison of cumulative periodograms. As a simple criterion we recom-
mend using the normalized version of the cumulative periodogram when the
graphs of the functions of the different groups tend to intersect inside their
domain of definition. If this is not the case, we recommend using the nonnor-
malized version. Notice also that the integrated periodogram is a consistent
estimator of the integrated spectrum (see e.g. Chapter 6 of Priestley 1981).

Definitions (1) and (2) correspond to some particular values of ω, but
they can be extended to any value in the interval (−1/2,+1/2). Since the
periodogram is defined only for stationary series, to classify nonstationary
time series we shall consider them as locally stationary; this allows us to split
the series into blocks, compute the integrated periodogram of each block and
merge these periodograms in a final curve: the idea is to approximate the lo-
cally stationary processes by piecewise stationary processes. Figure 2(b)
provides a blockwise spectral distribution estimation of the locally station-
ary process spectrum. There are two opposite effects when we increase the
numbers of blocks: first, we get closer to the locally stationarity assumption;
second, the integrated periodogram becomes a worse estimator of the inte-
grated spectrum. Notice that this blockwise approach is compatible with the
locally stationary time series model of Dahlhaus (1997) where an increasing
T implies that more and more data of local structures are available, which
allows us to consider the number of blocks as an increasing function of T .
In the appendix, we present the locally stationary model of Dahlhaus (1997)
and we propose an integrated spectrum based on this model. This integrated
spectrum can be thought of as a population version of our blockwise inte-
grated spectrum.

A simple criterion to classify functions is to assign a new observation
to the group to which, on the basis of some distance, the function is nearest.
In our context, we propose classifying a new series in the group minimizing
the distance between the integrated periodogram of the series and a reference
curve from the group. We first consider the group mean as a reference curve.
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If Ψgi(ω), i= 1, . . . ,N, are functions of group g, the mean is

Ψ̄g =
1
N

N

∑
i=1

Ψgi(ω). (3)

In our case,Ψgi(ω) is the concatenated integrated periodogram of each block
of the ith series in group g. To measure proximity, we have chosen the L1
distance,

d(Ψ1,Ψ2) =
∫ +1/2

−1/2
|Ψ1(ω)−Ψ2(ω)|dω

=
k

∑
j=1

∫ +1/2

−1/2
|F( j)

1 (ω)−F( j)
2 (ω)|dω, (4)

where k is the number of blocks in which the time series is divided and F( j)

is the integrated periodogram of the jth block. The integrated periodograms
belong to the L1[−1/2,+1/2] space. Some other distances could have also
been considered; for example, the L2 distance would highlight large differ-
ences between functions.

Based on these definitions we introduce the following classification
algorithm:

Algorithm 1:

Let {X1, . . . ,XM} be a sample containing M series from pop-
ulation PX and let {Y1, . . . ,YN} be a sample containing N se-
ries from PY . The classification method includes the following
steps:

1. Split each series into k blocks, calculate the integrated pe-
riodogram in each block, and merge these integrated pe-
riodograms: {ΨX1 , . . . ,ΨXM} and {ΨY1, . . . ,ΨYN}, where
ΨXi = (F(1)

Xi
. . .F(k)

Xi
) , ΨYi = (F(1)

Yi
. . .F (k)

Yi
), and F( j)

Xi
is the

integrated periodogram of the jth block of the ith series of
population X ; and analogously for Y . Figures 2(b) and 4
illustrate the obtained ΨXi .

2. Calculate the corresponding group means, Ψ̄X and Ψ̄Y .

3. Let ΨZ = (F(1)
Z . . .F(k)

Z ) be the curve of a new series Z.
Then Z is classified in the group PX if d(ΨZ,Ψ̄X )< d(ΨZ,
Ψ̄Y ); and in the group PY otherwise.
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Remark 1: Set k = 1 to apply the algorithm to stationary series. For non-
stationary series, in the computations with both simulated and real data we
have used a dyadic splitting of the series into blocks: k = 2p, p = 0,1, . . .
The implementation with blocks of different lengths, as suggested by vi-
sual inspection of the data, is also possible. To select the number of blocks,
our code implements an optional nested/secondary cross-validation loop to
select, in each run, the value of k that minimizes the global error (we reg-
ister these values during the runs to form weights that can be thought of as
relative frequencies). When the previous loop is not called, the minimum
global error of each run is registered and the user is given an estimate of the
error that would have arisen if the number of blocks had been optimized.
For this loop to be applicable to small real data sets, the data of the primary
cross-validation loop are used for both optimizing the number of blocks and
estimating the final misclassification error rates.

Remark 2: Although we are consideringG= 2, the classification method is
obviously extended to the general case in which there are G different groups
or populations Pg, g= 1, . . . ,G.

Remark 3: The same methodology could be implemented by using differ-
ent classification criteria between curves, reference functions for each group
(as we do in the following section) or distances between curves.

Remark 4: Notice that in this paper we only consider nonstationarities
in the autocovariance structure, as we assume that the series are mean sta-
tionary. In the case of nonstationarities in the mean (trends, level shifts,
piecewise trends, et cetera), we should divide the analysis in two cases: (i)
The nonstationaries in the mean are different in the two populations so they
will be useful to improve the classification procedure. In this case, an op-
tion would be the admissible linear procedure described in Section 7.2.3 of
Taniguchi and Kakizawa (2000), though this is out of the scope of this paper.
(ii) The nonstationaries in the mean are equal in the two populations so they
will not be useful to improve the classification procedure. In this case, we
should remove the nonstationaries in the mean by, for instance, the Hodrick-
Prescott filter (see Hodrick and Prescott 1997) or the detrending procedure
based on Loess (see Cleveland, Cleveland, McRae, and Terpenning 1990).

3. Robust Time Series Classification

Our classification method depends on the reference curve used to
measure the distance to the group. The mean of a set of functions is not
robust to the presence of outliers. Thus, robustness can be added to this tech-
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nique by using a robust reference curve. Instead of considering the mean of
the integrated periodograms in the group, we shall consider the α-trimmed
mean, where only the deepest elements are averaged. This trimming adds
robustness by making the reference function more resistant to outliers.

Statistical depth measures the “centrality” of each element inside the
group. Different definitions of depth are already available. In this section
we first describe the concept of depth extended to functional data by López-
Pintado and Romo (2009) and then we propose a robust version of our clas-
sification algorithm.

LetG(Ψ)= {(t,Ψ(t)) | t ∈ [a,b]} denote the graph inR2 of a function
Ψ ∈ C[a,b], the set of real continuous functions on the interval [a,b]. Let
Ψi(t), i= 1, . . . ,N, be functions inC[a,b]. The functions Ψi j(t), j= 1, . . . ,h,
determine a band in R

2,

B(Ψi1, . . . ,Ψih) =
{(t,y) ∈ [a,b]×R | minr=1,...,h Ψir(t)≤ y≤maxr=1,...,h Ψir(t)}. (5)

Given a function Ψ,

BD( j)
N (Ψ) =

(N
j

)−1 ·∑1≤i1<i2<...<i j≤N I{G(Ψ)

⊂ B(Ψi1, . . . ,Ψi j)}, 2≤ j ≤ N,
(6)

expresses the proportion of bands determined by different curvesΨi1 , . . . ,Ψi j
that contain the graph of Ψ (the indicator function takes the value I{A}= 1
if A occurs, and I{A}= 0 otherwise). For functions Ψi(t), i= 1, . . . ,N, the
band depth of any of these curves Ψ is

BDN,J(Ψ) =
J

∑
j=2

BD( j)
N (Ψ), 2≤ J ≤ N. (7)

If Ψ̃ is the stochastic process generating the observations Ψ̃i(t), i= 1, . . . ,N,
the population versions of these indexes are:

BD( j)(Ψ) = P{G(Ψ)⊂ B(Ψ̃i1, . . . ,Ψ̃i j)}, 2≤ j ≤ N,

and

BDJ(Ψ) = ∑J
j=2BD

( j = ∑J
j=2P{G(Ψ)⊂ B(Ψ̃i1, . . . ,Ψ̃i j)},

2≤ J ≤ N,

respectively. In order to illustrate the calculation of the band depth, consider
the following example: Assume that we have two time series generated by
AR(1) models:

X (i)
t = φX (i)

t−1+ ε(i)t ,
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Figure 1: Example of three integrated periodograms

with φ(1) = 0.1, φ(2) = 0.2 and an additional time series generated by a
MA(1) model:

X (3)
t = θε(3)t−1+ ε(3)t ,

where θ = 0.1 and the ε(i)t are i.i.d. N(0,1). Figure 1 shows the three (the-
oretical) integrated periodograms. To calculate the depth of each function
(integrated periodogram), we determine the

(3
2

)
= 3 bands defined by these

three functions, i.e. the bands defined by (1,2), (1,3) and (2,3). Notice that
the integrated periodogram of the first series is included in the three bands
and the integrated periodograms of the second and third series are include
in only two bands; therefore, their band depths are 1, 2/3 and 2/3, respec-
tively. For instance, as the graph shows, the integrated periodogram of the
first series is the deepest element.

The modified band depth is a more flexible notion of depth also de-
fined in López-Pintado and Romo (2009). The indicator function in (6) is
replaced by the length of the set where the function is inside the correspond-
ing band. For any function Ψ of Ψi(t), i = 1, . . . ,N, and 2 ≤ j ≤ N, let

Aj(Ψ)≡ A(Ψ;Ψi1, . . . ,Ψi j)≡ {t ∈ [a,b] | minr=i1,...,i j Ψr(t)
≤ Ψ(t)≤maxr=i1,...,i j Ψr(t)} (8)

be the set of points in the interval [a,b] where the function Ψ is inside the
band. If λ is the Lebesgue measure on the interval [a,b], λ(Aj(Ψ)) is the
“proportion of time” that Ψ is inside the band. Thus,
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MBD( j)
N (Ψ) =

(N
j

)−1
(λ[a,b])−1·

∑1≤i1<i2<...<i j≤N λ(A(Ψ;Ψi1, . . . ,Ψi j)), 2≤ j ≤ N,
(9)

is the generalized version of BD( j)
N . If Ψ is always inside the band, the

measure λ(Aj(Ψ)) is 1 and this definition generalizes the definition of depth
given in (7). Finally, the modified band depth of any of the curves Ψ in
Ψi(t), i= 1, . . . ,N, is

MBDN,J(Ψ) =
J

∑
j=2

MBD( j)
N (Ψ), 2≤ J ≤ N. (10)

If Ψ̃i(t), i= 1, . . . ,N, are independent copies of the stochastic process Ψ̃, the
population version of these indexes are

MBD( j)(Ψ) = E[λ(A(Ψ;Ψ̃i1, . . . ,Ψ̃i j))], 2≤ j ≤ N,
and

MBDJ(Ψ) = ∑J
j=2MBD( j)(Ψ) = ∑J

j=2E[λ(A(Ψ;Ψ̃i1 , . . . ,Ψ̃i j))],

2≤ J ≤ N,
respectively.

Given a sample of functions, (Ψg1 ,Ψg2 , . . . ,ΨgN ), we can order the
curves by calculating the sample modified band depth, MBDN,J(Ψgi), of
each function Ψgi for i = 1,2, . . . ,N. The ordered sample is denoted by
(Ψg(1) ,Ψg(2) , . . . ,Ψg(N)), where Ψg(1) is the deepest function, Ψg(2) is the sec-
ond deepest function, and so on.

To robustify Algorithm 1, we apply the α-trimmed mean of the ele-
ments as the group reference function. If Ψg(i) (t), i= 1, . . . ,N, are functions
of the class g ordered by decreasing depth, the α-trimmed mean is

Ψ̄α
g =

1
N− [Nα]

N−[Nα]

∑
i=1

Ψg(i)(t), (11)

where [·] is the integer part function. Notice that the median (in the sense
of “the deepest”) function is also included in the previous expression. We
shall use α = 0.2 in our analyses with simulated and real data. This means
that for each group the 20% least deep data are left out when the average is
computed.

In step 2 of the new algorithm, the α-trimmed mean replaces the mean
as the reference curve for each class, which will make the classification more
robust.
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Algorithm 2:

Let {X1, . . . ,XM} be a sample containing time series from
the population PX , and let {Y1, . . . ,YN} be a sample from PY .
The classification method includes the following steps:

1. Split each series into k blocks, calculate the integrated pe-
riodogram in each block and merge these integrated pe-
riodograms: {ΨX1 , . . . ,ΨXM} and {ΨY1, . . . ,ΨYN}, where
ΨXi = (F(1)

Xi
. . .F(k)

Xi
), ΨYi = (F(1)

Yi
. . .F(k)

Yi
), and F ( j)

Xi
is the

integrated periodogram of the jth block of the ith series of
the population X ; and analogously for Y .

2. Obtain the corresponding group α-trimmed means, Ψ̄α
X

and Ψ̄α
Y .

3. Let ΨZ = (F(1)
Z . . .F (k)

Z ) be the curve of a new series Z.
Then Z is classified in the groupPX if d(ΨZ,Ψ̄α

X)< d(ΨZ,Ψ̄α
Y ),

and in the group PY otherwise.

Remark 5: We have used the sample modified band depth with J = 2 be-
cause this depth is very stable in J – similar center-outward orderings are
obtained in a collection of functions for different values of J (López-Pintado
and Romo 2006; 2009).

Remark 6: The same algorithm could be implemented by using a differ-
ent functional depth.

Remark 7: Computing the depth of functional data is the most
time-consuming task in our proposed robust classification algorithm. We
implement a preprocessing step to help scale the algorithm to large real data
sets as follows. The deepest elements are identified at the beginning so as to
maintain only them in the training samples during the runs (although all data
are classified). On the one hand, the depth is calculated only once; on the
other hand, because of the use of fewer but better elements in the training
samples, the computational time may be reduced in some cases for which
the time spent in calculating the depth is compensated. With this preprocess-
ing step the sizes of the training samples are slightly reduced in most runs,
although this has little effect when sample sizes are large. This technique
can be applied outside the framework of this work.

MATLAB code is available at http://www.Casado-D.org. Methods
DbC and DbC-α, as well as other characteristics (loop to select the num-
ber of blocks, robustifying approach, access to the computational times, et
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cetera) are implemented in several scripts. The code is fast and easy to exe-
cute and extend. The reader can easily reproduce, apply or extend our results
and plots. A help file is also included with the code.

4. Simulation Study

In this section, we evaluate our two algorithms and compare them
with the method proposed in Huang et al. (2004), who use the SLEX
(smooth localized complex exponentials) model for a nonstationary ran-
dom process introduced by Ombao, Rax, von Sachs, and Malow (2001).
SLEX is a set of Fourier-type bases that are at the same time orthogonal
and localized in both time and frequency domains. In a first step, they
select from SLEX a basis explaining the difference between the classes
of time series as well as possible. After this, they construct a discrimi-
nant criterion that is related to the SLEX spectra of the different classes: a
time series is assigned to the class minimizing the Kullback-Leibler diver-
gence between the estimated spectrum and the spectrum of the class. For
the SLEXbC method we have used an implementation provided by the au-
thors (see http://hombao.ics.uci.edu/). To select the parameters, we have
performed a small optimization for each simulation, and the results were
similar to the values recommended to us by the authors.

We have evaluated the methods with some models considered by
Huang et al. (2004). For each comparison of two classes, we run 1000 times
the following steps. We generate training and test sets for each model/class.
The training sets have the same sizes (sample size and series length) as those
used by Huang et al. (2004), and all the test sets contain 10 series of the
length involved in each particular simulation. The methods are tested with
the same data sets so that, in all models, exactly the same simulated time
series are used by the three methods, including our algorithms for different
values of k.

Simulation 1. We compare two processes composed half by white noise
and half by an autoregressive process of order one. The value of the AR(1)
parameter is −0.1 in the first class and +0.1 in the second class:

X (i)
t =

{
ε(i)t if t = 1, . . . ,T/2

X (i)
t =−0.1 ·X (i)

t−1+ ε(i)t if t = T/2+1, . . . ,T

Y ( j)
t =

{
ε( j)t if t = 1, . . . ,T/2

Y ( j)
t =+0.1 ·Y ( j)

t−1+ ε( j)t if t = T/2+1, . . . ,T

(12)
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Figure 2: Time-varying autoregressive model with τ = 0.4.

where εt are i.i.d. N(0,1), with i = 1, . . . ,M and j = 1, . . . ,N. Different
combinations of training sample sizes—M = N = 8 and 16—and series
lengths—T = 512, 1024 and 2048—are considered. In this case, the se-
ries are made up of stationary parts, but the whole series are not stationary.

Simulation 2. For this study, the stochastic models in both classes are
slowly time-varying second order autoregressive processes:

X (i)
t = at;0.5 ·X (i)

t−1−0.81 ·X (i)
t−2+ ε(i)t if t = 1, . . . ,T

Y ( j)
t = at;τ ·Y ( j)

t−1−0.81 ·Y ( j)
t−2+ ε( j)t if t = 1, . . . ,T

(13)

where εt are i.i.d. N(0,1), with i = 1, . . . ,M, j = 1, . . . ,N and at;τ = 0.8 ·
[1− τcos(πt/1024)], where τ is a parameter. Each training data set has
M = N = 10 series of length T = 1024. Three comparisons have been done,
the first class having always the parameter τ = 0.5 and the second class hav-
ing, respectively, the values τ = 0.4, 0.3 and 0.2. Note that a coefficient of
the autoregressive structure is not fixed but changes with time, making the
processes nowhere stationary. See Figure 2(a) for an example of the inte-
grated spectrum corresponding to these processes. As a precaution, we have
checked that values between τ = −0.9 and τ = +0.9 do not generate, for
any value of t, roots inside the unit circle for the characteristic polynomial
of the autoregressive process.

To compare the three methods in terms of robustness, we have per-
formed additional simulations where the training set is contaminated with
an outlier time series. In all cases we contaminate the PX population by
replacing a series by another one following a different model. We con-
sider three levels of contamination: one weak contamination (A) and two
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Figure 3: Examples of contamination for the two exercises, respectively.

strong contaminations (B and C). Since similar results are obtained for the
two strong contaminations, only the former is reported in this paper. Other
results on misclassification rates and computational times can be found in
Alonso, Casado, López-Pintado, and Romo (2008) and Casado (2013).

Contamination A. For simulation 1, we replace the autoregres-
sive structure—half of the series—for a moving average pro-
cess; that is, we generate a MA(1) model—with the MA param-
eter equal to the AR parameter—instead of a AR(1) model. For
simulation 2, we contaminate the set of slowly time-varying au-
toregressives of parameter +0.5 with a series of the same model
but with parameter value +0.2.

Contamination B. This type of contamination corresponds to
a parameter value of φ =−0.9 in simulation 1 and τ =−0.9 in
simulation 2, instead of the correct values. Therefore, we are
always applying the correct model except in one case, where
we modify the parameter value. (Contamination C consists in
using the value +0.9 instead of -0.9.)

In Figure 3, some cases of contamination are shown for the two sim-
ulation exercises. The error rates estimated for the first simulation are pre-
sented in Tables 1, 2 and 3; for the second simulation, in Tables 4, 5 and
6. Each cell includes the mean and the standard error (in parenthesis) of the
1000 runs.

For all tables we use the following notation: DbC (from depth-based
classification) for algorithm 1, DbC-α for algorithm 2 (using α = 0.2 for
the α-trimmed mean and J = 2 for the modified band depth) and SLEXbC
for the method of Huang et al. (2004). When a number follows DbC or
DbC-α, it indicates the number k of blocks into which the series are split.
Given a length T , SLEXbC considers several levels or number of partitions
of the series (1,2,22, ...,2p) and usually selects and combines blocks from
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different levels, that is, blocks of different length, to calculate the SLEX
spectrum. For example, for T = 1024, partitions into 1, 2, 4 and 8 blocks are
managed by SLEXbC, and that is why the same values have been considered
for our methods. Finally, the digits in bold correspond to the minima (when
they are different to zero).

Comments on Error Rates

Tables 1, 2 and 3 provide the results of the first simulation experi-
ment. When contamination is not present, DbC and DbC-α provide similar
error rates, about half the size of those obtained by SLEXbC. As we could
expect, for DbC and SLEXbC, error rates increase slightly with contami-
nation A (weak) and notably with contamination B (strong), while changes
are negligible for DbC-α because the trim keeps the contamination out. The
DbC error rate is about half of SLEXbC error rate for contamination A, but
their error rates are similar with contamination B. DbC-α is the only method
maintaining the same pattern (with and without contamination) and having
a considerable amount of error values close to zero. All three methods miss-
classify no elements for values of φ ∈ {−0.5,−0.3,0.3,0.5} (these results
have not been included in the paper). As we might expect, error rates de-
crease when either N or T increases. Our methods reach the minima when
series are divided into two blocks. While our error rates are larger than the
rates of SLEXbC, when we consider the whole series (without splitting them
into blocks), they fall with the first division. As we mentioned before, the
length of the blocks decreases with k, and this negatively affects the per-
formance of the periodogram as an estimator. We can observe this effect
of splitting in all the tables of simulation 1, and it is also evident that the
increase with k is higher for short series than for longer ones. Nevertheless,
we observe that even with k = 8 the misclassification rates are smaller than
the ones obtained by the SLEXbC procedure or those obtained by our pro-
cedures with k = 1. Recall that, like our procedure, the SLEXbC method
implicitly splits the series into blocks. Regarding the contaminations, for
DbC and SLEXbC, error rates increase slightly with contamination A and
greatly for contamination B, while DbC-α maintains its error rates and out-
performs all the other methods, mainly with strong contamination and when
two blocks are considered. As could be expected, contaminating a series has
major effects when samples sizes are Nx = Ny = 8 than when Nx = Ny = 16.

For simulation 2, conclusions similar to the previous ones can be de-
rived from Tables 4, 5 and 6. They also show that, in our proposal, penal-
ization for splitting too much is not serious when series are long enough.
Generally, the best results with both methods are obtained with k = 4, but
evenwith k= 8 the misclassification rates are smaller than those obtained by
the SLEXbC procedure or the ones obtained by our procedures with k = 1.
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Table 1: Misclassification rates estimates for simulation 1 without contamination.

NxT = 7x512 16x512 7x1024 16x1024 7x2048 16x2048

DbC 1 0.141 (0.0024) 0.131 (0.0024) 0.062 (0.0017) 0.060 (0.0017) 0.014 (0.0008) 0.014 (0.0008)

2 0.066 (0.0017) 0.061 (0.0017) 0.015 (0.0009) 0.014 (0.0008) 0.001 (0.0003) 0.001 (0.0003)

4 0.078 (0.0019) 0.069 (0.0018) 0.015 (0.0009) 0.014 (0.0009) 0.001 (0.0003) 0.001 (0.0003)

7 0.090 (0.0020) 0.080 (0.0019) 0.020 (0.0010) 0.018 (0.0009) 0.002 (0.0003) 0.001 (0.0003)

DbC-α 1 0.143 (0.0024) 0.132 (0.0024) 0.063 (0.0017) 0.061 (0.0017) 0.015 (0.0009) 0.014 (0.0008)

2 0.069 (0.0018) 0.064 (0.0017) 0.016 (0.0009) 0.015 (0.0009) 0.001 (0.0003) 0.001 (0.0003)

4 0.083 (0.0020) 0.073 (0.0018) 0.017 (0.0010) 0.016 (0.0009) 0.002 (0.0003) 0.001 (0.0003)

7 0.105 (0.0023) 0.088 (0.0020) 0.024 (0.0011) 0.019 (0.0010) 0.002 (0.0004) 0.002 (0.0003)

SLEXbC 0.114 (0.0023) 0.086 (0.0020) 0.038 (0.0014) 0.025 (0.0011) 0.007 (0.0006) 0.003 (0.0004)

Table 2: Misclassification rates estimates for simulation 1 with contamination A.

NxT = 8x512 16x512 8x1024 16x1024 8x2048 16x2048

DbC 1 0.143 (0.0025) 0.132 (0.0024) 0.063 (0.0017) 0.062 (0.0017) 0.018 (0.0010) 0.015 (0.0008)

2 0.070 (0.0018) 0.062 (0.0017) 0.018 (0.0010) 0.014 (0.0008) 0.002 (0.0003) 0.001 (0.0003)

4 0.083 (0.0020) 0.071 (0.0019) 0.019 (0.0010) 0.015 (0.0009) 0.002 (0.0003) 0.001 (0.0003)

8 0.102 (0.0022) 0.083 (0.0020) 0.026 (0.0012) 0.019 (0.0010) 0.003 (0.0004) 0.002 (0.0003)

DbC-α 1 0.145 (0.0025) 0.132 (0.0023) 0.063 (0.0017) 0.061 (0.0017) 0.015 (0.0009) 0.014 (0.0008)

2 0.072 (0.0018) 0.064 (0.0017) 0.015 (0.0009) 0.015 (0.0009) 0.001 (0.0002) 0.001 (0.0003)

4 0.086 (0.0021) 0.073 (0.0018) 0.018 (0.0010) 0.016 (0.0009) 0.002 (0.0003) 0.001 (0.0003)

8 0.114 (0.0024) 0.089 (0.0021) 0.025 (0.0011) 0.019 (0.0010) 0.003 (0.0004) 0.002 (0.0003)

SLEXbC 0.128 (0.0025) 0.092 (0.0021) 0.050 (0.0016) 0.027 (0.0012) 0.012 (0.0008) 0.004 (0.0004)

Table 3: Misclassification rates estimates for simulation 1 with contamination B.

NxT = 8x512 16x512 8x1024 16x1024 8x2048 16x2048

DbC 1 0.258 (0.0029) 0.168 (0.0026) 0.252 (0.0029) 0.117 (0.0022) 0.250 (0.0029) 0.065 (0.0018)

2 0.135 (0.0024) 0.082 (0.0020) 0.088 (0.0021) 0.030 (0.0012) 0.049 (0.0016) 0.007 (0.0006)

4 0.137 (0.0025) 0.085 (0.0020) 0.089 (0.0021) 0.031 (0.0012) 0.049 (0.0016) 0.007 (0.0006)

8 0.143 (0.0025) 0.092 (0.0021) 0.093 (0.0022) 0.034 (0.0014) 0.050 (0.0016) 0.007 (0.0006)

DbC-α 1 0.145 (0.0024) 0.134 (0.0024) 0.064 (0.0017) 0.061 (0.0017) 0.015 (0.0008) 0.014 (0.0008)

2 0.070 (0.0018) 0.065 (0.0017) 0.017 (0.0010) 0.015 (0.0009) 0.003 (0.0006) 0.001 (0.0003)

4 0.081 (0.0020) 0.071 (0.0019) 0.017 (0.0010) 0.017 (0.0009) 0.002 (0.0003) 0.002 (0.0003)

8 0.104 (0.0023) 0.087 (0.0020) 0.023 (0.0011) 0.019 (0.0010) 0.002 (0.0004) 0.002 (0.0003)

SLEXbC 0.239 (0.0031) 0.134 (0.0024) 0.228 (0.0030) 0.081 (0.0020) 0.220 (0.0030) 0.037 (0.0013)
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Table 4: Misclassification rates estimates for simulation 2 without contamination.

τ = 0.4 τ = 0.3 τ = 0.2

DbC 1 0.218 (0.0031) 0.063 (0.0017) 0.019 (0.0010)

2 0.119 (0.0023) 0.006 (0.0006) 0.000 (0.0000)

4 0.101 (0.0022) 0.002 (0.0003) 0.000 (0.0000)

8 0.123 (0.0024) 0.003 (0.0004) 0.000 (0.0000)

DbC-α 1 0.226 (0.0032) 0.065 (0.0018) 0.021 (0.0010)

2 0.128 (0.0023) 0.006 (0.0006) 0.000 (0.0000)

4 0.112 (0.0023) 0.002 (0.0003) 0.000 (0.0000)

8 0.139 (0.0026) 0.004 (0.0004) 0.000 (0.0000)

SLEXbC 0.181 (0.0031) 0.011 (0.0009) 0.000 (0.0000)

Table 5: Misclassification rates estimates for simulation 2 with contamination A.

τ = 0.4 τ = 0.3 τ = 0.2

DbC 1 0.232 (0.0032) 0.062 (0.0017) 0.019 (0.0009)

2 0.143 (0.0026) 0.006 (0.0006) 0.000 (0.0000)

4 0.144 (0.0026) 0.004 (0.0004) 0.000 (0.0000)

8 0.177 (0.0028) 0.005 (0.0005) 0.000 (0.0000)

DbC-α 1 0.241 (0.0035) 0.065 (0.0018) 0.020 (0.0010)

2 0.131 (0.0025) 0.007 (0.0006) 0.000 (0.0000)

4 0.121 (0.0026) 0.003 (0.0004) 0.000 (0.0000)

8 0.150 (0.0029) 0.005 (0.0005) 0.000 (0.0000)

SLEXbC 0.234 (0.0033) 0.016 (0.0011) 0.000 (0.0000)

Table 6: Misclassification rates estimates for simulation 2 with contamination B.

τ = 0.4 τ = 0.3 τ = 0.2

DbC 1 0.254 (0.0029) 0.106 (0.0022) 0.043 (0.0015)

2 0.500 (0.0015) 0.067 (0.0021) 0.001 (0.0002)

4 0.500 (0.0012) 0.062 (0.0020) 0.001 (0.0002)

8 0.499 (0.0013) 0.082 (0.0024) 0.000 (0.0001)

DbC-α 1 0.231 (0.0031) 0.074 (0.0020) 0.026 (0.0012)

2 0.128 (0.0024) 0.007 (0.0006) 0.000 (0.0000)

4 0.113 (0.0023) 0.002 (0.0004) 0.000 (0.0000)

8 0.141 (0.0026) 0.003 (0.0004) 0 0.000 (0.0000)

SLEXbC 0.492 (0.0019) 0.174 (0.0051) 0.015 (0.0009)

Notice that in this case there does not exist a theoretical optimum k. In the
contaminated models, the best error rates are obtained with DbC-α for k= 4.
As we can see, contamination A has a small effect.

Finally, in the two experiments only a subtle difference can be seen
between DbC and DbC-α. When there is no contamination, it is natural that
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the former provides slightly better error rates, since the latter, because of
its trimming, uses only 100(1−α)% of the suitable training data available.
Similar results were obtained when the L2 distance is used instead of L1.

5. Real Data Examples

In this section, we illustrate the performance of our proposal in two
benchmark data sets: (i) Geological data consisting of 17 time series cor-
responding to earthquakes and explosions; and (ii) Speech recognition data
consisting of three sets of 100 labeled time series corresponding to digitized
speech frames.

5.1 Geological Data

In this section, we have evaluated our proposal in a data set con-
taining eight explosions, eight earthquakes and one extra series—known as
NZ event—not classified (but being an earthquake or an explosion). This
data set was constructed by Blandford (1993). Each series consists of 2048
points, and its plot clearly shows two different parts—the first half is part P
and the second half is S. This division is an assumption made by most au-
thors, and is based on geological reasons. Both parts are also commonly con-
sidered stationary. Kakizawa, Shumway, and Taniguchi (1998) give a list of
these measurements. Shumway and Stoffer (2000) include a detailed study
of this data set and provide access to it at http://www.stat.pitt.edu/stoffer/
tsa.html. Figure 4 presents examples of an earthquake, an explosion, the NZ
event and their respective integrated periodograms.

Following the simple criterion given in Section 2 to choose between
the normalized or the nonnormalized version of the cumulative periodogram,
and after visual observation of these data, for each series we have built a
curve by merging the nonnormalized integrated periodograms of parts P and
S independently computed; that is, we take k = 2, as used by most authors.
Let us define the eight earthquakes as group 1 and the eight explosions as
group 2. We use leave-one-out cross-validation to classify the elements of
these two groups: that is, removing a series at a time, using the rest of the
data set to train the method and finally classifying the removed series. By
doing this, both of our algorithms misclassify the first series of the group
2 (explosions). Regarding the NZ event, if we use the previous groups as
training sets, both algorithms agree on assigning it to the explosions group,
which agrees with the results obtained by, e.g., Kakizawa et al. (1998) or
Huang et al. (2004).

Now we propose an additional scenario. We consider an artificial
data set constructed by the eight earthquakes plus the NZ event as group
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Figure 4: Geological data

1, and the eight explosions as group 2. (Note that our method and most of
the published papers classify NZ as an explosion.) Then we could consider
this artificial setting as a case where one atypical observation is presented
in group 1. In this situation, algorithm 1 misclassifies the first and the third
elements of group 2 (explosions), not only the first, whereas algorithm 2 still
misclassifies only the first series of group 2. This seems to show the robust-
ness of our second algorithm. Obviously, since we are applying leave-one-
out cross-validation, both algorithms classify the NZ event in the explosions
group, as we mentioned in the previous paragraph.

5.2 Speech Recognition Data

In this section, we have evaluated our proposal in a benchmark data set
containing three subsets of 100 recordings of two short words or phonemes.
These three data sets were used by Biau, Bunea, and Wegkamp (2003) to
illustrate the performance of several classification procedures on functional
data. Their procedures consider the time series as functional data. The first
set corresponds to the words YES and NO with 52 and 48 speech frames,
respectively; the second set corresponds to the words BOAT and GOATwith
55 and 45 speech frames, respectively; and the third set to the phonemes
SH (as in SHE) and AO (as in WATER) with 42 and 58 speech frames,
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Figure 5: Words YES/NO data

respectively. Each speech frame consists of a time series of length 8192
observations. Figures 5, 6 and 7 present examples of different words or
phonemes and their respective integrated periodograms. As is clear from
those figures, the time series are nonstationary so, as a consequence, there
must be k > 1 blocks in our procedures. For illustrative purposes, we use
k = 2 in the figures, although the “best” k could be selected by a cross-
validation procedure.

Biau et al. (2003) report their misclassification error rates based on
a cross-validation procedure with 50 time series as training sample and the
remaining 50 time series as testing sample. The results with their nonpara-
metric functional classification procedure and two alternative procedures
(nearest neighbour procedure and quadratic discriminant analysis) are 0.10–
0.36–0.07, 0.21–0.42–0.35 and 0.16–0.42–0.19 for YES/NO, BOAT/GOAT
and SH/AO, respectively. Table 7 shows our classification results after ap-
plying the same cross-validation scheme with different values of k. The
misclassification error rates reported in Table 7 are based on 1000 replica-
tions.

Our results are similar or better than those obtained by Biau et al.
(2003). The robust algorithm, DbC-α, provides the best results for the
YES/NO and BOAT/GOAT sets, having misclassification rates around 0.05
(with k=4,8 or 16) and 0.150 (with k=16 or 32), respectively. Both meth-
ods, DbC and DbC-α, lead to almost perfect classification in the SH/AO set,
which is a big improvement with respect to the three methods used in Biau
et al. (2003). For this third set, the impact of k is not relevant.
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Figure 6: Words BOAT/GOAT data
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Figure 7: Phonemes SH/AO data

Additionally, in Figure 8 we show the overall error rate (based on
100 runs) for the YES/NO data set when from one to thirty two blocks are
considered. The computational time spent generating Figure 8 was around
843.8 seconds, which confirms the practicability of the block selection pro-
cedure. Notice that the selection of blocks is performed only once. The best
results for DbC and DbC-α are obtained with k= 5 and k= 16, respectively.
Moreover, Figure 8 illustrates that, in this data set, once we select a k > 4,
the misclassification rates are fairly stable.
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Table 7: Misclassification rates estimates for speech recognition data.

YES/NO BOAT/GOAT SH/AO

DbC 1 0.404 (0.0018) 0.387 (0.0030) 0.000 (0.0000)

2 0.407 (0.0021) 0.345 (0.0026) 0.000 (0.0000)

4 0.102 (0.0021) 0.285 (0.0023) 0.003 (0.0002)

8 0.091 (0.0014) 0.265 (0.0017) 0.003 (0.0002)

16 0.100 (0.0015) 0.253 (0.0028) 0.003 (0.0002)

32 0.117 (0.0016) 0.250 (0.0028) 0.008 (0.0005)

DbC-α 1 0.281 (0.0038) 0.360 (0.0041) 0.000 (0.0000)

2 0.170 (0.0032) 0.293 (0.0041) 0.000 (0.0001)

4 0.066 (0.0012) 0.217 (0.0033) 0.005 (0.0003)

8 0.049 (0.0009) 0.223 (0.0026) 0.007 (0.0003)

16 0.058 (0.0010) 0.143 (0.0032) 0.012 (0.0005)

32 0.085 (0.0012) 0.164 (0.0035) 0.023 (0.0006)
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Figure 8: Overall error rate estimated by cross-validation in YES/NO data set.

6. Conclusions

We introduced a new time series classification method based on the
series integrated periodogram. Notice that the calculation of the (integrated)
periodogram does not involve a bandwidth selection, in contrast to other
spectral (distribution) density estimators. This is a clear advantage with
respect to methods that require smooth and consistent spectral density es-
timators. When the series are nonstationary, they are split into blocks and
the integrated periodograms of the blocks are merged to construct a curve;
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this idea relies on the assumption of local stationarity of the series. Since
the integrated periodogram is a function, statistical methods recently devel-
oped for functional data can be applied. New series are assigned to the class
minimizing the distance between its group mean curve and the new data
function. Since the group mean can be affected by the presence of outliers,
we propose robustifying the classification by replacing the mean curve by
the depth-based α-trimmed mean, where for each group only the deepest
elements are averaged. We have evaluated our proposal in different scenar-
ios. We have run two simulations containing several models and parame-
ter values, one with piecewise stationary series and the other with nowhere
stationary series. After running the simulations without contamination, we
have repeated all the comparisons twice more with exactly the same series
but replacing one by a contaminated series. Two levels of contamination
are considered: weak and strong. Our second algorithm exhibits robustness
against outliers, while the performance of the SLEXbC procedure deteri-
orates noticeably. We also illustrate the performance of our procedure in
two benchmark data sets. Our proposal provides small error rates, robust-
ness and good computational behavior, which makes the method suitable for
classifying long time series. Finally, this paper suggests that the integrated
periodogram contains useful information for classifying time series, and that
the concept of depth for functional data can be used to make classification
robust, which is a clear advantage over other competitive procedures that are
strongly affected by the presence of outliers.

Appendix

In this section we follow the papers of Dahlhaus (1996; 1997) to
present a locally stationary time series model that allows us to define a time
dependent integrated spectrum. In this nonstationary framework it is not
possible to separate the time and the frequency domains. The strategy of
Dahlhaus started with a spectral representation.

Definition 1 (Dahlhaus, 1996 and 1997). A sequence of stochastic processes
(Xt,T 1≤ t ≤ T, T ≥ 1) is called locally stationary with transfer function A0

and trend µ if such a representation exists

Xt,T = µ
( t
T

)
+

∫ +π

−π
eiλtA0

t,T (λ)dξ(λ), (14)

where

(i) ξ(λ) is a stochastic process on [−π,+π] with ξ(λ) = ξ(−λ) and

cum{dξ(λ1), · · · ,dξ(λk)}= η(
k

∑
j=1

λ j)gk(λ1, · · · ,λk−1)dλ1 · · ·dλk,
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where g1= 0, g2(λ)= 1, |gk(λ1, · · · ,λk−1)| ≤ constk for all k, cum{· · ·}
denotes the cumulant of k-th order and η(λ) = ∑+∞

j=−∞
δ(λ+2π j) is the period 2π extension of the Dirac delta function.

(ii) There is a constant C and a 2π-periodic function A : [0,1]×R → C

with A(u,−λ) = A(u,λ) and

supt,λ|A0
t,T (λ)−A(t/T,λ)| ≤CT−1,

for all T ; A(u,λ) and µ(u) are assumed to be continuous in u.

Definition 2 (Dahlhaus, 1996 and 1997). The (time-varying) spectral den-
sity of the process (sequence of processes) is defined as:

f (u,λ) = A(u,λ)A(u,λ) = |A(u,λ)|2. (15)

For these processes, Dahlhaus (1996) also defines the local covari-
ance of lag k at time u, and gives kernel estimates of it, as well as of the
spectral density. From the above definition, we propose the following spec-
tral distribution function that could be estimated by our blockwise integrated
periodogram.

Definition 3. The (time-varying) spectral distribution of the process (se-
quence of processes) is defined as:

F(u,λ) =
∫ λ

−π
f (u, l)dl. (16)

Notice that if the underlying process (sequence of processes) is piece-
wise stationary, there exit some u1,u2, . . . ,us such that f (u,λ) is constant at
intervals (ui,ui+1) as a function of u. Then the above definition leads to a
piecewise constant spectral distribution. Of course, assuming the asymp-
totic framework proposed by Dahlhaus, the number of observations in each
interval increases as T grows. The integrated periodogram, FT , calculated
using the observations inside a particular interval will provide a consistent
estimator of the piecewise spectral distribution. Moreover, if we consider an
increasing number of blocks, then most of these k blocks will be inside one
of the intervals (ui,ui+1), i = 1,2, . . . ,s− 1, and therefore the length of the
intervals that does not satisfy this inclusion property will be asymptotically
negligible.
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