:') Available online at www.sciencedirect.com
ADVANCES IN

SPACE

RESEARCH
(a COSPAR publication)

Check for

ScienceDirect

ELSEVIER Advances in Space Research 68 (2021) 2677-2694

www.elsevier.com/locate/asr

Initial orbit determination methods for track-to-track association

Alejandro Pastor “”*, Manuel Sanjurjo-Rivo °, Diego Escobar *

YGMV, 11 Isaac Newton, 28670 Tres Cantos, Madrid, Spain
® Universidad Carlos III de Madrid, 30 Avenida Universidad, 28911 Leganés, Madrid, Spain

Received 8 December 2020; received in revised form 23 April 2021; accepted 20 June 2021
Available online 13 July 2021

Abstract

The detection and identification of Resident Space Objects (RSOs) from survey tracks requires robust and efficient orbit determina-
tion methods for the association of observations of the same RSO. Both Initial Orbit Determination (IOD) and Orbit Determination
(OD) methods perform the orbital estimation in which the association of tracks relies. The choice of proper IOD and OD methods is
essential for the whole data association, since they are in charge of providing the estimation required to evaluate the figure of merit
of the association. In this paper, we review the state of the art and propose a novel method that does not require initialisation, accounts
for measurement noise and provides a full estimation (i.e., state vector and covariance) from an arbitrary number of optical observations.
To do so, a boundary value problem is formulated to find a pair of ranges leading to a minimum residuals of the observations. The pro-
posed methods are compared against classical alternatives simulated in scenarios representative of the current space debris environment.
© 2021 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).
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1. Introduction

The enhancement of the sensing capabilities to observe
RSOs is posing the challenge of a timely and suitable data
processing, in the context of Space Situational Awareness
(SSA) and Space Traffic Management (STM) (Johns
et al., 1990). The increasing congestion of the orbital debris
environment makes cataloguing activities more demanding
year after year. For the time being, most of the catalogues
contain only RSOs as small as 10 cm, reaching thousands
of entries (e.g. around 20,000 in Space-Track (18th Space
Control Squadron, 2020) and 5,000 in JSC Vimpel (JSC
Vimpel Interstate Corporation and the Keldysh Institute
of Applied Mathematics, 2020)), but they are becoming
more massive thanks to initiatives such as the Space Fence
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System (Haimerl and Fonder, 2015). During surveillance,
large areas of the sky are scanned by Space Surveillance
and Tracking (SST) sensors to gather large amounts of
data for both build-up and maintenance of these cata-
logues. The efficient and automated use of this data
involves data association and estimation techniques. Other-
wise, automatic processing and high sensing data usage
rates cannot be completely attained (Dominguez-Gonzélez
et al., 2017).

Before giving a precise definition of the problem, the
authors find it necessary to clarify some terms that are
extensively used along this paper and whose meaning
may vary from one author to another:

Observation: set of measurements taken from a single
sensor at a common epoch, ¢, and originated from the
same RSO.

Track: set of n observations taken by a single sensor
usually over a short time period, originated from the
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same RSO and not enough to reliably estimate an orbit.
Tracks from optical and radar surveillance sensors are
usually referred to as uncorrelated optical observations
(UCOs) and uncorrelated tracks (UCTs), respectively.

From an operational point of view, a single track itself is
not enough to estimate an orbit with which to provide SSA
and STM services because the associated uncertainty is too
large (Milani et al., 2004). In fact, these are also referred to
as tracklets, Short Arcs (TSAs) or Very Short Arcs (VSAs)
(Tommei et al., 2007). The complete and efficient use of
these sensing data is only possible by solving the track-
to-track association (often called track-to-track correla-
tion) problem, where estimation and correlation are highly
coupled: to detect a new RSO it is required to estimate its
orbit, but only sensing information belonging to the same
RSO should be used in this estimation. This problem is
known as Observation-To-Observation Association
(OTOA) within the tracking community (e.g. Bar-
Shalom, 1981; Blackman, 2004; Uhlmann, 2008), although
here it is referred to as track-to-track association. The
detection of new RSOs necessarily entails track-to-track
association, since a single track is not enough to reliably
initialise a new orbit in the catalogue (Hill et al., 2012;
Fontdecaba i Baig et al., 2011).

Usually, prior association of the observations within a
track is assumed (Hussein et al., 2015), since most sensors
perform correctly this preliminary association given the
short time between observations (Herzog et al., 2013;
Stauch et al., 2018). In other words, we assume that the
set of observations contained on a track belong to the same
RSO. A preliminary step in the processing of associations
of tracks is the observation compression. Observation com-
pression consists in transforming a set of observations col-
lected by a sensor (i.e., track) into a single observation,
known as attributable (Milani et al., 2001), at the middle
epoch of the observations, fy:

A= {(t0); 2(10)}

where hat denotes an estimated value. The benefits of
observation compression are three: 1) mitigation of mea-
surement noise effect, 2) reduction of the number of mea-
surements and 3) estimation of measurement rates. It is a
basic pre-processing technique used in data association
and correlation problems (Stauch et al., 2018). This com-
pression can be achieved by a least-squares low degree fit
to the observations of the track and the rate of change of
a measurement is obtained by simply deriving the interpo-
lation polynomial. If the track is long enough, it might be
even possible to extract more than one meaningful fitted
observations from a single track. Most IOD methods use
a limited number of observations, only two or three, while
both radar and optical tracks usually contain more obser-
vations. Therefore, observation selection and compression
techniques are required to maximise orbit observability
during IOD.
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Track-to-track association relies on IOD methods to
obtain the first estimation of an orbit. During the first steps
of the association process only few observations are avail-
able, and therefore an accurate orbit cannot be estimated.
However, a rough estimate of the semi-major axis, eccen-
tricity or inclination allows defining filters to reduce the
complexity of the problem. For instance, if the inclination
of the orbit estimated from two associations of tracks dif-
fered more than 30 degrees, then the likelihood of the
hypothesis that the tracks from the two associations belong
to the same object would be so low that we may want to
avoid evaluating it. In fact, complexity reduction tech-
niques allow to divert from brute-force methods. Track
association is a NP-hard (Non-deterministic Polynomial-
time hard) combinational optimisation problem, i.e. the
computational cost increases exponentially with the num-
ber of objects. Since operational real-time track-to-track
association scenarios involve a large number of tracks
and objects, IOD methods for this purpose are required
to be both robust and computationally efficient. Note that
a failed IOD may prevent an object to be detected in data-
starved environments. Moreover, IOD is followed by OD,
which refines the initial solution by considering all avail-
able observations.

Multi Target Tracking (MTT) methods, traditionally
applied to sensing, guidance, navigation and air traffic con-
trol, among others (Pulford, 2005), have also been used to
tackle the track association problem. Joint Probabilistic
Data Association (JPDA) (Stauch et al., 2018), Multiple
Hypothesis Tracking (MHT) (Singh et al., 2013) and Ran-
dom Finite Sets (RFS) (Jones and Vo, 2015) are very
promising frameworks for the build-up and maintenance
of catalogues of RSOs, although they are still under
research. IOD and OD methods are key algorithms sup-
porting and driving the estimation processes of these
methodologies and deserve special attention, since they
were not originally conceived for data association purposes.

Some proposed approaches to solve the track associa-
tion problem use classical IOD methods (Siminski, 2016;
Vananti et al., 2016), while others incorporate the so-
called Statistical Initial Orbit Determination (SIOD) meth-
ods, aimed at improving the knowledge of the probability
density function describing the estimation processes
(Hussein et al., 2015; Stauch et al., 2018). The use of SIOD
methods in operational environments is still under research
and not yet completely mature. However, they can still
benefit from this work, since the concepts discussed here-
after are applicable.

IOD consists in obtaining the first guess of the orbit
without a priori information. A broad set of IOD methods
are available in the literature for different number and
types of observations (mainly optical and radar). These
methods are usually limited in the sense that they require
a certain number of observations containing fixed types
of measurements (e.g., right ascension and declination at
three observation epochs) to provide limited orbit data
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(e.g., state vector at the first observation epoch). The selec-
tion of the most suitable IOD method is not an easy task
because of the large number of parameters and considera-
tions involved and the absence of a universal IOD method
to apply in any situation. Besides, a suitable balance
between computational effort and association performance
is sought.

Classical IOD methods have not been conceived for
track-to-track association, which requires certain sequen-
tial and computational cost effectiveness, given the large
amount of hypotheses to be evaluated. There is a relevant
trade-off in the share of the computational cost between
10D and OD, taking into account that the accuracy of
the IOD solution has a direct impact on the number of iter-
ations required by the OD to converge, assuming a batch
least-squares estimation process. This is a relevant trade-
off in track-to-track association given the intensive use of
these methods for the evaluation of large sets of hypothe-
ses. Thus, the goal of the IOD during track-to-track asso-
ciation should be to provide an accurate enough solution
for the subsequent OD in the shortest possible time, rather
than the best solution achievable.

The usual approach is a two-step IOD + OD methodol-
ogy to obtain the estimation, required to evaluate any track
association metric. This strategy might be enough for the
association of radar tracks since they contain more infor-
mation (range and/or Doppler measurements) than optical
ones, although the error associated to radar angular mea-
surements is usually two orders of magnitude greater than
the optical counterpart (Schildknecht, 2007; Rodriguez
Fernandez et al., 2018). This makes the association of opti-
cal tracks more challenging than that of radar tracks and it
is precisely in this case when the traditional IOD + OD
estimation chain might not be the best option and thus
alternative strategies are required.

In this paper, we propose a novel joint methodology
aimed at evaluating associations of optical tracks. It is able
to provide an estimate without initialisation for an arbi-
trary number of observations. The main difference with
respect to classical methods, such as Gooding’s method
(Gooding, 1993) and double r-iteration method Escobal
(1965), is that the IOD problem is formulated as a batch
least-squares orbit determination. This allows to include
three or more observations, to take into account measure-
ment noise and to obtain a full estimation of the orbit (i.ec.,
state and covariance), which are important features to
address the track association problem. Besides, the pro-
posed methodology enables to move from a two-step
10D + OD methodology to a single one. We compare its
performance against classical alternatives on an
operational-like simulated scenario. Apart from presenting
the new methodology, we discuss additional aspects of
track-to-track association, sometimes skipped in the litera-
ture, that play an important role in an operational sce-
nario. The goal of this paper is to present IOD methods
that can be used during the massive and operational track
association problems. Accordingly, the focus is on the
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estimation problem, rather than the correlation one. The
proposed methods have been already used for track-to-
track association with radar (Pastor et al., 2018) and opti-
cal (Pastor et al., 2019) observations.

In Section 2, we review the state of the art IOD + OD
estimation processes, emphasising on the radar survey
problem, for which existing methods are generally enough.
In Section 3, we introduce novel methods for the particular
optical survey problem. In Section 4, we provide and dis-
cuss results to evaluate the performance of the proposed
methods and compare them against classical alternatives.
Finally, in Section 5, we summarise and discuss the conclu-
sions of this paper.

2. State of the art methods

In this section, the IOD and OD state of the art is pre-
sented, emphasising on the most relevant aspects for the
track association problem. Then the role of these methods
in the traditional two-step IOD + OD estimation chain is
discussed, highlighting the need of a different approach in
the optical survey association case.

Before continuing with the state of the art IOD meth-
ods, a brief background on orbit geometry, depicted in
Fig. 1, is presented. Firstly, the position vector of an object,
r, 1s determined by its topocentric right ascension, o,
topocentric declination, 9, and range, p, since:

r=R+pL (1)
where R is the position vector of the sensor station (or
satellite in the case of space-based sensors) and L is the line
of sight vector (also known as pointing vector), which is a
function of the right ascension and declination:

Fig. 1. Sketch of a typical observation geometry.
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COS 0L COS 0

L(a, ) = ¢ sinacosd

(2)
sin o
Solving the second order equation for the range

obtained by the dot product of Eq. (1) with itself, the so-
called range equation is obtained:

—c+ /2 —4(R*+1?)

2

being ¢ = 2R - L.
Secondly, the velocity vector of an object, v, is obtained
by differentiating Eq. (1) with respect to time:

p= 3)

v=R+pL+pL 4)

where R is the sensor station velocity vector, p is the range-
rate and L is the rate of change of the line of sight vector,
given by:
—ésinacosd — & cososin d
L(oc, 0, a, 5): 4 cosocosd — dsinosin d
dcosd

(5)

2.1. Initial Orbit Determination methods

Traditionally, the IOD problem has been tackled as a
deterministic problem and solved using algebraic
approaches. Laplace in 1780 (Laplace, 1780) and Gauss
in 1801 (Gauss, 1809) conceived the first methods to esti-
mate the position vector of an object given three pairs of
angular measurements (Escobal, 1965). Since then, many
more methods have been developed using different mea-
surement types: angles only (Gooding, 1993), position vec-
tors (Jordan, 1964), angles and range-rate (Yanez et al.,
2017), angles only without time information (Zeinalov,
1973)...); and a wide variety of approaches: energy vari-
ance (Morton and Taff, 1986), admissible regions (Milani
et al., 2004), keplerian integrals (Gronchi et al., 2016),
among others. Moreover, stochastic approaches have been
proposed (DeMars and Jah, 2013; Armellin and Lizia,
2016), enabling them to provide uncertainty-related infor-
mation (Weisman and Jah, 2014; Armellin et al., 2016).

One of the IOD methods for optical observations pre-
ferred in operational environments is Gooding’s method
(Gooding, 1993). It was conceived as an alternative to
the traditional methods of Laplace and Gauss, free of their
inherent limitations, but requiring the same number of
angular observations or attributables: three. The idea
beneath this method is to use a universal solution of the
Lambert’s problem developed by Gooding (Gooding,
1990) to perform a higher-order Newton correction of
the two unknown ranges (double r-iteration method in
Escobal (1965)). Although, it is capable of performing
10D on three observations from a single track, this is not
generally the best case of application due to the limited
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observability given the typically low track time span if
compared to the orbital period (Fadrique et al., 2011).
Therefore, two tracks or preferably three are usually
required, and thus a method to select a solution is generally
needed, since it may provide more than one solution. Most
recent methods include the consideration of uncertainty in
the measurements, as opposed to classical methods. In gen-
eral, the IOD problem can be tackled as an initial or
boundary value problem. Regarding the former, an initial
state consisting in available measurements (angles) is
extended with certain hypotheses (range and range-rate)
and propagated to a final epoch, at which predicted and
actual measurements are compared. On the other hand,
the latter ones extend two states with certain hypotheses
(ranges) to build a Lambert’s problem. The hypotheses
hyperplane can be sampled by means of admissible regions
(DeMars et al., 2012; Fujimoto et al., 2013; Gronchi et al.,
2016) and the solution is found after solving a minimisation
problem (Siminski et al., 2014).

Regarding IOD methods for radar observations, Gibbs
method has been a typical choice. It is a method that allows
to obtain the orbit by using a pair of angles and the range
at three epochs, i.e. three position vectors or three radar
attributables. The complete algorithm and details can be
found in Vallado (1997). The method is geometric, based
on vector analysis, and therefore vector spacing is of major
importance: the position vectors have to be spaced enough
so as to minimise numerical instabilities. Herrick-Gibbs
method is a variation of Gibbs method focused on provid-
ing reliable results when vector spacing is very small, i.e.
the observation are obtained in a short time (compared
to the orbital period). This is the typical set of observations
contained on a single track provided by a sensor. Finally,
Goddard Trajectory Determination System (GTDS) Range
and Angles method iteratively estimates the position and
velocity by fitting the f and g functions of the two-body
motion with more than two radar observations (i.e. range
and angles) (Long et al., 1989). If applied to a single track,
this method tends to provide better estimations than solv-
ing the Lambert’s problem (Jordan, 1964), mainly because
it uses all the available observations and not just two
(Vananti et al., 2016). Since all the observations from the
track are considered, this method is analogous to a two-
body motion least-squares OD.

Moreover, some of the aforementioned methods provide
several solutions to the IOD problem, being the selection of
the best, or at least pruning of spurious ones, required for a
fully automated track-to-track association data processing
scheme. Although many solutions may be found, only one
may correspond to the true orbit and thus, the rest should
be pruned as they represent spurious solutions. A priori
information, i.e. knowledge of certain orbit parameter,
can be used to select the best candidate solution, e.g. the
solution with closest semi-major axis to Geostationary
Earth Orbit (GEO) can be selected. Heuristic approaches,
using catalogued space debris population statistics, assign-
ing to each solution certain probability (Olmedo et al.,
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2008), is an alternative when lacking a priori information.
Finally, selecting the solution with lowest residuals with
respect to all available observations (i.e. before observation
compression) is a very suitable criteria and does not require
a priori nor external information. Besides, it allows to use
raw observation data to perform the selection, rather than
a subset of attributables (used during IOD).

Stating that an IOD method requires n observations
does not necessarily refers to n observations from a single
track, but n observations obtained by compressing N sepa-
rated tracks (each of which may have different number of
observations), i.e. N attributables. This distinction is rele-
vant in terms of observability.

2.2. Orbit Determination methods

OD performs a refinement of the IOD solution by con-
sidering larger sets of data. The benefits of performing OD
estimation after IOD are twofold: 1) use the entire dataset
of observations in a statistical way and 2) enable the use of
more complex dynamical models. On the basis of the first
aspect, the statistical approach of OD, as opposed to the
usually deterministic IOD, provides uncertainty character-
isation (covariance under a Gaussian process assumption,
Poore et al. (2016)) and meaningful residuals information,
both essential ingredients to evaluate figures of merit in the
track-to-track association problem (Hill et al., 2008;
Stauch et al., 2018; Hussein et al., 2015). Regarding the sec-
ond aspect, unlike most IOD methods, the dynamical
model driving the estimation is not limited to the two-
body motion. This is very relevant in particular cases, such
as High Area-to-Mass Ratio (HAMR) (Schildknecht,
2005) or very low Low Earth Orbit (LEO) (Bennett et al.,
2012) RSOs.

Both batch (Pirovano et al., 2020, 2017,) and sequential
(Sha et al., 2017; Stauch et al., 2018; Aristoff et al., 2013;
Jones and Vo, 2015) estimators have been used in track-
to-track association. Batch estimation provides an easier
interpretation of the results: performing the estimation in
batches allows to directly obtain the contribution of each
observation to the solution. As a matter of fact, when per-
forming OD on N tracks, the contribution of the i” track to
the information matrix is clear, as well as the covariance
and residuals contributions. On the contrary, sequential
estimation itself, requires additional smoothing techniques
to achieve similar results as batch estimation (Stauch et al.,
2018). Besides, sequential estimations using large sets of
observation(s) may result in too optimistic (close to zero)
covariance matrices, leading to insensitivity to additional
observations if process noise is not properly accounted
for (Tapley et al., 2004).

A common drawback of both estimators is the underly-
ing linearisation of the problem around a reference state
that is usually initialised with the IOD solution. If the latter
is far from the true state then the estimation procedure may
not converge, or even worse, converge to a local minimum,
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due to the intrinsic non-linearity of the problem. In the case
of sequential estimators, this can be minimised by updating
the reference trajectory after adding each observation, the
main concept behind Extended Kalman Filter (EKF)
(Bar-Shalom et al., 2001; Tapley et al., 2004). Regarding
batch estimators, the Levenberg-Marquardt algorithm
(Marquardt, 1963) improves the radius of convergence
with respect to the classical Gauss—Newton solver
(Warner and Lemm, 2016). Although the use of the Leven-
berg-Marquardt algorithm increases the computational
cost, it is a very suitable feature for track-to-track associa-
tion, where limited observability and ill-conditioned prob-
lems are commonplace. For instance, re-entry orbit
estimation, where an orbit must be determined from a
small set of available measurements without any additional
information (catalogued orbit may lack sufficient accuracy)
under highly non-linear dynamics (Alarcon et al., 2005).
Finally, the dynamical model used for orbit determina-
tion must be selected according to the 1) computational cost
(given the large number of hypotheses to go through the
estimation chain), 2) accuracy required (e.g., the score
derived from the estimation should allow to distinguish
between RSOs) and 3) available information (e.g., drag
coefficient cannot be reliably estimated from a single track).
Two-body motion dynamics provide the lowest computa-
tional cost at the expense of a decrease in accuracy. On
the other hand, high-fidelity numerical propagators, able
to consider non-spherical Earth gravity, third bodies, atmo-
spheric forces and solar radiation pressure, among others,
allow to attain a unrivalled accuracy, although the compu-
tational cost associated is rather high. Finally, semi-
analytical and analytical dynamical models based on mean
elements: Draper Semi-analytical Satellite Theory (DSST)
(Cefola, 2012), Eckstein-Hechler (Eckstein and Hechler,
1970), Simplified General Perturbations (SGP) (Vallado
et al., 2006) or Brouwer-Lyddane (Galbreath, 1970), among
others; are very suitable compromise solutions thanks to
their balance between accuracy and computation effort.

2.3. IOD + OD estimation chain

Track-to-track association is usually performed in an
incremental way in the sense that associations of N tracks
are generated from associations of N — 1 tracks, e.g. two
single tracks are associated to give rise to a pair, two pairs
with a common track are associated to give rise to a triplet,
two triplets with common tracks are associated to give rise
to a quadruplet and so on. In such a way, an association of
N tracks has at least two parent associations of N — 1
tracks. Once the associations (hypotheses in the MHT
framework) are generated, they are usually evaluated by
means of an IOD + OD estimation chain, depicted in
Fig. 2. Here we see the IOD and OD processes proposed
for the scoring of a hypothesis. MHT algorithms, such as
gating (pruning of clearly wrong hypotheses) or promotion
(final identification of a new detection) are based on the
outcome of this scoring procedure (evaluation of certain
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Fig. 2. Sketch of the state of the art IOD + OD association estimation
chain.

figure of merit or likelihood), and therefore on the outcome
of the estimation chain. There are two limiting values of NV:

e Lack of information (N < N,,;): there is not enough
data to reliably obtain an IOD solution. The hypothesis
cannot be processed until more tracks are associated.

e Enough a priori information (N > N,,,): the previous
estimations coming from the parent associations of
N — 1 tracks are close enough to be used as initial solu-
tion during OD and thus IOD is not required.

2.3.1. Radar survey problem

The information contained in a single radar track,
although maybe not enough to reliably estimate an orbit,
usually allows to perform OD using simple IOD methods
for the generation of the initial solution. In this situation,
N,i» = 1, and therefore no brute-force is required for the
generation of associations of two tracks, since a first (albeit
rough) estimation of the orbit is available.

Generally, tracks from radars contain more observa-
tions than optical sensors due to their larger field of view.
Usually, many observations are available in a relatively
small time span, so it makes sense to perform the observa-
tion compression. Since the latter provides also the rates of
the measurements, it is then possible to compute a state
vector and finally to average all the state vectors (using
equinoctial elements (Broucke and Cefola, 1972) for
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instance) to obtain the solution. This IOD method, which
we refer to as State Vector Fitting, is summarised in Algo-
rithm 1. A further improvement is to use the position vec-
tors obtained from the observation compression but to
estimate a new velocity vector by solving a Lambert’s prob-
lem with 1zzo’s solver (1zzo, 2014). Moreover, the solution
provided by the observation compression can be used to fix
the number of revolutions and the motion type (prograde
or retrograde) thus solving a restricted Lambert’s problem
(with a lower number of solutions).

Algorithm 1. State Vector Fitting method

Require: {oc,é,p}-f fori=1,...,nm;jand j=1,...,N
with N > 2 tracks

l:forj=1,...,N do

2:  Fit n; observations:

f a2 i)
{86.0:30.,}

> Loop on tracks

{av 57 p}{:l, n

e

3:  Compute #; (Eq. (1))
4: if Lambert mode then
5: fork=1,...,j—1do > Loop on

previous tracks

6: Compute 7., between r; and ry
7 Compute motion type: n € {+1,—1}
8: Solve restricted Lambert’s problem:

{5 = £ (5,8, 97,55, 5, A )

9: end for

10:  else

11: Compute # (Eq. (4))

12:  end if

13:  Transform into equinoctial elements: {#, ¥}/ — &/

14: end for '
15: Average solutions: {&}/=" " — (&)
16: Transform equinoctial elements to state vector:

() — (&)

N

2.3.2. Optical survey problem

On the contrary, the information contained on a single
optical track, does not allow to perform IOD, i.e.
N,.n > 1, meaning that the generation of associations of
N < N, optical tracks entails a significant level of brute-
force.

Accordingly, our proposal in this case is to move from a
two-step IOD + OD methodology to a single one, pre-
sented in Section 3, that 1) does not require any initial
guess nor a priori information, 2) provides metrics for
the track-to-track association problem, and 3) can be used
with an arbitrary number of tracks and observations.
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3. Novel methods

We propose a novel method to replace the two-step
IOD + OD estimation chain that arises during the evalua-
tion of hypotheses during optical track association: double
r-iteration method. For completeness, before introducing
the method, we present the Circular method, not proposed
here to be used standalone but as a part of double r-
iteration Lambert.

3.1. Circular method

As shown in Fig. 3, where both the histogram and Cum-
mulative Distribution Function (CDF) are presented, most
of the objects present in the Satellite Catalogue (SATCAT)
from Space-Track (Kelso, 2020) are following nearly circu-
lar orbits. In fact, 92% of them are describing orbits with
e < 0.1 and 72.4% with e < 0.01. That is why many 10D
methods assume circular orbits, thus simplifying the prob-
lem geometry and dynamics.

The so-called circular method solves the problem of
finding the radius, r leading to a time of flight, Az, equal
to the observation time span, given two optical observa-
tions. Therefore, the problem of estimating the orbital
radius is reduced to solving the following non-linear
equation:

f(r) = At — PP AY(r) (6)
where Av is the difference between true anomalies:
re-nrn
Av = arccos <7> (7)
([ ]2l

Once r is found, the range is determined by Eq. (3) and
thus the position vector by Eq. (1). Finally, the correspond-
ing velocity can be obtained at any of the two epochs since
its direction is normal to the position, lays in the orbital
plane and its magnitude is the well-known velocity of a cir-
cular orbit, i.e.:

1 (l’] /\Vz) A r;

SVl AR) AR

Nevertheless, it is important to point out three additional
considerations:

(8)

Vi

,,

Number of objects

1073 1072 107! 10°

Eccentricity

1071

Fig. 3. Eccentricity distribution of RSOs from SATCAT as of 30
November 2020.
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e Detection of angles higher than . since the arccos func-
tion is not able to detect angles higher than = then the
correct Av value is 2n — Av' being AV the value given
by Eq. (7) if the z-component of the dot product r; - r,
is negative.

Retrograde orbit: the correction to detect angles higher
than 7 discussed before has to be applied when the dot
product r; - r, is positive, since the sense of the motion
is opposite. Besides, if the z-component of the cross pro-
duct r; A r, is negative/positive for the direct/retrograde
orbit case then the sign of velocity vector in Eq. (8) has
to be changed.

Multi-revolution: if one or more revolutions have been
completed between the first and second observations
then Av value has to be increased 27 times the number
of completed revolutions, which is
Ny = floor{ p'?At/ (2mr*/%) }, in Eq. (7).

Eq. (6) may have more than one solution depending on
the number of completed revolutions, a priori unknown. In
fact, for GEO objects it is very common to obtain many
solutions ranging from LEO (many completed revolutions)
to GEO (few revolutions) when the object has completed at
least one revolution between the two observation epochs.
However, at most one of them corresponds to the orbit,
being the remaining spurious solutions.

The method can be generalised to n observations,
{1,2,3,..., n} (with n > 2) by estimating the orbital radii
for all the (Z) measurements pairs combinations. Then,
spurious solutions are selected by analysing the estimated
radius differences.

The method is summarized in Algorithm 2. Note that
the n observations required may come from a single track,
in which case we recommend taking n =2 to cover the
whole arc (maximum spacing), or from » tracks (obtained
via observation compression). Besides, solution selection
may be necessary if more than one solution is found.

Algorithm 2. Circular method

Require: {a,0}, fori=1,...,nwithn > 2

1: for {i, j} € (5) do > Loop on pairs of
observations

2:  Compute Av;; (Eq. (7))

3:  Solve Eq. (6) for r;; (multiple solutions)

4. fork=1,...,n;;do > Loop on solutions

5: Compute pf; (Eq. (3)) with 7§,

6: Compute r}; (Eq. (1)) with rJ;

7: Compute v/, (Eq. (8)) with 7,

8: end for

9: end for

10: Find combinations of n solutions from pairs of
fijy e ()

11: Average each combination of solutions
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3.2. Double r-iteration Lambert method

Double r-iteration Lambert method, proposed as an
alternative to Gooding method, is an iterative process in
which two missing ranges at two separate dates are esti-
mated in order to match additional measurements. It
requires n > 3 observations and consists in finding two
ranges with which the solution of the Lambert’s problem
leads to minimum residuals of the remaining n — 2 observa-
tions. Measurements noise, in addition to the intrinsic high
non-linearity of the problem, do not allow to cancel out the
residuals, rendering residuals minimisation the only viable
option.

Therefore, the following minimisation problem arises:

n—1 . ) N
7=3|(2) + (=)
-2
b1, ¥ = L(o, 01, 00,02, At; py, pa,)
Py b = F(i, v, — 1)
5‘1751 :H(’A’iyi)i)

min

Pl

s.t. )
Vi=2,....n—1

Vi=2...,n—1

where the hat denotes estimated values, Ax and Ad are the
right ascension and declination residuals, o, and ¢ are the
right ascension and declination weights (a priori sigma), £
represents the Lambert problem (solved with Izzo’s
method, [zzo (2014)), F the two-body motion propagator
and H the measurement model. The objective function,
J, is proportional to the Weighted Root Mean Square
(WRMS).

To avoid discontinuities in the angular residuals, Az, i.e.:
difference between actual and predicted measurements, it is
advisable to use the following expression:
sin (z; — é,v)]

Az; = atan2 Los =2 (10)

A global derivative-free optimisation method could be
used to explore the solution on a {7, 7»} domain, using
the admissible regions theory (Milani et al., 2004). The
non-linearity of 7, illustrated in Fig. 4, would force this
domain to be carefully sampled. Instead, an iterative gradi-
ent descent on the linearised problem similar to a batch
least-squares orbit determination (Montenbruck and Gill,
2000) using the circular solution as initial guess is

5—d

proposed:
] [, HW]( ) =H, H,-JT<
(11)

where H,, is the Jacobian, i.e. the partials of the measure-
ments, « and J, with respect to r; (can be computed analyt-
ically, Springer (2009)), W, the weighting matrix of the
measurement z and Ar; the correction to »; leading to the
minimisation of the cost function:

0
W

w, a— o

0

A}”l

H,.H "
| -

.= {8(1/8}”,} (12)
06/ 0r;
W. =diag(s.?,...,0.7) (13)

)
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Fig. 4. Distribution of objective function of Double r-iteration Lambert
method in a simulated IOD problem of a GTO RSO
(a = 24,460km,e = 0.71) and 3 observations (At ~ 7h, Aty ~ 5h). The
dotted lines represent the true values of the orbital radii.

The main difference of the proposed method, sum-
marised in Algorithm 3, with respect to a regular OD pro-
cess with two-body motion dynamics, in which position
and velocity are estimated, is the number of estimated
parameters. The complete (position and velocity) problem
is frequently ill-conditioned (nearly singular) if only a few
optical observations from a single sensor are available.
On the contrary, in the proposed method a minimal set
of parameters (two ranges) is estimated, thus improving
the observability of the solution (Tapley et al., 2004). The
same consideration as Gooding method related to the
applicability to observations from a single and multiple
tracks holds, except that the proposed method is able to
use n > 3 observations in both cases. Moreover, it does
not require any initial guess nor any a priori solution,
and in principle, is suitable for any type of orbit, thanks
to the gradient descent approach that makes initial circular
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solutions converge even to highly eccentric orbits. Note
that although the angular rates are not explicitly used,
the dynamics of the angular measurements is included by
considering every available observation. If compared to
double r-iteration method (Escobal, 1965), the proposed
method does not assume that the angular measurement
are fixed (measurement noise is considered), is not limited
to three observations and the outcome is not a single-
point estimate for the ranges but a full estimation (mean
and covariance). Besides, Escobal’s method requires a cum-
bersome initialisation and iterative process (Vallado, 1997),
while the proposed method can be formulated as an OD
process.

Algorithm 3. Double r-iteration Lambert method

Require: {o,0}; fori=1,...,nwithn > 3

1: Solve the circular problem between observation 1 and
n: 7y, iy (Algorithm 2).

2:for k=1, ..., kygy do > Iterative process

3:  Compute p; and p, (Eq. (3)).

4:  Solve Lambert’s problem:

i’b i’n = E(O(], 517 Oy 5n7 At7 ﬁl:f’n:)

50 fori=2,...,n—1do

additional obs.

> Loop on

6: Propagate solution: {#, v}, = F (1, %1,4 — 1)
7: Compute measurements: a,0 o = H (¥, ¥;)

8: Compute angular residuals {Ax, As}' (Eq. (10))
9: Compute Jacobian (Eq. (12))

10:  end for

11:  Solve Eq. (11)

12:  Apply corrections: 7| <« 7| + Ary,, 7y «— 7y + Ary,
13:  Evaluate objective function 7* (Eq. (9))

14:  Exitif |75 = 7| <e

15: end for

4. Results

Two simulated scenarios are set up to assess the perfor-
mance of the novel methods presented in Section 2 and Sec-
tion 3, and to compare them against classical approaches:
one for optical observations and another one for radar
observations. Unlike usual analyses that evaluate the per-
formance of the IOD methods for a limited set of represen-
tative cases (few objects and combinations of tracks), we
have focused on studying the performance on a scenario
containing a large set of tracks, aimed at determining the
robustness and flexibility of the different methods. Both
scenarios consist in a simulated population of RSOs repre-
sentative of the current space debris environment, propa-
gated with a high-fidelity propagator (16x16 Earth
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gravitational field, Moon and Sun third body perturba-
tions, cannonball model for the Solar Radiation Pressure
(SRP) and MSISE90 atmospheric density model) to avoid
the matching of the dynamical model between the true and
estimated states. From all the tracks of each RSO that fulfil
the visibility conditions, we decided to select four tracks
with a time separation representative of a track-to-track
association problem. Then, we study all the IOD problems
resulting from the association of i tracks, i.e.: all the (%)
combinations of i tracks: four combinations of a single
track ({1},{2},{3},{4}), six combinations of two tracks
({1,2},{1,3},{1,4},{2,3},{2,4},{3,4}), four combina-
tions of three tracks ({1,2,3},{1,2,4},{1,3,4},{2,3,4})
and one combination of four tracks: {1,2,3,4}. To evalu-
ate the suitability and robustness of each method in provid-
ing a solution, we consider that a method has succeeded in
solving an IOD problem if it provides a solution that fulfils
Aa = |la—a| < 10°km (optical tracks are normally
obtained in GEO). Note that the number of successes is a
rough indicator of the goodness of certain method in solv-
ing a set of IOD problems, since it does not account for the
accuracy of the solution. For the particular case of multi-
solution methods, the one closest to the true orbit in terms
of orbital parameters is selected, in order to compare the
best achievable solution for each method.

Apart from the analysis of the robustness of the method,
a performance assessment is carried out focused on the
orbit estimation error and computational cost. For charac-
terising the former, we opted for the orbit error defined in
Mortari et al. (2006):

Ad,d) = (14 d)e”, (14)

where the shape error, d, and the attitude error, o, are given
by:

& =dQ2-e)+ a2 —&) —2aa
cosd =1 [tr(A,:iT) - 1},

(I —e?)(1 —¢e?),

(15)

being 4 € R** the orientation matrix, whose columns
are the directions of the position, velocity and angular
momentum vectors. This error definition allows to
describe the difference between two orbits in terms of only
two independent and physically meaningful quantities.
The first, shape error, represents the planar position error,
i.e. difference between the semi-major and semi-minor
axes. The second, attitude error, represents the orientation
error. Additionally, semi-major axis and eccentricity
errors are also included in the analysis, for the sake of
comparison with other works, as their use is more
extended.

Regarding the computational cost, we evaluate the com-
putational time, for comparison purposes only, that each
10D method takes to compute the final solution on an Intel
Xeon Gold 6142 2.60 GHz CPU.
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4.1. Optical observations

The simulated optical scenario consists of 514 RSOs and
an optical survey sensor network consisting of four tele-
scopes (located at Canary Islands, French Polynesia, New
Caledonia and Réunion Island) receiving 2,056 tracks
along one week. The semi-major axis, eccentricity and incli-
nation of this population of RSOs are shown in Fig. 5,
where the histogram and CDF are presented. The SRP
coefficient has been set to 1.1 for every object and the
area-to-mass ratio distribution of the RSOs is presented
in Fig. 6. For each RSO, four tracks are generated includ-
ing zero-mean Gaussian noise of 1 arcsec sigma, typical
values used in similar analyses (Sabol et al., 2012;
Siminski et al., 2014). The duration of these tracks, shown
in Fig. 7 (left), has three typical values, in order of decreas-
ing frequency: 15 s, 5.75 min and 2.92 min. The separation
between each of the four tracks ranges from 6 s up to 2 min
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Fig. 5. Semi-major axis (top), eccentricity (center) and inclination
(bottom) distribution of the population of RSOs in the optical scenario.
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Fig. 6. Area-to-mass ratio distribution of the population of RSOs in the
optical scenario.
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Fig. 7. Track duration (top) and separation (bottom) distributions in the
optical scenario.

with peaks on multiples of 24 h, as reflected in Fig. 7
(right). The observation rate is of 0.2 s~! (i.e. one observa-
tion every 5 s), similar to values used in track-to-track anal-
yses (Vananti et al., 2017). For the optical observations
case, we focus on assessing the performance of the pro-
posed method, Double R-Iteration Lambert, and compar-
ing against the classical alternative, Gooding’s method.

Double r-iteration Lambert is applied as explained in
Section 3.2, using every available observation in the tracks.
Regarding Gooding’s method, since it can only be applied
to three observations, we compute three attributables from
the available tracks. To obtain m attributables from a
track, m groups of observations are set so that each group
contains observations within ¢ + (i — 1)A¢/m and
to + iAt/m for i = 1, m, where At represents the track dura-
tion. In the cases of two tracks, two attributables are com-
puted from the longest track and one from the shortest
track.

The number of successes and success rate (number of
successes over the corresponding total number of 10D
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Table 1
Number of successes and success rate in the optical scenario.
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Number Gooding Double r-iteration Izzo
of tracks all e<0.1 e>0.1 e<0.1 e>0.1
1 50 15 35
— -g 2 1,023 33.2% 674 29.6% 349 43.1% 2,251 99.0%
< S 3 1,544 75.1% 1,081 71.3% 463 85.7% 1,509 99.5%
4 N/A N/A N/A
o 1 39 15 24| 17.8%
e 9D 2 423 82.3% 208 78.6% 125 92.6%
O 5 3 475 92.4% 342 90.2% 133| 98.5%
Ty N/A N/A N/A

problems solved) of each method is shown in Table I,
accounting for all combinations of tracks. Single tracks
(i.e.: combinations of one track) and pairs are shown for
the sake of completeness and because they might be rele-
vant during track-to-track association. Moreover, a break-
down of the results according to the corresponding RSO
eccentricity is also available. Note that the results for com-
binations of different number of tracks cannot be com-
pared to each other since the total number of
combinations varies (e.g.: there are a total of 2,056 combi-
nations of a single track but only 514 of four tracks). To
overcome this, we provide also an additional breakdown
(One per RSO) taking at most one combination per RSO
(the best in terms of orbit error).

The number of tracks determines the amount of infor-
mation available, as well as the observability of the orbit.
In fact, only a few combinations and RSOs succeed when
only a single track is considered. Gooding’s method opti-
mal performance is reached when three tracks are used,
since it was conceived for three observations or attributa-
bles, while the proposed method is also able to succeed
with two and four tracks. Moreover, if considering the
whole population (all column) Double R-Iteration Lam-
bert leads to higher success rates than Gooding’s method.
In the case of three tracks, the fairest case for Gooding’s
method, our method succeed in the 95.1% of the IOD prob-
lems (involving the 98.6% of the RSO population), while
Gooding’s method succeed in the 75.1% of the IOD prob-
lems (involving 92.4% of the RSO population). Modest
results are obtained with Gooding’s method and single
tracks and pairs. However, the proposed method is not,
in principle, limited to a number of observations or
attributables, and, therefore, the number of successes with
pairs, triplets and quadruplets is of the same order.

Eccentricity is another driver of IOD performance, as it
has a direct impact on orbit observability. To assess the
effect of this parameter, the number of successes are broken
down in IOD problems involving RSOs with e < 0.1 and
e > 0.1. For low eccentricity RSOs, our method is able to
succeed in more than 99% of the IOD problems, involving
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as well more than 99% of the RSO population, while
Gooding’s method reaches a 71.3% (90.2% in terms of
RSO population) if using three tracks. Regarding RSOs
with e > 0.1, Gooding’s method provide slightly better
results in terms of success rates: 85.7% of the IOD prob-
lems (98.5% of the RSO population), as opposed to Double
R-Iteration Lambert: 82.8% (94.8% of the RSO popula-
tion), in the case of three tracks.

Nevertheless, the number of successes is just a rough
indicator of performance, more focused on robustness as
opposed to accuracy. To evaluate the latter, the distribu-
tions of the shape and orientation errors of all the combi-
nations for each method are shown in Fig. 8. There is a
clear correlation between both errors and a significant dif-
ference between the distribution of the Gooding’s method
solutions and those of the proposed method. As already
discussed, the latter is able to succeed in more 10D

Gooding

2

Shape error (km)

10’

10 10 10

Orientation error (mdeg)

07

Fig. 8. Distribution of the shape and orientation errors in the optical
scenario.
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Fig. 9. Distribution of the semi-major axis error along RSO eccentricity in
the optical scenario.
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problems and therefore its CDF reaches higher values than
the former. In terms of the histograms (note the logarithm
scale), our method has an error distribution concentrated
around values of d =2km and ¢ = 10mdeg and not so
spread as that resulting from Gooding’s method. The rea-
son of this spread of the error distributions is that Good-
ing’s method is not able to provide reliable results when
using two or four tracks, as opposed to the proposed
method. However, the range of values swept by the two
methods is equivalent, confirming that the accuracy of
the two methods is similar, expected since the underlying
dynamical model (two-body motion) is the same. This
can be seen in Fig. 10 (top) showing the distribution of
the semi-major axis error, to ease the physical interpreta-
tion, for different number of tracks. The peak, in both
cases, is around 2 km (similar to the 6 = 2km observed
in Fig. 8) and and the unsuitability of Gooding’s method
when dealing with two tracks can be observed. The increase
of the time of flight with the number of tracks explains the
slight differences between the pairs, triplets and quadru-
plets cases, i.e. there is a trade-off between observation data
and dynamical model mismatch. Moreover, a strong
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Fig. 10. Distribution of the semi-major axis error and eccentricity in the optical scenario (top) and computational time and semi-major axis error

(bottom), one combination per number of tracks and RSO.
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increase of the semi-major axis error is noticeable for
e > 0.1 in both methods. Regardless of the method consid-
ered, the higher the eccentricity, the more complex the IOD
problem is and therefore the higher the orbital error
becomes (see Fig. 9). The two main causes of this are: 1)
dynamical behaviour difference between perigee (atmo-
spheric drag) and apogee, and 2) observability issues.
Despite of this, the proposed method is able to obtain a
first guess of the orbit, that during track-to-track associa-
tion is refined by incorporating more observations (tracks)
and observation geometries (sensors).

Finally, Fig. 10 (bottom) shows the distribution of the
computational cost for the two methods, as well as the
semi-major axis error distribution. The computational cost
of Double R-Iteration Lambert is up to one order of mag-
nitude lower than Gooding’s method. This is due to the
more direct approach of the former, that avoids finding
all the different solutions through iterative processes, as
opposed to Gooding’s method. In order to compare the
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Fig. 11. Semi-major axis (top), eccentricity (center) and inclination
(bottom) distribution of the population of RSOs in the radar scenario.
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Fig. 12. Area-to-mass ratio distribution of the population of RSOs in the
radar scenario.

distributions of different number of tracks, only the best
solution (closer to the true orbit) of each combination of
a certain number of tracks and RSO is shown.

4.2. Radar observations

The simulated radar scenario consists of 3,664 RSOs
and a radar sensor (located in mainland Spain) receiving
14,656 tracks along one week. The semi-major axis, eccen-
tricity and inclination of this population of RSOs and the
distribution of the track duration and separation are shown
in Fig. 11. The drag coeflicient has been set to 2.2 for every
object and the area-to-mass ratio distribution of the RSOs
is can be seen in Fig. 12. For each RSO, four tracks are
generated including zero-mean Gaussian noise of 64.5
mdeg sigma in azimuth and elevation, 3 m in range and
170 mm/s in range-rate, typical values used in similar anal-
yses (Gronchi et al., 2015; Vananti et al., 2017). The dura-
tion of the tracks, as shown in Fig. 13 (left), is such that
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Fig. 13. Track duration (top) and separation (bottom) distributions in the
radar scenario.
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Table 2
Number of successes and success rate in the radar scenario.
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Number Gibbs/Herrick-Gibbs GTDS Range and Angles State Vector Fitting
of tracks all e<0.1 e>0.1 all e<0.1 e>0.1 all e<0.1 e>0.1
1 14,656[10010% 13,072[10010% 1,584]100:3% 14,656 ]10010% 13,076 1,580 14,655 13,072 1,583
4 2 11,499 523% 10,650 543% 840 354% N/A N/A N/A 21,984 19,609 2,375
<s 3 3,777 25.8% 3,493| 26.7% 284  18.0% N/A N/A N/A 14,648 13,068 1,580
4 N/A N/A N/A N/A N/A N/A 3,649 3,254 305
o 1 3,664]100:0% 3,269/100.0% 395 3,664]100:0% 3,269]100.0%  395100:0% 3,664 3,269 305
e ® 2 3,180| 87.0% 2951 90.3% 238 60.3% N/A N/A N/A 3,664 3,260 395
Sy 3 1,879 513% 1746 534% 133 33.7% N/A N/A N/A 3,664 3,260 305
=g N/A N/A N/A N/A N/A N/A
90% of the radar tracks have a duration lower than 10° | H
. . | ]
1.5 min. The separation between each of the four tracks ol h
. . . il |
ranges from 2 s up to 5 days, as reflected in Fig. 13 (right). 10" p-- 8 ‘
The observation rate is of 0.14 s~!' (i.e. one observation )
every 7.3 s), similar to values used in track-to-track analy- -
ses (Vananti et al., 2017). In this case, we focus on the per-
formance of State Vector Fitting and other classical 102
alternatives, Gibbs/Herrick-Gibbs (Gibbs if orbital spacing
is above 5 degrees and Herrick-Gibbs otherwise, as sug- £
gested in Vallado (1997)) and GTDS Range and Angles. 5
As in the optical scenario, the number of successes and o 10°
success rate are shown in Table 2. Unlike the optical sce- o
nario, the three methods are able to succeed in most of i
the single track cases, even t}}ose 1pvolv1ng RSOs with 10-2 Gibbs/Herrick-Gibbs
e> 0.1. However, Gibbs/Herrick-Gibbs fails to succeed % ¢  GTDS Rafigeand Angles
in almost half of (47.7%) the two tracks cases and most 103 ; State Vector Fitting
(74.2%) of the three tracks cases, caused by a lack of copla-

narity between the involved state vectors, a well known
issue (Vallado, 1997) that becomes relevant as the time
between observations increases. GTDS Range and Angles
method is able to succeed only in single track cases, prob-
ably due to the jump introduced by the track separation in
the f and g coefficients to be used for the position fitting.
Finally, State Vector Fitting is able to succeed in the major-
ity of the cases, even when dealing with more than two
tracks.

The distribution of the shape and orientation errors of
all the combinations for each method is shown in Fig. 14,
where both the histogram and CDF is presented. The
CDF of State Vector Fitting is much higher since it is able
to succeed with more than one track, unlike the other
methods. As in the optical scenario, regardless of the
method considered, the higher the eccentricity, the higher
the orbital error is (see Fig. 15) since the estimation of
eccentric RSOs is much more demanding than circular
ones.

The differences between the distributions from the clas-
sical methods (Gibbs/Herrick-Gibbs and GTDS Range
and Angles) and State Vector Fitting method lie in the fact
that the latter includes many IOD problems involving more
than one track, which has a negative impact on the
orientation error. However, they are very similar on the
region that correspond to IOD problems of a single track,
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Fig. 14. Distribution of the shape and orientation errors in the radar
scenario.

103 ]
1024
é 101 i
g
S
2
2101
g
E A
& 1072 - )
¢ &y
e Gibbs/Herrick-Gibbs
GTDS Range and Angles
State Vector Fitting
10744 i , i i i i
0.1 0.2 0.3 0.4 0.5 0.6 0.7

Eccentricity

Fig. 15. Distribution of the semi-major axis error along RSO eccentricity
in the radar scenario.



A. Pastor et al.

State Vector Fitting

Advances in Space Research 68 (2021) 2677-2694

| 0 5000 10000 15000 20000
10 — : - e
103_
°® L4 f@
102 5
— 1
= 10
=8
£ 107
(5]
()
a,
=
o0 10—1 J
107241
0 o 1 tracks
a2 tracks ATy
1073_
& 3 tracks Al
# 4 tracks
1074 I | | | ! B I &
10 103 100 10 102 103
Orientation error (mdeg) Count

Fig. 16. Distribution of the shape and orientation errors in the radar scenario obtained with State Vector Fitting as a function of the number of tracks.

presenting a peak at d = 6km and 6 = Smdeg. The cluster
of points out of this region correspond to cases of two and
more tracks, and it is mainly populated by State Vector
Fitting solutions, as discussed before. These IOD solutions
have similar shape errors as the single track ones, but an
orientation error that increases with the number of tracks
(see Fig. 16). Although this might appear unexpected at
first sight, it is related to the track separation and the effect
of the lack of atmospheric drag modelling. In the single
track case, only one state vector is computed, but in the
case of i tracks, i equinoctial elements state vectors are
computed and averaged, which implies that the fast vari-
able should be propagated before averaging. Since the
equivalent dynamical model of this propagation is the
two-body motion, the atmospheric drag effect is accumu-
lated on the estimation of the fast variable.

Fig. 17 shows the distribution of the computational cost
for the two methods. The apparent lack of continuity is
caused by the computational time tracker, limited by a
minimum step. The first noticeable difference with respect
to the optical cases is the order or magnitude of the compu-
tational time, up to one order of magnitude greater than
Gooding’s method. Apart from that, there are no major
differences between the three methods.

5. Conclusions

This paper has presented two IOD methods proposed
for optical and radar track-to-track association. Double
r-iteration Lambert is a novel method that formulates the
angles-only IOD problem as a boundary value problem
in which a pair of ranges is estimated so that the residuals
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Fig. 17. Distribution of the computational time and semi-major axis error in the radar scenario, one combination per number of tracks and RSO.
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Table 3
10D methods analysed.
Method Tracks Obs.
Optical Gooding 2or3 3
Double R-Iteration Lambert >1 >2
Radar Gibbs/Herrick-Gibbs 1,20r3 3
GTDS Range and Angles 1 >1
State Vector Fitting Any >1

of the available observations are minimised. It allows to
consider measurement noise and provides a full estimation
(i.e., state vector and covariance). Additionally, State Vec-
tor Fitting is a method that fits the states observed by radar
sensors to obtain a smooth solution, thus mitigating mea-
surement noise. The two methods are able to use an arbi-
trary number of observations and do not require prior
information nor are limited to circular orbits. Moreover,
they have been shown to be more robust (according to
the metric defined) and less computationally intensive,
while providing similar orbital errors than classical alterna-
tives, such as Gooding, Gibbs/Herrick-Gibbs and GTDS
Range and Angles methods. All the methods considered
are summarised in Table 3, with the proposed ones in bold
font, shown to be more suitable for track association
purposes.

This work fills the gaps between IOD and track associ-
ation during cataloguing of RSOs by describing methods
for radar and optical observations. We have also given a
hint on the relevance of track association, particularly dur-
ing catalogue build-up, i.e.: before performing the first esti-
mation of an RSO orbit, and optical tracks. In fact, it is
clear that in this case, some form of brute-force would be
required, since a single optical track might not be sufficient
for an I0D.
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