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Abstract: The Hamiltonian description of mechanical or field models defined by singular Lagrangians
plays a central role in physics. A number of methods are known for this purpose, the most popular
of them being the one developed by Dirac. Here, we discuss other approaches to this problem that
rely on the direct use of the equations of motion (and the tangency requirements characteristic of
the Gotay, Nester and Hinds method), or are formulated in the tangent bundle of the configuration
space. Owing to its interesting relation with general relativity we use a concrete example as a test
bed: an extension of the Pontryagin and Husain–Kuchař actions to four dimensional manifolds
with boundary.

Keywords: geometric constraint algorithm; hamiltonian field theory; Husain–Kuchař model; pon-
tryagin; three-dimensional general relativity; boundaries

1. Introduction and Preliminary Remarks

In the present paper, we discuss the Hamiltonian treatment of some field theories
with boundaries with applications to gravitational physics, such as the Husain–Kuchař–
Pontryagin model and lower dimensional general relativity. Boundaries play a prominent
role in gravitational physics, for instance, they can be used to model black holes with
different types of horizons [1,2], to study the asymptotic behavior of solutions to the
Einstein’s equations [3–6] and holography [7,8]. The specific reason why we consider
the Husain–Kuchař–Pontryagin model in this context is because, as it has been shown in
[9], it has a neat physical interpretation in a four-dimensional manifold with boundary
because the boundary theory is the extension of the three-dimensional, Euclidean, general
relativity known as the Baekler–Mielke [10] model. This suggests that it may be possible to
find a field theory in five dimensions—with simple enough dynamics—leading to four-
dimensional general relativity as the boundary theory. In order to study this model it
would be necessary to have the right tools to deal with the presence of the boundary. This
is what we aim at providing here. An additional justification to consider the Hamiltonian
formulation for this model is its close relationship with the Ashtekar formulation of general
relativity both at the Hamiltonian and quantum levels because the phase spaces of both
theories coincide, as do most of the constraints (all of them, with the important exception
of the scalar constraint). From the point of view of the quantum theory, the kinematical
Hilbert space of the Husain–Kuchař model is, precisely, the kinematical Hilbert space of
loop quantum gravity. For all these reasons, and given the relevance of boundaries in
gravitational physics, we think that it is very important to provide efficient and easy-to-use
Hamiltonian methods that are adapted to be used in the presence of boundaries. This is
the main purpose of the paper.

The Hamiltonian formulation of field theories defined by singular Lagrangians (among
which general relativity is a famed example) has a long history. A turning point in the quest
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for a systematic treatment of these systems was the introduction by Dirac of his celebrated
“algorithm” [11], which has been in use ever since. Strictly speaking, Dirac’s method as
originally conceived, works only for mechanical systems with a finite number of degrees
of freedom. Despite the statements made in this regard by Dirac himself [11] (p. 26), the
extension of his method to field theories is not immediate. One has to proceed with care
because some basic objects are not well defined, in particular the Poisson brackets between
canonically conjugate variables. For instance, in the case of a scalar field φ with canonical
momentum π, it is customary to write

{φ(x), π(y)} = δ(x, y) , (1)

and work with this expression; however, Poisson brackets can only be defined for differen-
tiable functions in phase space and are, themselves, differentiable functions. Although the
appearance of a Dirac delta seems to be an acceptable departure from smoothness that can
be taken care of by resorting to simple tricks such as smearing, it is not difficult to come up
with models where formal expressions such as (1) fail to work in a glaring way. Among
such models, field theories in bounded regions stand out.

An effective way to avoid the problems that originate from the use of formal expres-
sions, such as (1), is to use the GNH method [12–14] or a geometric rephrasing of the
original Dirac approach [15]. The crucial element in these alternative methods is to require
the Hamiltonian vector fields, whose integral curves define the system’s dynamics, to be a
tangent to the constraint submanifold in phase space. As these tangency conditions may
be written and studied without the use of Poisson brackets, many of the actual difficulties
found in concrete computations in manifolds with boundaries disappear. Another source of
difficulties (and misunderstandings) when dealing with field theories in bounded regions
has to do with the behavior of the fields at the boundaries and its relationship with the
dynamics (see, for instance, [16] and references therein).

In the following, we will restrict ourselves to field theories derived from action
principles. Let us consider the spacetime M where the field theory is defined to be, unless
otherwise stated, (diffeomorphic to) the product of a finite interval of the real line and a
three-dimensional manifold Σ with (possibly empty) boundary ∂Σ, i.e., M = [t1, t2]× Σ
with t1 < t2. We will often refer to the sets Σ1 := {t1} × Σ and Σ2 := {t2} × Σ as the lids
and ∂L M := [t1, t2]× ∂Σ as the lateral boundary (see Figure 1).

With the action S a functional on certain space of fields over M, not only it is necessary
to define the independent fields that will be used to write it (the field space F , often con-
sisting of sections of some tensor bundle), but also to consider their smoothness properties.
This is usually achieved by requiring the fields to live in appropriate functional spaces. As
a part of this specification, it is possible to introduce boundary conditions.

Actions are usually written as integrals of top forms on the spacetime manifold
M. In the case of manifolds with boundaries, additional contributions associated with
the boundary may also be included (an instance of this is the Gibbons–Hawking–York
boundary term in metric gravity). In general, an action will be defined by a Lagrangian
pair (L, `) of top forms defined on M and its lateral boundary ∂L M.

Given an action and the values of the fields at the lids Σ1 and Σ2, the dynamics is
obtained by looking for its stationary points. The stationarity conditions will generically
consist of equations in the bulk and equations at the boundary. Some comments are
in order:

(i) If boundary conditions have been introduced in the definition of F , it is critical to take
them into account when deriving the boundary Euler–Lagrange equations. This is so
because the variations at the boundary will not be independent but will be constrained
by the boundary conditions.

(ii) Even when no boundary contribution is included in the action, there may still exist
Euler–Lagrange equations at the boundary in addition to those at the bulk (usually
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coming from integrations by parts). As a consequence, the issue mentioned in the
previous item will still be relevant [17].

(iii) It is very important to understand that boundary conditions may appear as Euler–
Lagrange equations at the boundary even if no such conditions are introduced in F .
Further, they do not need to be simple specifications of the values of some fields or
their “spatial” derivatives but may be dynamical (this will happen in the models that
we consider here).

[t1, t2]× Σ

Σt

t

t

Σ

[t1, t2]

∂t∂t

∂L M

p1 p2

Σ2

Σ1

Figure 1. Spacetime topology.

The purpose of this paper is to explore three different ways to obtain the Hamiltonian
formulation of field theories linear in velocities in bounded regions. This is important in
general relativity because the actions used in some relevant approaches (in particular the
Hilbert–Palatini or Holst actions) are precisely of this type. The first and second approaches
are based on the geometric constraint algorithm: the first one in the cotangent bundle [9]
and the second in the tangent bundle [18–20]. In a different spirit, the third procedure starts
right off from the field equations and quickly arrives at the Hamiltonian formulation [21].
These ideas have been known for quite some time, but have not been widely applied
when boundaries are present, at least in the context of gravitational theories. As will be
shown later, for the type of models discussed in the present paper, the final Hamiltonian
description can be made in a phase space that is a submanifold of the configuration space.

A few words on notation. As the basic fields that we will be using are differential
forms, we will not need to use spacetime indices; however, we will use internal SO(3)
indices i , j , . . . = 1, 2, 3, which may be raised and lowered with the SO(3) invariant metric
δij and its inverse δij. We will also use the SO(3) volume form εijk. If we have a volume
form vol in a manifold M and we have another top form α in M there exists a unique scalar
field φ such that α = φvol. We will often denote φ =

(
α
vol

)
.
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2. Some Basic Facts about the Husain–Kuchař Model

The Husain–Kuchař (HK) model was introduced in [22] to understand some features
of the Ashtekar formulation of general relativity [23,24] (see also [25]), since their respective
Hamiltonian descriptions share the same phase space (the main difference being the absence
of the Hamiltonian constraint in the HK model). The action of the HK model reads

S(e, A) =
∫

M
εijkei ∧ ej ∧ Fk, (2)

where M is a closed, parallelizable (hence, orientable), four-dimensional manifold, and
ei , Ai ∈ Ω1(M), i = 1, 2, 3, are 1-form fields. At each point p ∈ M, the three covectors ei(p)
are required to be linearly independent (this is part of the specification of the configuration
space of the model), and

Dei := dei + εi
jk Aj ∧ ek , (3)

Fi := dAi +
1
2

εi
jk Aj ∧ Ak , (4)

are the SO(3) covariant derivative of the ei and the curvature of the SO(3) connection Ai,
respectively. The field equations are:

εijkej ∧ Dek = 0 , (5)

εijkej ∧ Fk = 0 . (6)

Structurally, they resemble the Einstein equations derived from the Hilbert–Palatini
action. This explains the connection between the HK model and general relativity. Notice,
anyway, that in this example the (0,2)-tensor γ := ei ⊗ ei is a degenerate metric as we do
not have a co-frame but only three independent 1-forms ei. The degenerate directions of
this metric can be easily characterized. If we choose a volume form vol in M (which is
always possible because M is orientable) we can write

u(·) :=

(
· ∧ εijkei ∧ ej ∧ ek

vol

)
, (7)

which at each point p ∈ M is an element of the double dual T∗∗p M of the tangent space
Tp M. As T∗∗p M is canonically isomorphic to Tp M the previous expression actually defines
a vector field u ∈ X(M). Since u(ei) = 0, then γ(u, ·) = 0, and hence the degenerate
directions of the metric are those given by u. Notice that, if we change the fiducial volume
form vol, the direction of the field u at each point of M stays the same, although the vector
itself will be rescaled.

The field Equations (5) and (6) admit a simple geometric interpretation based on the
fact (see Appendix A) that if ei are three linearly independent frame fields (1-forms) on a
four-dimensional manifold M and Si are three 1-forms on M satisfying εijkej ∧ Sk = 0, then
Si = 0. Now, as ıuei = 0, the field Equations (5) and (6) imply

εijkej ∧ ıuDek = 0 ,

εijkej ∧ ıuFk = 0 ,

and, hence, ıuDek = 0 and ıuFk = 0. A straightforward computation then yields

ıuFi = ıu(dAi +
1
2

εi
jk Aj ∧ Ak) = £u Ai − dAi

u + εi
jk Aj

u Ak = £u Ai − DAi
u ,

ıuDei = ıu(dei + εi
jk Aj ∧ ek) = £uei + εi

jk Aj
uek ,
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where Ai
u := ıu Ai. Hence, we conclude that

£u Ai = DAi
u , (8)

£uei = −εi
jk Aj

uek . (9)

The meaning of the dynamics is then clear: the effect of Lie-dragging a solution of
the field equations along the direction defined by u, is just an SO(3) gauge transformation
with parameter Ai

u. We will see in Section 3.4 how a similar reasoning allows us to extend
the previous analysis to an arbitrary vector field instead of u. From the point of view
of the degenerate metric γ the interpretation of the dynamics is also clear: it will just be
Lie-dragged along the integral curves of the vector field u.

The physical content of the model is simple to describe: whereas general relativity has
two local physical degrees of freedom per point, the Husain–Kuchař model has three. In
both instances they are contained in an SO(3) connection and its canonically conjugate
densitized triad, hence, it is a bit surprising that in general relativity the natural variables
are non-degenerate 4-metrics, whereas it does not seem possible to buld these metrics in the
HK model. A partial answer to this problem is discussed in [26], where it was shown that,
by adding an scalar field playing the role of time, it was possible to build non-degenerate
four-dimensional metrics for the HK model. An interesting question in this regard—which
to our knowledge has not been answered yet—is the characterization of those metrics of
the type described in [26] that also solve the Einstein equations.

The constraint submanifold in phase space for general relativity in Ashtekar variables
is a submanifold of the constraint submanifold for the HK model so, from the perspective
of the constraints, every solution to the GR constraints is also a solution to the HK ones.
Notice, however, that in order to define the GR dynamics in the latter context, it is necessary
to introduce the appropriate Hamiltonian vector field. In contrast with this, at the quantum
level, the physical Hilbert space of full GR in the Ashtekar formulation is just a subspace of
the one corresponding to the HK model. The problem in this case is finding the appropriate
quantum gravitational observables.

As a final comment, we would like to mention the existence of a number of different
action principles that also lead to the Husain–Kuchař model [26–28]. They provide different
points of view that can be useful to understand some features of the model and, eventually
to learn something about the Hamiltonian formulation of general relativity.

3. The Generalized Husain–Kuchař–Pontryagin Action

From now on, let M be a manifold with boundary. Let us consider ei, Ai ∈ Ω1(M) with
i = 1 , 2 , 3 as the basic dynamical fields. They are not subject, a priori, to any condition other
than smoothness and the requirement that the ei be linearly independent. In particular,
we will impose no boundary conditions on them at this point. The generalization of the
Husain–Kuchař–Pontryagin action given by [15], reads

S(e, A) =
∫

M

(
α1εijkei ∧ ej ∧ Fk + α2Dei ∧ Dei + α3Fi ∧ Fi (10)

+α4εijkDei ∧ ej ∧ ek + α5Fi ∧ Dei
)

.

where α1 . . . , α5 ∈ R. The field equations are

(α1 − α2)εijkej ∧ Fk = 0 , (11)

(α1 − α2)εijkej ∧ Dek = 0 , (12)

∗∂
(
2α2Dei + α5Fi + α4εijkej ∧ ek) = 0 , (13)

∗∂
(
α5Dei + 2α3Fi + α1εijkej ∧ ek) = 0 . (14)
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As we can see, demanding stationarity of the action yields two sets of necessary
conditions: the bulk Equations (11) and (12), and the boundary Equations (13) and (14).
It is important to emphasize—we will continue to do so throughout the paper—that the
stationarity conditions for an action defined in a manifold with boundary will generically
consist of these two types of equations.

Before proceeding further we would like to make several comments:

(i) Although we will not discuss in any detail functional analytic issues, something
needs to be said about the smoothness conditions on the fields and how they are
affected by the presence of a boundary. In the interior of M (the bulk), we will
require the fields to be “smooth enough” so that the field equations make sense
there. In order to make sense of the boundary equations it is also natural to add
whatever smoothness requirements on the fields are necessary on ∂M. An additional
smoothness requirement might also be considered: demanding that, when extended
to an open smooth manifold M̂ containing M as a submersion, the bulk equations also
hold at ∂M.
This last point is relatively subtle. On one hand, it appears unnatural from the
viewpoint of the action principle since it does not seem necessary to demand such
condition for the stationarity of the action. For instance, if we require the function
in the bulk to admit a sufficiently smooth extension to M̂, and if the Euler–Lagrange
equations have a sufficiently nice form, “their action on the bulk function” will be
smooth and, by continuity, they will also hold at the boundary. On the other hand,
it can be seen as a sensible requirement that can be imposed a posteriori to select a
subfamily of solutions to the variational equations with good physical properties, or
even, appear as consistency requirements for the dynamics. It is also conceivable that
a particular choice of smoothness requirements, both in the bulk and at the boundary,
suffices to guarantee extendibility in the above sense. For an ordinary variational
problem, the treatment of the lateral boundary and the lids may have to be different.
It may happen that the extendibility condition applies only to lateral boundaries and
not to the lids.
Some intuition about these questions can be gained by considering, for example, the
Laplace equation on a bounded region of the plane and using the real or imaginary
parts of complex analytic functions as examples. The last regularity requirement is, at
least at face value, the strongest; we will proceed assuming it in the present work. As
a last word of caution it should be mentioned that there may be consistency issues
between the smoothness requirements in the bulk and at the boundary that we will
also sidestep here.

(ii) According to the regularity conditions that we are considering, the bulk equations
must also hold when the fields are restricted to the boundary, so there are several sets
of boundary equations. The content of these can be conveniently disentangled by
either taking their pullback to the boundary and writing them in terms of pullbacks
of the dynamical fields or first computing their interior product with the outer unit
normal ν and then pulling them back. This procedure mimics one of the methods
that we are going to follow in the paper to obtain the Hamiltonian formulation for the
model given by the action (10).

(iii) If α1 = α2 there are only boundary equations. The dynamics in the bulk is arbitrary.
This means that any field configuration with the correct “boundary dynamics” pro-
vides stationary points for the action. Otherwise the bulk dynamics is that of the
Husain–Kuchař model. From the point of view of the action, this happens because a
simple integration by parts of the terms involving α1 = α2 can be used to cancel them,
giving just boundary contributions to the action. Notice that the remaining terms can
all be written as total derivatives, so that the action in this case is an integral over
the boundary, which corresponds to an extension of three-dimensional (Euclidean)
general relativity [10]. At this point it is worthwhile to advance that the Hamiltonian
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formulation for this theory will be obtained in the following in the same footing as the
one corresponding to the bulk model.

(iv) If 4α2α3 − α2
5 6= 0 the boundary equations tell us that ∗∂ Fi and ∗∂ Dei are proportional

to ∗∂(εijkej ∧ ek) and, hence, the pullbacks of the bulk Equations (11) and (12) auto-
matically hold as can be seen by plugging the expressions for ∗∂ Fi and ∗∂ Dei in terms
of ∗∂(εijkej ∧ ek) into the pullbacks of (11) and (12) to the boundary. The physical
meaning of the specific models obtained at the boundary for other parameter choices
are discussed in [9].

In the next subsections, we will focus on three different methods of obtaining the first
part of the solution of the evolution problem, that is, an expression for the Hamiltonian
vector field and a set of necessary constraints. Notice that this does not fully solve the
problem since further consistency checks may be needed. Since the three approaches will
produce the same results, we will defer this final step until Section 3.4.

3.1. GNH Analysis in the Cotangent Bundle

The first approach we would like to present is the Hamiltonian formulation, for the
model introduced above, using the geometric GNH approach [12–14] (a related analysis
using a “geometrized” version of the traditional Dirac algorithm [11] can be found in [15]).
The main features of this method are:

• The final Hamiltonian description lives in the primary constraint submanifold in
phase space.

• Dynamical consistency is rephrased as a tangency condition. This has the advantage of
altogether avoiding the use of Poisson brackets, which is useful in spacetime manifolds
with boundary.

• Given a Lagrangian (which may come from a suitable 3 + 1 decomposition of an action)
the main steps are: (i) the characterization of the primary constraint submanifold from
the definition of momenta (fiber derivative), (ii) the definition of the Hamiltonian
vector fields in terms of the simplectic form and the exterior derivative in field space
of the Hamiltonian and (iii) checking consistency as a tangency requirement.

To begin with we perform a 3 + 1 decomposition of the action (10), we obtain the
following Lagrangian [9]:

L(vq) =
∫

Σ

(
(vi

A − DAi
t) ∧ (α5Dei + 2α3Fi + α1εijkej ∧ ek)

+ 2εijkei
t ∧ ej ∧ (α4Dek + α1Fk) (15)

+(vi
e + εi

jk Aj
te

k − Dei
t) ∧ (2α2Dei + α5Fi + α4εilmel ∧ em)

)
.

Here, Ai ∈ Ω1(Σ) and ei ∈ Ω1(Σ) are an SO(3) connection and a non-degenerate
frame field on Σ, respectively. We also have the smooth scalar fields Ai

t , ei
t ∈ C∞(Σ). The

expressions for the curvature and the covariant derivative that appear in (15) are formally
the same as (3) and (4) but, of course, these objects live now in Σ. Taken together, the
(Ai

t, Ai, ei
t, ei) define the configuration space Q for our model (adding also the requirement

that the ei must be linearly independent) . We will denote the points of TqQ, the tangent
space to Q at the point q = (Ai

t, Ai, ei
t, ei) ∈ Q, as vq. We will write tangent vectors in the

form vq = (vi
At

, vi
A, vi

et , vi
e). As we can see the Lagrangian is a real function in TQ.

The fiber derivative (i.e., the definition of the canonical momenta) associated with
a Lagrangian L is a map from the tangent bundle of the configuration space Q to its
contangent bundle (phase space)

FL : TQ→ T∗Q : (q, v) 7→ (q, p) , p ∈ T∗q Q ,



Symmetry 2021, 13, 1430 8 of 24

with
〈p, w〉 :=

d
dt

L(q, v + tw)
∣∣∣
t=0

, v, w ∈ TqQ .

In the present case this yields

〈FL(vq), wq〉 =
∫

Σ

(
wi

A ∧
(
α5Dei + 2α3Fi + α1εijkej ∧ ek) (16)

+ wi
e ∧
(
2α2Dei + α5Fi + α4εijkej ∧ ek)) ,

so that the canonical momenta (PAt , PA , Pet , Pe) are defined by

PAt(w
i
At
) := 〈FL(vq), (wi

At
, 0, 0, 0)〉 = 0 , (17)

PA(wi
A) := 〈FL(vq), (0, wi

A, 0, 0)〉 =
∫

Σ
wi

A ∧ (α5Dei + 2α3Fi + α1εijkej ∧ ek) , (18)

Pet(w
i
et) := 〈FL(vq), (0, 0, wi

et , 0)〉 = 0 , (19)

Pe(wi
e) := 〈FL(vq), (0, 0, 0, wi

e)〉 =
∫

Σ
wi

e ∧ (2α2Dei + α5Fi + α4εijkej ∧ ek) . (20)

The fiber derivative is not a diffeomorphism from TQ to T∗Q because it is not onto,
hence the dynamical system defined by the action (10) is singular. The image of TQ under
the fiber derivative FL is the so called primary constraint submanifold M0 of the phase
space T∗Q; the dynamics of the system is constrained to M0. The Hamiltonian is defined
only on this primary constraint submanifold. In the present case it is

H =
∫

Σ

(
DAi

t ∧ (α5Dei + 2α3Fi + α1εijkej ∧ ek)− 2εijkei
te

j ∧ (α4Dek + α1Fk) (21)

− (εi
jk Aj

te
k − Dei

t) ∧ (2α2Dei + α5Fi + α4εimnem ∧ en)
)

.

It is interesting to notice that it does not depend on the canonical momenta.
Vector fields in phase space will have components

Z = (Zi
At , Zi

A , Zi
et , Zi

e , ZAti , ZAi , Zeti , Zei) ,

where the boldface letters denote the momenta directions in phase space. Notice that
Zi

A , Zi
e ∈ Ω1(Σ) and Zi

At , Zi
et ∈ C∞(Σ) and, hence, it makes sense to consider their

pullbacks to ∂Σ.
Acting on vector fields Z ,Y ∈ X(T∗Q) the canonical symplectic form is

Ω(Z,Y) =YAti(Zi
At)− ZAti(Yi

At) + YAi(Zi
A)− ZAi(Yi

A) (22)

+Yeti(Zi
et) − Zeti(Yi

et) + Yei(Zi
e) − Zei(Yi

e) .

We have to now obtain the pullback ω of Ω to the primary constraint submanifold
M0. A straightforward computation yields

ω(Z,Y) =
∫

Σ
2(α1 − α2)εijk

(
Zi

A ∧Y j
e − Zi

e ∧Y j
A
)
∧ ek (23)

−
∫

∂Σ

(
α5(∗∂ Zei ∧ ∗∂Yi

A + ∗∂ ZAi ∧ ∗∂Yi
e) + 2α3 ∗∂ ZAi ∧ ∗∂Yi

A + 2α2 ∗∂ Zei ∧ ∗∂Yi
e

)
.
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We compute now dH(Y)

dH(Y) = 2(α1 − α2)
∫

Σ

(
−Yi

At ∧ εijkDej ∧ ek + Yi
et ∧ εijkFj ∧ ek

−Yi
A ∧

(
D(εijkej

te
k)− ei ∧ (Atjej)

)
−Yi

e ∧
(
εijkFjek

t − D(εijk Aj
t) ∧ ek))

+
∫

∂Σ
∗∂

(
Yi

At
(
α5Dei + 2α3Fi + α1εijkej ∧ ek) (24)

+ Yi
et
(
2α2Dei + α5Fi + α4εijkej ∧ ek)

+ Yi
A ∧

(
2α3DAti − 2α1εijkej

te
k − α5(εijk Aj

te
k − Deti)

)
+ Yi

e ∧
(
α5DAti − 2α4εijkej

te
k − 2α2(εijk Aj

te
k − Deti)

))
By requiring that ω(Z,Y) = dH(Y) for all Y ∈ X(M0) we obtain two kinds of

equations:

(1) Conditions on the components of the vector field Z ∈ X(M0): There are two types of
these associated with the bulk and the boundary, respectively. The bulk conditions
are only present if α1 − α2 6= 0 in which case they are

εijkZj
A ∧ ek = −εijkFjek

t + D(εijk Aj
t) ∧ ek , (25)

εijkZj
e ∧ ek = D

(
εijkej

te
k)− ei ∧ (Atjej) . (26)

The conditions at the boundary read

2α3 ∗∂ Zi
A + α5 ∗∂ Zi

e = ∗∂

(
2α3DAi

t − 2α1εi
jkej

te
k − α5(ε

i
jk Aj

te
k − Dei

t)
)

, (27)

α5 ∗∂ Zi
A + 2α2 ∗∂ Zi

e = ∗∂

(
α5DAi

t − 2α4εi
jkej

te
k − 2α2(ε

i
jk Aj

te
k − Dei

t)
)

. (28)

There are no conditions involving Zi
At and Zi

et neither at the bulk nor at the boundary.
(2) Secondary constraints: Again we have constraints associated with the bulk and with

the boundary. They come from the components of Y in dH(Y) that do not appear
in ω(Z,Y) and hence their coefficients must vanish. The bulk constraints are only
present if α1 − α2 6= 0. They are

εijkDej ∧ ek = 0 , (29)

εijkFj ∧ ek = 0 . (30)

The boundary constraints are

∗∂
(
α5Dei + 2α3Fi + α1εijkej ∧ ek) = 0 , (31)

∗∂
(
2α2Dei + α5Fi + α4εijkej ∧ ek) = 0 . (32)

Although at this point there are still consistency checks to be made—in particular
studying the tangency of the Hamiltonian vector fields to the submanifold defined by all
the constraints in phase space—we would now like to draw the attention of the readers
to some alternative approaches to the problem. The tangency analysis will continue in
Section 3.4.

To conclude this subsection, it is important to highlight the fact that momenta play
no role in the Hamiltonian description that we are obtaining. Indeed, the pullback of
the symplectic structure to M0, the Hamiltonian, the constraints and the Hamiltonian
vector fields are all independent of the canonical momenta. Physically, this means that
the dynamics of the momenta is trivial, in the sense already discussed in Section 2. Math-
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ematically, this means that the fibers play no role and that the only relevant space is the
base configuration space Q. This suggests, for instance, that it is possible to approach
the Hamiltonian formulation of the model from the field equations. This issue will be
discussed in the next sections.

3.2. Geometric Constraint Algorithm in the Tangent Bundle

In order to work, the GNH procedure only needs a presymplectic space. In the
previous section, this space was (FL(TQ), ω). Because the cotangent bundle T∗Q has a
canonical symplectic structure, it is a fitting choice for many purposes, in particular there
are approaches to quantization that take advantage of the availability of a symplectic or
presymplectic form. On the other hand, it may be interesting to work directly on the
tangent bundle of the configuration space where the Lagrangian is defined. This would be
natural, for instance, if one wants to apply path integral quantization methods. A possible
approach to this would be to import the canonical symplectic form from the phase space
via the pullback defined by the fiber derivative FL; however, this feels unnatural because
it entails going back and forth from TQ to T∗Q. It would certainly be desirable to work
directly in TQ. This can be performed as we describe in this section. The main steps of the
procedure are the following:

• Build a presimplectic form in the tangent bundle of the configuration space TQ from
the Lagrangian by using the so called Liouville vector field V.

• Define the energy and find the vector fields that give the evolution of the system by
solving Equation (33).

• Impose the second-order condition (necessary to guarantee the equivalence of the
dynamics with that given by the Euler–Lagrange equations).

Whilst the tangent space does not have a canonical symplectic structure, there are
canonical structures in the double tangent that can be used to introduce suitable symplectic
structures in the tangent bundle of the configuration space TQ once a Lagrangian—a real
function in TQ—is chosen.

If the Lagrangian is singular, we will obtain a presymplectic space in its own right in
which the GNH procedure can be applied. One could raise the issue that this structure is
not canonical because it depends on the choice of Lagrangian, however this is not really
a problem, in fact, this also happens in the Hamiltonian setting where both the primary
constraint manifold and the Hamiltonian are obtained from a choice of Lagrangian that
encodes the physics of the system (remember that the primary constraint submanifold in
phase space is the image of TQ under the fiber derivative FL defined by the Lagrangian). In
fact, under general conditions which hold, in practice, for all interesting physical theories,
both formulations are equivalent [29].

The almost tangent structure (or vertical endomorphism) on TQ [29–31] is the vector-
valued 1-form J : TTQ −→ TTQ defined by

J := ξ ◦ TπQ ,

where ξy(w) := d
dε (y+ εw)|ε=0 is the canonical lift of w ∈ TQ to TyTQ and πQ : TQ −→ Q

is the bundle projection. It is easy to see that J2 = 0. We define the vertical subspace of
TTQ as V(TQ) = Im J = ker J = ker TπQ whose elements are called vertical vectors. This
induces a derivation of rank 0 on differential forms on TQ

ıJα(X1, ..., Xp) =
p

∑
i=1

α(X1, ...JXi, ..., Xp) ,

and the vertical derivative

dJ := ıJd− dıJ ,

such that d2
J = 0.
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The Liouville vector field is defined as Vy := ξy(y). In a natural bundle chart

J(q, v, q̇, v̇) = (q, v, 0, q̇) ,

V(q,v) = (0, v) .

With all this, we can build the presymplectic structure (TQ, ωL,dEL) associated with
the pair (TQ, L), where

ωL = −ddJ L ,

EL = ıVdL− L .

Indeed, note that the almost tangent structure is canonical to TQ and the Lagrangian
was the only other relevant element in the construction. The Hamiltonian equation in this
(pre)symplectic space thus becomes

ıZωL = dEL , (33)

also referred to as the (pre)symplectic Lagrangian equation. This equation provides the
evolution of the system, but it is very important to realize that if ωL is presymplectic,
in general, the integral curves of the Lagrangian vector field Z are not a solution of the
Euler–Lagrange equations. The obstruction is that these integral curves in TQ may not be
canonical lifts of curves in Q, in which case they can not be tied to the variational principle.
To recover equivalence with the Euler–Lagrange equations one must additionally impose
the so-called second-order condition [18,29]

JZ = V , (34)

which is equivalent to TπQ(Z) = πTQ(Z). Then, the stationary points of the action are
given by vector fields simultaneously satisfying (33) and (34).

In [30], it was proved that there exists a submanifold with an unique vector field
solving (33) and (34). An algorithmic procedure to obtain such maximal submanifold was
later provided in [20], we summarize it here:

(i) A solution to (33) exists at x ∈ TQ if (dEL)x is in the image of (ωL)x. This condition
can be seen to be equivalent to ıX(dEL)x = 0, for all X ∈ (ker ωL)x; this is refered to as
the dynamical constraint. Let P1 be the submanifold where the dynamical constraint is
satisfied. Note that if Z is a solution of (33), then Z+Y for Y ∈ ker ω is also a solution.

(ii) In P1, solutions are guaranteed to satisfy (33) but they need not satisfy (34). Since the
solutions will have the form Z0 +Y for Y ∈ ker ωL, we have some freedom to choose
Y in such a way that Z0 +Y satisfies (34). This can be done in a submanifold S1 of P1
satisfying the condition ıXıY(ωL)x = 0, for all X such that JX ∈ Vx(TQ) ∩ (ker ωL)x.
This is called the non-dynamical constraint. Note that if Z+Y is a solution to both (33)
and (34), then Z+Y+W for W ∈ V(TQ) ∩ ker ωL is also a solution.

(iii) In S1, solutions to both (33) and (34) exist, however they are not tangent to S1 in
general. Since we still have the freedom to choose W ∈ V(TQ) ∩ ker ωL, we can
take it in such a way that the resulting solution is tangent to S1 in a (perhaps smaller)
submanifold S2. Again, the chosen solution may not be tangent to S2, so we need to
iterate this last step until no further constraints crop up.

We will apply this method in the case of Lagrangians linear in velocities—first dis-
cussed in [19]—such as the model (15) that we are studying here. Such Lagrangians
L ∈ C∞(TQ) are fully characterized by a function h ∈ C∞(Q) and a 1-form µ ∈ Ω1(Q).
They can be written as

L = µ̂ + π∗Qh , (35)
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where µ̂(q, v) := µq(v) ∈ C∞(TQ). As per the algorithm, the points x ∈ TQ where (33) can
be solved are determined by the constraints

ıX(dEL)x = 0, ∀X ∈ ker (ωL)x . (36)

It can be shown that for vertical vectors

ıXdEL = 0, ∀X ∈ V(TQ) ∩ ker ωL , (37)

so that Equation (36) actually only imposes conditions on the horizontal vectors. In the
linear-in-velocities case, it is easy to derive the relations

ıVdL = µ̂ ,

dEL = −π∗Qdh ,

dJdπ∗Qh = 0 ,

ddJ µ̂ = π∗Qdµ ,

ωL = −π∗Qdµ .

Since both dEL and ωL are pullbacks of objects in Q and vertical vectors do not
generate additional restrictions because of (37), we can write the condition (36) in Q as

ıX(dh)x = 0 , ∀X ∈ ker (dµ)x , (38)

with x ∈ Q and X ∈ X(Q). Note that this means that the dynamical constraints are
functions in Q and do not involve the velocities. The next step consists in finding the points
where (34) holds, which are determined by

ıXıY(ωL)x = 0 , ∀X such that JX ∈ Vx(TQ) ∩ (ker ωL)x , J(Z+Y) = V .

The condition for X is trivial: a vector W ∈ ker ωL is such that Wq ∈ ker dµ, but since
W = JX, this means that Wq = 0, hence all vectors in X(TQ) satisfy this condition. So
we just have to demand that there exists a vector Y ∈ ker dµ such that Z+Y satisfies the
second-order condition, or equivalently, that at x ∈ TQ there exists

Yq = v− Zq , and Yq ∈ ker (dµ)x . (39)

Using of the explicit form of (35) to rewrite the Hamiltonian Equation (33) one con-
cludes that the Lagrangian vector field is given by

(DqDvµ̂− DvDqµ̂) · Zq = Dqh ,

Zv arbitrary .

The main result of this analysis is precisely that, when the Lagrangian is linear in
the velocities, these do not play any role in either the constraints or the evolution and
everything happens in the base space Q, making the system particularly easy to analyze.

Now turning to the particular case of the Lagrangian (15) we have

µ̂ =
∫

Σ

(
vi

A ∧ (α5Dei + 2α3Fi + α1εijkej ∧ ek) + vi
e ∧ (2α2Dei + α5Fi + α4εilmel ∧ em)

)
,

h =
∫

Σ

(
− DAi

t ∧ (α5Dei + 2α3Fi + α1εijkej ∧ ek) + 2εijkei
t ∧ ej ∧ (α4Dek + α1Fk)+

+ (εi
jk Aj

te
k − Dei

t) ∧ (2α2Dei + α5Fi + α4εilmel ∧ em)
)

,



Symmetry 2021, 13, 1430 13 of 24

so that the constraints (38) are

εijkDej ∧ ek = 0 ,

εijkej ∧ Fk = 0 ,

∗∂

(
α5Dei + 2α3Fi + α1εijkej ∧ ek

)
= 0 ,

∗∂

(
2α2Dei + α5Fi + α4εilmel ∧ em

)
= 0 ,

and the Lagrangian vector field is determined by

εijkZj
A ∧ ek = εijk

(
DAj

t ∧ ek + ej
tF

k
)

,

εijkZj
e ∧ ek = εijkD(ej

te
k)− Aj

tei ∧ ej ,

∗∂
(
2α2Zei + α5ZAi

)
= ∗∂

(
α5DAti − 2α4εijkej

te
k − 2α2

(
εijk Aj

te
k − Deti

))
,

∗∂
(
α5Zei + 2α3ZAi

)
= ∗∂

(
2α3DAti − 2α1εijkej

te
k − α5

(
εijk Aj

te
k − Deti

))
,

with Zet , ZAt , ZvA , Zve , ZvAt
, Zvet

arbitrary. Since ker dµ consists of the vectors with
YA = Ye = 0, (39) can only be satisfied in the points of TQ where

Zi
A = vi

A , Zi
e = vi

e .

The constraints and equations for the Lagrangian vector field are the same that we
obtained in Section 3.1 using the GNH algorithm. The only exception is the constraints
introduced by the second-order condition, which is an additional requirement in the
tangent bundle and does not appear in the cotangent bundle. The final tangency step will
be studied in Section 3.4.

3.3. The Field Equations Approach

A comparison of the field equations for the model that we are considering here
with the constraints obtained by using any of the previous approaches shows that they
are structurally identical, despite the fact that they are defined on manifolds of different
dimensions (the spacetime M and the spatial manifold Σ). This is not always the case as
attested, for instance, by the Einstein equations in metric variables and the constraints in
the ADM formulation. The reason for the nice behavior that we find in our example is easy
to understand: in the present case the fields are differential forms and the field equations
are written in terms of natural operations such as the exterior derivative and the exterior
differential. These operations interact in a very simple and natural way with pullbacks (in
particular, by ∗t ) and, hence, it is straightforward to obtain necessary conditions from the
field equations in the form of constraints. In the following we take advantage of this idea
to also include dynamics. The main steps of the procedure that we describe in this section
are the following:

• Pullback the field equations to Σt by using ∗t to obtain constraints. To this end it will
be useful to first define adapted fields by using the fact that M = [t1, t2]× Σ.

• Compute the interior product of the field equations with the vector field ∂t canonically
defined by the decomposition M = [t1, t2]× Σ in terms of the objects introduced in
the previous step. Then pull this back to Σt.

• Write the previous result in terms of time derivatives of the fields and introduce in
this way the vector fields that define the evolution of the system.

To begin with, recall that M = I × Σ, with I = [t1, t2], admits a foliation by the
hypersurfaces Σt and the inclusion t : Σ −→ M with t(Σ) = Σt. As usual, we will denote
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both the projection on the first argument and its elements by t. The vector field in M
tangent to the curves t 7→ (t, p) is denoted by ∂t and it satisfies

ı∂t dt = 1 , j∗t dt = 0 .

Note that a differential form α ∈ Ωp(M) can be adapted to the foliation by the decom-
position

α = dt ∧ αt + α ,

where αt := ı∂t α and α := ı∂t(dt ∧ α). We will call αt and α the adapted components of α.
Consider the family of functions S̃I : Q̃→ R with I an interval of R. They are actions

in some configuration space Q̃

S̃I(q̃) =
∫

I×Σ
L , (40)

where L is a top form in M which depends on the objects in Q̃. The action (10) is of this
form. One can also rewrite it as a function SI : P(Q)→ R defined on a space of curves in a
different configuration space Q by writing

SI(γ) =
∫

I
dt
∫

Σ
∗t i∂tL , (41)

where γ is constructed with the adapted fields ∗t ı∂t q̃, ∗t q̃ ∈ P(Q) for each of the configura-
tion variables q̃ in Q̃. The two formulations are equivalent and the critical points of (40) are
in one-to-one correspondence with stationary curves of (41).

It was shown by Nester [18] that the Euler–Lagrange equations can be written in the
invariant form

ıZddJ L− dEL = 0 , (42)

and that if γ ⊂ Q is a curve solution to the variational principle, the vector field Z along
γ̇ ⊂ TQ given by Zγ̇(t) = γ̈γ̇(t) := (γ̇γ(t), γ̈γ(t)) solves (42). Then, for each q̃ ∈ Q̃ which
is a critical point of (40) there is a curve γ in Q—which can be described in terms of the
adapted fields— such that Z = γ̈ solves the Euler–Lagrange equations. Notice that, by
construction, v = Zq; however, a vector field Z ∈ X(TQ) satisfying (42) will not generally
come from a curve γ corresponding to a solution of the Euler–Lagrange equations, because
the integral curve it generates may not be the canonical lift of a curve in Q. This is true
only if we additionally impose the second-order condition (34).

According to the previous discussion, if Ψ is an equation of motion produced by
variations, the equations

∗t Ψ = 0 ,

∗t ı∂t Ψ = 0 ,
(43)

give the solution to the symplectic Lagrangian Equation (33). Notice that (43) will require us
to impose the constraints on the points of Q and fix the velocities, which via the procedure
explained above are identified with the q components of the Lagrangian vector field. Notice
that, a priori the resulting vector field need not necessarily be tangent to the submanifold
defined by the constraints.

We will now apply this approach to the present problem. A simple way to do it is by
splitting every object in the equations in its adapted components, since then (43) become
trivial. We will (temporarily) denote the fields adapted to Σ with a bar to emphasize this
and make the computations more transparent.
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Let us define the adapted differential as dα = ı∂t(dt ∧ dα), which can only act on α
adapted to the foliation. Then, the exterior derivative decomposes as

dα = dt ∧ (L∂t α − dαt) + d α .

We can also define the covariant derivative on each leaf for αi adapted to the foliation as

Dαi = dαi + εi
jk Ajαk ,

and we will write F i = DAi the curvature of Σ.
As a first step, it is useful to have the decompositions of the covariant derivatives

Fi = DAi + dt ∧
(

vi
A − DAi

t

)
,

Dei = D e i + dt ∧
(

vi
e + εi

jk Aj
t e k − Dei

t

)
.

Notice that these expressions depend on the velocities. This is so because of the Lie
derivatives that appear in the decomposition of the exterior derivative (since the velocity is
precisely the derivative in t).

Using these ingredients, the equations of motion (11)–(14) decompose as

(α1 − α2)εijk e j ∧ Fk + dt ∧ (α1 − α2)εijk

(
ej

t Fk − e j ∧
(

vk
A − DAk

t

))
= 0 ,

(α1 − α2)εijkD e j ∧ e k + dt ∧ (α1 − α2)εijk

((
vj

e + ε
j
ab Aa

t e b − Dej
t

)
∧ e k − ej

tD e k
)
= 0 ,

∗∂

[
α5 F i + α4εi

jk e j ∧ e k + 2α2Dei +

+ dt ∧
(

α5

(
vi

A − DAi
t

)
+ 2α4εi

jkej
t e k + 2α2

(
vi

e + εi
jk Aj

t e k − Dei
t

))]
= 0 ,

∗∂

[
2α3 F i + α1εi

jk e j ∧ e k + α5Dei +

+ dt ∧
(

2α3

(
vi

A − DAi
t

)
+ 2α1εi

jkej
t e k
)
+ α5

(
vi

e + εi
jk Aj

t e k − Dei
t

)]
= 0 .

For simplicity, we will drop the bars henceforth. Since Z satisfies the second-order
condition, we can identify the velocities with the corresponding components of the evolu-
tion vector field. Now, extracting both the tangential and transverse components of the
equations of motion we obtain the following set of equations:

(α1 − α2)εijkej ∧ Fk = 0 ,

(α1 − α2)εijk

(
ej

tF
k − ej ∧

(
Zk

A − DAk
t

))
= 0 ,

(α1 − α2)εijkDej ∧ ek = 0 ,

(α1 − α2)εijk

((
Zk

e + ε
j
ab Aa

t eb − Dej
t

)
∧ ek − ej

tDek
)
= 0 ,

∗∂

[
α5Fi + α4εi

jkej ∧ ek + 2α2Dei
]
= 0 ,

∗∂

[
α5

(
Zi

A − DAi
t

)
+ 2α4εi

jkej
te

k + 2α2

(
Zi

e + εi
jk Aj

te
k − Dei

t

)]
= 0 ,

∗∂

[
2α3Fi + α1εi

jkej ∧ ek + α5Dei
]
= 0 ,

∗∂

[
2α3

(
Zi

A − DAi
t

)
+ 2α1εi

jkej
te

k + α5

(
Zi

e + εi
jk Aj

te
k − Dei

t

)]
= 0 .

Some of them, which come from the tangent part of the equations, are conditions
involving only the points in Q: these are constraints. The remaining ones, coming from the
transverse part of the equations, involve the components of the vector field Z. These define
the evolution of the system. As can be readily seen, both the constraints and the evolution
equations are precisely the same ones that we have found with the other two methods.
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3.4. Final Consistency Analysis

Here we give a detailed account and extend the analysis presented in [9]. As we have
shown the three different methods discussed above give the same result in the form of
constraints and equations for the components of the Hamiltonian vector field Z associated
both with the bulk and the boundary. From this point on the consistency analysis that will
eventually lead to the final Hamiltonian formulation for the model considered here is the
same for the three cases. The main issue to be checked is the tangency of the Hamiltonian
vector field Z to the submanifold defined by all the constraints.

The equations for Z can be solved in a straightforward way without introducing new
secondary constraints and will depend only on the configuration variables [9]. The bulk
components can be easily obtained by solving Equations (25) and (26) (see [9,21]). To this
end it is convenient to rewrite them in the form

εijkej ∧ (Zk
A − DAk

t ) = εijkej
tF

k , (44)

εijkej ∧ (Zk
e − Dek

t + εk
lm Al

te
m) = εijkej

tDek . (45)

The solutions are

Zi
A = DAi

t + ε jkl

(
ei ∧ Fj

ω

)
ek

t el , (46)

Zi
e = Dei

t − εi
lm Al

te
m + ε jkl

(
ei ∧ Dej

ω

)
ek

t el , (47)

where ω = 1
3! εijkei ∧ ej ∧ ek is a volume form over Σ because we work with non-degenerate

frames. In the following we will use the notation

f ij :=
1
2

(
ej ∧ Fi

ω

)
, tij :=

1
2

(
ej ∧ Dei

ω

)
.

From the bulk Equations (11) and (12) it follows that f , t are symmetric matrices in
the internal indices. In terms of these objects we have

Fi = f ijε jklek ∧ el , Dei = tijε jklek ∧ el ,

and we can write (46) and (47) in the form

Zi
A = DAi

t + 2ε jkl f jiek
t el , (48)

Zi
e = Dei

t − εi
lm Al

te
m + 2ε jkltjiek

t el , (49)

whose interpretation is discussed in detail in [9]. Here we just recall that introducing the
vector field ρ ∈ X(Σ) defined in the whole of Σ including its boundary by

ıρei = ei
t ,

Equations (48) and (49) can be rewritten in the form

Zi
A = £ρ Ai + D(Ai

t − ıρ Ai) , (50)

Zi
e = £ρei − εi

jk(Aj
t − ıρ Aj)ek . (51)

The interpretation of (50) and (51) is well-known: the bulk dynamics corresponds to
diffeomeorphisms and “internal” rotations defined by the arbitrary objects ρ and Ai

t− ıρ Ai.
In particular, the fact that some of these transformations are diffeomorphisms suggests that
it will be convenient to restrict our model to a configuration space such that the vector field
ρ is tangent to the boundary. As we will see this can be achieved by imposing an extra
boundary condition on the fields.
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The boundary components of Z are even simpler to find as they are determined by
the linear system of equations with constant coefficients (27) and (28). As we did above, it
is convenient to rewrite these equations in the form

2α3 ∗∂(Zi
A − DAi

t) + α5 ∗∂(Zi
e − Dei

t + εi
jk Aj

te
j) = −2α1εi

jk ∗∂(e
j
te

k) , (52)

α5 ∗∂(Zi
A − DAi

t) + 2α2 ∗∂(Zi
e − Dei

t + εi
jk Aj

te
j) = −2α4εi

jk ∗∂(e
j
te

k) , (53)

For a generic choice of α1, α2, α3, α4, and α5 (i.e., when α2
5 − 4α2α3 6= 0) the solutions to

these equations are

∗∂ Zi
A = ∗∂(DAi

t) + 2α∗∂(ε
i
jkej

te
k) , (54)

∗∂ Zi
e = ∗∂(Dei

t − εi
jk Aj

te
k) + 2β∗∂(ε

i
jkej

te
k) , (55)

where
α :=

2α1α2 − α4α5

α2
5 − 4α2α3

, β :=
2α3α4 − α1α5

α2
5 − 4α2α3

.

By continuity the pullbacks of (46) and (47) (which are well defined because the
components of the Hamiltonian vector field are differential forms) to the boundary must
coincide with the values obtained in (54) and (55). This condition leads to the following
additional set of boundary constraints:

∗∂

((
f ji − αδji)ε jklek

t el
)
= 0 , (56)

∗∂

((
tji − βδji)ε jklek

t el
)
= 0 . (57)

which can be generically written in the equivalent form

∗∂

((
α5tji + 2α3 f ji + α1δji)ε jklek

t el
)
= 0 , (58)

∗∂

((
2α2tji + α5 f ji + α4δji)ε jklek

t el
)
= 0 . (59)

At this point it is convenient to rewrite (31) and (32) in terms of f ij and tij. These are

∗∂

((
α5tij + 2α3 f ij + α1δij)ε jklek ∧ el

)
= 0 , (60)

∗∂

((
2α2tij + α5 f ij + α4δij)ε jklek ∧ el

)
= 0 . (61)

Before we continue, there is a relatively fine point that must be considered with
detail. This concerns the possible extension of the bulk constraints to the boundary. The
complete specification of the configuration space of the system requires a discussion of
the smoothness conditions that the fields must satisfy. A simple way to proceed would
be to demand as much regularity as needed to guarantee that all the expressions that
appear in our analysis (for instance, the constraints) are well defined. This is in line with
the traditional attitude in physics; however, in the presence of boundaries this has some
consequences that have to be acknowledged and taken into account. Consider the bulk
constraints. A relevant question regarding them is: Should they also hold at ∂Σ? In fact,
intuitively one would expect the answer to be positive as a consequence of a simple and
natural continuity requirement. The answer actually depends on the regularity conditions
that we impose on the fields. For instance, let us take Σ with a regular boundary such that
it can be submersed in an open manifold Σ̃. If we demand that all the basic fields—i.e.,
the variables defining our configuration space (Ai

t, Ai, ei
t, ei)—admit smooth extensions

to Σ̃ then, if they satisfy the constraints in the interior of Σ they will also do so at ∂Σ
because Fi and Dei will be C∞(Σ̃) and, hence, the constraints themselves when evaluated
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at these field configurations will also be smooth. On the other hand it is conceivable that
no inconsistencies arise if the bulk constraints are not required to hold at the boundary.
It may also happen that demanding consistency leads to conditions that are essentially
equivalent to the extension property. In the following we will work under the hypothesis
that the bulk constraints hold at the boundary.

The tangency conditions for the bulk constraints (29) and (30) are obtained by com-
puting their directional derivatives along the field Z. These are:

εijkDZj
e ∧ ek + εijkεjlmZAlem ∧ ek + εijkDej ∧ Zk

e = 0 , (62)

εijkDZj
A ∧ ek + εijkFj ∧ Zk

e = 0 . (63)

It is possible to directly check that these equations hold for the values of Zi
A and Zi

e
given in (46) and (47). A better strategy is to consider them together with (44) and (45). In
fact, by computing the covariant differential D of these two conditions we find

εijkDej ∧ Zk
A + εijkDZj

A ∧ ek + εijkFj ∧ Dek
t − Ati(Fj ∧ ej) + Fi ∧ (Atjej) (64)

+ εijkDAj
t ∧ Dek = 0 ,

εijkDej ∧ Zk
e − εijkDej ∧ Dek

t + Dej ∧ (Atiej)− Dej ∧ (Atjei) + εijkDZj
e ∧ ek (65)

+ (ej ∧ Fi)etj − (ej ∧ Fj)eti − ej ∧ D(Atiej) + ej ∧ D(Atjei)− εijkDei
t ∧ Dek

− ej
t(Fi ∧ ej) + ej

t(Fj ∧ ei) = 0 .

By subtracting (62) and (64) and using (46) and (45) we obtain

Atj(Fi ∧ ej − Fj ∧ ei) + ωεijkεpqreq
t ( f kptrj − tkp f rj) ,

which can be seen to vanish by expanding εijkεpqr in terms of Kronecker deltas and using
the secondary constraints in the form f ij = f ji, tij = tji. An analogous computation
involving (63) and (65) shows that the second tangency condition in the bulk also holds.

The tangency conditions for the boundary constraints (31) and (32) are

∗∂(α5DZi
e + α5εi

jkZj
A ∧ ek + 2α3DZi

A + 2α1εijkZj
e ∧ ek) = 0 , (66)

∗∂(2α2DZi
e + 2α2εi

jkZj
A ∧ ek + α5DZi

A + 2α4εijkZj
e ∧ ek) = 0 . (67)

As we did before, instead of directly plugging the solutions for ∗∂ Zi
A and ∗∂ Zi

e into
(54) and (55), it is better to compute the covariant differential D of (27) and (28) (taking
advantage of the fact that the pullback behaves well with respect to the exterior differential
and the exterior product) to obtain

2α3 ∗∂(DZi
A− εi

jkFj Ak
t )+α5 ∗∂

(
DZi

e− εi
jkFjek

t + εi
jkD(Aj

te
k)
)
=−2α1εi

jk ∗∂
(

D(ej
te

k)
)

, (68)

α5 ∗∂(DZi
A− εi

jkFj Ak
t )+2α2 ∗∂

(
DZi

e− εi
jkFjek

t + εi
jkD(Aj

te
k)
)
=−2α4εi

jk ∗∂
(

D(ej
te

k)
)

. (69)

Now, combining (68) and (66) together with the pullback to the boundary of (25) and
(26) we immediately obtain

∗∂

(
(α5εi

jkDej + 2α3εi
jkFj − 2α1ei ∧ ek)Ak

t

)
= 0 .

Proceeding in an analogous way with (69) and (67) we find

∗∂

(
(2α2εi

jkDej + α5εi
jkFj − 2α4ei ∧ ek)Ak

t

)
= 0 .
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As we can see these two expressions vanish as a consequence of the boundary con-
straints (31) and (32).

We now discuss the constraints (58)–(61). Note that if ρ is tangent to the boundary,
we can swap the interior product with the pullback. More precisely, denoting by ρ the
restriction of ρ to the boundary,

∗∂ ıρθ = ıρ ∗∂ θ .

If this happens, then

ıρ ∗∂

(
εijkej ∧ ek

)
= ∗∂ ıρ

(
εijkej ∧ ek

)
= 2∗∂

(
εijkej

t ∧ ek
)

.

This implies that the tangency of ρ to the boundary and (60) and (61) guarantee that
the constraints (58) and (59) are satisfied.

We end this section by showing that the condition that ρ be tangent to ∂Σ can be
expressed in the form

∗∂(εijkei
te

j ∧ ek) = 0 , (70)

and checking the tangency of the vector field Z on the constraint submanifold of M0 when
this new condition is added.

On one hand we have (remember that ∂Σ has dimension 2)

0 = ∗∂(εijkei ∧ ej ∧ ek)⇒ ıρ ∗∂(εijkei ∧ ej ∧ ek) = 0⇒ ∗∂(εijkei
te

j ∧ ek) = 0 .

Conversely, Let us suppose that ∗∂(εijkei
te

j ∧ ek) = 0, then we have that ∗∂
(
ıρ(εijkei ∧

ej ∧ ek)
)
= 0. Let X, Y ∈ X(Σ) be such that they are tangent to ∂Σ. Let us call X and Y their

restrictions to ∂Σ. We have now ıXıY ∗∂(ıρω) = 0, but this is the same as 0 = ∗∂(ıXıYıρω) =

(ıXıYıρω)|∂Σ. As ω is a volume form this tells us that X, Y and ρ are linearly dependent
on ∂Σ and, hence, ρ is tangent to the boundary.

Finally let us look at the tangency condition for (70). Computing its Lie derivative
along Z we find

∗∂(εijkZi
ete

j ∧ ek + 2εijkei
tZ

j
e ∧ ek) = 0 .

As the first term is proportional to viZi
et (vi is constructed in the first lemma proved in

Appendix A) and vi 6= 0 this equation can always be solved for Zi
et, which guarantees the

consistency of the tangency condition embodied by (70).

Remark 1. As discussed, the consistency of the model depends on the vector field ρ being tangent
to the boundary ∂Σ; however, it is not necessary to impose this condition by hand. Given the
constraints (58)–(61), the condition (70) is automatically satisfied. To see this, write

Ci = θijε jklek ∧ el ,

where θij is either α5tij + 2α3 f ij + α1δij or 2α2tij + α5 f ij + α4δij so that

∗∂Ci = 0 , ∗∂ iρCi = 0 ,

are equivalent to the constraints (60), (61) and (58), (59), respectively. Since Ci is a 2-form whose
pullback to the boundary vanishes, it can be written in a neighborhood of ∂Σ as Ci = C̃i ∧ n, where
n is the normal to the boundary and C̃i is such that it depends on ei, it is non-zero since ei is a
non-degenerate triad, and its pullback does not vanish; however, then,

∗∂ iρCi = −∗∂ iρn ∗∂ C̃i ,
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so that if (58) and (59) are satisfied, necessarily ∗∂ iρn = 0, hence ρ is tangent to ∂Σ. This means
that it is not necessary to impose this as an independent condition as it is built into the model to
begin with.

Remark 2. We assumed all the fields to smoothly extend into the boundary; however, one might
wonder in which way does relaxing this assumption affect the results. By using a similar argument
to the one in the previous remark, it can be seen how even in this case, the model still enforces ρ to
be tangent to the boundary.

Remark 3. Consider ei ∈ Ω1(M) the part of ei tangent to each leaf Σ and choose the volume form
ω = εijkdt ∧ ei ∧ ej ∧ ek. Since

εijkei ∧ ej ∧ ek = εijkei ∧ ej ∧ ek + 3εijkei
tdt ∧ ej ∧ ek ,

one easily computes

ıuei =

(
ei ∧ ε jkle

j ∧ ek ∧ el

ω

)
=

(
ei ∧ ε jkle

j ∧ ek ∧ el

ω

)
+ 3

 ei ∧ ε jkle
j
tdt ∧ ek ∧ el

ω


=− 1

2
ε jklε

ikl ej
tω = −ei

t = −ρi ,

ıudt =

(
dt ∧ ε jkle

j ∧ ek ∧ el

ω

)
=

(
dt ∧ ε jkle

j ∧ ek ∧ el

ω

)
+ 3

dt ∧ ε jkle
j
tdt ∧ ek ∧ el

ω


=1 .

Hence we can decompose u = ∂t − ρ. Of course, u is a vector density and had we
chosen a different volume form to define it, we would have obtained the same result up to
a product with a non-vanishing function. Since we are only interested in its direction, this
suffices. We know that ρ is tangent to the boundary ∂Σ, in particular it is also tangent to
the boundary ∂M. On the other hand, ∂t is tangent to ∂M by construction. Hence, u is also
tangent to ∂M (see Figure 2).

∂L M

∂t
u

ρ

Figure 2. Tangency of the vector fields ∂t, u and ρ to the boundary.

4. Conclusions and Comments

In this paper we have discussed three different methods to obtain the Hamiltonian
formulation for the generalized Husain–Kuchař–Pontryagin action in a four-dimensional
manifold with boundary. A relevant feature of our analysis is that we have been able to deal
with the boundary rigorously and in doing so, we have arrived at some key insights into
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the model. By appropriately choosing the coupling constants αi in the bulk Lagrangian, it
is possible to obtain, as boundary contributions, the three-dimensional Euclidean–Einstein
equations with an arbitrary cosmological constant.

While boundaries may introduce new terms in the Lagrangian or Hamiltonian and
require new constraints at the boundary, their effect is more profound than that. In
particular, boundaries shape the configuration space and greatly affect the integrabil-
ity conditions of the theory as discussed at the beginning of Section 3 and throughout
Section 3.4. Note that integrability can be studied in the methods we have used, while in
the covariant phase space treatments such as [32–36] (see also [37,38] for three-dimensional
general relativity), which are focused on conserved charges and symmetries, integrability
issues are not regarded.

Although all of the approaches used in Section 3 to find the dynamics have produced
equivalent results, it is interesting to compare them.

First, notice that all the methods give the same results because the Lagrangian is linear
in the velocities. An interesting consequence of this is the fact that the dynamics is fully
contained in the configuration space Q in the sense that, for instance, canonical momenta
play no role. As a result, the formulations in TQ and T∗Q which share their base space
are equivalent.

Perhaps the most prominent difference between the approaches discussed here is the
fact that the analysis presented in Section 3.1 is made in the cotangent space T∗Q while the
treatment in Sections 3.2 and 3.3 uses the tangent space TQ. Although they are equivalent,
one might prefer one formulation over the others depending on the desired application,
for instance, working in T∗Q could be useful for quantization.

It is important to point out that if one chooses to work in TQ, one must additionally
impose the second-order condition (34) for the solutions to be equivalent to those coming
from the Euler–Lagrange equations. In T∗Q such condition is not needed.

The geometric constraint algorithm (on which Sections 3.1 and 3.2 are both based)
arose as a geometrized version of Dirac’s method and is an improvement of it in the
sense that it replaces Poisson bracket computations (that can be tricky, for instance if the
fields are defined in a manifold with boundary) with geometric considerations. The field
equations approach used in Section 3.3 manages to bypass many of the computations of the
geometric constraint algorithm making it the fastest and least computationally involved of
the three. In some known examples (for instance for general relativity written in terms of
the Hilbert–Palatini or Holst actions) this is, by far, the best way to arrive at the Hamiltonian
formulation [21,39]. This is so because, in this case, it is crucially possible to simplify some
of the field equations before applying the procedure that we have used here.
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Appendix A. Some Useful Mathematical Results

Lemma A1. Let Σ be a three-dimensional manifold with parallelizable boundary ∂Σ. If εijkei ∧
ej ∧ ek is a volume form in Σ (including at ∂Σ) then there exist vi ∈ C∞(∂Σ) with δijvivj = 1
such that ∗∂(εijkej ∧ ek) = vi · area where area is a volume form in ∂Σ.
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Proof. Let us take three everywhere linearly independent vector fields X, Y, Z ∈ X(Σ) such
that X and Y are tangent to the boundary and always different from zero there (remember
that ∂Σ is parallelizable) and Z everywhere transverse to the boundary. At every point of
∂Σ we have then

∗∂
(
ıZıYıX(εijkei ∧ ej ∧ ek)

)
6= 0 .

Now this implies
εijk ∗∂(ıZei)∗∂(ıXej)∗∂(ıYek) 6= 0 ,

but
εijk ∗∂(ıXej)∗∂(ıYek) = εijkıX̃ıỸ(∗∂ ej ∧ ∗∂ ek) ,

where X̃ and Ỹ are vector the fields at the boundary obtained by restricting X and Y. Hence
we conclude that εijk ∗∂(e

j ∧ ek) is different from zero everywhere on ∂Σ. This means that,
for a given volume form area we have

εijk ∗∂(e
j ∧ ek) =

(
εijk ∗∂(e

j ∧ ek)

area

)
area ,

with

(
εijk ∗∂(e

j ∧ ek)

area

)
everywhere different from zero. By normalizing it we obtain the

desired vi, which is unique modulo a sign.

Lemma A2. Let M be a four-dimensional parallelizable manifold, ei ∈ Ω1(M), with i = 1, 2, 3,
be linearly independent 1-forms and Si ∈ Ω1(M) be another three 1-forms. Then εi

jkej ∧ Sk = 0

implies Si = 0.

Proof. Let us complete ei with a 1-form e0 linearly independent with the ei. As M is
orientable εijkei ∧ ej ∧ ek ∧ e0 will be a volume form. Let us expand now Si = Si

je
j + Si

0e0.

The condition εi
jkej ∧ Sk = 0 then becomes

εi
jkej ∧ (Sk

le
l + Sk

0e0) = 0 . (A1)

Let u ∈ X(M) be a vector field such that e0(u) 6= 0 and ei(u) = 0, then, by taking the
interior product with u we find

Sk
0εi

jkej = 0⇒ Sk
0εi

jk = 0⇒ Sk
0 = 0 .

Further, by taking the exterior product with em ∧ e0 and using the fact that εijkei ∧ ej ∧
ek ∧ e0 is a volume form we immediately obtain

Sk
lε

i
jkεjlm = 0⇒ δimS− Smi = 0⇒ Smi = 0 .

Hence we conclude that Si = 0.
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