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Abstract—Massive multiple-input multiple-output (MIMO)
and orthogonal frequency division multiplexing (OFDM) are
wireless technologies adopted by the Fifth Generation (5G) of
mobile communications. The channel estimation and pre/post-
equalization processes in coherent detection schemes for massive
MIMO-OFDM are a challenging task, where several issues are
faced, such as pilot contamination, channel calibration, matrix
inversions, among others. Moreover, they increase the energy
consumption and latency of the system. A non-coherent technique
relying on DPSK constellation has been proposed for a single-
carrier scheme, assuming flat-fading. In our paper, we extend
this technique to be combined with OFDM, where the channel
is doubly dispersive (time and frequency). We will show that the
differential modulation can be performed either in the time or
frequency domain, where the latter suffers from an additional
phase rotation, which should be estimated and compensated. We
provide the analytical expression of the signal-to-interference-
and-noise ratio (SINR) for both cases, and we show numerical
results in order to verify our analysis.

I. INTRODUCTION

The Fifth Generation (5G) of mobile communications [1]

has just standardized a New Radio (NR), where massive

multiple-input multiple-output (MIMO) [2] and orthogonal

frequency division multiplexing (OFDM) [3] are the chosen

techniques to deploy new services, such as enhanced mobile

broadband (eMBB), massive machine type communications

(mMTC) and ultra-reliable and low latency communications

(URLLC).

When a coherent demodulation scheme is adopted, a sig-

nificant amount of orthogonal pilot sequences need to be

transmitted allowing the estimation of the channel between

each user equipment (UE) and each antenna of the base

station (BS), in every time-frequency resource, reducing the

overall capacity. Moreover, the number of available orthog-

onal sequences is limited, forcing us to reuse them [4], and

creating the well-known pilot contamination issue [5]. Once

the pilot sequences are received, the receiver must estimate the

channel avoiding, as far as possible, any source of interference,

and compute the pre/post-equalizers. Either of the processes

requires several prohibitive matrix inversions when the number

of antennas is high [6], increasing the power consumption and

latency. According to the literature, when massive MIMO is

adopted, time division duplex (TDD) is preferred rather than

frequency division duplex (FDD) [7], due to the fact that the

former can take advantage of the channel reciprocity, where

the channel estimation is done in the uplink (UL), and it is

reused in the downlink (DL). Therefore, the pilot overhead

is reduced. However, there is plenty of FDD spectrum for

wireless communications today.

Given the mentioned issues, an alternative way is the use

of non-coherent schemes. [8] has proposed this idea with the

use of amplitude shift keying (ASK). However, the number

of required antennas is excessively large for a reasonable

performance. Later, [9] proposed the use of differential phase

shift keying (DPSK), where two received contiguous symbols

are properly combined in order to produce a joint-symbol.

The final decision is done on this joint-symbol, which is a

superposition of the transmitted symbol of each UE. This

proposal significantly outperforms [8], showing that it does

not require a huge number of antennas in order to achieve

an acceptable performance. However, this scheme is imple-

mented with single-carrier modulation (SCM), assuming that

the channel is flat-fading and remains invariant over a long-

enough coherence time. The effect of time-varying channels

is also analyzed in [10] for the case of SCM systems, where

it is concluded that the non-coherent scheme is robust to fast

time variability of the channel.

For more realistic cases where the propagation channel is

doubly dispersive, in this paper we propose the extension of

the scheme [9] to the use of OFDM. Additionally, due to

the fact that OFDM implements a two dimensional resource

grid, the differential encoding can be performed in either

time or frequency domain, where we define them as time

domain scheme (TDS) and frequency domain scheme (FDS),

respectively. Comparing both schemes, TDS requires two

OFDM symbols in order to perform the differential decoding,

increasing the memory consumption and latency of the system.

Hence, TDS has some shortcomings for either mMTC or

URLLC. In FDS, the differential encoding can be performed

for each pair of contiguous subcarriers, overcoming the men-

tioned disadvantages of TDS. However, the difference of the

phase between the two contiguous subcarriers is not averaged

out by the large number of antennas at the BS, causing an

additional rotation in the received joint-symbol. Therefore,

FDS needs a phase estimation method to compensate it. We

develop such a scheme and we provide the expression of the

signal-to-interference-and-noise ratio (SINR) for both cases.

We also show some numerical results of the symbol error rate

(SER) of different schemes, using the channel models provided

by [1].

The remainder of the paper is organized as follows. Section

II provides the system model of MIMO-OFDM with the use of



DPSK. Section III describes the receiver of TDS and provides

the analytical expression of the SINR under a time-varying

channel response. Section IV shows the receiver of FDS,

the analytical expression of the SINR under the presence of

multipath is also given, and a phase estimation method is

presented. Section V presents some numerical results to verify

our theoretical analysis and provides a better understanding

of the system performance. Finally, in section VI, some

conclusions are pointed out.

Notation: matrices, vectors and scalar quantities are denoted

by boldface uppercase, boldface lowercase, and normal letters,

respectively. [A]m,n denotes the element in the m-th row

and n-th column of A. [a]n represents the n-th element of

vector a. The superscripts (· )H , (· )∗ denote Hermitian and

complex conjugate, respectively. ∗ denotes the convolution

operation. E {· } represents the expected value. CN (0, σ2)
represents the circularly-symmetric and zero-mean complex

normal distribution with variance σ2.

II. SYSTEM MODEL

A. MIMO-OFDM

We consider a multiuser MIMO-OFDM system, which is

made up of one BS equipped with an array of V antennas

and U UE equipped with one single antenna each (see Fig.

1). The OFDM signal has K subcarriers and the length of the

cyclic prefix (CP) is long enough to absorb the effects of the

multi-path channel. We focus on the UL. At the receiver side,

after removing the CP and performing a fast-Fourier transform

(FFT) to each block at each antenna of the BS, we can process

each subcarrier as one of a set of K independent sub-channels.

We assume that the U UEs transmit M consecutive OFDM

symbols to the BS. The received signal at the BS in the k-th

subcarrier and m-th time instant ym
k (V × 1) can be modeled

as

ym
k = Hm

k Dxm
k +wm

k 1 ≤ k ≤ K, 1 ≤ m ≤M, (1)

where

[D]u,u′ =

{ √
du u = u′

0 u 6= u′
, 1 ≤ u, u′ ≤ U, (2)

xm
k =

[
[x̆m

1 ]k · · · [x̆m
U ]

k

]T
, (3)

wm
k =

[
[w̆m

1 ]k · · · [w̆m
V ]

k

]T
, (4)

Hm
k =




[
h̃m
11

]
k

· · ·
[
h̃m
1U

]
k

...
. . .

...[
h̃m
V 1

]
k

· · ·
[
h̃m
V U

]
k


 , h̃m

vu = FKhm
vu, (5)

[FK ]a,b =
1√
K

exp

(
−j 2π

K
(a− 1)(b− 1)

)
, (6)

du is the average power of the signal of u-th UE, x̆m
u (K × 1)

represents the transmitted symbol vector from the single

antenna of the u-th UE in the m-th OFDM symbol, with

unit average power; w̆m
v (V × 1) denotes the additive white

Gaussian noise (AWGN) vector in the frequency domain with

each element distributed according to [w̆m
v ]k ∼ CN (0, σ2

w);
h̃m
vu (K × 1) and hm

vu (LCH × 1) are the channel response in

the frequency and time domain, respectively. The distribution

of the channel frequency response at each subcarrier follows[
h̃m
vu

]
k
∼ CN (0, 1) due to the fact that the power delay profile

(PDP) of hm
vu is normalized.

Additionally, we assume that the channel suffers from time

variability, where

E

{∣∣∣([hm
vu]l)

∗
[
hm′

vu

]
l

∣∣∣
}
=

∣∣∣∣J0
(
2πfd,u

∆m

∆f

(
1 +

LCP

K

))∣∣∣∣ ,

∆m = m′ −m ∈ N, 1 ≤ l ≤ LCH ,
(7)

where J0 (·) denotes the zero-th order Bessel function of

the first kind, fd,u and ∆f represent the Doppler frequency

experienced by the signal transmitted from the u-th and the

distance between two contiguous subcarriers, respectively,

measured in Hz.

B. Differential Modulation

According to [9], in order to implement the non-coherent

MIMO system, a differential modulation scheme is needed.

Given an OFDM system, the differential encoding can be

performed either in time or frequency domain (TDS or FDS).

In TDS, each symbol [x̆m
u ]k can be obtained as

[x̆m
u ]k =

[
x̆m−1
u

]
k
[smu ]k , 2 ≤ m ≤M,

1 ≤ k ≤ K, 1 ≤ u ≤ U,
(8)

where [smu ]k belongs to a DPSK constellation as we see in the

next subsection, and
[
x̆m=1
u

]
k

is a reference symbol. However,

at the receiver side, TDS requires waiting for the reception of

two complete OFDM symbols in order to obtain smu , due to the

fact that it performs a differential decoding of two contiguous

symbols in the time domain, as we see in the following

subsection. Hence, it increases both the memory consumption

and the latency of the system. When K is high this scheme

is not recommendable for either mMTC or URLLC.

In FDS, applying the same philosophy, each symbol [x̆m
u ]k

can be obtained as

[x̆m
u ]k = [x̆m

u ]k−1
[smu ]k , 2 ≤ k ≤ K,

1 ≤ m ≤M, 1 ≤ u ≤ U,
(9)

where [x̆m
u ]k=1

is a reference symbol. With this scheme, the

disadvantages related to the memory consumption and the

latency are mitigated.

At the receiver, the phase difference of two consecutive

symbols received (either time or frequency) at each antenna

of the BS is non-coherently detected. Then, they are all added

in order to provide the joint-decision variable (joint-symbol),

which is obtained from the superimposed combinations of the

individual symbol of each UE (see Fig. 1).
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Fig. 1. Block diagram of the non-coherent multiuser massive MIMO-OFDM.

C. Constellation

The symbols transmitted by each UE [smu ]k belong to a G-

ary DPSK constellation that has to be designed to guarantee

that the joint symbol allows a unique demodulation of them.

For illustration purposes, we select the constellation type B

given in [9] (see Fig. 2), due to the fact that it outperforms

the type A. Then, the UEs transmit symbols from a standard

constellation, defined as

[smu ]k ∈ Gu =

{
2πg

G
, g = 0, 1, . . . , G− 1

}
. (10)

 

 





 



Fig. 2. Constellation type B of [9], where U = 2, d1 = 1 and d2 = 2.

III. TIME DOMAIN SCHEME

At the receiver, we combine two contiguous symbols in the

time domain for a given k-th subcarrier and each antenna, then

we sum all of them as

zmt,k =
1

V

(
ym−1

k

)H
ym
k =

=
1

V

((
xm−1

k

)H
D

(
Hm−1

k

)H
Hm

k Dxm
k +

(
wm−1

k

)H
wm

k +

+
(
xm−1

k

)H
D

(
Hm−1

k

)H
wm

k +
(
wm−1

k

)H
Hm

k Dxm
k

)
.

(11)

and from this decision variable zmt,k, we will detect the symbol

transmitted by each UE.

We define ρt,u as

ρt,u =
1

V
E

{
V∑

v=1

([
h̃m−1
vu

]
k

)∗ [
h̃m
vu

]
k

}
, (12)

1 ≤ k ≤ K, 1 ≤ m ≤M, 1 ≤ u ≤ U.

Substituting (7) in (12), we can easily obtain

ρt,u =

∣∣∣∣J0
(
2πfd,u
∆f

(
1 +

LCP

K

))∣∣∣∣ . (13)

Moreover, by exploiting the properties of Wishart matrices

[11], we can see that

E





∣∣∣∣∣

V∑

v=1

([
h̃m−1
vu

]
k

)∗ [
h̃m
vu

]
k

∣∣∣∣∣

2


 = ρ2t,uV (V + 1) . (14)

Making use the Law of Large Numbers, we have that

1

V

(
Hm−1

k

)H
Hm

k ∈ C
U×U V→∞−−−−→ Pt, (15)

[Pt]u,u′ =

{
ρt,u u = u′

0 u 6= u′
, 1 ≤ u, u′ ≤ U. (16)

This means that

zmt,k
V→∞−−−−→ rmt,k =

U∑

u=1

ρt,udu [s
m
u ]k , (17)

where rmt,k denotes the joint-symbol, which is obtained as

a weighted sum of the transmitted symbol of each UE,

where the weight coefficients are their average power and

channel correlation between two consecutive time instants.

For the particular case of ρt,u = 1, ∀u ∈ {1, 2, . . . U}, rmt,k
corresponds with the definition of the joint-symbol of [9].

A. Analysis of the SINR

When V is not large enough for (15) and (16) to hold,

we have some interference and noise terms imk that can be

characterized as

imk =

U∑

u=1

du [s
m
u ]k − zmt,k, (18)

The full expression of imk (19) is given in the next page.

By applying (12) and (14), the expression of the SINR is

given by (20). When the channel is quasi-stationary in any



imk =

U∑

u=1

du [s
m
u ]k

(
1− 1

V

V∑

v=1

([
h̃m−1
vu

]
k

)∗ [
h̃m
vu

]
k

)
−

− 1

V

U∑

u=1

U∑

u′
=1

u′ 6=u

V∑

v=1

([
h̃m−1
vu

]
k

)∗ [
h̃m
vu′

]
k

√
dudu′

([
x̆m−1
u

]
k

)∗
[x̆m

u′ ]k − 1

V

V∑

v=1

([
w̆m−1

v

]
k

)∗ U∑

u=1

[
h̃m
vu

]
k

√
du [x̆

m
u ]k −

− 1

V

V∑

v=1

[w̆m
v ]k

U∑

u=1

([
h̃m−1
vu

]
k

)∗ √
du

([
x̆m−1
u

]
k

)∗ − 1

V

V∑

v=1

([
w̆m−1

v

]
k

)∗
[w̆m

v ]k .

(19)

SINRTDS =

U∑
u=1

d2u

U∑
u=1

d2u
(
1− 2ρt,u +

(
1 + 1

V

)
ρ2t,u

)
+ 1

V

(
2

U∑
u=1

U∑
u′=u+1

dudu′ + 2σ2
w

U∑
u=1

du + σ4
w

) (20)

of the V links between the u-th UE and BS (ρt,u = 1 ∀u ∈
{1, 2, . . . U}), (20) has the same expression as the SINR given

in [9], where the large number of antennas at the BS will

reduce the interference and noise terms. On the other hand,

when the channel response of all links suffers from a very

high time variability (ρt,u = 0 ∀u ∈ {1, 2, . . . U}), the first

term of the denominator of (20) is no longer attenuated by the

factor V , making the interference and noise even be higher

than the signal term. These are of course two extreme cases.

In general 0 ≤ ρt,u ≤ 1 and the performance will worsen as

ρt,u → 0.

IV. FREQUENCY DOMAIN SCHEME

Analogously to TDS, but using contiguous subcarriers, the

received symbol in the FDS is given by

zmf,k =
1

V

(
ym
k−1

)H
ym
k =

=
1

V

((
xm
k−1

)H
D

(
Hm

k−1

)H
Hm

k Dxm
k +

(
wm

k−1

)H
wm

k +

+
(
xm
k−1

)H
D

(
Hm

k−1

)H
wm

k +
(
wm

k−1

)H
Hm

k Dxm
k

)
.

(21)

where again zmf,k is the decision variable.

We define the matrix Rm
f,k as

Rm
f,k =

1

V

(
Hm

k−1

)H
Hm

k ∈ C
U×U , (22)

[
Rm

f,k

]
u′,u

=
1

V

V∑

v=1

([
h̃m
vu′

]
k−1

)∗ [
h̃m
vu

]
k
=

=
1

V

V∑

v=1

amvu′,k−1a
m
vu,k exp

(
j
(
ϕm
vu,k − ϕm

vu′,k−1

))
,

(23)

where
[
h̃m
vu

]
k
= amvu,k exp

(
jϕm

vu,k

)
.

Making use the Law of Large Numbers similarly, we have

that

Rm
f,k

V→∞−−−−→ Pf , (24)

[Pf ]u,u′ =

{
ρf,u exp (jθf,u) u = u′

0 u 6= u′
, (25)

ρf,u =
∣∣∣ lim
V→∞

[
Rm

f,k

]
u,u

∣∣∣ , θf,u = ∡

(
lim

V→∞

[
Rm

f,k

]
u,u

)
,

(26)

where ρf,u and θf,u are the amplitude and phase of the

correlation between the frequency-domain channel responses

of two consecutive subcarriers of u-th UE averaged over the V
antennas of the BS, respectively. In contrast to TDS, θf,u 6= 0
even for V → ∞. The reason is as follows.

The coefficients hm
uv and their inverse are modeled as finite

impulse response (FIR) filters, which are stable and causal.

According to [12], all the zeros and poles of them are placed

inside of the unit circle, making what is commonly known

as minimum-phase system. This system is characterized by

the fact that the slope of the phase of the frequency-domain

response is only positive in the presence of deeply faded

subcarriers (ϕm
vu,k − ϕm

vu′,k−1
> 0); otherwise it is negative

(ϕm
vu,k − ϕm

vu′,k−1
< 0).

Taking into account the properties of minimum-phase sys-

tems, the deeply faded subcarriers (positive phase) do not make

a significant contribution in the sum (23). Hence, if there was

only one non-deeply faded link between u-th UE and the

V antennas of the BS, it is a sufficient condition to have a

negative phase (θf,u < 0 ). Hence,

zmf,k
V→∞−−−−→ rmf,k =

U∑

u=1

ρf,u exp (jθf,u) du [s
m
u ]k , (27)

where we can see that FDS requires a mandatory phase

estimation and correction.

Assuming that the phase of zmf,k is properly estimated and

corrected at the receiver, the expression of SINRFDS is the

same as SINRTDS , substituting ρt,u by ρf,u.

A. Phase estimation

Here, we undertake the estimation of the phase of zmf,k
by transmitting some pilot-symbols, instead of the unknown



[smu ]k. Given (27), where we have assumed that V → ∞, all

the UEs must transmit only one pilot-symbol using the dif-

ferential modulation at m-th time instant and k-th subcarrier,

defined as

[x̆m
u ]k = [x̆m

u ]k−1
p, 1 ≤ u ≤ U. (28)

where p denotes the pilot-symbol, and the only condition we

impose is that the pilot-symbols transmitted by all UEs be the

same. Therefore, given our condition in (28), from (27) we

obtain

rpf = p

U∑

u=1

ρf,u exp (jθf,u) du =⇒ ∡rpf = ∡p+∡ψf , (29)

where rpf is the received joint-pilot-symbol, and ψf is the

phase caused by the selective-fading channel response, that

should be corrected from the received data symbols rmf,k.

However, when V is not large enough, (24) - (27) do not

hold. Hence, not only the received signal zmf,k is polluted by the

noise and interference terms, but also ψf has a different value

for each time-frequency resource (ψm
f,k ) due to the fact that we

are assuming a doubly dispersive channel model. Given these

facts, we should estimate ψm
f,k for each subcarrier (separately)

and every time period where the channel remains invariant, so

the ψ̂m
f,k is given by

ψ̂m
f,k′ =

1

Kg

Kgk
′∑

k=1−Kg

+Kgk
′

(
∡
(
zmf,k

)
− ∡p

)
, 1 ≤ k′ ≤

⌈
K

Kg

⌉
,

(30)

where averaging Kg neighbor subcarriers helps to reduce the

mentioned noise and interference terms provided that they are

within the coherence bandwidth of the channel.

V. NUMERICAL RESULTS

In this section, we provide some numerical results for both

TDS and FDS. Additionally, we also show the performance

of FDS combined our proposed phase estimation technique.

In Table I, we can see the default numerical values for

the parameters that we defined in the previous sections. We

choose the well-known LTE Extended Vehicular A (EVA)

and Extended Typical Urban (ETU) channel models [1] for

the PDP, we consider spatially uncorrelated channels and we

assume that all UEs are experiencing the same PDP and

Doppler frequency fd. In order to better illustrate the effect of

the time variability in the channel response, we additionally

set an extreme case of fd = 1600Hz which can be obtained

assuming carrier frequency of fc = 3.5GHz and a speed of

approximately v = 500km/h.

Given that the channel response is doubly dispersive, ψ̂m
f,k

is updated for each frame using (30) for FDS, denoted as

realistic case (RC). Moreover, in order to show the accuracy

of our proposed RC phase estimation method, we compare

it with a benchmark ideal case (IC), where ψ̂m
f,k is computed

directly from the diagonal elements of Rm
f,k without the effects

of noise and interference.

TABLE I
SIMULATION PARAMETERS

K 128 Constellation Type B [10]

∆f 15 KHz fd 70, 300 & 1600 Hz

Chan. Model EVA & ETU Kg 1 & 2

V 100 & 1000 LCH 5 & 9

U 2 LCP 9

1 Frame = 140 OFDM symbols

0 2 4 6 8 10 12 14 16 18 20

SNR (dB)

10-2
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S
E

R

SCM f
d
 = 0Hz

TDS f
d
 = 0Hz

TDS f
d
 = 70Hz

TDS f
d
 = 300Hz

TDS f
d
 = 1600Hz

Fig. 3. SER of SCM and TDS for different values of fd and V = 100.

The signal-to-noise ratio (SNR) at any receive antenna of

the BS is defined as

SNR =
1

σ2
w

U∑

u=1

du. (31)

Fig. 3 provides the SER of SCM and TDS for different

Doppler frequencies and V = 100. In the particular case of

SCM [9], the performance is not acceptable when a multi-

tap channel response is used; as we expected the single-

carrier differential modulation is only effective in flat-fading

channels. For the case of OFDM, when the channel remains

constant (same assumption as in [9]), the performance is the

best. However, the quality of the system is degraded as the

Doppler frequency is increased, where the worst performance

corresponds to fd = 1600Hz. In any case, for reasonably mod-

erate values of fd, the performance degradation is negligible

as anticipated in [10].

Fig. 4 shows the SER of FDS for different values of PDP

and fd, and V = 100. Fig. 4a provides the performance for

ETU with fd = 1600Hz, and Fig. 4b illustrates the results for

EVA with fd = 70Hz. Comparing them, the additional phase

rotation effect in the joint-symbol is greater in those channels

with a stronger frequency selectivity, making the processes of

phase estimation and correction crucial to obtain a reasonable

performance. Additionally, we can see that in both cases, when

the phase is estimated and mitigated, the SER is reduced.

When Kg = 2, that is, averaging only two subcarriers, the

RC has almost the same performance as IC, showing that our

proposed method is accurate enough to estimate the phase.

Fig. 5 shows the SER comparison for FDS between using

only 1 and K pilot-symbols to obtain ψ̂m
f,k for V = 100
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and 1000. When V = 100, using K pilot-symbols provides a

slightly better performance as compared to using only 1 pilot-

symbol. However, when V = 1000, both schemes have the

same performance verifying (27). This shows that we can use

only one pilot-symbol at one subcarrier for the whole duration

of the channel coherence time to estimate the phase when

using the FDS. The overhead of this pilot symbol is negligible

compared to the amount of pilots that are required to estimate

the channel for coherent detection.

VI. CONCLUSIONS

In this paper we have proposed a non-coherent scheme

for multiuser massive MIMO-OFDM using differential mod-

ulation schemes. We generalized the channel to a doubly

dispersive one, and we have provided the analytical expression

of SINR for both TDS and FDS. Additionally, we have shown

that FDS requires an additional phase estimation and provided

a low-overhead method.

The proposed non-coherent massive MIMO-OFDM is use-

ful for the practical implementation of systems which are

capable of increasing the capacity and reducing the complexity

and latency, as compared to coherent demodulation schemes,

since we are avoiding pilot overhead and channel estimation

or equalization procedures where prohibitive matrix inversions

are involved. The only needed operations for each OFDM

symbol are the FFT blocks O (V (K/2) log(K)) and the

differential decoding O (V K).
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