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Some results on optimally exercising American put options
for time-inhomogeneous processes

Bernardo D’Auria, Eduardo García-Portugués, and Abel Guada

Abstract

We solve the finite-horizon, discounted, Mayer optimal stopping problem, with the gain func-
tion coming for exercising an American put option, and the underlying process modeled by a
diffusion with constant volatility and a time-dependent drift satisfying certain regularity condi-
tions. Both the corresponding value function and optimal stopping boundary are proved to be
Lipschitz continuous away from the terminal time. The optimal stopping boundary is charac-
terized as the unique solution, up to mild regularity conditions, of the free-boundary equation.
When the underlying process has Gaussian marginal distributions, more tractable expressions
for the pricing formula and free-boundary equation are provided. Finally, we check that an
Ornstein–Uhlenbeck process with time-dependent parameters fulfills the required conditions as-
sumed throughout the paper.

Keywords: American put option; Free-boundary problem; Optimal stopping; Ornstein–Uhlenbeck;
Time-inhomogeneity.

1 Introduction

Let X = {Xs}Ts≥0 be a stochastic process satisfying the stochastic differential equation

dXs = µ(s,Xs)ds+ σdWs, 0 ≤ s ≤ T, (1)

in the filtered space (Ω,F ,P, {Fs}Ts≥0), where {Fs}Ts≥0 is the natural filtration of the underlying
standard Brownian motion {Ws}Ts≥0. In (1), µ : [0, T ] × R → R is a time-inhomogeneous drift
function with regularity later specified and σ > 0 is the constant-diffusion coefficient.

Consider the finite-horizon, discounted, Mayer Optimal Stopping Problem (OSP)

V (t, x) = sup
0≤τ≤T−t

Et,x

[︂
e−λτG(Xt+τ )

]︂
, (2)

where V is the value function, G(x) = (A − x)+, for some A ∈ R, is the gain function, and λ ≥ 0
is the discounting rate. The supremum above is taken under all random times τ such that t + τ is
a stopping time in {Fs}Ts≥0 and Et,x represents the expectation under the probability measure Pt,x

defined as Pt,x (·) = P (· | Xt = x). In what remains, we will refer to τ as a stopping time while
keeping in mind that t+ τ is the actual stopping time in the filtration {Fs}Ts≥0.

The particular form of G implies that

−(y − x)− ≤ G(x)−G(y) ≤ (y − x)+, (3)

for all x, y ∈ R, inequalities which will be recurrently used throughout the paper.
It is useful to keep track of the condition Xt = x in a way that does not change the probability

measure whenever t or x change. To do so, we denote the process Xt,x = {Xt,x
s }T−t

s≥0 in the filtered
space (Ω,F ,P, {Fs}T−t

s≥0 ) such that

Law({Xt,x
s }T−t

s≥0 ,P) = Law({Xt+s}T−t
s≥0 ,Pt,x). (4)
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Notice that Xt,x
0 = x P-a.s.

We can now define the processes ∂tX
t,x = {∂tXt,x

s }T−t
s and ∂xX

t,x = {∂xXt,x
s }T−t

s , as the P-a.s.
limits

∂tX
t,x
s := lim

ε→0

(︁
Xt+ε,x

s −Xt,x
s

)︁
ε−1, ∂xX

t,x
s := lim

ε→0

(︁
Xt,x+ε

s −Xt,x
s

)︁
ε−1,

which, according to (1), take the forms

∂tX
t,x
s =

∫︂ s

0

(︁
∂tµ(t+ u,Xt,x

u ) + ∂xµ(t+ u,Xt,x
u )∂tX

t,x
u

)︁
du (5)

and

∂xX
t,x
s = 1 +

∫︂ s

0
∂xµ(t+ u,Xt,x

u )∂xX
t,x
u du, (6)

where we use ∂t and ∂x to represent, respectively, the partial derivatives with respect to time and
space. Be aware of the distinction between the differential operators ∂t and ∂x and the processes
∂tX

t,x
s and ∂tX

t,x
s . Note that Itô’s formula yields from (6) the following form for ∂xX

t,x
s ,

∂xX
t,x
s = exp

{︃∫︂ s

0
∂xµ(t+ u,Xt,x

u ) du

}︃
. (7)

Also, it follows from (1) that the infinitesimal generator L of the process {(t,Xt)}Tt≥0 is given by

(Lf)(t, x) = ∂tf(t, x) + µ(t, x)∂xf(t, x) +
σ2

2
∂xxf(t, x), (8)

with ∂xx standing for a shorthand of ∂x∂x.
Denote by D := {V = G} and C := Dc = {V > G} the so-called stopping set and continuation

set respectively. If

Et,x

[︄
sup

0≤s≤T−t
e−λsG(Xt+s)

]︄
< ∞ (9)

for all (t, x) ∈ [0, T )×R, then we can guarantee that, under Pt,x, the first hitting time of {Xt+s}T−t
s≥0

into D, denoted by τ∗ = τ∗(t, x), is optimal in (2) (see, e.g., Karatzas and Shreve (1998, Appendix
D) and Peskir and Shiryaev (2006, Chapter 1)), meaning that

V (t, x) = Et,x

[︂
e−λτ∗G(Xt+τ∗)

]︂
. (10)

Moreover, if there is another Optimal Stopping Time (OST) τ , then τ∗ ≤ τ Pt,x-a.s. Solving the
OSP (2) means to provide tractable expressions for both the value function V and the OST τ∗.

The boundary of D (or C), denoted by ∂D (or ∂C), is called the Optimal Stopping Boundary
(OSB). It turns out that both the value function V and the OSB ∂D are the solution of a Stefan
problem with the infinitesimal generator L as the differential operator acting on V in C (see Peskir
and Shiryaev (2006) for more on the relation between OSPs and free-boundary problems), and
therefore the OSB is also referred to as the free-boundary. If the OSB can be depicted by the graph
of a function b : [0, T ] → R, that is ∂D = {(t, b(t)) : t ∈ [0, T ]}, then b is referred as the OSB too.

Finally, it is convenient to recall the martingale and supermartingale properties of V ,

Et,x [V (t+ τ∗ ∧ s,Xt+τ∗∧s)] = V (t, x), (11)
Et,x [V (t+ s,Xt+s)] ≤ V (t, x), (12)

for all 0 ≤ s < T − t, as they will be often used to prove results in Section 2.
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2 Regularities of the boundary and the value function

In this section we state and prove regularity conditions about the OSB and value function. These
conditions allow obtaining a solution for the OSP (2), later addressed in Section 3, by using an
extension of the Itô’s formula to derive a characterization of the OSB via a Volterra integral equation.
Obviously, these results are subject to certain properties of the underlying process Xt,x. For the sake
of the clarity of exposition, we collect those required properties in the following list of assumptions,
which will be hold true henceforth.

A2.1 There exists a function u : [0, T ] → R such that µ(t, x) ≥ 0 for all x ≤ u(t) and µ(t, x) ≤ 0 for
all x ≥ u(t).

A2.2 x ↦→ µ(t, x) and x ↦→ ∂tµ(t, x) are Lipschitz continuous for all t ∈ [0, T ], with Lipschitz constant
uniform in t. Additionally, there exists a continuous function µ̄ : [0, T ] → R such that

∂xµ(t, x) ≤ µ̄(t) < 0, (13)

for all x ∈ R.

Assumption A2.1 has the sole purpose of supporting a comparison argument between X and
a reflected Brownian motion, in order to find a lower bound for the free-boundary (last part of
the proof of Proposition 1). The purpose of A2.2 is manifold. Firstly, a Lipschitz-continuous drift
guarantees (see (37) from Lemma 1) that

Et,x

[︄
sup

0≤s≤T−t
e−λsG(Xt+s)

]︄
< Et,x

[︄
sup

0≤s≤T−t
|Xt+s|

]︄
< ∞,

on which relies the optimality of τ∗(t, x) and properties (11) and (12). Also, the Lipschitz continuity
of µ is sufficient (but not necessary) to prove that (9) holds true, and to invoke standard results on
partial differential equation’s theory that provide the smoothness of V in C (see (ii) in Proposition
2). Moreover, by adding the Lipschitz continuity of ∂tµ and relation (13), we are able to obtain
bounds on several characteristics of Xt,x (see Lemma 1). These bounds are specially useful to get
the Lipschitz continuity of V and the OSB.

Before proving properties of V and the OSB, we shed light on the geometry of the stopping and
continuation regions in the following proposition, which entails that the stopping set lies below the
continuation set and that the boundary between them can be seen as the graph of a function. It
also provides upper and lower bounds for such a function.

Proposition 1 (Boundary existence and shape of the stopping set).
There exists a function b : [0, T ] → R such that ∞ < b(t) < A for all t ∈ [0, T ), and D = {(t, x) ∈
[0, T ]× R : x ≤ b(t)}.

Proof. (b(t) < A, t ∈ [0, T )) Let (t, x) ∈ A+ := [0, T ) × [A,∞) and define the stopping time
τδ := inf{s ∈ [0, T − t] : Xt+s ≤ A− δ} for some δ > 0, assuming that inf{∅} = T − t. Then, since
τδ ≤ T − t and p := P (τδ < T − t) > 0,

V (t, x) ≥ Et,x

[︂
e−λτδG(Xt+τδ)

]︂
≥ e−λ(T−t)pδ > 0 = G(x),

that is, (t, x) ∈ C. Therefore, A+ ⊂ C.
(D = {(t, x) : x ≤ b(t)}) Define b(t) := sup{x : (t, x) ∈ D}. We have already proved that

b(t) < A for all t ∈ [0, T ). Additionally, since Xt,x
s increases (∂xX

t,x
s ≥ 0 for all s according to (7))

and G decreases, both as functions of x, for all s ∈ [0, T − t), we can ensure that D lies below the
curve b. Moreover, since D is closed, (t, b(t)) ∈ D for all t ∈ [0, T ), which guarantees that D has the
claimed shape.
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(∞ < b(t)) Consider the function u from A2.1 and define m := inft∈[0,T ){u(t)}. Notice that

Xt ≥ u(t)− |u(t)−Xt| ≥ u(t)− |u(t)− σBt| ≥ m− |m− σBt| ,

where Bt = X0 +Wt and {Wt}t≥0 is the underlying standard Brownian motion in (1). The second
inequality holds since the drift of the reflection of X with respect to u is always higher than the drift
of the reflection of the Brownian motion with respect to u, and therefore we can ensure that the
first process is greater than the last one pathwise P-a.s. (see Ikeda and Watanabe (1977, Theorem
1.1)). The above inequalities guarantee that the value function (2) is lower than the value function
associated to a reflected (with respect to m) Brownian motion, and hence the respective OSBs hold
the reverse inequality. Additionally, it is easy to show that the free-boundary for the discounted
OSP with the gain function G and m-reflected Brownian motion is finite. Actually, one can obtain
explicitly the OSB, which is constant, by directly solving the associated free-boundary problem.
Therefore b is bounded from below.

The value function satisfies the regularity properties listed in the next proposition. Besides the
results per se, the method used to get the Lipschitz continuity of V , based on its martingale and
supermartingale properties, (11) and (12) respectively, is a powerful, go-to technique in solving OSPs
framed in Markovian processes. The work of De Angelis and Stabile (2019) also provides Lipschitz
continuity of the value function in the same fashion for smooth gain functions and time-homogeneous
high-dimensional diffusions. For a neat summary on further developments on the regularity of the
value function, see De Angelis and Peskir (2020), which proves V ∈ C1([0, T ] × R), and references
therein.

Proposition 2 (Regularity of V ).
The value function V satisfies the following properties:

(i) V is Lipschitz continuous on I × R for all compacts I ∈ [0, T ).

(ii) V is C1,2 on C and on D, and LV = λV on C.

(iii) x ↦→ V (t, x) is decreasing for all t ∈ [0, T ). Moreover, for x ̸= b(t),

0 ≥ ∂xV (t, x) ≥ −E
[︂
e−λτ∗∂xX

t,x
τ∗

]︂
, (14)

where τ∗ = τ∗(t, x). Additionally,

∂tV (t, x) ≤ E
[︂⃓⃓⃓
∂tX

t,x
τ∗

⃓⃓⃓]︂
, (15)

∂tV (t, x) ≥ −E
[︂⃓⃓⃓
∂tX

t,x
τ∗

⃓⃓⃓]︂
− P (τ∗ = T − t)

(︃
L+

σ2

2

)︃
, (16)

for some positive constant L.

Proof. (i) Fix (t, x) ∈ I ×K. Due to the martingale and supermartingale properties of V , the fact
that V ≥ G on [0, T ) × R and V = G on D, and inequality (3), it follows that, for δ > 0 small
enough and τ∗ = τ∗(t, x),

V (t, x)− V (t− δ, x) ≤ E
[︂
V (t+ τ∗, Xt,x

τ∗ )
]︂
− Et−δ,x

[︂
V (t− δ + τ∗, Xt−δ,x

τ∗ )
]︂

≤ E
[︂
G
(︂
Xt,x

τ∗

)︂
−G

(︂
Xt−δ,x

τ∗

)︂]︂
≤ E

[︃(︂
Xt−δ,x

τ∗ −Xt,x
τ∗

)︂+]︃
= δE

[︃(︂
−∂tX

tδ,x
τ∗

)︂+]︃
4



≤ δLx,I . (17)

The last equality holds for some tδ ∈ (t − δ, t) ⊂ I due to the mean value theorem. In (17) and,
thereafter,

Lx,I := sup
t∈I

E

[︄
sup

s≤T−t

⃓⃓
∂tX

t,x
s

⃓⃓]︄
.

Besides, applying similar arguments as the ones used in (17), and noticing that τ∗ ∧ (T − t− δ)
is admissible for V (t− δ, x), we have that

V (t+ δ, x)− V (t, x)

≥ E
[︂
V
(︂
t+ δ + τ∗ ∧ (T − t− δ), Xt+δ,x

τ∗∧(T−t−δ)

)︂]︂
− E

[︂
V
(︂
t+ τ∗, Xt,x

τ∗

)︂]︂
= E

[︂
1(τ∗ ≤ T − t− δ)

(︂
V
(︂
t+ δ + τ∗, Xt+δ,x

τ∗

)︂
− V

(︂
t+ τ∗, Xt,x

τ∗

)︂)︂]︂
+ E

[︂
1(τ∗ > T − t− δ)

(︂
V
(︂
T,Xt+δ,x

T−t−δ

)︂
− V

(︂
t+ τ∗, Xt,x

τ∗

)︂)︂]︂
≥ E

[︂
1(τ∗ ≤ T − t− δ)

(︂
G
(︂
Xt+δ,x

τ∗

)︂
−G

(︂
Xt,x

τ∗

)︂)︂]︂
+ E

[︂
1(τ∗ > T − t− δ)

(︂
G(Xt+δ,x

T−t−δ)− V (t+ τ∗, Xt,x
τ∗ )
)︂]︂

≥ −E
[︃
1(τ∗ ≤ T − t− δ)

(︂
Xt,x

τ∗ −Xt+δ,x
τ∗

)︂−]︃
+ E

[︂
1(τ∗ > T − t− δ)

(︂
G(Xt+δ,x

T−t−δ)− E
[︂
V (t+ τ∗, Xt,x

T−t−δ+τ∗◦θT−t−δ
) | FT−t−δ

]︂)︂]︂
≥ −δLx,IP (τ∗ ≤ T − t− δ) + E

[︂
1(τ∗ > T − t− δ)

(︂
G(Xt+δ,x

T−t−δ)− V (T − δ,Xt,x
T−t−δ)

)︂]︂
, (18)

where θ is the shift operator in the space of real-valued functions with domain [0,∞]. By the
definition of V in (2), using the Itô–Tanaka formula, and acknowledging that

(︁
T − δ,Xt,x

T−t−δ

)︁
∈ C

in the set {τ∗ > T −t−δ}, we derive the following inequality for ρ∗ = τ∗◦θT−t−δ in {τ∗ > T −t−δ},

V (T − δ,Xt,x
T−t−δ)−G(Xt,x

T−t−δ)

= ET−δ,Xt,x
T−t−δ

[︂
e−λρ∗G(XT−δ+ρ∗)

]︂
−G(Xt,x

T−t−δ)

= ET−δ,Xt,x
T−t−δ

[︄
1

2

∫︂ ρ∗

0
1(XT−δ+u = A) dlAu (XT−δ+·)

]︄

− ET−δ,Xt,x
T−t−δ

[︄∫︂ ρ∗

0
e−λu

1 (XT−δ+u < A) (λ (A−XT−δ+u) + µ(T − δ + u,XT−δ+u)) du

]︄

≤ ET−δ,Xt,x
T−t−δ

[︄
1

2

∫︂ ρ∗

0
1(XT−δ+u = A) dlAu (XT−δ+·)

]︄

− ET−δ,Xt,x
T−t−δ

[︄∫︂ ρ∗

0
1(XT−δ+u < A)µ(T − δ + u,XT−δ+u) du

]︄

≤ δ
σ2

2
+ ET−δ,Xt,x

T−t−δ

[︄∫︂ ρ∗

0
−1(XT−δ+u < A)µ(T − δ + u,XT−δ+u) du

]︄

≤ δ

(︃
σ2

2
+ L

)︃
, (19)

where L = max{|µ(t, x)| : 0 ≤ t ≤ T, b(t) ≤ x ≤ A} < ∞ and lAs (X) is the local time of the process
X at A and up to time s, that is,

lAs (X) = lim
h↓0

∫︂ s

0
1(A− h ≤ Xu ≤ A+ h) d⟨X,X⟩u.
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Plugging (19) into (18), we obtain

E
[︂
1(τ∗ > T − t− δ)

(︂
G(Xt+δ,x

T−t−δ)− V (T − δ,Xt,x
T−t−δ)

)︂]︂
≥ E

[︂
1(τ∗ > T − t− δ)

(︂
G(Xt+δ,x

T−t−δ)−G(Xt,x
T−t−δ)

)︂]︂
− δP (τ∗ > T − t− δ)

(︃
L+

σ2

2

)︃
≥ −δ

(︃
Lx,I + L+

σ2

2

)︃
P (τ∗ > T − t− δ) . (20)

Therefore,

V (t+ δ, x)− V (t, x) ≥ −δ

(︃
Lx,I + P (τ∗ > T − t− δ)

(︃
L+

σ2

2

)︃)︃
. (21)

Now consider τδ = τ∗(t − δ, x) for 0 ≤ δ ≤ t ≤ T , and notice that τδ ∧ (T − t) is admissible for
V (t, x). Then, arguing as in (18), it follows that

V (t, x)− V (t− δ, x) ≥ −E
[︃
1(τδ ≤ T − t)

(︂
Xt−δ,x

τδ
−Xt,x

τδ

)︂−]︃
+ E

[︂
1(τδ > T − t)

(︂
G(Xt,x

T−t)− V (t− δ + τδ, X
t−δ,x
τδ

)
)︂]︂

,

with
E
[︃
1(τδ ≤ T − t)

(︂
Xt−δ,x

τδ
−Xt,x

τδ

)︂−]︃
≤ δLx,I

and

E
[︂
1(τδ > T − t)

(︂
G(Xt,x

T−t)− V (t− δ + τδ, X
t−δ,x
τδ

)
)︂]︂

≥ −δ

(︃
Lx,I + L+

σ2

2

)︃
.

Additionally, for 0 ≤ δ ≤ T − t and τ δ = τ∗(t+ δ, x) one gets the following by proceeding as in
(17),

V (t+ δ, x)− V (t, x) ≤ δLx,I ,

So far, as Lx,I is finite (see Lemma 1), we have proved that, for any x ∈ R, t ↦→ V (t, x) is Lipschitz
continuous in the compact I ∈ [0, T ). We will now prove that V is also Lipschitz continuous with
respect to x ∈ R for all t ∈ I, which will complete the proof.

Since G is decreasing and x ↦→ Xt,x
s is increasing (∂xX

t,x
s ≥ 0) for all s ∈ [0, T − t) and t ∈ [0, T ),

then x ↦→ V (t, x) is decreasing for all t ∈ [0, T ). Fix (t, x) ∈ [0, T ) × R and δ > 0. Consider
τ∗ = τ∗(t, x), and combine (2), (10), and (3), to get

0 ≥ V (t, x+ δ)− V (t, x) ≥ Et,x+δ

[︂
e−λτ∗G(Xt+τ∗)

]︂
− Et,x

[︂
e−λτ∗G(Xt+τ∗)

]︂
= E

[︂
e−λτ∗

(︂
G(Xt,x+δ

τ∗ )−G(Xt,x
τ∗ )
)︂]︂

≥ −E
[︃
e−λτ∗

(︂
Xt,x

τ∗ −Xt,x+δ
τ∗

)︂−]︃
= −δE

[︃
e−λτ∗

(︂
−∂xX

t,xδ
τ∗

)︂−]︃
= −δE

[︂
e−λτ∗∂xX

t,xδ
τ∗

]︂
(22)

≥ −δ,

where xδ ∈ (x, x+ δ) comes after applying the mean value theorem. In the last inequality we used
that ∂xX

t,x
s ≤ 1 after ∂xµ < 0 and representation (7).
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Arguing similarly, with τδ = τ∗(t, x− δ),

0 ≥ V (t, x)− V (t, x− δ) ≥ −δE
[︂
e−λτδ∂xX

t,xδ
τδ

]︂
≥ −δ.

Then, x ↦→ V (t, x) is Lipschitz continuous for all t ∈ I, which alongside the Lipschitz continuity of
t ↦→ V (t, x) in I for all x ∈ R, allows us to conclude that V is Lipschitz continuous on I × R, that
is, there exists a constant LI > 0 such that

|V (t1, x1)− V (t2, x2)| ≤ LI(|t1 − t2|+ |x1 − x2|),

for all (t1, x1), (t2, x2) ∈ I × R.
(ii) The fact that LV = λV on C comes right after the strong Markov property of (t,Xt) (see

Peskir and Shiryaev (2006, Section 7.1) for more details).
Also, since V is continuous in C (see (i)), µ in (1) is Lipschitz continuous (actually, it suffices

to require local α-Hölder continuity) in [0, T ]×R, and σ is constant, then, one can borrow a classic
result from parabolic partial differential equation’s theory (Friedman, 1964, Section 3, Theorem 9)
to guarantee that, for an open rectangle R ⊂ C, the first initial-boundary value problem

Lf − λf = 0 in R, (23)
f = V on ∂R, (24)

has a unique solution f ∈ C1,2(R). Therefore, we can use Itô’s formula on f(Xt+s) at s = τRc , that
is, the first time Xt+s exits R, and then take Pt,x-expectation with x ∈ R, which guarantees the van-
ishing of the martingale term and yields, together with (23) and (24), the equality Et,x[V (Xt+τRc )] =
f(t, x). Finally, notice that, due to the strong Markov property, Et,x[V (Xt+τRc )] = V (t, x).

(iii) To show that x ↦→ V (t, x) is decreasing for all t ∈ [0, T ) it is enough to prove (14). For
(t, x) ∈ [0, T )×R such that x ̸= b(t), (14) follows after recalling that V is differentiable with respect
to x in C and D, dividing by δ in (22), and taking δ → 0, while using the dominated convergence
theorem. The same procedure used in (17) and (21) yields (15) and (16).

So far we have nearly no information about the function b giving the free-boundary, besides its
existence and a vague idea on how it shapes the stopping and continuation regions. Smoothness of
the free-boundary is essential to prove the smooth-fit condition, in which relies the uniqueness of the
value function V solving the OSP. The works of De Angelis (2015), Peskir (2019), and De Angelis and
Stabile (2019) are a good compendium on the smoothness of the OSB. For time-homogeneous pro-
cesses and smooth gain functions, De Angelis (2015) provides the continuity of the free-boundary for
one-dimensional processes with locally Lipschitz continuous drift and volatility. The two-dimensional
case (including time-space diffusions) is addressed by Peskir (2019) in a fairly general setting, which
proves the impossibility of first-type discontinuities of the OSB for Mayer–Lagrange OSPs, yet with-
out addressing second-type discontinuities. Unfortunately, this is not enough to prove the smooth-fit
condition (piecewise monotonicity is sufficient; see Proposition 4). De Angelis and Stabile (2019) goes
further in proving the Lipschitz continuity of the free-boundary in a higher dimensional framework,
also for Mayer–Lagrange OSPs, although only tackling time-homogeneous processes and imposing
restrictive conditions. For example, the gain function is assumed to be C3 with respect to the spatial
coordinate, which is not satisfied by our gain function G.

Inspired by the methodology displayed in De Angelis and Stabile (2019), yet dealing with a
non-differentiable gain function and time-inhomogeneous underlying process, the next proposition
proves the Lipschitz continuity of the OSB.

Proposition 3 (Lipschitz continuity of b).
The OSB b is Lipschitz continuous on any closed interval I ⊂ [0, T ).

7



Proof. Consider the function W (t, x) = V (t, x) − G(x) and the closed interval I ⊂ [0, T ). Propo-
sitions 1 and 2 guarantee that W is continuous and W (t, A) > 0 for all t ∈ I. Hence, there exists
a > 0 such that W (t, A) ≥ a for all t ∈ I. Therefore, for all δ such that 0 < δ ≤ a, the equation
W (t, x) = δ has a solution in C for all t ∈ I. Moreover, this solution is unique for each t, hence we
can denote it by bδ(t), where bδ : I → (b(t), A]. The uniqueness comes after (14) from Proposition
2 alongside the fact that ∂xµ < 0 (see A2.2) and representation (7), which give us ∂xW > 0 on
C. The continuity of bδ on I comes from the continuity of W . Furthermore, the implicit function
theorem guarantees that bδ is differentiable and

b′δ(t) ≥ −∂tW (t, bδ(t))/∂xW (t, bδ(t)). (25)

Notice that bδ is decreasing in δ and therefore it converges pointwise to some limit function b0, which
satisfies b0 > b in I as bδ > b for all δ. In addition, since W (t, bδ(t)) = δ and W is continuous, it
follows that W (t, b0(t)) = 0 after taking δ ↓ 0, which means that b0 < b in I and hence b0 = b in I.

Recalling (14), we get the following lower bound for ∂xW (t, xδ) based on (38) from Lemma 1,
for xδ = bδ(t) and τδ = τ∗(t, xδ),

∂xW (t, xδ) ≥ M
(2)
T−tE [τδ] , (26)

where t = inf{t : t ∈ I}.
Also, arguing as we did in Lemma 1 to derive (39), alongside (15), it readily follows that

∂tW (t, xδ) ≤ E
[︁⃓⃓
∂tX

t,xδ
τδ

⃓⃓]︁
≤ L

(︂
1 + (T − t)eL(T−t)

)︂
E
[︃∫︂ τδ

0

(︁⃓⃓
Xt,xδ

u

⃓⃓
+ 1
)︁
du

]︃
(27)

for some positive constant L coming from the Lipschitz continuity of ∂tµ.
Hence, taking into account (25), (26), and (27), we get that

b′δ(t) ≥ −Kt

E
[︂∫︁ τδ

0

(︂⃓⃓⃓
Xt,xδ

u

⃓⃓⃓
+ 1
)︂
du
]︂

E [τδ]
(28)

for a positive constant Kt independent from δ.
Consider the stopping time τr = inf{s ≥ 0 : Xt+s /∈ I × (−∞, r)}. Due to the tower property of

conditional expectation and the strong Markov property, we have that

m(t, x) := E

[︄∫︂ τ∗

0

(︁⃓⃓
Xt,x

u

⃓⃓
+ 1
)︁
du

]︄

= Et,x

[︄∫︂ τ∗∧τr

0
(|Xt+u|+ 1) du+ 1(τr ≤ τ∗)

∫︂ τ∗

τr

(|Xt+u|+ 1) du

]︄

= Et,x

[︄∫︂ τ∗∧τr

0
(|Xt+u|+ 1) du+ 1(τr ≤ τ∗)Et,x

[︄∫︂ τr+τ∗◦θτr

τr

(|Xt+u|+ 1) du
⃓⃓⃓
Fτr

]︄]︄

= Et,x

[︄∫︂ τ∗∧τr

0
(|Xt+u|+ 1) du+ 1(τr ≤ τ∗)Et+τr,Xt+τr

[︄∫︂ τ∗

0
(|Xt+u|+ 1) du

]︄]︄

= Et,x

[︄∫︂ τ∗∧τr

0
(|Xt+u|+ 1) du+ 1(τr ≤ τ∗)m (t+ τr, Xt+τr)

]︄
, (29)

where τ∗ = τ∗(t, x) and θ is the shift operator in the canonical space. Notice that, for xδ < r,(︁
t+ τr, X

t,xδ
t+τr

)︁
∈ Γt := {(t, t̄)× {r}} ∪ {t̄× (b(t̄), r]}, with t̄ = sup {t : t ∈ I}. Then,

m (t+ τr, Xt+τr) ≤ sup
(s,y)∈Γt

m (s, y)
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= sup
(s,y)∈Γt

E

[︄∫︂ τ∗(s,y)

0
(|Xs,y

u |+ 1) du

]︄

≤ T sup
(s,y)∈Γt

⌜⃓⃓⎷E

[︄
sup

u≤T−s
(|Xs,y

u |+ 1)
2

]︄

≤ T sup
(s,y)∈Γt

√︂
M

(1)
T−s (|y|2 + 1)

≤ T

√︂
M

(1)
T (max {|b(t̄)|2, |r|2}+ 1), (30)

where we used the Cauchy–Schwartz inequality and (37) from Lemma 1. Also, for u ≤ τδ ∧ τr,
|Xt+u| ≤ max{|b|, r}, with b = inf{b(t) : t ∈ [0, T ]}. Notice that, in the same fashion we derived
(29), we can also get

E [τδ] = Et,xδ

[︁
(τr ∧ τδ) + 1(τr ≤ τδ)Et+τr,Xt+τr

[τ∗]
]︁
. (31)

Therefore, putting together equations (28) to (31), we obtain

b′δ(t) ≥ −K
Et,xδ

[(τδ ∧ τr) + 1(τr ≤ τδ)]

E [τδ]

= −K
Et,xδ

[(τδ ∧ τr) + 1(τr ≤ τδ)]

Et,xδ

[︁
(τδ ∧ τr) + 1(τr ≤ τδ)Et+τr,Xt+τr

[τ∗]
]︁

≥ −K

(︄
1 +

Pt,xδ
(τr ≤ τδ)

Et,xδ

[︁
(τδ ∧ τr) + 1(τr ≤ τδ)Et+τr,Xt+τr

[τ∗]
]︁)︄

≥ −K

(︄
1 +

Pt,xδ
(τr ≤ τδ, τr = t̄− t)

Et,xδ
[(τδ ∧ τr)]

+
Pt,xδ

(τr ≤ τδ, τr < t̄− t)

Et,xδ

[︁
1(τr ≤ τδ)Et+τr,Xt+τr

[τ∗]
]︁)︄

≥ −K

(︄
1 +

Pt,xδ
(τr ≤ τδ, τr = t̄− t)

Et,xδ
[1(τr ≤ τδ, τr = t̄− t)(τδ ∧ τr)]

+
Pt,xδ

(τr ≤ τδ, τr < t̄− t)

Et,xδ

[︁
1(τr ≤ τδ, τr < t̄− t)Et+τr,Xt+τr

[τ∗]
]︁)︄

≥ −K

(︃
1 +

1

t̄− t
+

1

infs∈(t,t̄) Es,r [τ∗]

)︃
, (32)

where, in the last inequality, we used the fact that, in the set {τr ≤ τδ, τr < t̄− t}, Xt+τr = r under
Pt,xδ

for xδ < r.
Consider now an open set B and a compact set K such that {(t, t̄) × {r}} ⊂ K ⊂ B ⊂ C, and

denote by τBc the first time Xs,r
u exits B for some s ∈ (t, t̄). Pick a function ϕ such that Lϕ ≤ MB

in B for a positive constant MB, ϕ ≤ 1 in K, and ϕ > 2 in Bc. Then,

Es,r [τ
∗] ≥ Es,r [τBc ] = Es,r

[︃∫︂ τBc

0
du

]︃
≥ M−1

B Es,r

[︃∫︂ τBc

0
Lϕdu

]︃
= M−1

B (Es,r [ϕ (s+ τB, Xs+τB)]− ϕ(s, r))

≥ M−1
B > 0.

Therefore, going back to (32), we have that, for all t ∈ I ′ = [t, t̄− ε] and ε > 0 small enough,

b′δ(t) ≥ −K
(︁
1 + ε−1 +MB

)︁
. (33)

To find a bound (uniform with respect to δ and for all t ∈ I ′) in the opposite sense, consider
(16) and (27), and use the Markov inequality to get

∂tW (t, xδ) ≥ − L
(︂
1 + (T − t)eL(T−t)

)︂
E
[︃∫︂ τδ

0

(︁⃓⃓
Xt,xδ

u

⃓⃓
+ 1
)︁
du

]︃
9



− (T − t)−1

(︃ˆ︁L+
σ2

2

)︃
E [τδ] (34)

for some positive constant ˆ︁L. Hence, relying on the same arguments as the ones used to get (33),
but with (34) instead of (27), we obtain

b′δ(t) ≤ K
(︁
1 + ε−1 +MB

)︁
+ (T − t̄)−1

(︃ˆ︁L+
σ2

2

)︃
. (35)

Finally, we have proved that |b′δ(t)| is bounded by a constant, uniformly in δ and for all t ∈ I ′ =
(t, t̄ − ε), and then we are able to apply the Arzelà–Ascoly’s theorem to prove that bδ converges
uniformly to b in I ′ as δ → 0, which implies that b is differentiable in I ′. Since ε > 0 and I can be
chosen arbitrarily, then we conclude that b is differentiable anywhere away from T .

The so-called principle of smooth fit provides an extra condition to be satisfied by the value
function at the free-boundary, which offsets the added unknown of not having a fixed boundary
as in initial-value partial differential equations, and hence it gives uniqueness of solution for the
associated free-boundary problem with LV = λV in C and V = G on D. Roughly speaking, the
smooth-fit condition is fulfilled whenever the boundary is (probabilistic) regular for the underlying
process, that is, if after starting at a point (t, x) ∈ ∂C, the process enters D immediately Pt,x-a.s.
This type of regularity of the OSB is usually obtained provided smooth dependency of the process
with respect to its initial values, and of the gain function around the OSB. In Peskir and Shiryaev
(2006, Section 9.1), two methods for proving the smooth-fit condition, that could be tailored to
specific cases, are exposed. Lemma 5.1 in De Angelis and Ekström (2017) proves the regularity of b
whenever the boundary is monotone. The work of De Angelis and Peskir (2020) derives the principle
of smooth fit (both vertically and horizontally) in terms of different kinds of regularities of the OSB
for strong Feller/Markov processes.

We obtain the smooth-fit condition for our setting in the next proposition by relying on the work
of Cox and Peskir (2015), which implicitly shows that the condition holds for piecewise monotone
boundaries for general recurrent diffusions.

Proposition 4 (Smooth-fit condition).
The smooth-fit condition holds, i.e., ∂xV (t, b(t)) = −1 for all t ∈ [0, T ).

Proof. Take a point (t, b(t)) for some t ∈ [0, T ) and consider δ > 0. Since (t, b(t)) ∈ D and
(t, b(t) + δ) ∈ C, we get that δ−1(V (t, b(t) + δ) − V (t, b(t))) ≥ δ−1(G(b(t) + δ) − G(b(t))) = −1.
Therefore, ∂+

x V (t, b(t)) ≥ −1.
Besides, reasoning as in (22), we get that

δ−1(V (t, b(t) + δ)− V (t, b(t))) ≤ −E
[︂
e−λτδ∂xX

t,xδ
τδ

]︂
≤ sup

x∈(b(t),A)
E

[︄
sup

s≤T−t
∂xX

t,x
s

]︄
< ∞,

where τδ = τ∗(t, b(t) + δ) and xδ ∈ (b(t), b(t) + δ). The supremum is finite (actually, it is lower than
1) since ∂xµ < 0. Hence, we can apply the dominated convergence theorem to obtain

∂+
x V (t, b(t)) ≤ −E

[︂
e−λτ0∂xX

t,b(t)
τ0

]︂
, (36)

with τ0 := limδ→0 τδ (τ0 is well-defined since the sequence τδ decreases with respect to δ). Since b is
continuous and piecewise monotone (b is Lipschitz continuous by Proposition 3), we can guarantee
that τ0 = τ∗(t, b(t)) = 0 P-a.s. (Cox and Peskir, 2015, Corollary 8), and therefore ∂+

x V (t, b(t)) ≤ −1.
Finally, the smooth-fit condition arises by recalling that ∂−

x V (t, b(t)) = −1 since V = G on
D.

10



Lemma 1. (Some useful bounds)
Under A2.2, the following inequalities hold for positive constants M

(i)
s , i = 1, 2, 3, and (t, x) ∈

[0, T )× R, s ∈ (0, T − t],

E
[︃
sup
u≤s

(︁⃓⃓
Xt,x

u

⃓⃓
+ 1
)︁2]︃ ≤ M (1)

s

(︁
|x|2 + 1

)︁
, (37)

∂xX
t,x
s ≤ 1−M (2)

s s, (38)

E
[︃
sup
u≤s

⃓⃓
∂tX

t,x
u

⃓⃓]︃
≤ M (3)

s (|x|+ 1) . (39)

Moreover, s ↦→ M
(i)
s increases for i = 1, 3 and decreases for i = 2.

Proof. Due to the Lipschitz continuity of x ↦→ µ(t, x) and the fact that (a+ b+ c)2 ≤ 3(a2+ b2+ c2),
we have that (︁⃓⃓

Xt,x
s

⃓⃓
+ 1
)︁2 ≤ 3 (|x|+ 1)2 + 3

∫︂ s

0

(︁
µ(t+ r,Xt,x

r )
)︁2

dr + 3σ2 (Ws)
2

≤ 3 (|x|+ 1)2 + 3L

∫︂ s

0

(︁⃓⃓
Xt,x

r

⃓⃓
+ 1
)︁2

dr + 3σ2 (Ws)
2

for some positive constant L. Hence, using the maximal inequalities in Theorem 14.13 (d) from
Schilling et al. (2012), it follows that

E
[︃
sup
u≤s

(︁⃓⃓
Xt,x

u

⃓⃓
+ 1
)︁2]︃ ≤ 3 (|x|+ 1)2 + 3L

∫︂ s

0
E
[︂(︁⃓⃓

Xt,x
r

⃓⃓
+ 1
)︁2]︂

dr + 3σ2E
[︃
sup
u≤s

(Wu)
2

]︃
≤ 3 (|x|+ 1)2 + 12σ2s+ 3L

∫︂ s

0
E
[︃
sup
u≤r

(︁⃓⃓
Xt,x

u

⃓⃓
+ 1
)︁2]︃

dr.

Therefore, Gronwall’s inequality (Schilling et al., 2012, Theorem A.43) guarantees that

E
[︃
sup
u≤s

(︁⃓⃓
Xt,x

u

⃓⃓
+ 1
)︁2]︃ ≤ 3 (|x|+ 1)2 + 12σ2s+ 3L

∫︂ s

0

(︂
3 (|x|+ 1)2 + 12σ2u

)︂
e3L(s−u) du

≤ 3 (|x|+ 1)2 + 12σ2s+ 3Le3Ls
(︂
3 (|x|+ 1)2 s+ 6σ2s2

)︂
,

from which follows (37).
To obtain (38), we use the fact that µ is Lipschitz continuous and ∂xµ < 0, alongside represen-

tation (7) and (14), which lead to

1− ∂xX
t,x
s =

∫︂ s

0
−∂xµ(t+ u,Xt,x

u )∂xX
t,x
u du

=

∫︂ s

0
−∂xµ(t+ u,Xt,x

u ) exp

{︃∫︂ u

0
∂xµ(t+ r,Xt,x

r ) dr

}︃
du

≥ exp

{︃∫︂ s

0
∂xµ(t+ u,Xt,x

u ) du

}︃∫︂ s

0
−∂xµ(t+ u,Xt,x

u ) du

≥ e−Ls

∫︂ s

0
−∂xµ(t+ u,Xt,x

u ) du

≥ e−Ls min
u∈[0,T ]

{−µ̄(u)} s,

where L is the Lipschitz constant.
Let us prove now (39). To do so, notice first that (5) implies⃓⃓

∂tX
t,x
s

⃓⃓
≤ a1(s, t, x) +

∫︂ s

0
a2(u, t, x)

⃓⃓
∂tX

t,x
u

⃓⃓
du,
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with

a1(s, t, x) =

∫︂ s

0

⃓⃓
∂tµ(t+ u,Xt,x

u )
⃓⃓
du, a2(u, t, x) =

⃓⃓
∂xµ(t+ u,Xt,x

u )
⃓⃓
.

Therefore, an application of the Gronwall’s inequality yields⃓⃓
∂tX

t,x
s

⃓⃓
≤ a1(s, t, x) +

∫︂ s

0
a1(u, t, x)a2(u, t, x) exp

{︃∫︂ s

u
a2(r, t, x) dr

}︃
du.

Hence, due to the Lipschitz continuity of µ and ∂tµ, and using (37) alongside the Cauchy–Schwartz
inequality, we have that

E
[︃
sup
u≤s

⃓⃓
∂tX

t,x
u

⃓⃓]︃
≤ E

[︃
a1(s, t, x)

(︃
1 +

∫︂ s

0
a2(u, t, x) du exp

{︃∫︂ s

0
a2(u, t, x) du

}︃)︃]︃
≤ LE

[︃∫︂ s

0

(︁⃓⃓
Xt,x

u

⃓⃓
+ 1
)︁
du
(︁
1 + seLs

)︁]︃
≤ L

(︁
1 + seLs

)︁
s

√︄
E
[︃
sup
u≤s

(︂⃓⃓⃓
Xt,x

u

⃓⃓⃓
+ 1
)︂2]︃

≤ L
(︁
1 + seLs

)︁
s

√︂
M

(1)
s (|x|2 + 1),

which entails (39).

3 The pricing formula and the free-boundary equation

Propositions 1–4 allow applying an extension of the Itô’s formula (D’Auria et al., 2020, Lemma
A2) to e−λsV (t + s,Xt+s) which, after setting s = T − t, taking Pt,x-expectation, and shifting the
integrating variable t units, yields

V (t, x) = e−λ(T−t)Et,x [G(XT )]−
∫︂ T

t
Et,x

[︂
e−λ(u−t)(LV − λV )(u, Xu)

]︂
du, (40)

where the martingale term is vanished after taking Pt,x-expectation and the local time term does not
appear due to the smooth-fit condition. Recall that LV = λV on C and V = G on D. Therefore,
(40) turns into the pricing formula

V (t, x) = e−λ(T−t)Et,x [(A−XT )1 (XT ≤ A)] (41)

+

∫︂ T

t
Et,x

[︂
e−λ(u−t) (λ (A−Xu) + µ(u,Xu))1 (Xu ≤ b(u))

]︂
du

= e−λ(T−t)

∫︂ A

−∞
(A− y)f(T, y | t, x)dy

+

∫︂ T

t

∫︂ b(u)

−∞
e−λ(u−t) (λ (A− y) + µ(u, y)) f(u, y | t, x)dy du,

where f(s, y | t, x) = ∂yPt,x (Xs ≤ y) is the transition density of X under Pt,x. The first term of the
right hand sum in (41) stands for the price of the European put option written on the same asset
and expiring on the same date, while the second term, called the early exercise premium, represents
the cost of having the added flexibility of being able to exercise the option before the expiration
time T .

By taking x ↑ b(t) in (41), we get the free-boundary equation

b(t) = A− e−λ(T−t)Et,b(t) [(A−XT )1 (XT ≤ A)] (42)
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−
∫︂ T

t
Et,b(t)

[︂
e−λ(u−t) (λ (A−Xu) + µ(u,Xu))1 (Xu ≤ b(u))

]︂
du

= A− e−λ(T−t)

∫︂ A

−∞
(A− y)f(T, y | t, b(t))dy

−
∫︂ T

t

∫︂ b(u)

−∞
e−λ(u−t) (λ (A− y) + µ(u, y)) f(u, y | t, b(t))dy du.

It turns out that there exists a unique solution for (42) up to certain mild conditions. We
include a proof of such an assertion in the next theorem, by adapting to our own framework the
methodology used by Peskir (2005, Theorem 3.1), who firstly proved the uniqueness of solution of
the free-boundary equation for an American put option when the underlying process is a geometric
Brownian motion.

Theorem 1. If the function x ↦→ Xt,x
s is twice continuously differentiable for all s ∈ [0, T ], then the

integral equation (42) has unique solution among the class of continuous functions c : [0, T ] → R of
bounded variation, and such that c(t) < A for all t ∈ [0, T ).

Proof. Suppose there exists a function c : [0, T ] → R solving the integral equation (42), and define
V c as in (41) but with c instead of b. Examining the representation (41) we can conclude that the
integrand is twice continuously differentiable with respect to x. Therefore, we can obtain ∂xV

c and
∂xxV

c and guarantee their continuity on [0, T ]×R by differentiating inside the integral symbol.
Let us compute the operator L acting on V c, which by definition takes the form

(LV c)(t, x) = lim
h↓0

Et,x [V
c (t+ h,Xt+h)]− V c(t, x)

h
.

Define the function

I(t, u) = e−λ(u−t) (λ (A−Xu) + µ (u,Xu))1(Xu ≤ c(u)) (43)

such that, according to (41), and due to the Markovianity of X,

Et,x [V
c (t+ h,Xt+h)] = Et,x

[︃
Et+h,Xt+h

[︃
e−λ(T−t−h)(A−XT )

+ +

∫︂ T

t+h
I(t+ h, u) du

]︃]︃
= Et,x

[︃
Et,x

[︃
e−λ(T−t−h)(A−XT )

+ +

∫︂ T

t+h
I(t+ h, u) du

⃓⃓⃓
Fh

]︃]︃
= Et,x

[︃
e−λ(T−t−h)(A−XT )

+ +

∫︂ T

t+h
I(t+ h, u) du

]︃
= Et,x

[︃
eλh
(︃
e−λ(T−t)(A−XT )

+ +

∫︂ T

t+h
I(t, u) du

)︃]︃
.

Therefore,

(LV c)(t, x)

= lim
h↓0

Et,x

[︂
eλh
(︂
e−λ(T−t)(A−XT )

+ +
∫︁ T
t+h I(t, u) du

)︂]︂
− Et,x

[︂
e−λ(T−t)(A−XT )

+ +
∫︁ T
t I(t, u) du

]︂
h

= lim
h↓0

Et,x

[︂(︁
eλh − 1

)︁ (︂
e−λ(T−t)(A−XT )

+ +
∫︁ T
t I(t, u) du

)︂]︂
− Et,x

[︂
eλh
∫︁ t+h
t I(t, u) du

]︂
h

= lim
h↓0

eλh − 1

h
Et,x

[︃
e−λ(T−t)(A−XT )

+ +

∫︂ T

t
I(t, u) du

]︃
− lim

h↓0
Et,x

[︃
eλh

1

h

∫︂ t+h

t
I(t, u) du

]︃
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= λV c(t, x)− (λ (A− x)− µ (t, x))1(x ≤ c(u)).

Now define the sets

C1 := {(t, x) ∈ [0, T )× R : x > c(t)}, C2 := {(t, x) ∈ [0, T )× R : x < c(t)},

alongside the function F (t)(s, x) := e−λsV c(t+ s, x) with s ∈ [0, T − t), x ∈ R, and consider

Ct
1 := {(s, x) ∈ C1 : t ≤ s < T}, Ct

2 := {(s, x) ∈ C2 : t ≤ s < T}.

Notice that F (t) satisfies the hypothesis of Lemma A2 in D’Auria et al. (2020), with C = Ct
1 and

D◦ = Ct
2: F (t), ∂xF (t), and ∂xxF

(t) are continuous on [0, T ) × R; F (t) is C1,2 on Ct
1 and Ct

2; c is a
continuous function of bounded variation; and (LF (t))(s, x) = − (λ (A− x)− µ (t, x))1(x ≤ c(u))
is locally bounded on Ct

1 ∪ Ct
2. Thereby, we can validate the following change-of-variable formula,

which is missing the local time term due to the continuity of Fx on [0, T )× R:

e−λsV c(t+ s, Xt+s) = V c(t, x)−
∫︂ t+s

t
I(t, u) du+M (1)

s , (44)

with M
(1)
s =

∫︁ t+s
t e−λ(u−t)σ∂xV

c(u,Xu) dBu. Notice that (M
(1)
s )T−t

s≥0 is a martingale under Pt,x.
Similarly, we can apply Lemma A2 from D’Auria et al. (2020), but plugging in the function

F (s, x) = e−λsG(Xt+s), and taking C = {(s, x) ∈ [0, T − t) × R : x > A} and D◦ = {(s, x) ∈
[0, T − t)× R : x < A}. We thereby get

e−λsG(Xt+s) = G(x)−
∫︂ t+s

t
IA(t, u) du (45)

−M (2)
s +

1

2

∫︂ t+s

t
e−λ(u−t)

1(Xu = A) dlAu (Xt+·),

where M
(2)
s = σ

∫︁ t+s
t e−λ(u−t)

1(Xu < A) dBu is a martingale under Pt,x and IA is defined as in (43)
but with A instead of c(u).

Consider the stopping time

ρc := inf {0 ≤ s ≤ T − t : Xt+s ≥ c(t+ s)} . (46)

Fix (t, x) such that x ≤ c(t). Since we are assuming c(t) < A for all t ∈ [0, T ), we can guarantee
that Pt,x(Xt+s ≤ c(t+ s)) = Pt,x(Xt+s < A) = 1 for all s ∈ [0, ρc), and hence I(t, u) = IA(t, u) and∫︁ t+ρc
t e−λ(u−t)

1(Xu = A) dlAs (X) = 0 under Pt,x. Recall that V c(t, c(t)) = G(c(t)) for all t ∈ [0, T )
as c solves (42). Also, V c(T,XT ) = G(XT ). Hence, V c(t+ ρc, Xt+ρc) = G(Xt+ρc). We are able now
to derive the following relation from equations (44) and (45),

V c(t, x) = Et,x[e
−λρcV c(t+ ρc, Xt+ρc)] + Et,x

[︃∫︂ t+ρc

t
I(t, u) du

]︃
= Et,x

[︂
e−λρcG(Xt+ρc)

]︂
+ Et,x

[︃∫︂ t+ρc

t
IA(t, u) du

]︃
= G(x).

Therefore, we have proved that V c = G on C2̄.
Now, define the stopping time

τc := inf{0 ≤ s ≤ T − t : Xt+s ≤ c(t+ s)}

14



and plug it into (44) to obtain the expression

V c(t, x) = e−λτcV c(t+ τc, Xt+τc) +

∫︂ t+τc

t
I(t, u) du−M (1)

τc .

Notice that, due to the definition of τc, 1(Xt+u ≤ c(t+u)) = 0 for all 0 ≤ u < τc whenever τc > 0
(the case τc = 0 is trivial). Therefore, the following formula comes after taking Pt,x-expectation in
the above equation and considering that V c = G on C2̄:

V c(t, x) = Et,x[e
−λτcV c(t+ τc, Xt+τc)] = Et,x

[︂
e−λτcG(Xt+τc)

]︂
,

for all (t, x) ∈ [0, T )× R. Recalling the definition of V from (2), the above equality leads to

V c(t, x) ≤ V (t, x), (47)

for all (t, x) ∈ [0, T )× R.
Take (t, x) ∈ C2 satisfying x < b(t), and consider the stopping time ρb defined as

ρb := inf {0 ≤ s ≤ T − t : Xt+s ≥ b(t+ s)} .

Since V = G on D, the following equality holds due to (41) and after noticing that Pt,x(Xt+u ≤
b(t+ u)) = 1 for all 0 ≤ u < ρb,

Et,x[e
−λρbV (t+ ρb, Xt+ρb)] = G(x)− Et,x

[︃∫︂ t+ρb

t
e−λ(u−t) (λ (A−Xu) + µ (u,Xu)) du

]︃
.

Additionally, after replacing s with ρb at (44) and recalling that V = G on C2̄, we get that

Et,x[e
−λρbV (t+ ρb, Xt+ρb)]

= G(x)− Et,x

[︃∫︂ t+ρc

t
e−λ(u−t) (λ (A−Xu) + µ (u,Xu))1(Xu ≤ c(u)) du

]︃
.

Therefore, we can use (47) to merge the two previous equalities into

Et,x

[︃∫︂ t+ρb

t
e−λ(u−t) (λ (A−Xu) + µ (u,Xu))1(Xu ≤ c(u)) du

]︃
≥ Et,x

[︃∫︂ t+ρb

t
e−λ(u−t) (λ (A−Xu) + µ (u,Xu)) du

]︃
,

meaning that b(t) ≤ c(t) for all t ∈ [0, T ] since c is continuous.
Suppose there exists a point t ∈ (0, T ) such that b(t) < c(t) and fix x ∈ (b(t), c(t)). Consider the

stopping time

τb := inf{0 ≤ u ≤ T − t : Xt+u ≤ b(t+ u)},

plug it into both (41) and (44) by replacing s, and then take Pt,x-expectation to obtain

Et,x[e
−λτbV c(t+ τb, Xt+τb)] = Et,x[e

−λτbG(Xt+τb)] = V c(t, x)− Et,x

[︃∫︂ t+τb

t
I(t, u) du

]︃
and

Et,x[e
−λτbV (t+ τb, Xt+τb)] = Et,x[e

−λτbG(Xt+τb)] = V (t, x).

Thus, from (47), we get

Et,x

[︃∫︂ t+τb

t
I(t, u) du

]︃
≤ 0.

Using the fact that x > b(t) and the time-continuity of the process X, we can state that τb > 0.
Therefore, the previous inequality can only happen if 1(Xs ≤ c(s)) = 0 for all t ≤ s ≤ t + τb,
meaning that b(s) ≥ c(s) for all t ≤ s ≤ t+ τb, which contradicts the assumption b(t) < c(t).
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3.1 Gaussian marginal distributions

We can provide a more tractable expression for both the pricing formula (41) and the free-boundary
equation (42) under the assumption that the underlying process has Gaussian marginal distributions.

A3.1 Xu is a Gaussian random variable with mean ν(u−t, x) and variance γ2(u−t) for all u ∈ [0, T ],
under Pt,x, where ν : [0, T ]× R → R and γ2 : [0, T ] → R+.

Equation (41) can be simplified by using the fact that, since Xu ∼ N (ν(u−t, x), γ2(u−t)) under
Pt,x for u ∈ [t, T ], then Et,x[Xu1(Xu ≤ a)] = ν(u− t, x)Φ(ã)− γ(u− t)ϕ(ã), where ϕ and Φ are the
density and distribution of a standard normal random variable, and ã = (a− ν(u− t, x))/γ(u− t).
Thereby, we get the following form of the pricing formula (41),

V (t, x) = Kλ(T − t, x,A) + λ

∫︂ T

t
Kλ(u− t, x, b(u)) du

+

∫︂ T

t
e−λ(u−t)

(︄∫︂ b(u)

0
µ(u, r)γ−1(u− t)ϕ

(︃
r − ν(u− t, x)

γ(u− t)

)︃
dr

)︄
du, (48)

where

Kλ(t, x1, x2) = e−λt

(︃
(A− ν(t, x1)) Φ

(︃
x2 − ν(t, x1)

γ(t)

)︃
+ γ(t)ϕ

(︃
x2 − ν(t, x1)

γ(t)

)︃)︃
. (49)

By taking x ↑ b(t) in (48), we can derive the free-boundary equation

b(t) = A−Kλ(T − t, b(t), A)− λ

∫︂ T

t
Kλ(u− t, b(t), b(u)) du

−
∫︂ T

t
e−λ(u−t)

(︄∫︂ b(u)

0
µ(u, r)γ−1(u− t)ϕ

(︃
r − ν(u− t, b(t))

γ(u− t)

)︃
dr

)︄
du. (50)

4 Example

Let µ(t, x) in (1) take the form

µ(t, x) = θ(t)(α(t)− x), (51)

that is, {Xt}Tt≥0 is an Ornstein–Uhlenbeck process with time-dependent parameters θ : [0, T ] → R
and α : [0, T ] → R, and constant volatility σ > 0. Such a process has been studied, among others,
in Albano and Giorno (2020), Deng et al. (2016), and Palamarchuk (2018). It has the integral
representation

Xt = xe−
∫︁ t
0 θ(u) du +

∫︂ t

0
α(u)θ(u)e−

∫︁ t
u θ(r) dr du+ σ

∫︂ t

0
e−

∫︁ t
u θ(r) dr dWu, (52)

with 0 ≤ t ≤ T .
Notice that, depending on whether θ(t) is positive or negative, the process gets pulled towards

or pushed away from α(t) with a strength that depends on |θ(t)|. Figure 1 illustrates this behaviour
for θ > 0.
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(a) θ(t) = 10
1+9t , α(t) = sin(2tπt), X0 = −1.
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(b) θ(t) = 10t, α(t) = sin(2tπt), X0 = −1.
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(c) θ(t) = 10
1+9t , α(t) = et, X0 = 0.
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(d) θ(t) = 10t, α(t) = et, X0 = 0.

Figure 1: Time-dependent Ornstein–Uhlenbeck paths (solid coloured lines). Dashed lines represent the
attracting curves α for situations with temporally decreasing (left column) and increasing (right) attraction
strength. The volatility is σ = 1.

Proposition 5.
Let X = {Xt}Tt≥0 be a process that satisfies (1) with µ as in (51). Assume the real functions θ and
α are continuously differentiable, and such that θ(t) > 0 for all t ∈ [0, T ]. Then, X satisfies A2.1,
A2.2, and A3.1.

Proof. Assumption A2.1 is fulfilled by taking u(t) = α(t). To satisfy A2.2 it is enough to take
µ̄ = −θ and notice that the Lipschitz continuity of both µ and ∂tµ follows straightforwardly from
(51). Finally, the Gaussianity of X arises from (52), with marginal mean and variance respectively
given by

ν(t, x) = xe−
∫︁ t
0 θ(u) du +

∫︂ t

0
α(u)θ(u)e−

∫︁ t
u θ(r) dr du,

γ2(t) = σ2

∫︂ t

0
e−2

∫︁ t
u θ(r) dr du.
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Finally, it is worthwhile to notice that, due to the linearity of x ↦→ µ(t, x), the free-boundary
equation (50) can be simplified even further, taking the form

b(t) = A−Kλ(T − t, b(t), A)−
∫︂ T

t
KOU

λ (u− t, b(t), b(u)) du, (53)

with Kλ as in (49) and

KOU
λ (t, x1, x2) = e−λt

(︃
(λA+ θ(t)α(t)− ν(t, x1)(λ+ θ(t)) Φ

(︃
x2 − ν(t, x1)

γ(t)

)︃
+γ(t)(λ+ θ(t))ϕ

(︃
x2 − ν(t, x1)

γ(t)

)︃)︃
.
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