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Abstract: There has been a growing awareness of deep relations between software and 
knowledge. Software, from an efficiency oriented way to program computing machines, 
gradually converged to human oriented Runnable Knowledge. Apparently this has happened 
unintentionally, but knowledge is not incidental to software. The basic thesis: runnable 
knowledge is the essence of abstract software. A knowledge distillation procedure is offered as 
a constructive feasibility proof of the thesis.  A formal basis is given for these notions. 
Runnable knowledge is substantiated in the association of semantic structural models (like 
ontologies) with formal behavioral models (like UML statecharts). Meaning functions are 
defined for ontologies in terms of concept densities. Examples are provided to concretely 
clarify the meaning and implications of knowledge runnability. The paper concludes with the 
runnable knowledge convergence point: SKYWare, a new term designating the domain in 
which content meaning is completely independent of any underlying machine. 
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1 The Brief Fortuitous History: Convergence of Software and 
Knowledge  

Software was born as a very technical discipline to program a general purpose 
computing machine, and its main concern was efficiency. By assimilating concepts 
such as abstraction, encapsulation, persistence, ownership, economical value, etc., it 
gradually moved away from the machines that it was supposed to serve, starting to be 
relevant to other non-computing oriented stakeholders. Similarities and relations to 
Knowledge became striking. Since its inception, after the Second World War, 
Software shifted from a linguistic-syntactic-imperative viewpoint containing variables 
and simple commands, to a composite-semantic-descriptive viewpoint containing 
sophisticated objects and complex constructs in which semantics has a central role, as 
is typical of Knowledge. Something much deeper than expected has happened.  
This evolution is shortly reviewed in this historical introduction, highlighting turning 
points of importance. The central claim of this introduction is that convergence to 
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knowledge has been an unconscious process only guided by pragmatic purposes – e.g. 
ease of development and maintainability. 

1.1 Pre-History: The Emergence of Software 

Software can be first recognized in association with computing machines. Such are 
the symbols written and read in the Turing machine's tape. Such is the set of 
commands put in the von Neumann computer's memory before the machine starts 
running, for efficiency reasons. 

1.2 Classical Antiquity: The struggle towards abstraction 

Programming languages enter the stage. Their proliferation caused interesting twists. 
Some languages intended to specialize in mathematical calculation, like FORTRAN, 
or to fit business oriented needs as COBOL.  Others were associated with the 
ambitious goals of Artificial Intelligence (AI). With the strong AI hypothesis, 
machines began to lose importance, as intelligence could be common to machines, 
humans and higher animals. LISP, a functional language, gave up efficiency as a main 
goal, to enable a program to reason about programs themselves. The strict separation 
of commands from data became blurred. Logical languages, such as PROLOG, 
showed that it is possible to substitute commands – the imperative way – by 
assertions – the descriptive way. Another step, this time towards structure, was taken 
by escaping the chaotic-spaghetti vision of programming. With the emergence of 
object-oriented languages, around SIMULA, it became clear the efficiency trade-off 
for abstraction and a better "understanding" of software. 

1.3 Middle Ages: Software Engineering and Reuse 

At a certain stage of this brief history, engineers began to understand that it is a waste 
of efforts to rewrite software again and again with no process and control, still in 
terms of efficiency. The very concept of Software as an independent field of 
technology and engineering began to take form. But it took some time for those ideas 
to mature. 

1.4 Renaissance: Model Transformations 

The practical application of Software (SW) Reuse forced the focus on standardization 
and formalization.  During this golden period, the SW Reuse community developed 
the concept of Domain Engineering, the Product Lines (PL) approach, software 
development with Frameworks or Generators, Components Based Software 
Engineering (CBSE) and the important concept of SW Asset as an economic resource. 
Software filled its backpack with metric formalizations, process management, quality 
and cost estimation. Formalization led to great advances in representation, 
understanding, and differentiation from hardware: diagrams with abstract 
representation of software laid the grounds of one of the most important steps towards 
Knowledge: the Unified Modeling Language (UML) and its specializations (e.g. 
SysML). 
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Recent approaches to capture reality based on model transformations, MDE (Model 
Driven Engineering) /MDA /MDD were a further step towards software as the way to 
"program" knowledge within computable machines. 

1.5 Industrial Revolution: Knowledge Management and Engineering 

The software history's industrial revolution was presumably attempted in Japan, when 
trying to understand the success of the Japanese manufacturing companies at the time. 
Knowledge management appeared as a discipline whose main goal is to understand, 
control and manage knowledge from the economic point of view, i.e. an asset with 
strategic value for an organization. 

Knowledge Engineering, initially coupled with AI to differentiate semantic 
structures from data/information, was transformed with due importance paid to 
knowledge management and information retrieval. It evolved to support more 
complex information/knowledge meta- models, familiar to software engineers. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

These perceptions, clarified the vision of Knowledge for the field: a semantic 
representation, with a clear value to a variety of stakeholders, whether humans or 
machines, see Figure 1. 
 

Software

Abstraction 
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Figure 1: The Software Ziggurat – The Software Ziggurat – Software is the medium to 
distil knowledge from raw data. Software is itself also pure knowledge, in its upper 
abstraction levels. This figure shows the gradual increase of software abstraction 
levels along the non-linear time axis, typical of creative outbursts. 
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1.6 Modernity: Software-Knowledge Convergence 

One has innumerable overlapping cases between Software and Knowledge. Here are 
just a few examples: 
 

a. Software requirements' elicitation – translation of informal requirements to 
software specification is a case of concept recognition problem; 

b. Software model checking – an industrial application technique, uses AI’s 
temporal logics; 

c. Software (Knowledge) Representation  – a venerable Software Engineering 
problem on the pursue to standardize Analysis and Design; 

d. Software Reuse - Compose new software by domain modeling with 
knowledge schemas, or querying repositories by advanced IR algorithms; 

e. Web-Services comparison – web-services, as distributed software system 
components, are compared by means of their ontologies. 
 

The perception of Software/Knowledge similarities raised interest in the nature of 
these relations, and originated activities dedicated to Software and Knowledge 
(conferences, journals, handbooks, etc.). We think that time is ripe to substitute the 
"and" connective between the allegedly different fields, by a systematic treatment of 
their blend and relations. One finally explicitly asks the question: is this convergence 
of software and knowledge accidental? We believe not. 

2 Background 

This section provides a detailed timestamps and references to the software-knowledge 
historical convergence, summarized in the paper introduction. 

2.1 The Emergence of Software 

The software pre-history totally overlaps with computing machine pre-history, from 
the 1930's to the end of the Second World War. Names are so well-known – Turing 
and von Neumann – that there is no need of references. 

2.2 The struggle towards abstraction 

Programming languages proliferation lasted from the 1950's to the 1960's, to our 
days: cf. FORTRAN [Backus et al., 1957], COBOL [Hopper, 2012]. Artificial 
Intelligence (cf. the strong AI hypothesis [Penrose, 1989]) produced LISP [McCarthy, 
1960], and PROLOG [Colmerauer and Roussel, 1996]. Steps towards structure started 
with Dijkstra's [Dijkstra, 1979]. Object-oriented languages began around SIMULA 
[Dahl et al., 1968]. 

2.3 Software Engineering and Reuse 

As early (or late) as 1968, engineers understood that it is a waste of efforts to rewrite 
software from scratch [Mcilroy, 1969]  and with no process and control [Naur and 
Randell, 1969]. Software engineering began to take form. 
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2.4 Model Transformations 

During the late 1980’s to the early 1990’s, the SW Reuse community developed 
Domain Engineering [Neighbors, 1989],  and the product lines (PL) approach. 

Advances in representation, and differentiation from hardware include: Warnier & 
Orr diagrams, Jackson [Jackson, 1975]. Later on [Booch, 1994], [Rumbaugh, 1991], 
[Jacobson et al., 1992], [Martin, 1992] or [Harel, 1987], among others,  laid down  the 
grounds of  the Unified Modeling Language (UML) [Rumbaugh et al., 1999]. 

Software acquired metrics' formalizations [Basili and Freburger, 1981], process 
management [Humphrey, 1989], quality and cost estimation [Boehm, 1981], and 
formal initiatives (SEMAT [54]). Recent approaches to capture reality were based on 
model transformations [Bézivin, 2001]. 

2.5 Knowledge Management and Engineering 

The software industrial revolution was presumably attempted in the early 1990s in 
Japan [Nonaka and Takeuchi, 1995]. Knowledge Organization Systems (KOS) are 
well-studied [Baker et al., 2013]. Assorted models proposed  [Gómez-Pérez et al., 
2007]  by diverse disciplines, are taxonomies, glossaries, thesauri, topic maps, 
ontologies, SKOS (Simple Knowledge Organization System), UML [Rumbaugh et 
al., 1999] and RSHP [Llorens et al., 2004]. A KOS, a Knowledge Repository 
[Applegate, 2007], is a collaborative system for people to retrieve organizational 
knowledge assets. These systems act like Knowledge Management Systems (KMS) 
[Denning, 2001]. They use inference to generate new information, filling document 
sections, and displaying why/why-not reasons. 

2.6 Software-Knowledge Convergence 

Overlapping of Software-Knowledge concepts, and techniques are: a) model checking 
[Clarke et al., 1999]; b) Information (knowledge) Representation [Maron and Kuhns, 
1960]  [Salton et al., 1975] [Gruber, 1993] Robertson [48],  [Gómez-Pérez et al., 
2007] [Antunes et al., 2007] [Fraga, 2010]; c) Software Representation [Rumbaugh et 
al., 1999]; d) Software Reuse [Prieto-Díaz, 1991]; e) Web-Services comparison  
[Paolucci et al., 2002]. 

2.7 Consequences and Implications 

Software and Knowledge activities surge as conferences e.g. SEKE (Int. Conf. 
Software Engineering and Knowledge Engineering), journals e.g. IJSEKE (Int. 
Journal of Software Engineering and Knowledge Engineering), KAIS (Knowledge 
and Information Systems, an Int. Journal), Information Systems or handbooks 
[Haskins, 2011] to name a few. Aside a previous attempt to unify them [Llorens and 
Prieto-Díaz, 2003], time is ripe to delete the "and" connective – SKY (Int. Software 
Knowledge Workshop).  

Traceability [Leffingwell, 2002], for verification and validation, is essential to 
search abstract software in repositories (e.g. SSBSE-Int. Symposium Search Based 
Software Engineering), using knowledge retrieval algorithms, e.g. by interestingness 
[Exman, 2009]. Taxonomic/Ontological representations are ways to cope with 
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scalability [Morillo et al., 2006]. Barnes and Bollinger [Barnes and Bollinger, 1991] 
suggested the reuse of human problem solving ability. 

3 The Runnable Knowledge Thesis 

From this section onwards, we switch from an historic to a more formal constructive 
approach.  We shall argue that there are deep reasons to believe that Knowledge is the 
essence of Software. We start by formulating our basic thesis: 
 

Runnable Knowledge Thesis 
Any abstract software sub-system can be distilled into pure Runnable Knowledge. 
 

 
This is a thesis and not a theorem as artifacts of a certain kind – knowledge elements 
– impart meaning to artifacts of a different kind – abstract software.  
Software artifacts are syntactic constructs having a design nature. Assuming good 
practices of software design, implies that software has a purpose.  But, software may 
be mal-designed; software – e.g. classes – may be even devoid of meaning (i.e. just 
organization units). On the other hand, knowledge artifacts are a formal expression of 
meaning. The natural meaning one could assign to Runnable Knowledge in the above 
thesis is the purpose of the software from which it was distilled. 

Thus, the Runnable Knowledge Thesis is telling us that the purpose of a piece of 
software can be derivable from the abstract software itself (cf. traceability [Settimi et 
al., 2004] [Leffingwell, 2002]). We provide a proof of feasibility for this thesis in a 
constructive fashion. It is shown that given any software asset, there is a formal 
consistent procedure to distill a corresponding pure runnable knowledge. To this end, 
we first carefully characterize each term in the thesis. 

3.1 Abstract Software 

The most widespread form of software is a sub-system ( see e.g. INCOSE Handook 
[Haskins, 2011]) written in a high-level programming language, or its respective 
executable code. Abstract software is obtained from software by modeling it by 
means of a widely accepted modeling language. Without loss of generality, we take 
the standard UML (Unified Modeling Language) as our defining model. A UML 
model is a set of directed labeled graphs.  

Within UML one models structure and behavior  in separate. In a structure model 
– typically a class diagram – nodes represent classes, and edges represent 
relationships among classes. These relations are generic and are restricted to a few 
types only (basically inheritance, composition, aggregation and association). 

In a UML behavior model – we choose statecharts as the generic behavior model 
[21] – nodes represent states and edges stand for transitions between states. 
Statecharts are the behaviors assigned to software structure models. More formally, 
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abstract software is an ordered pair of {[class diagram],[statechart]}, which 
themselves are respectively an ordered quadruple and ordered pair of sets1: 

 
Abs_Software = [ [{C},{F},{V},{R}]  ,  [{S},{T}] (1) 

 
where C=Classes, F=Functions, V=Variables, R=Relationships, S=States and 
T=Transitions. 

3.2 Knowledge 

Knowledge is a discrete set of concepts formally characterized by directed labeled 
graphs. These may take a variety of equivalent forms. Without loss of generality, we 
choose ontologies as a standard knowledge representation. In ontologies, nodes 
represent concepts and edges stand for relationships among concepts.  

More in detail, the most common underlying conceptual models for ontologies 
representation (RDF from the W3C  consortium [Hayes, 2004], or others, like our 
own RSHP [Llorens et al., 2004]) are based on a subject-predicate-object paradigm. 
This paradigm can be simplified to Concept-relationship-Concept. 

Ontologies are analogous to UML structure models. One easily builds hierarchies 
upon both kinds of graphs. Exactly the same terms that appear as UML classes may 
appear as concepts (nodes) in ontologies. The important difference is that 
relationships within ontologies may be of any kind, thus may be much more specific 
than the restricted types in UML classes. 

3.3 Runnable Knowledge 

An entity is defined to be runnable abstractly if it has been associated with a 
behavioral model (a set of states and transitions – i.e. a statechart). Running in this 
broader sense means to make transitions among states along the time axis. Novel tools 
may be needed to actually run the entity, in contrast to plain executable software 
code.  

By the previous definitions, runnable knowledge can be seen as an ontology that 
has been associated with a statechart.  

Intuitively, since an ontology is analogous to a UML structure model, it lacks a 
behavior model in order to fully characterize an abstract software. The associated 
statechart provides the lacking behavior. More formally, runnable knowledge is an 
ordered quadruple of sets: 

 
Runnable_Knowledge = [ {C},{R},{S},{T}] (2) 

 
where C=Concepts, R=Relationships, S=States and T=Transitions. 

3.4 Distillation of Runnable Knowledge 

Distillation of runnable knowledge is a selection procedure of a consistent sub-set of 
terms – the concepts2 of relevance – and their respective relationships, starting from a 

                                                           
1 Although Objects are basic structural constituents in UML, their omission in our definition is not 
considered essential as they are mainly included for snapshot situation modeling purposes. 
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given abstract software entity3. The selected concepts' sub-set may be a proper sub-
set, for which the distillation is not strictly reversible4.  

3.5 Thesis Feasibility – A Constructive Procedure 

Having defined the thesis’ terms, we provide a constructive procedure serving as a 
feasibility proof. The procedure to distill runnable knowledge from abstract software 
is as follows: 

 
 

Runnable Knowledge Distillation Procedure 
 

1. Ontology Concepts – are extracted from the structural representation of 
software (class names, functions and/or variables, in UML); 

2. Ontology Relationships – are obtained from UML association labels (not from 
the association types), directly from inheritance (e.g. is-subtype-of) and 
composition types, or inferred from class functions and/or variables. 

3. States and Transitions – are directly obtained from the UML behavior model, 
of the respective classes; 

4. Ontology-Statechart association – sub-statecharts are associated with ontology 
concepts obtaining a whole runnable knowledge piece. 

 
 
The statechart is not just an arbitrarily juxtaposed behavior model for the 

runnable knowledge. The statechart indeed contains the runnable part of the 
knowledge, complementing the ontology. This procedure starts from abstract 
software, which is usually the case for software sub-system programs.  

Any other software assets, such as specifications, user guides, tests, etc., can be 
converted into a universal representation, using RDF [Hayes, 2004], RSHPs 
(relationships) [Llorens et al., 2004], or similar, as the basic entity. Thus, any software 
asset may be first transformed into a UML model, with subsequent application of the 
distillation procedure. 

The distillation procedure is seemingly simple. But it is far from trivial. For 
instance, since the number of UML classes and the number of ontology concepts is 
not necessarily one-to-one, additional considerations must be involved in the sub-set 
selection. 

3.6 Meaning Functions 

Knowledge conveys meaning. We define meaning functions, to obtain quantitative 
measures of knowledge, enabling precise comparisons of knowledge content. 

                                                                                                                                           
2  We take the liberty to directly assign meaningful terms, i.e. concepts, to class terms, assuming that 
classes were well designed. 
3  That belongs to the application domain. 
4 To allow recovery of the original abstract software one persists the complement of the selected sub-set. If 
the selected sub-set is the whole set, distillation is reversible. 
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We call Concept Density  ({C}{R}) of an ontology, any monotonic increasing 
function of the cardinalities of the sets of concepts and relationships in the respective 
ontology, normalized by a measure of the sub-system size. 

 
Definition 1 – Meaning Functions 
 
Meaning functions  are defined as inverse functions of the Concept Densities: 
 ( ) = 	 ( ). (3) 

 
Thus, meaning functions are monotonic decreasing functions of the cardinalities of 
sets of concepts and their relationships. The smaller the sets, the greater the value of 
the meaning function. In other words, the lesser the graph complexity, the greater the 
value of the meaning function. The intuition behind the definition is that meaning 
increases with better understanding, which corresponds to simplicity – one needs less 
concepts to describe a well-understood idea.  

Although the form of  is left unspecified, we assume that well-behaved meaning 
functions with the desirable monotonicity characteristics are sufficient for the 
purposes of this paper. 

An example of a function  is the normalized product of the number of concepts 
by the graph density of relationships [Diestel, 2012]. A more sophisticated example of 
 is a normalized function describing the time/space complexity of a knowledge 
computation over the ontology. 

3.7 The Monotonic Distillation Theorem 

The above definition is applied in the following theorem: 
 

Monotonic Distillation Theorem 
A meaning function value cannot decrease as a result of distillation of pure 
Runnable Knowledge out of abstract software. 
 

A proof outline is as follows. From the definition of meaning functions they are 
monotonic decreasing functions of sets of concepts and relationships. Since 
distillation involves selected sub-sets, these are either smaller or at most equal to the 
original set. 

The distillation procedure outcome is a meaning function that either increases or 
at least remains constant relative to the initial sets of concepts/relationships. 
Therefore, a higher level in the software hierarchy is indeed “more abstract than” a 
lower level. 

4 Knowledge Distillation: Examples 

In this section we provide concrete examples of runnable knowledge distillation, to 
illustrate the idea.  
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The first example – the Observer – is a well-established design pattern of 
classical software. Its software knowledge is distilled from the class diagram. 

The second example – the Stadium Wave – is a much higher level abstraction. It 
is described from the start by an ontology, with a partial distillation. 

The third example again uses the Wave to illustrate the transition to an UML 
diagram, needed for knowledge distillation from all kinds of software documents. 

4.1 Design Pattern: Observer 

The Observer is a well-known design pattern found in the GoF book [Gamma et al., 
1995]. Its purpose is to establish a one-to-many dependency, such that when one 
subject changes state, the many observers are notified and updated automatically. 

We analyze the generic class diagram in [Gamma et al., 1995] to extract the 
ontology concepts. It has four classes divided into two roles: subject and observer. 
Each role has an abstract and a concrete class. The abstract classes are concise 
expressions of the pattern purpose. The concrete class in each role, essentially allows 
implementation of specific functions of the application in which the pattern is 
embedded. The latter functions are irrelevant to the pattern purpose. Thus, we take 
only two concepts corresponding to the two roles. These are seen in the next Figure 2. 

 

 

Figure 2: The Observer Design Pattern Ontology – It characterizes the design pattern 
by two concepts "Subject" and "Observer" linked by one relationship "is-updated-by". 

Now we generate the respective statechart. The subject role is either waiting 
unchanged or has changed and must notify its observers. The observer role is either 
up-to-date or was notified of a change, and needs updating. The two roles exist and 
behave in parallel. Here we ignore transitions attaching/detaching observers from the 
subject list. Our statechart only refers to the dynamics of already attached observers. 

The statechart – see Figure 3 – is the juxtaposition of the two roles' sub-
statecharts. The pair of graphs "observer ontology & observer statechart" represent 
together the runnable knowledge of the Observer design pattern. 
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Figure 3: The Observer Design Pattern Statechart – It shows the states and 
transitions of the two roles "Subject" and "Observer", that exist and behave in 
parallel. Each role contains by itself two exclusive states. 

4.2 The Stadium Wave 

Imagine a stadium where people get up and sit down based on a signal given by a 
wave director. When successive groups of spectators briefly stand up and raise their 
arms, the result is a wave – like natural sea waves – of standing spectators traveling 
through the crowd, even though spectators only move vertically in their seats. 

This is a highly abstract example of pure runnable software. We use standard 
software representations, even though the description is solely in terms of the above 
natural language concepts. It is indeed natural to start from the Wave ontology. 

There is no need whatsoever to code it in a programming language in order to 
understand its runnable dynamics. 

4.2.1 The Wave Ontology 

The ontology has one class person with two sub-classes: Spectator (in the crowd) and 
Wave director. These sub-classes have different object properties as seen in Figure 4. 
These properties are represented as associations. 
 

 

Figure 4: Wave example participants in an Ontology. It includes two sub-classes of 
Person and their respective Object Properties. 
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4.2.2 The Wave Structure: Class Diagram 

The sub-classes Wave Director and Spectator (in the crowd) are seen as a class 
diagram in Figure 5. In addition to the object properties, pay attention to the move 
signal sent to the next person. 

 

Figure 5: UML class diagram – It has two classes: Wave Director and Spectator. 
Besides the referred functions it shows that each spectator after sitting down sends 
the move( ) signal to the next spectator instance. 

4.2.3 The Wave Behavior: Statechart 

The statechart of the Spectator in  Figure 6 is quite simple. It has two states: seated – 
the default state – and standing. The pair of graphs Person Ontology and Spectator 
Statechart – suitably complemented by a Wave Director statechart – represent 
together the Runnable Knowledge of the Wave. 
 

 

Figure 6: Statechart of the Spectator in the crowd. Such a person has two possible 
states: either seated or standing. The Seated state is marked as the default. While s/he 
stands up s/he also should raiseArms. If the person is standing it should sitDown after 
a short time, say after 2 seconds, and cause the next person to move. 

4.3 Generic Example at RSHP representation level  

Software knowledge does not consist only of UML models and programming 
language code. It also includes tests and all kinds of entities such as specifications and 
design documents at various levels. 
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It has been claimed that using basic knowledge conceptual models, like RDF or 
RSHP, one can represent in UML any kind of software entity [Llorens et al., 2004]. In 
this way, one can distill runnable knowledge from any entity. We now show such a 
concrete example using RSHPs to represent the Wave. Suppose we look at the 
Wikipedia article about Wave (audience) 5 as a typical users’ guide of the Wave. 
There one finds the text fragment:  

“The wave is … achieved in a packed stadium when successive groups of 
spectators briefly stand and raise their arms. Immediately upon stretching to full 
height, the spectator returns to the usual seated position.” 

One needs first to recognize and extract key concepts from the text, such as 
successive, spectator, stand, raise arms. To obtain the RSHP representation of 
successive spectators standing we take the following steps: 

 
a. An artifact Atext of type text is created with a first relationship (RSHP 1): 

Atext  = { (RSHP 1) } 
 

b. Each spectator is represented as a KE (Knowledge Element): 
<KESpectator> = A reference to term Spectator 
 

c. Finally, RSHP 1 keeps a relationship between two Spectator instances: 
RSHP 1 = { <KESpectator>, <Successor>, <KESpectator> } 

 
One could similarly obtain representations of the relationships <standUp>, 

<raiseArms> and <sitDown>. If the source artifact is an UML diagram itself, we 
would create a corresponding artifact Auml of type UML. The important point is that 
the same RSHPs would appear whether the source is textual or UML. Thus RSHP 
representations of different kinds of documents are mutually traceable. In other 
words, whatever the kind of the source document, it can be traced to an UML 
representation. Any kind of software document is thereby runnable. In the next 
section we deal with different modes of runnability, explaining the purpose of running 
a text documentation or any kind of document. 

5 Runnable Knowledge Modes 
In this section – still referring to the Wave – we probe deeper into the meaning of 
abstract software as Runnable Knowledge, asking two questions: 

a. Why is it runnable? Runnability is not an incidental property of software. 
Runnability is essential to meaning, as it increases understanding. 

b. Is the software actually abstract? It is abstract in the sense of total 
independence from the underlying machine.  
These two issues are argued below in three Runnable modes of Knowledge. 

5.1 Thought Experiment: The Wave in the Head 

The Ontology-Statechart association is the complete Runnable Knowledge for a given 
sub-system. For instance, for the Wave,  Figure 4 together with Figure 6 is the 
                                                           
5 http://en.wikipedia.org/wiki/Wave_(audience) 
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complete knowledge for a Spectator in the crowd. In order to better understand the 
Wave we perform a thought experiment: we run the Spectator in the crowd statechart 
(in Figure 6) in our head.  For each spectator instance we imagine that s/he 
standsUp() and raisesArms(), sitsDown() and finally moves() to the next spectator. 
This imaginary run of the Wave is depicted in the UML Objects' diagram in Figure 7. 
 

 

Figure 7: Wave Dynamics given by the UML Objects Diagram. One sees three 
instances of the Person, a Spectator in the crowd. The messages displayed for each 
person are: standup( ) and raiseArms( ), sitDown( ) and finally move( ) to the next 
person. 

The thought experiment is stopped once one reaches the feeling of grasping the wave. 
In Figure 7 we have stopped after 3 person instances.  

Runnability as a source of software understanding is a well-known characteristic 
of software development. This occurs while locally debugging short pieces of a large 
software system in a typical IDE (Integrated Development Environment). A more 
recent argument is the motivation behind agile development approaches. Again, in 
order to locally acquire pieces of understanding, one runs small chunks of an 
otherwise very large and difficult to comprehend system. However mysterious, the 
head in which we run the thought experiment, we have not programmed it to run the 
Wave, and the brain is certainly not a specialized Wave runner. The Wave in the head 
is indeed abstract. 

5.2 Watching a Wave Movie 

A second Runnable Knowledge mode is – instead of running the Wave in our head 
– just to watch a Wave movie, say in YouTube. A very good example of the Wave 
director managing a Wave in a stadium is seen in the movie found in the YouTube 
web-site6. Another example of the unfolding of a Wave in a stadium is seen in the 
YouTube movie7. One clearly sees the wave moving along the spectators' crowd. 
After a very short time of the Wave running in the movie one catches the Wave idea. 
Indeed, runnability increases understanding. Is the Wave movie actually abstract? 

                                                           
6  
Wave - Biggest Wave Ever: 
http://www.youtube.com/watch?v=H0K2dvB-7WY 
7 Rutgers Stadium Wave: http://www.youtube.com/watch?v=3NxLh-3DdaE 
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Although the YouTube application needs a machine to run, there is nothing in 
YouTube that makes it specific to any particular movie. Neither the machine, nor 
YouTube were developed with the Wave in mind. Engineers have clearly designed 
and manufactured both the machine and the YouTube application. We know for sure 
that the Wave is completely abstracted from the lower hierarchy levels. 

5.3 Simulation of a Wave 

A third Runnable Knowledge mode is a classical software simulation of a Wave. One 
could develop a program that simulates and displays a Wave with animated spectators 
in a Stadium scenery (see e.g. for a physics approach with simulations [Farkas et al., 
2003]). Running the animation facilitates understanding of the Wave nature, as the 
reader can see by himself by watching a visual simulation8. 

Since the animation runs upon a machine, is the Wave actually abstract?  
Again we are led to the same arguments as before. Good programming practices 

mean that we should not write an inflexible hardwired Wave code from scratch. We 
rather would use a generic event simulation program and embed in the generic 
program the abstract Wave represented by the ontology and respective statechart. 
Summarizing:  

a. Runnability clarifies and increases understanding of the concepts 
and relationships appearing in the Wave ontology and its statechart. 

b. The Wave is abstract since its concepts and relationships do not 
show up at all in any of the lower levels of the hierarchy, in any of the three 
Runnable Knowledge modes. 

6 Discussion, Conclusions and Future Work 

Beyond a formal basis and detailed techniques, SKYWare embodies the deep 
transformation from a machine-centered computing view into a human-centered 
vision. 

6.1 Software as Content 

If one asks people nowadays what is software?, the widely accepted response is a bag 
of content oriented systems – Google search, images, movies, Facebook-like social 
networks and smartphone applications. 

The elementary units of content are concepts and their relationships, meaningful 
for human users. Their meaning cannot be decomposed into lower level units, neither 
into bits, nor into any alphabet. Content units are rather composable and now 
perceived as runnable. 

Extrapolating from today, the SKYWare society will be populated by human-
centered, visible, sociable and collaborative knowledge artifacts. A recent example of 
this trend is the reversal of attitude toward robots, from purely functional, opaque and 
mechanistic systems to robots with a human appearance and sociable behavior. 

                                                           
8 Wave, Populating Stadium with Golaem Crowd, visual Wave simulation: 
http://www.youtube.com/watch?v=PG0AzQMKixc 
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6.2 Future Work: The MDE Tools 
MDE – Model Driven Engineering – has been stated as an important goal of software 
and systems engineering. It is easier in terms of efforts invested to develop and debug 
high level models, than lower level programs.  

Once one has the insight that high-level abstract software is Runnable Knowledge, 
one can profit from this perception in a pragmatic sense. MDE models are not just 
UML; they have an important knowledge component. 

Software engineers will need to develop a variety of novel integrated tools to 
make concrete the updated MDE. For instance, development tools smoothly 
integrating ontology manipulation like Protégé – as seen in the screen print in Figure 
8– with UML manipulation. 

 

 

Figure 8: The wave example – from Figure 4– represented as an Ontology using the 
Protégé 4.1 tool. The Person concept is a sub-type of Thing. Three person instances 
are also depicted. David has the Wave Director Role. Olivia and Mike are Spectators 
(in the crowd). 

We expect an evolution of current practices into a well-defined partition between 
knowledge software modelers, with a strong orientation to abstraction, in contrast to 
classical component developers and integrators. MDE implies that from the upper 
level Runnable Knowledge one will be able to automatically generate and regenerate 
software. The already observable evolution of current UML/SysML tools – to edit, 
generate and reverse engineer software – is expected to achieve the sophistication and 
reliability of compilers which translate from currently high-level languages to 
machine languages. Compact representations are more efficient in terms of storage 
and communication. It will be preferable to transmit compact runnable knowledge to 
other locations and generate locally the explicit lower level software. 
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6.3 Main Contribution: Runnable Knowledge 

The main contribution of this work: the essence of abstract software is Runnable 
Knowledge. Runnable Knowledge is first of all a kind of knowledge. It is SKYWare, 
the most compact expression of the contents of a whole software system, its purpose, 
its components. 

 

Figure 9: SKYWare – The full weight of the Software system is suspended from the 
floating SKYWare. Inspired by Magritte. 

Runnable Knowledge is indeed runnable, in two clear and distinct senses. It is 
itself runnable in the abstract by making transitions and changing states along the run. 
This abstract run is visualizable for better understanding, as was exemplified by the 
Wave. SKYWare is also runnable after conversion to classical lower level software by 
current and future MDE tools. In this sense, the full weight of the whole software 
system – as in Figure 9– is carried by the compact SKYWare. 
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