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ABSTRACT

Support Vector Machines (SVMs) is known to be a powerful nonparametric classification technique even
for high-dimensional data. Although predictive ability is important, obtaining an easy-to-interpret clas-
sifier is also crucial in many applications. Linear SVM provides a classifier based on a linear score. In the
case of functional data, the coefficient function that defines such linear score usually has many irregular
oscillations, making it difficult to interpret.

This paper presents a new method, called Interpretable Support Vector Machines for Functional Data, that
provides an interpretable classifier with high predictive power. Interpretability might be understood in
different ways. The proposed method is flexible enough to cope with different notions of interpretability
chosen by the user, thus the obtained coefficient function can be sparse, linear-wise, smooth, etc. The use-
fulness of the proposed method is shown in real applications getting interpretable classifiers with com-

Functional data analysis

parable, sometimes better, predictive ability versus classical SVM.

1. Introduction

The term Functional Data Analysis was already used in [30] two
decades ago. Since them, especially in the last decade, it has be-
come a fruitful field in statistic. The range of real world applica-
tions where the objects can be thought as functions is as diverse
as speech recognition, spectrometry, meteorology or clients seg-
mentation, to cite just a few [19,9,17,20]. The objects of study in
Functional Data Analysis (FDA) are functions. A good review of dif-
ferent FDA techniques applied to real world problems can be found
in [31]. For a deeper insight into the subject see, e.g., [10,32].

We deal with the problem of classifying functional data. Sup-
pose we observe a binary response Y (the class) to a functional pre-
dictor X, where X € X is a function defined on the bounded interval
Z,i.e,X:Z+— R,and X is a given set of functions. Our aim is to con-
struct a classification rule that predicts Y for a given functional da-
tum X with good prediction ability and some interpretability
properties.

The classification rule is based on the sign of the so-called score
function f. The score function is an operator f : X — R that assigns a
real number to a given function X. Since our aim is interpretability,
we consider the score function to be a linear operator Ty, with
coefficient function w € X and intercept 8 € R,

FX) = TyuX = / W(OX(E)dE + f = (W, X) + f, (1)

* Corresponding author.
E-mail addresses: belen.martin@uc3m.es (B. Martin-Barragan), lillo@est-econ.
uc3m.es (R. Lillo), juan.romo@uc3m.es (J. Romo).

where (f,g) = [, f(t)g(t)dt. The estimation of the coefficient func-
tion w on the whole interval 7 is an infinite dimensional problem.
This issue is addressed via regularization, which simultaneously al-
lows us to address our other concern: interpretability.

As in standard Support Vector Machines (SVMs), w(t) express
the discriminative power of X(t). For example, areas where w(t)
is zero or small has none or low discrimination power, whereas
for |w(t)| large, one can expect the behavior of X(t) to have influ-
ence over the classification. This idea provides a clear interpreta-
tion of w(t) at a particular time point t, but getting a general idea
about the coefficient function w requires it to be simple: cases
where w(t) has unnatural wiggles all along the interval Z are diffi-
cult to interpret.

The simplicity of w might be understood in different ways
depending on the application. For instance, a coefficient function
that is non-zero in just a few points, could detect the few points that
are more relevant in classification. This idea has been proposed
within a logistic regression model, see [24]. In other situations,
one might prefer a coefficient function that is constant over a few
subintervals of Z and zero on the rest. A method that detects a
few segments with high discriminative power has been proposed
in [22] by combining feature selection, classical linear discriminant
analysis and SVM. In gene expression analysis, detection of relevant
segments are also quite desirable because relevant genes are ex-
pected to be located close to each other along the chromosome
[33]. All this literature provides different methodologies for differ-
ent notions of interpretability. Our proposal is to provide a common
framework where all this notions can be seen as particular cases.

We use the interpretability notions proposed by [17] for func-
tional linear regression. We consider that a classifier is interpretable
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if one or several derivatives of the coefficient function w are sparse,
i.e., the derivatives are zero in many points. The choice of the deriv-
atives that are enforced to be sparse depends on the notion of inter-
pretability preferred by the practitioner. In this context, this paper
proposes a new method, that we call Interpretable Support Vector
Machines for Functional Data (ISVMFD), producing SVM-based clas-
sifiers for functional data which have high classification accuracy
and whose coefficient functions are easy to interpret. The problem
is formulated as a linear program, in the framework of L;-norm SVM.

The seek of interpretability is not new in functional data analy-
sis. A penalized version of the classical Linear Discriminant Analy-
sis (LDA) is proposed in [14] and is denoted as PDA. PDA and
ISVMFD share common ideas: regularization and interpretability.
However the two methods are different in many aspects. The main
difference is the error criteria used: ISVMFD is based in minimizing
the hinge loss whereas PDA is based on maximizing the between-
class variance relative to the within-class variance. Besides, inter-
pretability in PDA is achieved by using a penalty matrix that im-
poses a spatial smoothness constraint on the coefficients.

Another approach for finding interpretable classifier is variable
clustering techniques, or in a more general framework, variable
selection. Methods that use this kind of selection techniques are
usually based on a two-phase framework. There is a phase where
the variables are clustered or selected, and the classifier is built
in a posterior phase. For instance, in [18] a variable clustering
phase is embedding into a three-phase classification procedure in
order to select ranges in spectra. See, for instance, [12,13] for a re-
view in the wide variety of feature selection methods that can be
applied within a two-phase framework. In contrast, when IFSVM
is used, the selection phase is done together with the construction
of the classifier.

The outline of the paper is as follows: Section 2 reviews classical
literature for SVM on multivariate data, its extension to functional
data and how interpretability has been addressed for multivariate
data. In Section 3 the ISVMFD method is introduced and a proposal
to implement it through the use of a basis is provided. Section 4
studies how other methods available in the literature are particular
cases of ISVMFD. A wide study with two real-world datasets is pre-
sented in Section 5 and finally, in Section 6, several conclusions are
driven. An Online Companion Appendix that includes more illus-
trative examples is provided.

2. Support vector machines

We focus in this paper on the binary supervised classification
problem, where two classes {—1,1} of curves need to be discrimi-
nated. SVM [8,27,38] have become very popular during the last dec-
ade. The basic idea behind SVM can be explained geometrically. If
the data are living in a p-dimensional space, SVM finds the separat-
ing hyperplane with maximal margin, i.e., the one furthest away
from the closest objects. This geometrical problem is expressed as
a smooth convex problem with linear constraints, solved either in
its primal or dual form. Another interpretation can be done in terms
of the regularization theory where the hinge loss plus a quadratic
regularization penalty is minimized [15,35]. The most popular
and powerful versions of SVM embed the original variables into a
higher dimensional space [16]. This embedding is usually implicitly
specified by the choice of a function called kernel.

Extensions of SVM to functional data have been proposed in
[28,34].In[28], SVM is used to represent the functional data by pro-
jecting the original functions onto the eigenfunctions of a Mercer
Kernel. Ref. [34] define new classes of kernels that take into account
the functional nature of the data. Two types of functional kernels
are proposed: projection-based kernels and transformation-based
kernels. In projection-based kernels, the idea is to reduce the

dimensionality of the input space, i.e., to apply the standard filter-
ing approach of FDA. Transformation-based kernels allow to take
into account expert knowledge (such as the fact that the curvatures
of a function can be more discriminant than its values).

In the multivariate context, kernels provide an implicit way to
get a nonlinear classifier, by projecting the data on the higher
dimensional space induced by the kernel. The final classifier is
nonlinear in the original space, but linear in the projected space.
Functional data are indeed high dimensional and the high dimen-
sionality usually generates problems. Therefore the use of kernels
to project data on a higher dimensional space seems to be less cru-
cial. Moreover, the kernel-based classifier would be easy to inter-
pret in the projected space, but not in the original one. We focus
on the linear kernel in our method.

The interpretability issue in SVM has already been addressed for
multivariate data. The first attempts to make SVM more interpret-
able make use of a two-step procedure: first, SVM is run, and then a
rule, resembling the SVM-classifier but easier to interpret, is built.
See, e.g. [1,3,26,25]. One obtains an alternative classifier which
hopefully get similar predictions, but is more interpretable. Re-
cently, a two-stage iterated method is proposed for credit decision
making [23], which combines feature selection and multi-criteria
programming. In [6,7], one-step SVM-based procedures are pro-
posed to get the relevant variables and the relevant interactions
between variables. Although one would expect classification rates
to deteriorate when looking for interpretable classifiers, the exper-
iments in [6,7] show that their proposals are competitive with
SVM. See [2,21,37,39] for other recent references on the topic.

3. Methodology
3.1. Interpretable support vector machines for functional data

Let {X,,Y,};_; be a sample of n functional data X, € X together
with its class Y, € {—1,1}. The classical SVM with the linear kernel
seeks for the coefficient function w that minimizes

Mty s [ W +CD R, (W, Xu) + B) @)

u=1

where || - ||q is the g-norm, h(y,s)= (1 — ys). is the hinge loss and C
is a tuning parameter that trades off the regularization term Hng
and the loss term.

The class is predicted as the sign of the score function given in
(1). In case of ties, i.e., f{X) = 0, prediction can be randomly assigned
or following some predefined order. Throughout this article, fol-
lowing a worst case approach, ties will be considered as
misclassifications.

Although the regularization with the Euclidean norm is the
most common, other norms have also been applied. For instance,
the L; norm is known to be good when a sparse coefficient vector
is desirable. Ref. [4] demonstrated the usefulness of penalties
based on the L, norm in classification problems. In regression, LAS-
SO [35] and the Dantzig selector [5] also successfully use the L,
norm in high-dimensional problems.

In order to get the interpretable classifier, we propose a modi-
fied version of SVM that we call Interpretable Support Vector Ma-
chines for Functional Data (ISVMFD). Following the concepts of
interpretability described in Section 1, we propose to use a differ-
ent regularization term that depends on the preferences of the user
for the interpretability notion. The user must select one or several
derivatives to be sparse. For example, if the user is concerned with
detecting relevant time points, the zero derivative (the actual w) is
selected to be sparse. Sparsity of the first derivative leads to con-
stant-wise w which is useful to identify relevant segments. A user
might prefer a coefficient function that is zero over large regions,
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Fig. 3. Coefficient functions of SVM for tecator dataset.

but smooth quadratic-wise where it is non-zero. In this case, spar-
sity on both the zero and the third derivative is sought.

Let D be the set of the derivatives chosen to impose conditions.
The proposed regularization term is 3", |[w@||;, where | - ||; is the
L, norm and w'? is the d derivative of w or an approximation of it.
This yields to the following optimization problem,

Miflye e YW+ CY Ry < WXy > +5). 3)

deD u=1

The set of functions X can be a wide space, such as L2, for which the
optimization problem given in (3) becomes infinite dimensional.
This issue is addressed in the next section via the use of a basis.

Note that when several derivatives are included in D, it might
also be convenient to give different weights to the different deriv-
atives. We do not explore such issue, but it is a straightforward
modification of (3).

Table 1

Classification accuracy in tecator database.
D Interpretation effect Error
0 Sparse 1.0821*
Oand 1 Sparse and constant-wise 1.2800*
0and 2 Sparse and linear-wise 1.2968*
0and 3 Sparse and quadratic-wise 1.3558"
1 Constant-wise 1.5368"
2 Linear-wise 1.8232
3 Quadratic-wise 2.1600
Linear FSVM None 3.28
Gaussian FSVM None 2.6
Linear SVM None 1.8779
FSDA Detection of segments 1.09
RKHS None 1.54

* Significantly better (t-test) than SVM.
** Significantly better (t-test) than all the others.
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Fig. 4. Coefficient functions of ISVMFD for tecator dataset. Part I.

3.2. Implementation through the use of a basis

We consider the selection of a p-dimensional basis B(t)=
[ba(t), ba(t), ..., by(t)]", in such way that:

w(t) = B(t)n. (4)

Usually, p is assumed to be low in order to provide some form of
regularization that avoids overfitting. However we work with p
large enough to allow a perfect fitting. In our method, regularization
is not based on the low dimension of B, but it is intrinsically related
to the interpretability issue, since it is done by minimizing the L,
norm of one or several derivatives of the score function w.

Our method can be applied to any high dimensional basis, such
as splines or wavelets. Once we have a basis B, the score function
can be rephrased as:

fXu) =n"x+p, (5)

where x, = [, X, (t)B(t)dt.
Note that it is not necessary to assume the basis functions B(t)
to be differentiable. Based on the choices of the practitioner, we

are seeking a score function w that is sparse, constant-wise, lin-
ear-wise, quadratic-wise, etc. We propose to approximate the
derivatives of w(t) by its finite differences. Let s, S5, . .., S, be a fine
grid of the interval Z. Let Dw = (w(sg), w(s1), ..., w(s,))" be the
discretization of the coefficient function w on such grid. An approx-
imation of the d derivative of w can be obtained by the finite differ-
ence operator

D 'w(s) — D* (s 1)
Sj —Sj-1

D'w(sj) =

Enforcing sparsity on D% = (DW(so), D'W(s1), ..., DW(s,_4))"
yields a coefficient function w whose dth derivative is zero in all
but a few points s.

Let Aq=[DB(so), D°B(s1), DB(sz), ..., D% B(s,_4)]", where D9 is
the finite difference operator defined in (6). Then, y = Agy = D% is
a good approximation of w'¥ and hence, enforcing sparsity in 7y
pushes w® to be zero at most points t.

With this setting, (3) reduces to the vector optimization
problem
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n

miny ;Y [[Aan |y + CY_h¥y. 1% + ), (7)

deD u=1

which can be rephrased as the linear program

n

min > el 4za+C» &,

deD u=1

st. yxin+p+& =1, u=12...,n,
-2z < Agh < 24, deD,
&y =0, u=1.2,...,n, (8)
zq € R4 deD,
nere
BER,

where e; is the i-dimensional vector with value one at each
component.
As an example, consider the choice of a simple grid basis,

if te [t,‘,l s ti]

1
bi(t) = {O otherwise, ®)

foralli=1,...,p. The grid used here does not necessarily coincide
with the grid used in (6), although this is the option used in our
numerical experiments. Note also that this grid is not differentiable,
a condition that is not needed since our approach is based on finite
differences. For this particular example, suppose that each function
X, is defined on the interval Z = [0, p] and the grid (0, 1, 2, ..., p) is
considered both in (9) and (6). It can be easily seen that,
n=wW0),w(1),...,w(p))", Ao is the identity matrix and
Ag=A]Aq, ford=2,...,p. For example, A; and A, are equal to:

1 -1 0 ... 0 1 -2 1 ...0
01 -1 .. 0 0 1 -2 0
1 .. 1
a0 0 0| . A_ 0 0
0 0 0 -1 0 0 0 -2
0 0 0 1 0 0 0 1
(10)

The advantages of using finite differences to approximate the
derivative of w are twofold. First, the finite differences are useful
when the basis functions are not differentiable, as it is the case of
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the grid basis given in (9) and Haar wavelets. Secondly, they allow
to transform the optimization problem (3) into a vector optimiza-

tion problem, which indeed can be rephrase as a Linear Problem.
Alternatively, when differentiable basis functions are used, one
might prefer to use the following expression of the derivative of @
p
@) =Y nb? () =B(0)n
i=1

1

where b\’ denotes the d derivative of the basis function b;. In this
case, in order to transform the problem into a Linear Problem, we
still need a grid sg, 51, .. ., 5, to approximate ||'®||; by the L; norm
of the vector

(B (s0) " 0,B(s2)"11,..., BV (s:) ).

This approximation of ||®||; can be used in problem (7) instead of
||Agn||1 and the overall procedure does not change. Since in the illus-
trative examples in Section 5 nondifferentiable basis functions are
considered, the former version that uses finite differences is the
only option.

4. ISVMFD as a global framework for several existing methods

In this section we study how ISVMFD can be seen as a general-
ization of other methods available in the literature. In particular,
L-norm SVM [4,6,7,29] and Fused SVM [36,33] turn out to be par-
ticular cases of ISVMFD for particular choices of the derivatives.

For linear SVM applied to vectors instead of functions, the L;-
norm SVM is a modification of SVM where the quadratic penalty
term is replaced by the Li-norm penalty of the coefficient vector.
See for instance [4,40].

To simplify notation suppose that Z =[0,1]. Let t;=i/p, for
i=1,2,...,pbearegular grid on [0, 1]. Suppose the functional da-
tum X,, is known only on such grid. Consider that ISVMFD is used to
select several time points. This means that the set of derivatives D
in (3) should be set to {0}. We can represent the coefficient func-
tion w using a grid basis as in (9). Since X,, is unknown in the open
interval (t;_1,t;), we consider %X(tl—) as an approximation of

t
/ X(6)bi(t)dt = / X(t)dt.
I tiq
With this setting, application of ISVMFD to functions {X,};_, re-
duces to solving (7) with
Xa =5 (u(t) Xulte) oo XulEy) s forallu=1.2.....m
In L;-norm SVM, the L;-norm penalty is known to act as a feature

selection problem because it enforces the coefficient vector to be
sparse. Hence, the L;-norm SVM is able to produce a classifier that

detects the several time points that are more relevant for classifica-
tion. L;-norm SVM applied directly to the vectors {x,};_, reduces to
solving the following problem:

n
Mingee per|| O]l + CY_h(Yy, @ X + B), (11)

u=1

which is equivalent to (7).

Another method that can be seen as a particular case of ISVMFD
is the Fused SVM. Fused SVM is the SVM-based counterpart of
Fused Lasso, both proposed in [36]. Fused Lasso is a generalization
of Lasso designed for problems whose features can be ordered in
some meaningful way. It encourages both sparsity of the coeffi-
cient vector and sparsity of the differences between two consecu-
tive components of the coefficient vector. Fused SVM seeks for a
coefficient vector w that optimizes the following linear program:

min Zn:éu
u=1

st yuxn+p)+& =1, u=12,...n,

= (12)

where s; and s, are two tuning parameters that trade off the loss
term and the regularization terms (sparsity of w and sparsity of
the differences). This problem is known to be equivalent to

n p p
min Zéu +AlZ‘WJ‘ +122‘Wj _Wj—l‘
u=1 = =

st y(xin+p)+é =1, u=12,...,n, (13)
& =0, u=1,2,...,n,
we R
BER,

in the sense that, for any positive s; and s, on (12) there exist
A1,72 > 0, such that (#,8,¢) is optimal for (12) if and only if it is opti-
mal for (13).

Taking 4; =/, and C = % (13) is the problem obtained when
applying ISVMFD with D = {0, 1} and the grid basis (9).

5. Illustration on real databases

In this section we illustrate the usefulness of ISVMFD in two
real publicly-available databases. First, we consider an application
in spectrometry. The classification ability of ISVMFD is compared
with other related methods that have previously used this data-
base. The second example is an application in meteorology, where
the aim is to discriminate the weather stations with a high-rain
profile from the stations with a low-rain profile. The results for
other three examples can be found in the Online companion
Appendix.

5.1. Spectrometry data
The Tecator! data set consists of 215 near-infrared absorbance

spectra of meat samples. These data are recorded on a Tecator Infra-
tec Food and Feed Analyzer working in the wavelength range 850-

1 The data set is available at http://lib.stat.cmu.edu/datasets/tecator.
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Table 2

Classification accuracy in rain database.
D Interpretation effect Error
0 Sparse 11.4286
Oand 1 Sparse and constant-wise 11.4286
0and 2 Sparse and linear-wise 11.4286
0and 3 Sparse and quadratic-wise 11.4286
1 Constant-wise 5.7143
2 Linear-wise 2.8571
3 Quadratic-wise 5.7143
SVM None 8.5714

1050 nm by the Near Infrared Transmission (NIT) principle. Each
sample contains finely chopped pure meat with different moisture,
fat and protein contents. For each meat sample the data consists of
a 100 channel spectrum of absorbances and the contents of moisture
(water), fat and protein. The absorbance is —log10 of the transmit-
tance measured by the spectrometer. The three contents, measured
in percent, are determined by analytic chemistry.

Fig. 1 shows the spectra of the samples with high (left) and low
(right) fat contents. The most important difference between these
two sets of curves seems to be in their shape. High-fat curves tend
to have two local minima whereas low-fat have only one. This sug-
gests, as pointed out previously in [34], to use the second deriva-
tive of these curves instead of the original curves. Fig. 2 shows
the curvature (second differences) of the curves.

For fair comparison with their results, we follow the same
experimental setting as in [34]. Hence, we focus in the discrimina-
tion of samples with a low-fat content (less than 20%) versus high
fat content (more than 20%). The dataset is split into 120 spectra
for learning and 95 for testing. This splitting is repeated 250 times.
For each splitting, the training set is again divided in two subsets:
60 spectra for learning and 60 spectra for validation. For each train-

coefficient function SVM

mam j j a s o n d
Months

ing set, the SVM is run in the learning set with the trade-off param-
eter C of SVM set to 10’ for i=—1,1,...,8. The C with the best
performance in the validation set is chosen and the SVM with such
C is run again in the training set. Finally, the obtained classifier is
evaluated in the testing set. This process is repeated 250 times
and the average error on the testing set over the 250 repetitions
is given. In all the experiments we use CPLEX 12.1 to solve the lin-
ear program (8). The whole algorithm is programmed in Matlab
and it is available under request.

As suggested in Figs. 1 and 2, and in the empirical results ob-
tained in [34,22], the second derivative of the spectra is more dis-
criminative than the spectra itself. Hence, we focus on the use of
such a second spectra. To approximate the second derivative,
[34] uses a fixed spline subspace to represent the functions so as
to calculate the second derivative. Instead of that, we apply the
second finite difference operator D? defined in (6) to each function
X,. Classical linear SVM applied to this transformed data yields an
error of 1.8779%, which is better than the results reported in [34]
for FSVM (3.28% for the linear kernel and 2.6% for the Gaussian ker-
nel). This example is also used in [11] where each functional datum
is projected onto a Reproducing Kernel Hilbert Space (RKHS). Dif-
ferent kernels and different classifiers are tried. Among them, the
best classification error reported is 1.54%.

In each practical application, the interpretability of the coeffi-
cient function issue might mean something different. For example,
some practitioners might prefer to get a very sparse coefficient
function, whereas others might prefer a linear-wise one. Different
choices for the set of derivatives D yield different interpretation ef-
fects for the coefficient function. We have tried several sensible
choices for these derivatives in order to compare them. Table 1
provides the interpretation effect and the classification error. The
coefficient functions obtained for the first 10 runs are depicted in
Figs. 4 and 5 left, the first of them is depicted on the right size to
improve visualization.

coefficient function SVM
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Fig. 8. Coefficient functions of SVM for Rain dataset.
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Fig. 9. Coefficient functions of ISVMFD for Rain dataset. Part I.

The best result in terms of classification performance is ob-
tained for the sparse coefficient function. This error is very similar
to the one provided in [22] (1.09%) by Functional Segment Discrim-
inant Analysis (FSDA), a method that consists in a two-stage fea-
ture extraction followed by the application of SVM. We have not
done a comparison with PDA, but [22] show that it performs worse
than FSDA, whose error is similar to us.

Note that the horizontal axis of Fig. 2 represents the wavelength
channel where the absorbance is measured. In this application, the
detection of the channels with higher discriminative power is a key
problem. Fig. 4 shows that direct application of ISVMFD clearly de-
tects channel 935 as the most discriminative channel. Fig. 6 shows,
for every channel, the relative frequency of being selected by
ISVMFD over the 250 replications. It is clear that the channel 935
is selected almost always (99.2%), channels around it are also se-
lected quite often and other channels are selected with a frequency
bellow 15%. In [22] a similar experiment is reported for FSDA, with
50 replications, where the channel selected most frequently is also
935, but two other channels 905 ad 1045 are selected at remark-
able frequencies too. Classical SVM, apart from getting worse clas-
sification ability, cannot be easily used to detect relevant channels
as can be seen in Fig. 3 where the coefficient vector is shown.

5.2. Discriminating high-rain stations with weather data

The weather dataset consists of one year of daily temperature
measurements from each 35 Canadian weather stations. Two
experiments are conducted with this data, considering two differ-
ent classification tasks: regions (Atlantic climate versus the rest)
and rain (two classes are consider depending if the total yearly
amount of precipitations are above or below 600). This experiment
is inspired in the good interpretability results obtained in [17] for
functional regression. We focus here in the rain example, the re-
gions can be found in the Online Companion Appendix.

In this experiment, we follow a leave-one-out approach, where
the training set is formed by all but one curve. This split is repeated
for each curve in the dataset. Parameter C is chosen using half the
training sample as learning set, and the rest for validation.

For the classification of rain, the original data can be seen in
Fig. 7 and the results of ISVGMFD for different choices of the interpre-
tation effect can be seen in Table 2. The coefficient functions can be
found in Figs. 9 and 10. In this case, contrary to the situation in pre-
vious example, we face a situation in which encouraging sparsity of
||eo]| yields, in general, worse results in terms of error rates. The best
result is obtained for D = {2}, which encourages piece-wise linear-
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Fig. 10. Coefficient functions of ISVMFD for Rain dataset. Part II.

ity, without sparsity of the coefficient function itself. In Fig. 10, we
see how the impact in favor of the positive class increases until mid
March and then decreases until mid September, where it starts to
increase again. As can be expected, the interpretation of the coeffi-
cient function obtained by SVM, shown in Fig. 8, is quite difficult.

6. Conclusions

In this paper we face the problem of obtaining an SVM-based
classifier for functional data that has good classification ability
and provides a classifier easy to interpret. The interpretability issue
might strongly depend on the applications and the preferences of
the user. Hence, we consider a flexible framework where different
properties of the coefficient function are allowed. ISVMFD general-
izes two other proposals available in the literature: the L;-norm
SVM and the Fused SVM. The experiments on real-world datasets
show that ISVMFD produces an interpretable classifier that is com-
petitive with SVM in terms of classification ability and similar in
computational times.
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