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Abstract 

A higher kinematic pair that converts rotary motion into helical motion is presented as an alternative to the screw joint (a lower 
kinematic pair). First, the existence of a rolling transmission pair for a rotary-to-helical motion conversion is proven. Then, the 
corresponding pair of rolling surfaces (pitch surfaces) and their relative position is defined for any set of kinematic transmission 
parameters. Some calculated examples are presented. A method for gear-tooth forming from the pitch surfaces using Boolean operations 
with a computer-aided design (CAD) program is proposed. Finally, applying this methodology, a pair of gears for rotary into helical 
transmission has been obtained using a 3D printer. The prototype presents negligible clearances and backlash, high reversibility, as well 
as continuous gearing without interference. The meshing equation for a simple generating surface is also provided. 
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1. Introduction

On rotary into helical transmission, the literature is very little, if any. In fact, helical motion is historically achieved by
any kind of combination of a linear actuator with a rotary actuator, or by a low order kinematic pair (screw joint), where 
the friction is not negligible, such as that described in the Thomas A. Edison’s phonograph design [1]. But the truth is that 
no published work on rotary into helical transmission by gears has been found by the authors. 

Actually, the motivation of this work comes from a patented mechanism “Dispositivo Automático para Biopsias 
Cutáneas (Automatic Device for Skin Biopsy)” [2] for generating helical motion with a single actuation. The performance 
of this device worsens to the extent that actual slipping occurs in the kinematic pair it is based on, and could be improved 
by the rotary-helical transmission presented in this work. 

A mechanism partly equivalent to that proposed in this manuscript is the patented “Adjustable Angle Helix Generator 
for Edge and Radial Relief Sharpening” [3]. In the opinion of the authors, the disadvantage of this mechanism is that it is 
based on a rather weak rotary-helical transmission kinematic pair, since it is provided by a point contact rolling between 
non-parallel cylinders. A similar mechanism, but having the gear transmission kinematic pair proposed it this paper, could 
lead considerably more thrust. 

The “spiral motor” [4]-[7] is an actuator that produces helical motion, but it is used primarily as a linear actuator (see 
[5] or [6], for example). However, in [7], a two degrees of freedom induction motor prototype with rotor helical motion,
“suitable for several industrial applications as grinders, augers, drilling and milling spindles, robotic arms and drives for
medical tools and prostheses”, is described. In this respect, the transmission mechanism proposed here shares the latter
applications, and it could also be used as a rotary-linear transmission. Additionally, new geometries such as those proposed
in this article could be considered in the design of linear actuators based on electromagnetic gears and/or helical
electromagnetic motors, which can provide a wide future line of research.

Gear mechanisms are commonly used to transform rotary motion into either rotary or linear motion. In rotary-to-
rotary-motion transmissions, where both axes are parallel or intersecting, it is easy to obtain the corresponding pair of 
rolling contact surfaces (pitch surfaces); they are their axodes. These are two cylinders and two cones, respectively, having 
either the diameter ratio or the cone base diameter ratio equal to the transmission ratio. Conversely, no set of rolling 
surfaces exists for transmission between two skew axes (i.e., non-parallel and non-intersecting) since their axodes do not 
roll without sliding. However, the operating pitch surfaces are defined for gears with crossed axes [8],[9]. Based on these 
pitch surfaces (either cylinders or cones), helical or spiral gears can be used for any two crossed axes at any angle, by a 
suitable choice of helix angle, in addition to worm and hypoid gears for the case of axes crossed at a right angle.  

This paper addresses the existence of a pair of rolling surfaces for transmitting rotary motion into helical motion 
between crossed axes, at any distance and angle between them. The method of tooth-generation on these surfaces in order 
to obtain a rotary-helical transmission is also considered.  

2. A Rolling Kinematic Pair for the Rotary to Helical Transmission. Pitch Surfaces.

In this section two rigid solids are considered: one performing a pure rotation (body 1), and the other performing a
helical motion (body 2). It is shown that, i) for any set of values of their angular velocities, ii) for any value of the helical 
linear velocity of body 2, and iii) for any orientation of the corresponding axes relative to each other; there is a line where 
the velocity fields corresponding to each body are equal. Therefore, a pair of ruled surfaces (each one attached to each 
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body) exists such that each rolls, without slipping, on the other. These are the so-called pitch surfaces for the rotary into 
helical transmission. 

Without loss of generality, we will consider the helical motion of body 2 around the z-axis. The motion is then 
characterized by the following linear and angular velocities, respectively: 

 𝑣⃗𝑣 = 𝑣𝑣𝑘𝑘�⃗  (1a) 

 ω��⃗ 2 = ω2k�⃗  (1b) 

Meanwhile, body 1 rotates around the R-axis, which lies in a plane defined by 𝑥𝑥 = 𝑑𝑑, and is parallel to the y-z plane 
(see Fig.1), so that its angular velocity can be expressed as equation (2). 

 ω��⃗ 1 = ω1𝑦𝑦𝚥𝚥 + ω1𝑧𝑧𝑘𝑘�⃗  (2) 

 
Fig. 1 The kinematic and geometric parameters of the rotary-to-helical motion transmission. 

 
Let 𝑟𝑟 = 𝑥𝑥𝚤𝚤 + 𝑦𝑦𝚥𝚥 + 𝑧𝑧𝑘𝑘�⃗  be the position vector for a generic point. If this point belongs to body 2 (helical motion) its velocity 
can be expressed as equation (3), which is the velocity field of body 2. 

 v�⃗ 2(r⃗) = v�⃗ + ω��⃗ 2 × r⃗ = −ω2yı⃗ +ω2xȷ⃗+ vk�⃗  (3) 

The velocity field of body 1 can be written as 

 v�⃗ 1(r⃗) = ω��⃗ 1 × (r⃗ − dı⃗) = �ω1yz −ω1zy� ı⃗ + ω1z(x − d)ȷ⃗ − ω1y(x − d)k�⃗  (4) 

Equating both these velocities, the subspace of points having the same velocity in both solids is thus obtained: 

 v�⃗ 1(r⃗) = v�⃗ 2(r⃗) ⇒ �
�ω2 − ω1z�y + ω1yz = 0

�ω2 − ω1z�x = −d · ω1z
ω1yx = d · ω1y − v

 (5) 

These points are referred to as “rolling points”. These equations can be succinctly expressed in matrix form as: 

 �
0 ω2 − ω1z ω1y

ω2 − ω1z 0 0
ω1y 0 0

��
x
y
z
� = �

0
−d · ω1z

d · ω1y − v
� (6) 

Now we will discuss the existence of solutions of this system of equations using to the Rouché-Capelli theorem [10]. 
The system matrix and the extended matrix can be referred to as (A) and (A|B) respectively, and are: 

 (A) = �
0 ω2 − ω1z ω1y

ω2 − ω1z 0 0
ω1y 0 0

� (7a) 

x

y

z

d

β

R



(A|B) = �
0 ω2 − ω1z ω1y

ω2 − ω1z 0 0
ω1y 0 0

�
0

−d · ω1z
d · ω1y − v

� (7b) 

Since the determinant of the matrix (A) is always zero, if a solution exists it will therefore not be unique. In fact, the 
system will be consistent (i.e., undetermined) if and only if rank (A) = rank (A|B), and its set of solutions will either be the 
whole space ℝ3, a plane or a line, corresponding to rank values of 0, 1 or 2, respectively. The system will be inconsistent if 
rank (A) ≠ rank (A|B). The consistent solutions are now discussed by case: 

i) If ω1𝑧𝑧 = 𝜔𝜔2 and ω1𝑦𝑦 = 0, then rank (A) = 0. Rank (A|B) is also equal to zero, but only if 𝑣𝑣 = 0 and either�𝑑𝑑 =
0 or ω1𝑧𝑧 = 0�. This is a trivial solution: no relative motion between both bodies exists. 

ii) rank (A) ≠ 1, since (A)T = (A) and the principal diagonal elements are all zero: if any element of (𝐴𝐴) is not zero, 
then neither is its diagonaly symmetrical element, and a non-zero second order determinant results. 

iii) If either or both �ω1𝑧𝑧 ≠ 𝜔𝜔2 or ω1𝑦𝑦 ≠ 0�, then rank (A) = 2. Rank (A|B) is also equal to 2 (the solution points 
form a straight line), but only if the following equations are simultaneously fulfilled: 

 �
0 ω2 − ω1z 0

ω2 − ω1z 0 −d · ω1z
ω1y 0 d · ω1y − v

� = 0 ⇒ �ω2 − ω1z� �d · ω1yω1z + �ω2 − ω1z� �d · ω1y − v�� = 0 (8a) 

 �
0 ω1y 0

ω2 − ω1z 0 −d · ω1z
ω1y 0 d · ω1y − v

� = 0 ⇒ ω1y �d · ω1yω1z + �ω2 − ω1z� �d · ω1y − v�� = 0 (8b) 

Note that the determinant of the remaining third order submatrix in (A|B) is always equal to zero. 
Equations (8) are fulfilled simultaneously for �ω1𝑧𝑧 ≠ 𝜔𝜔2 or ω1𝑦𝑦 ≠ 0� if and only if: 

 d · ω1yω1z + �ω2 − ω1z� �d · ω1y − v� = 0 (9) 

If the translation velocity v is zero, then equations (8) are fulfilled only if 𝜔𝜔2 = 0, i.e., no transmission exists. 
However, if body 1 performs a strictly helical motion, with 𝜔𝜔2 ≠ 0 and 𝑣𝑣 ≠ 0, then a straight line of points having the 
same velocity on both solids exists so long as condition (9) is met. This line would be the contact line between the rolling 
surfaces in the rotary-to-helical motion transmission. In fact the parameters that characterize the transmission, v, 𝜔𝜔2, ω1𝑦𝑦, 
ω1𝑧𝑧 and d, are not independent, but interrelated by (9). For instance, we can express d in terms of the other four parameters. 
By replacing components ω1𝑦𝑦 and ω1𝑧𝑧 by ω1 cos𝛽𝛽 and ω1 sin𝛽𝛽 respectively (see Fig.1), (9) yields: 

 d = v(ω2−ω1 sin β)
ω2ω1 cosβ

 (10) 

The contact line (or “rolling line”) is then obtained by solving the system of equation in (5) whilst observing the 
restriction given in (10). This leads to 

 �

z
y
≡ tanϑ = tanβ − ω2

ω1 cos β
          (a)

x = − v
ω2

tan β                                   (b)
 (11) 

Equation (11b) indicates that the rolling line is also parallel to the y-z plane, and at a non-zero distance which is 
dependent on the direction angle between axes, as well as on the ratio 𝑣𝑣/𝜔𝜔2. In equation (11a), the angle ϑ defines the 
direction of the rolling line, which depends on the angle between axes, β, and on the ratio ω2/ω1. The rolling line is shown 
in fig. 2. 

 



 
Fig. 2. The position of rolling line G, with respect to rotary axis R and helical axis H, which depends on the transmission parameters (β,ω1,ω2 and v). 

 
Therefore, both rolling surfaces are ruled surfaces and tangent to each other along the common generatrix line (G in 

Fig. 2) defined by equation (11). 
The pitch surface corresponding to the pure rotating motion is the hyperboloid generated by rotating the generatrix G 

about the R-axis, their s,t-parametric equations being (as derived in the Appendix): 

 

⎩
⎪
⎨

⎪
⎧𝑥𝑥𝑠𝑠,𝑡𝑡 = 𝑣𝑣 �1−cos𝜔𝜔1𝑡𝑡

𝜔𝜔1 cos 𝛽𝛽
− tan𝛽𝛽

𝜔𝜔2
� − 𝑠𝑠 𝜔𝜔2

𝜔𝜔1
sin𝜔𝜔1𝑡𝑡

𝑦𝑦𝑠𝑠,𝑡𝑡 = − 𝑣𝑣
𝜔𝜔1

tan𝛽𝛽 sin𝜔𝜔1𝑡𝑡 + 𝑠𝑠 �1 + 𝜔𝜔2
𝜔𝜔1

sin𝛽𝛽 (cos𝜔𝜔1𝑡𝑡 − 1)�

𝑧𝑧𝑠𝑠,𝑡𝑡 = 𝑣𝑣
𝜔𝜔1

sin𝜔𝜔1𝑡𝑡 + 𝑠𝑠 �tan𝛽𝛽 − 𝜔𝜔2
𝜔𝜔1

cos𝛽𝛽 (cos𝜔𝜔1𝑡𝑡 + tan2 𝛽𝛽)�

 (12) 

By varying s, different points of the generatrix are obtained; whereas varying t involves generatrix rotation about R-
axis. 

The pitch surface corresponding to the helical motion is a ruled z-axis helicoid, which is shaped by the generatrix line 
G describing that helical motion. Hence their s,t-parametric equations are 

 

⎩
⎪
⎨

⎪
⎧xs,t = − v

ω2
tanβ cosω2t − s sinω2t

ys,t = − v
ω2

tan β sinω2t + s cosω2t

zs,t = s �tanβ − ω2
ω1 cos β

� + vt

 (13) 

These are derived in the Appendix. In Fig. 3, both pitch surfaces are represented. 
 

 
Fig. 3. The ruled pitch surfaces –Hyperboloid and Helicoid- for a rotary-to-helical rolling transmission between axes R and H respectively. The common 
generatrix G has been also depicted. 
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Equations (10) to (13) have been implemented in MATLAB® code in order to plot the pitch surfaces for any value of 

the transmission parameters, as well as the corresponding geometric parameters. These are the hyperboloid and helicoid 
throat radii, 𝑟𝑟1 and 𝑟𝑟2 respectively in equation (14); and the semi-length l of the generatrix (for both pitch surfaces). 

 r1 = �d + v
ω2

tan β� = � v
ω1 cosβ

� (14a) 

 r2 = � v
ω2

tanβ� (14b) 

The semi-length l of the generatrix is the solution of equation (15), obtained after using Eq. 14b and eliminating η from 
equations showed in Fig. 4. 

 lω2cosϑ 
v tan β

+ tan �lω2 sin ϑ
v

− π� = 0 (15) 

 

 
Fig. 4. Front and top views of the helix in which the helicoid is based, and two of its adjoining generatrices. The generatrix semi-length is obtained by 
eliminating 𝜂𝜂 from the showed equations and using eq. 14b 

 
Fig. 5 shows the rolling surfaces corresponding to a rotary-helical transmission where 𝑣𝑣 = 0.1, 𝜔𝜔2 = 2𝜋𝜋, 𝜔𝜔1 = 3𝜋𝜋, 

and 𝛽𝛽 = 7𝜋𝜋/4  (in S.I. units). These values determine the distance between axes, which is d = 31 mm. In this case, the 
hyperboloid throat radius is 15 mm, and that of the helicoid is 16 mm. (Note that the distance between axes is equal to the 
sum of the throat radii). 

 
 

ϑ



 
Fig. 5. The rotary-to-helical transmission rolling surfaces for the case: 𝒗𝒗 = 𝟎𝟎.𝟏𝟏,  𝝎𝝎𝟏𝟏 = 𝟑𝟑𝟑𝟑, 𝝎𝝎𝟐𝟐 = 𝟐𝟐𝟐𝟐, and 𝜷𝜷 = 𝟕𝟕𝟕𝟕/𝟒𝟒 (S.I. units). 

 
 

3. Examples of Different Rolling Surfaces for Rotary to Helical Transmission 
 

Depending on the kinematic properties of the transmission, different geometries of rolling surfaces are found, although 
some of which would be impossible to implement practically. 

First, the two cases containing singularities are discussed. One occurs when both axes are parallel to each other, that is, 
when 𝛽𝛽 = 𝜋𝜋

2
, which implies that 𝑣𝑣 = 0 and corresponds to the traditional rotary-to-rotary transmission between parallel 

axes, where both rolling surfaces are cylinders. The other singularity occurs when the generatrix line is perpendicular to z-
axis (𝜗𝜗 = 0 ⇒ 𝛽𝛽 = sin−1 𝜔𝜔2

𝜔𝜔1
). In this case the ruled helicoid degenerates, and additionally 𝑑𝑑 =  0. 

Other cases that are impossible to implement occur when both surfaces intersect, albeit tangent to each other along 
their common generatrix line. 

In Fig. 6 five sets of rolling surfaces are shown for 𝜔𝜔1 = 𝜔𝜔2 = 2𝜋𝜋 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠, 𝑣𝑣 = 0.1𝑚𝑚/𝑠𝑠, with different values of 𝛽𝛽 
and are labeled a) to e) to facilitate their reference. 

For cases a) and b) (where 𝛽𝛽 < 𝜋𝜋) it is seen that the rolling surfaces intersect. However, when 𝜋𝜋 < 𝛽𝛽 < 3𝜋𝜋/2 (as in 
case c)), d < 0 and the hyperboloid is then “behind” the helicoid. Finally, when 3𝜋𝜋/2 < 𝛽𝛽 < 2𝜋𝜋 (cases d) and e)), d > 0 
and the hyperboloid is now “in front of” the helicoid. 

In Fig. 7, a further five rolling surfaces are shown. These have been generated for 𝜔𝜔1 = 2𝜋𝜋 𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠⁄ ;  𝜔𝜔2 = 4𝜋𝜋 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠, 
𝑣𝑣 = 0.1𝑚𝑚/𝑠𝑠, and with the values of 𝛽𝛽 previously used. Here it can be seen that since 𝜔𝜔1 < 𝜔𝜔2, the hyperboloid throat 
diameter is greater than that of the helicoid. In fact, when 𝛽𝛽 < 𝜋𝜋 (case a)), contact takes place on the interior surface of the 
hyperboloid. 

Finally, in Fig. 8, five further rolling surfaces are shown, which have been generated for 𝜔𝜔1 = 4𝜋𝜋 𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠⁄ ;  𝜔𝜔2 =
2𝜋𝜋 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 (and so 𝜔𝜔1 < 𝜔𝜔2), 𝑣𝑣 = 0.1𝑚𝑚/𝑠𝑠, and for the same values of 𝛽𝛽. When 𝛽𝛽 < 𝜋𝜋, contact now takes place on the 
interior surface of the helicoid. (In order to facilitate its visualization, the plot has been inclined towards the viewer). 



Fig. 6. The rolling surfaces for 𝝎𝝎𝟏𝟏 = 𝝎𝝎𝟐𝟐 = 𝟐𝟐𝟐𝟐 𝒓𝒓𝒓𝒓𝒓𝒓/𝒔𝒔, 𝒗𝒗 = 𝟎𝟎.𝟏𝟏𝟏𝟏/𝒔𝒔, and 𝜷𝜷 = 𝟐𝟐𝟐𝟐
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Fig. 7. The rolling surfaces for 𝝎𝝎𝟏𝟏 = 𝟐𝟐𝟐𝟐 𝒓𝒓𝒓𝒓𝒓𝒓/𝒔𝒔,𝝎𝝎𝟐𝟐 = 𝟒𝟒𝝅𝝅 𝒓𝒓𝒓𝒓𝒓𝒓/𝒔𝒔, 𝒗𝒗 = 𝟎𝟎.𝟏𝟏𝟏𝟏/𝒔𝒔, and 𝜷𝜷 = 𝟐𝟐𝟐𝟐
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Fig. 8. The rolling surfaces for 𝝎𝝎𝟏𝟏 = 𝟒𝟒𝟒𝟒 𝒓𝒓𝒓𝒓𝒓𝒓/𝒔𝒔,𝝎𝝎𝟐𝟐 = 𝟐𝟐𝟐𝟐 𝒓𝒓𝒓𝒓𝒓𝒓/𝒔𝒔, 𝒗𝒗 = 𝟎𝟎.𝟏𝟏𝟏𝟏/𝒔𝒔, and 𝜷𝜷 = 𝟐𝟐𝟐𝟐
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4. Boolean Procedure for Gear Tooth Forming. Obtaining a Prototype for 3D Printing 
 

In order to practically implement the kinematic pair described, first the toothed hyperboloid was modeled with a CAD 
program as a ruled surface between two identical involute gear profiles on two parallel planes at a distance 𝐿𝐿 =
2𝑙𝑙 sin𝜗𝜗 cos(𝛽𝛽 − 𝜗𝜗), shifted by the corresponding angle ξ (as shown in Fig. 9): 

 ξ = 2 tan−1 � L
r1

tan(β − ϑ)� (16) 

 

 
 

Fig. 9. Obtaining the toothed hyperboloid using a CAD program. 
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The conjugated toothed ruled helicoid was then obtained after a series of CAD Boolean subtractions (see Fig. 10a): the 

interference between the toothed hyperboloid (blue) and a wide cylinder (red), is removed from the latter. Between two 
consecutive subtractions, the corresponding increments were applied: the toothed hyperboloid rotates by an angle of 𝜔𝜔1∆𝑡𝑡, 
whereas the cylinder rotates by an angle of 𝜔𝜔2∆𝑡𝑡, and translates by an amount of 𝑣𝑣∆𝑡𝑡. The resulting toothed helicoid 
shown in Fig. 10 (b) was obtained after more than 200 of such operations. 

 

 
Fig. 10. a) Obtaining the toothed helicoid by a series of CAD Boolean subtractions and incremental motions between them. b) The resulting toothed 
helicoid (red). 

 
Both gears have been physically produced using a 3D printer, and the assembly is shown in Fig. 11. Following this 

procedure, although the generated tooth flank turns out to be facetted, for a sufficiently small increment ∆𝑡𝑡, the level of 
faceting is negligible even for the highest resolution of the 3D printer (0.1 mm). 
 

 
Fig. 11. The gear assembly produced on a 3D printer. 

 
As it has been verified, the prototype presents negligible clearances and backlash, high reversibility, as well as 

continuous gearing without interference. 
 
 

5. Meshing Equation for a Simple Generating Surface 
 

In order to obtain an analytical meshing equation, a simple generating surface on the pitch hyperboloid has been taken 
into account: the ruled surface between two radio segments at both hyperboloid bases. This is also the right helicoid 
limited by two hyperboloids parallel to each other and parallel to the pitch hyperboloid (see Fig. 12). 
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ω1∆t

ω2 ∆t

a) b)



 
Fig. 12. The used generating surface on the hyperboloid: the ruled surface between two radio segments at its both bases. 

 
This surface, has the following s,p-parametic equations, in the coordinate system rigidly connected to the hyperboloid: 

 �
xs,p = −p · cos (ξ/2)
ys,p = p · s · sin (ξ/2)
zs,p = s · l · cos (β − ϑ)

 (17) 

 Using homogeneous coordinates, 𝒓𝒓𝑠𝑠,𝑝𝑝 = �𝑥𝑥𝑠𝑠,𝑝𝑝  𝑦𝑦𝑠𝑠,𝑝𝑝  𝑧𝑧𝑠𝑠,𝑝𝑝  1�𝑇𝑇 , and transformation matrices given in the Appendix, the t-
family of surfaces is expressed in the coordinate system rigidly connected to the helicoid as: 

 rs,p,t
(h) = TRz(vt,ω2t) · TR

x�−d,π2−β�
−1 · Rz(ω1t)

−1 rs,p (18) 

  Then the meshing equation �𝜕𝜕𝒓𝒓
(ℎ)

𝜕𝜕𝜕𝜕
  𝜕𝜕𝒓𝒓

(ℎ)

𝜕𝜕𝜕𝜕
  𝜕𝜕𝒓𝒓

(ℎ)

𝜕𝜕𝜕𝜕
� = 0, leads to an expression of the type shown in equation (19). 

 A(s, t)p2 + B(s, t)p + C(s, t) = 0 (19) 

Where: 

 

𝐴𝐴 = 𝜔𝜔2 cos 𝜉𝜉
2

sin 𝜉𝜉
2

cos𝛽𝛽 �cos 𝜉𝜉
2

cos𝜔𝜔1𝑡𝑡 + 𝑠𝑠 sin 𝜉𝜉
2

sin𝜔𝜔1𝑡𝑡� ,

𝐵𝐵 = 𝑙𝑙 cos(𝛽𝛽 − 𝜗𝜗) (𝜔𝜔1 − 𝜔𝜔2 sin𝛽𝛽)(cos2 𝛽𝛽 + 𝑠𝑠2 sin2 𝛽𝛽) − 𝑣𝑣 𝜔𝜔2
𝜔𝜔1

cos 𝜉𝜉
2

sin 𝜉𝜉
2

,

𝐶𝐶 = 𝑙𝑙2𝑠𝑠𝜔𝜔2 cos𝛽𝛽 cos2(𝛽𝛽 − 𝜗𝜗) �cos 𝜉𝜉
2

sin𝜔𝜔1𝑡𝑡 − 𝑠𝑠 sin 𝜉𝜉
2

cos𝜔𝜔1𝑡𝑡� +

+𝑙𝑙𝑙𝑙 cos(𝛽𝛽−𝜗𝜗)
cos𝛽𝛽

�𝜔𝜔2
𝜔𝜔1

sin𝛽𝛽 − 1� �cos 𝜉𝜉
2

cos𝜔𝜔1𝑡𝑡 + 𝑠𝑠 sin 𝜉𝜉
2

sin𝜔𝜔1𝑡𝑡�

 (20) 

 From equation (19), the parameter p can be easily eliminated when expressed in terms of s and t. Thus the envelope is 
calculated as the surface defined by parameters s and t: 

 es,t
(h) = rs,p(s,t),t

(h)  (21) 

 In Fig. 13 left, some elements of the t-family of generating surfaces, as the hyperboloid moves, are represented in the 
system of reference rigidly connected to the helicoid. The corresponding envelope is shown in Fig. 13 right. 



 
Fig. 13. Left: some elements of the family of generating surfaces belonging to the hyperboloid, in relative motion with respect to the helicoid (also 
shown). Right: the corresponding generated surface on the helicoid, as the envelope of the aforementioned family. 

 

6. Conclusions and Future Work 
 

In this manuscript, a rolling-joint higher kinematic pair that converts between rotary and helical motion has been 
presented and investigated. 

Among the advantages of the transmission proposed, it can be mentioned that it is a simple and compact, one degree of 
freedom gear transmission, which prevents the undesirable locking, as it shows low friction and high reversibility. 

The possible application fields include linear actuation and positioning, specific cutting tool motion (as in the 
automatic device for skin biopsy), and helical positioning in edge and radial relief sharpening tasks on helical tools 

An algorithm that calculates and plots the rolling surfaces (pitch surfaces) for any set of transmission parameters has 
been developed, and was used to analyze several cases with several sets of defining parameters. The algorithm also 
calculates and plots a simple generating surface on the rotary gear (hyperboloid), and the corresponding generated surface 
on the helical gear (helicoid), for any set of transmission parameters. 

The toothed gears were first modeled virtually with a CAD program, and then physically produced on a 3D printer. 
The prototype presents useful performances. 

This paper deals only kinematic and topological aspects, but many other related aspects remain to be investigated such 
as the dynamics, power losses and efficiency, stress-strain calculations, manufacturing issues. Significant progress in 
analytical models are being made that will allow us to define the most suitable experimental system to get more reliable 
measurements, and define appropriate ranges for the variables involved. Other future line of research includes using the 
proposed rotary-linear gear transmission as the basis of linear actuators. 

 
 

Appendix: Derivation of the s,t-parametric equations for the rotary-helical transmission pitch surfaces. Coordinate 
transformation matrices 
 

These equations were required in Section II. The generatrix G in equations (11) can be expressed as a function of the 
parameter s as follows: 

 

⎩
⎨

⎧xs,0 = − v
ω2

tanβ
ys,0 = s

zs,0 = s �tan β − ω2
ω1 cos β

�
 (A1) 



Now we consider two Cartesian systems: 𝑆𝑆(𝑂𝑂, 𝑥𝑥, 𝑦𝑦, 𝑧𝑧), depicted in Fig.2, and 𝑆𝑆′(𝑂𝑂′, 𝑥𝑥′,𝑦𝑦′, 𝑧𝑧′), so that the x’ axis 
coincides with the x-axis and the z’-axis coincides with the axis of pure rotation, R. Then the transformation between them 
(S→S’) is composed of a translation in the x direction by an amount d, followed by a rotation of angle 𝜋𝜋 2⁄ − 𝛽𝛽 about the 
x-axis. Using homogeneous coordinates [11,12]: 

   gs,0 = (xs,0 ys,0 zs,0 1)T, (A2) 

the corresponding coordinate transformation matrix, is: 

 TRx�−d,π2−β�
= �

1 0 0 −d
0 sinβ −cosβ 0
0 cos β sin β 0
0 0 0 1

� (A3) 

Therefore, the parametric equations of the generatrix expressed in the S’ coordinate system, are: 

 g′s,0 = TRx�−d,π2−β�
gs,0 (A4) 

Next, we obtain the s,t-parametric equations of the hyperboloid in the S’ coordinate system by applying a rotation about 
the z’-axis of angle ω1·t, the corresponding transformation matrix being 

 Rz(ω1t) = �

cosω1t − sinω1t 0 0
sinω1t cosω1t 0 0

0 0 1 0
0 0 0 1

� (A5) 

Hence: 

 g′s,t = Rz(ω1t)g′s,0 (A6) 

Finally, we return to the coordinates in the S system by applying the inverse of the first transformation (S’→S), so the 
matrix is the inverse of (A3): 

 TR
x�−d,π2−β�
−1 = TRx�d,β−π2�

= �

1 0 0 d
0 sin β cos β 0
0 −cos β sinβ 0
0 0 0 1

� (A7) 

From this we obtain: 

 gs,t = TRx�d,β−π2�
g′s,t (A8) 

The matrix corresponding to these three successive coordinate transformations is the following matrix product: 

 MRTRx�d,β−π2�
Rz(ω1t)TRx�−d,π2−β�

= 

 = �

cos𝜔𝜔1𝑡𝑡 − sin𝜔𝜔1𝑡𝑡 sin𝛽𝛽 sin𝜔𝜔1𝑡𝑡 cos𝛽𝛽 𝑑𝑑(1 − cos𝜔𝜔1𝑡𝑡)
sin𝜔𝜔1𝑡𝑡 sin𝛽𝛽 cos𝜔𝜔1𝑡𝑡 sin2 𝛽𝛽 + cos2 𝛽𝛽 sin𝛽𝛽 cos𝛽𝛽 (1 − cos𝜔𝜔1𝑡𝑡) −𝑑𝑑 sin𝜔𝜔1𝑡𝑡 sin𝛽𝛽
− sin𝜔𝜔1𝑡𝑡 cos𝛽𝛽 sin𝛽𝛽 cos𝛽𝛽 (1 − cos𝜔𝜔1𝑡𝑡) cos𝜔𝜔1𝑡𝑡 cos2 𝛽𝛽 + sin2 𝛽𝛽 𝑑𝑑 sin𝜔𝜔1𝑡𝑡 cos𝛽𝛽

0 0 0 1

� (A9) 

By multiplying this matrix by the column vector 𝒈𝒈𝑠𝑠,0  and using equation (10), the s,t-parametric equations of the 
hyperboloid in the S coordinate system (12) are obtained. 

In order to obtain the s,t-parametric equations of the corresponding ruled helicoid, only a translation in the z-axis by an 
amount vt, and a rotation about the z-axis by an angle 𝜔𝜔2𝑡𝑡 are required. The corresponding transformation matrix is then: 

 MH = TRz(vt,ω2t) = �

cosω2t − sinω2t 0 0
sinω2t cosω2t 0 0

0 0 1 vt
0 0 0 1

� (A10) 

By multiplying this matrix by the column vector 𝒈𝒈𝑠𝑠,0, the s,t-parametric equations of the helicoid in the S coordinate 
system (13) are obtained. 
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