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Magneto-active polymers (MAPs) consist of a polymeric matrix filled with magnetisable particles. MAPs
may change their mechanical properties (i.e., stiffness) and/or mechanical deformation upon the applica-
tion of an external magnetic stimulus. Mechanical responses of MAPs can be understood as the combined
contributions of both polymeric matrix and magnetic particles. Moreover, the magnetic response is
defined by the interaction between magnetisable particles and the external field. Common approaches
to model MAPs are based on phenomenological continuum models, which are able to predict their
magneto-mechanical behaviour but sometimes failed to illustrate specific features of the underlying phy-
sics. To better understand the magneto-mechanical responses of MAPs and guide their design and man-
ufacturing processes, this contribution presents a novel continuum constitutive model originated from a
microstructural basis. The model is formulated within a finite deformation framework and accounts for
viscous (rate) dependences and magneto-mechanical coupling. After the formulations, the model is cal-
ibrated with a set of experimental data. The model is validated with a wide range of experimental data
that show its predictability. Such a microstructurally-motivated finite strain model will help in designing
MAPs with complex three-dimensional microstructures.
� 2020 The Authors. Published by Elsevier Ltd. This is an open access articleunder the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Magneto-active polymers (MAP) belong to a class of recently
emerged advanced multi-functional materials. MAPs’ mechanical
and rheological properties such as elastic and shear moduli can
be tuned by the application of an external magnetic stimulus.
One of the most salient features of MAPs is that they can crawl,
jump, move by changing their size and shape upon excitation from
a remote-controlled magnetic field. These unparalleled properties
make them as favourable candidates in recently emerged contact-
less soft robotics (Hu et al., 2018; Ren et al., 2019). In preparing a
MAP, ferromagnetic (iron) particles in the size of several micro-
metres (microns) are dispersed in a magnetically inert polymeric
matrix during the cross-linking (curing) process. Ideally, two types
of MAPs can be manufactured depending on the time of application
of the magnetic field during the curing process. Firstly, after mixing
the iron particles in a pool of liquid monomers, the mixture can be
placed to rest for chemical reactions with time. This process will
result in a MAP composite where it can usually be assumed that
ferromagnetic particles are more or less homogeneously dis-
tributed and locked in the polymeric matrix. Secondly, if a mag-
netic field is applied during the curing process, where iron
particles can freely move in the pool of liquid monomers that align
them in a particular direction, the mixture will produce a MAP
with a preferred direction, e.g., an anisotropic composite. Recently,
these smart materials have gained unprecedented importance
thanks to their applications in many areas where traditional smart
materials are not suitable. Some promising applications of MAPs
include remote-controlled soft robotics, smart vibration absorbers,
base isolation in seismic devices, tuneable stiffness actuators, soft
and flexible electronics, automotive suspension bushing, sensing
devices, to mention a few (Böse, 2007; Bednarek, 1999; Bellan
and Bossis, 2002; Bica, 2012; Boczkowska and Awietjan, 2009;
Boczkowska and Awietjan, 2012; Ginder et al., 1999, 2000, 2001;
Hu et al., 2018; Ren et al., 2019; Varga et al., 2006).

Similar to numerous potential applications, experimental inves-
tigations of MAPs featuring various aspects of their mechanical and
rheological characteristics have gained significant attention in the
research community. These characterisation experiments include
uniaxial and equi-biaxial tensile tests, compression tests, and pure
shear tests under magneto-mechanical coupled loads
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(Gordaninejad et al., 2012; Kallio, 2005; Schubert and Harrison,
2015,; Stepanov et al., 2007). For most of the cases, a magnetic
device is developed using either electromagnets or permanent
magnets and is equipped with a traditional testing machine. For
tensile experiments, strains up to 100% in MAPs under a
magneto-mechanical load have been reported in the literature
(Stepanov et al., 2007). However, for a very high stretching of
MAP samples, the so-called magneto-rheological effects (MR) will
become less pronounced. This is because the distances between
magnetic particles are increased when a MAP sample is stretched
largely. Among others, Kallio (2005) conducted a static compres-
sion test, where a strain level of 6.5% is applied along with a mag-
netic flux density up to 1.0T (Tesla). Furthermore, Gordaninejad
et al. (2012) performed compressive tests up to a 20% mechanical
strain under a magneto-mechanical load to quantify the MR effects
on the compressive modulus. Both stress and modulus versus
strain at various magnetic flux densities are used to report the
compressive behavior of MAPs. Similar to uniaxial tension/com-
pression tests, the shear mode of deformation is one of the most
widely used experimental techniques to characterize the
magneto-mechanical properties of polymers. However, the strain
level cannot be as high as that of tensile tests. One of the key exper-
imental studies for the shear deformation is due to Schubert and
Harrison (2015), where it is depicted that the MR effect is higher
at smaller strain levels and decreased with the increasing strains.
They further did experiments using an equi-biaxial mode of defor-
mation for both isotropic and anisotropic MAPs (Schubert and
Harrison, 2015,). For an exhaustive review on experimental charac-
terizations of magneto-active polymers, the recent work of Bastola
and Hossain (2020) can be consulted.

MAPs and their other variants, such as magneto-active gels,
magneto-active fluids etc, receive significant importance in recent
years (Bosnjak et al., 2020; Garcia-Gonzalez and Landis, 2020; Kim
et al., 2018; Lu et al., 2019). However, the mathematical founda-
tions of the magneto-mechanically coupled phenomena in geomet-
rically nonlinear settings have been established half a century ago.
In this case, some of the seminal theoretical works in magneto-
mechanics are due to Pao (1978), Eringen and Maugin (1990),
and Maugin (1988). Similar to practical applications of MAPs, their
constitutive modelling is also an active field of research. In a broad
sense, we can divide the constitutive modelling approaches for
MAPs into two main categories, namely i) continuum-based mate-
rial models that are mostly based on phenomenological concepts,
and ii) micro-mechanical constitutive formulations that are taking
microscale information of the composites into account. For the first
category, some of the earliest works are due to Brigadnov and
Dorfmann (2003), Dorfmann and Ogden (2004a,b). In addition to
constitutive laws at finite strains, they analytically solved some
classical non-homogeneous boundary value problems to demon-
strate the effects of a magnetic field. Despite their pioneering
works in the area, they mainly concentrated on the modelling iso-
tropic nature of the MAP composites. Bustamante (2010) and
Shariff et al. (2016) developed constitutive frameworks for
magneto-mechanics taking into account the underlying transverse
isotropy for MAPs. Moreover, Bustamante et al. (2008), Haldar et al.
(2016) provided variational formulations for magneto-mechanical
balance equations that are prerequisites for the finite element
solutions (FEM) of the governing equations. Note that the non-
magnetic polymeric matrix in a MAP composite is a typical vis-
coelastic material that shows time-dependent behaviour such as
strain rate-dependence, stress relaxation or creeps. However, the
aforementioned pioneering works did not consider the time-
dependence behaviour of MAPs. Very recently, Saxena et al.
(2013, 2014) and Nedjar (2019) proposed constitutive frameworks
that consider time-dependent viscoelastic behaviour of the so-
called soft MAPs (Zhao et al., 2019), while Garcia-Gonzalez
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(2019) devised a computational framework for simulating time-
dependent behaviour of hard magneto-materials. These time-
dependent responses were also incorporated in the constitutive
formulation of magneto-active hydrogels to study their effects
across different time scales by Garcia-Gonzalez and Landis (2020).

One of the main limitations of the continuum-based models is
that they do not contain any detailed information of the
microstructures for MAP composites. For instance, they do not pro-
vide any explicit information on how the ferromagnetic particles
are arranged inside the non-magnetic matrices. Hence, such mod-
els loosely classify MAPs into two groups, isotropic if particles are
randomly dispersed and anisotropic when iron fillers are aligned in
a chain-like structure. However, experimental evidences demon-
strated that particles are arranged in more complex distributions
rather than the two particular structures as assumed in the
continuum-based finite strain constitutive models. Therefore,
micromechanics-inspired constitutive laws gain popularity over
the former one as the latter class of models explicitly inhibit the
information on how the particles are enclosed into the polymeric
matrix. Primarily, this modelling approach considers magnetic
interactions between embedded magnetic fillers and their corre-
sponding effects on the polymeric matrix which are the main rea-
sons behind the change of properties under an applied magnetic
field. Among others, the so-called lattice model is a successful tech-
nique to explain various phenomena observed in a MAP. One of the
earliest one-dimensional lattice model is due to Jolly et al. (1996).
The lattice model of Jolly et al. (1996) is extended and rigorously
studied by Ivaneyko et al. (2011, 2012, 2014) in a series of papers.
They successfully predicted various stiffness (e.g., shear and elastic
moduli) gaining phenomena and contraction and expansion mech-
anisms of MAP composites under a magnetic load. Very recently,
Khanouki et al. (2019) and Gao and Wang (2019) adapted the lat-
tice model and calibrated it under different magneto-mechanical
loads with a wide range of experimental data from MAP
composites.

Despite many promising features of the lattice model, to the
best of the authors’ knowledge, there is no finite strain version of
the approach. Moreover, the current version of the lattice model
does not have any clear strategy to capture the viscoelastic beha-
viour of MAPs. The aim of this contribution is to develop a
microstructural-based magneto-mechanical constitutive model
incorporating the viscoelastic phenomena, whose significance has
largely been demonstrated in MAPs. To this end, firstly, the lattice
model will be extended for finite strains. Secondly, the proposed
framework will be further extended to account for the time-
dependent viscoelastic behaviour of MAP composites. After devis-
ing the framework in a thermodynamically consistent way using
the relevant laws of thermodynamics, strain energies will be
derived considering the microscale information of the particle
arrangements within the MAP. Subsequently, the proposed model
will be calibrated with some classical experimental data available
in the literature. Once relevant parameters of the model will be
identified and validated, microstructural flexibility of the model
will be further explained.

The manuscript is divided into six Sections. In Section 2, some
basic equations of magneto-mechanics at finite strains are briefly
elaborated. In the same section, the total stress tensor and mag-
netic variables are derived from the relevant laws of thermody-
namics. Section 3 elaborates the key concepts that motivate the
proposed microstructural-based magneto-mechanical constitutive
model at finite strains. Mechanical strain energies, magnetic strain
energy and the evolution equation to track the internal variables
are elaborated in this section. In Section 4, the model is calibrated
with some classical experimental data. After fitting the model with
a set of data, relevant parameters are identified and further vali-
dated with new sets of data. Section 5 demonstrates the flexibility
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of the proposed model by considering several complex scenarios of
particle arrangements within MAPs. Finally, concluding remarks
close the paper in Section 6 with an outlook for future works.

2. Basic equations of magneto-mechanics for finite strains

2.1. Kinematics

Polymeric materials are highly deformable. Therefore, in defin-
ing various kinematic quantities, it is customary to differentiate
between the material configuration B0 and the spatial configura-
tion Bt . In order to track the deformation of a body, a point defined
in the material coordinates X in B0 is moved onto the spatial coor-
dinates x in Bt through the nonlinear deformation map v. Such a
mapping process will help in defining the deformation gradient
F , one of the key quantities in nonlinear kinematics, as

F ¼ Gradv; J :¼ det F > 0: ð1Þ
This definition of the deformation gradient leads to some more
strain measures such as the left and the right Cauchy-Green tensors
b and C, respectively, as

b :¼ FFT ; C :¼ FTF: ð2Þ
In order to model the time-dependent responses for polymeric
materials, one of the classical approaches in finite strain viscoelas-
ticity is the multiplicative decomposition of the deformation gradi-
ent F , where the gradient is decomposed into an elastic (Fe) and a
viscous (Fv ) contributions (Lee, 1969; Saxena et al., 2013) as

F ¼ FeFv : ð3Þ
The aforementioned multiplicative decomposition results in further

expressions of various strain measures as Ce ¼ ½Fe�TFe and

Cv ¼ ½Fv �TFv . In magneto-mechanics, three main quantities are con-
sidered as the fundamental variables. These are magnetic field H,
magnetisation M, and magnetic induction Bin the material config-
uration, while h;m, and bare the same, respectively, in the spatial
configuration. The three key variables in the two different configu-
rations are related by

H ¼ hF; M ¼ mF; B ¼ JbF�T : ð4Þ
2.2. Balance laws in material configuration

The balances for the magnetic field Hand the magnetic induc-
tion Bin magneto-mechanics are due to Maxwell equations, which,
in the material configuration, are defined as

CurlH ¼ 0; DivB ¼ 0; ð5Þ
where, Curl and Div denote the corresponding differential operators
with respect to the position vectors X in B0. Note that if we deriveH

from a scalar potential u, equation (5)1 will automatically be satis-
fied, i.e.,

H ¼ �Gradu; inB0: ð6Þ
In the bulk B; H and M are connected by the relation, cf. Dorfmann
and Ogden (2004a) and Mehnert et al. (2017)

B ¼ Jl0C
�1½HþM� inB0: ð7Þ

Sometimes, it is more convenient to express stresses either in the
form of total Cauchy stress rtot defined in the spatial configuration
or in the form of total second Piola–Kirchhoff stress Stot defined in
the material configuration. These are related to the total first
Piola–Kirchhoff stress tensor Ptot via
121
Ptot ¼ JrtotF�T ; Stot ¼ JF�1rtotF�T : ð8Þ
The total Piola stress contains the contributions from the mechani-
cal (P) as well as the ponderomotive parts (Ppon). Hence, it is
decomposed into

Ptot ¼ P þ Ppon ¼ P þ Pmag þ Pmax; ð9Þ
with the magnetization Piola stress Pmag and the Maxwell Piola
stress Pmax that can be expressed as

Pmag ¼ ½M � B�F�T �m� B; and

Pmax ¼ �M0F
�T þ 1

l0
b� B: ð10Þ

In Eq. (10) M0 ¼ 1
2l0

J�1
B � ½CB� denotes the magneto-static energy

density per unit volume in the material configuration.

2.3. Constitutive equations

In isothermal case, the strain energy function (per unit volume)
of a magneto-viscoelastic material can be expressed as a function
of the deformation gradient (F), an internal variable (Fv ), and a
magnetic variable (M) as

W ¼ ~WðF; Fv ;MÞ: ð11Þ
Note that the strain energy function might depend on any of the
three independent (primary) magnetic variables, H; M, and B, see
Dorfmann and Ogden (2004a,b) for more details. The concept of
the total energy function is a widely-known modelling approach
in magneto-mechanics, where the total energy is expressed as

XðF; Fv ;MÞ ¼ WðF; Fv ;MÞ þM�
0ðF;MÞ; ð12Þ

and M�
0ðF;MÞ :¼ � 1

2 Jl0H � ½C�1
H� is called the free field magnetic

energy in the material configuration. In the case of isothermal load-
ing, the second law of thermodynamics in the form of the Clausius–
Duhem inequality will become (Coleman and Gurtin, 1967; Maugin,
1988)

d0 ¼ Ptot : _F þ pF�T : _F þ B � _M� _X P 0; ð13Þ

¼ Ptot : _F þ pF�T : _F þ B � _M� @X
@F

: _F � @X
@Fv

: _Fv � @X
@M

: _M P 0:

ð14Þ
Note that the term related to p (a Lagrange multiplier) is inserted
here to impose the incompressibility constraint frequently used
for modelling rubber-like materials (Kadapa and Hossain, 2020;
de Souza Neto et al., 2008). Now, with the help of Coleman-Noll
argumentation (Coleman and Gurtin, 1967), we can express the
constitutive relations in terms of the total energy as

Ptot ¼ �pF�T þ @X
@F

; with Pmax ¼ @M�
0

@F
; B ¼ @X

@M
: ð15Þ

The remaining term � @X
@Fv

: _Fv P 0 will be used to find an evolution
equation for Fv in the following section. For more details on funda-
mental equations of magneto-mechanics, readers are referred to
our recent publications (Hossain et al., 2015a,b,c; Garcia-
Gonzalez, 2019) and also in some classical text books such as
Griffiths (1998), Kovetz (2000) and Brown (1966).

3. A microstructural-based magneto-viscoelastic model

This section presents the key concepts that we use here to
develop a microstructural-based energy function in pursuing a
magneto-mechanically coupled constitutive law at finite strains.
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Afterwards, the corresponding stress tensors will be derived from
the energy functions. Finally, constitutive equations for magnetisa-
tion and viscous flow rule are defined.

3.1. Conceptualisation of the constitutive model

A MAP is a composite material consisting of a largely deform-
able polymeric matrix and a small portion of soft-magnetic parti-
cles which are responsive to an external magnetic field. The
matrix part is assumed as a non-linear viscoelastic polymer whose
mechanical responses can be understood as the combination of
purely hyperelastic and rate dependent (viscous) components.
The magnetic particles are considerably stiffer than the polymeric
matrix so, apart from incorporating the magnetostrictive response
to the composite, the particles influence the overall mechanical
stiffness of the MAP. Several experimental studies reveal that when
particles are randomly oriented (isotropic case), an external mag-
netic field can expand a MAP sample as well as the field will
enhance the elastic modulus (Bellan and Bossis, 2002; Diguet
et al., 2010; Zhou and Jiang, 2004), which are consistent with some
theoretical works that are mainly based on continuum mechanical
approaches (Dorfmann and Ogden, 2004b; Borcea and Bruno,
2001). On the contrary, some theoretical works predict sample
contractions and reductions in elastic moduli for MAPs of homoge-
neously distributed particles (isotropic MAPs) (Kankanala and
Triantafyllidis, 2004; Ivaneyko et al., 2011; Martin et al., 2006).

In the case of chain-like distributions of the magnetic particles
(anisotropic case), upon application of the magnetic field, a MAP
sample will either expand or contract and the elastic modulus will
increase, see Coquelle and Bossis (2005), Jolly et al. (1996) and
Zhou and Jiang (2004). Based on these experimental findings,
Ivaneyko et al. (2011) developed a lattice model to capture some
key features observed in the MAPs. Despite the initial success,
the model fails to predict elastic stiffness gaining and the sample
expansion in the case of homogeneously distributed (isotropic)
and chain-like anisotropic arrangement of particles. This is because
in their earliest version of the lattice model, iron particles are
assumed to be placed in a simple cubic (SC) lattice. They rectified
the model by considering the arrangement of particles in more
complex lattices such as body-centred cubic (BCC) lattice and
hexagonal closed-packed (HCP) lattice (Ivaneyko et al., 2012,
2014). Han et al. (2013) further modified the lattice model by add-
ing a ’wavy factor’ that represents a magnitude of how well-
aligned the particles are. Thus, the magnetostrictive response of
the MAP is observed to change from a contraction to an elongation
when varying the wavy factor. The approach assumes that a tensile
deformation of wavy chains is mainly due to an effective shear
deformation of irregular (wavy) chains, in turn resulting into the
increase of the stiffness under the application of a magnetic field.

In an effort to develop a microstructural-based magneto-
viscoelastic model, we depart from the classical lattice model. In
this case, we provide a more generic distribution of the magnetic
particles by considering it into three main groups: isotropic distri-
bution, perfectly aligned distribution, and wavy chain distribution,
Microstructural distributions of magnetic particles
Wavy chainIsotropic Perfectly aligned chain

Fig. 1. Various possibilities for magnetic particles distributions considered in this
work: isotropic, perfectly aligned chain, and wavy chain distributions.
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see Fig. 1. When a MAP is subjected to a magneto-mechanical
loading, it has strain energy per unit reference volume, W, that
can be decomposed into a mechanical and a magnetic parts Wm

and Wmg, respectively:

WðF; Fv ;MÞ ¼ WmðF; FvÞ þWmgðF;MÞ: ð16Þ
In addition, the mechanical contribution is conceived as the sum of
a purely elastic componentWe

m, associated to the magnetic particles
and polymeric matrix, and a viscoelastic component Wv

m associated
to relaxation processes within the polymeric matrix. Therefore, the
mechanical contribution to the strain energy can be defined as:

Wm F; Fvð Þ ¼ We
m Fð Þ þWv

m F; Fvð Þ: ð17Þ
For the magnetic part of the energy function, we at first develop a
strain energy function based on the particle arrangements at the
microscale. Afterwards, it will be transferred at macroscale by an
affinity assumption. A representative scheme of the model is pre-
sented in Fig. 2. As shown in the figure, the total deformation gradi-
ent allows for going from a reference configuration B0 to a current
(or deformed) configuration Bt . Note that this change of configura-
tion through the deformation gradient applies to both the macro-
and the microscales. The magnetic potential Wmg F;Mð Þ is based
on magnetic dipole–dipole interactions and can be written as a
function of the magnetization variable M and the total deformation
gradient F. The latter dependence arises from the fact that the
mechanical deformation alters distances between magnetic parti-
cles and, therefore, their interactions.

3.2. Strain energy functions

3.2.1. Mechanical strain energy functions
Magnetic particles are much stiffer than the polymeric matrix in

a MAP. Therefore, the particles can be assumed to behave as a non-
deformable solid. Both the elastic and viscous contributions are
related to the polymeric part and must be associated with its vol-
ume fraction. The polymeric volume fraction is defined as 1� /½ �,
with / being the magnetic particles’ volume ratio. Although the
viscous properties of the MAP are not significantly influenced by
the particles, an amplification factor needs to be included into
the elastic contribution to model the stiffening effect of filling
the polymeric matrix with the particles. The present framework
provides flexibility to define the mechanical part of the energy
function, without the loss of generality, depending on the specific
polymeric matrix to be modelled. To illustrate the flexibility, we
provide two particularisations of the mechanical energy. The first
one defines both elastic and viscous contributions by a
physically-motivated microstructural approach based on the 8-
chain concept originally proposed by Arruda and Boyce (1993)
(also known as the 8-chain model). The second strain energy
function is taken from a first invariant-based model proposed by
Mechanics Magnetics Coupling

F Micro-mechanicsMacro-mechanics
Affine deformation

Fig. 2. A schematic diagram of the microstructural-based model showing the
couplings between macro- and micro-scales and MAP physics.
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Lopez-Pamies (LP) (Lopez-Pamies, 2010). The LP model is a
phenomenologically-motivated strain energy function to capture
specific polymeric responses. For an exhaustive review to observe
advantages and limitations of different hyperelastic energy func-
tions, Steinmann et al. (2012) can be consulted. Note that more
advanced forms of micro-mechanically motivated constitutive
models can be taken to capture a wide strain range spanning from
very small to large. However, such an advanced model comes up
with a large number of material parameters, see, for example,
Refs.: Miehe et al. (2004) and Davidson and Goulbourne (2013).
The elastic and viscous mechanical potentials are defined, respec-
tively, for the 8-chain (8c) model as:

We
m;8c Fð Þ ¼ 1� /½ �Ge

XK
k¼1

Ck

Nk�1
e

Ik1;h � 3k
h i

Wv
m;8c F; Fvð Þ ¼ 1� /½ �Gv

XK
k¼1

Ck

Nk�1
v

Ie1
� �k � 3k
h i

;

ð18Þ

where, Ge and Gv are the shear moduli for the elastic and viscous
responses, respectively, Ne and Nv are the number of Kuhn seg-
ments per polymer chain for the elastic and viscous networks,
respectively, and Ie1 ¼ tr Ce� �

. We take up to five terms in the sum-
mation, i.e., C1;C2; C3;C4;C5½ � ¼ 1

2 ;
1
20 ;

11
1050 ;

19
7000 ;

519
673750

� �
. Due to the

particles’ influences, the first invariant I1 is modified to I1;h, which
is defined as:

I1;h ¼ X I1 � 3½ � þ 3 ð19Þ
where, I1 ¼ tr Cð Þ and X is the application factor defined as:

X ¼ 1þ 0:67g/þ 1:62 g/½ �2 ð20Þ
with g being a factor describing the asymmetric nature of the aggre-
gated clusters, see Alshammari et al. (2019) and Liao et al. (2020).
The second model considered herein is due to Lopez-Pamies (LP)
strain energy function as:

We
m;LP Fð Þ ¼ 1� /½ �

XK
k¼1

3
1�ae

k

2ae
k
Ge

k I
ae
k

1;h � 3a
e
k

h i

Wv
m;LP F; Fvð Þ ¼ 1� /½ �

XK
k¼1

3
1�av

k

2av
k
Gvk Ie1

� �av
k � 3a

v
k

h i ð21Þ

where, Ge
k and ae

k are material parameters that determine the shear
modulus of the elastic response, Gvk and avk are material parameters
that describe the same for the viscous response.

3.2.2. Magnetic strain energy function
The magnetic potential per unit volume is defined considering

the dipole–dipole interactions of the magnetisable particles:

Wmg F;Mð Þ ¼ � 1
V0

lrlo

4p
X
ij

3 mdi � rij
� �

mdi � rij
� �

krijk5
� mdi �mdj

� �
krijk3

" #
ð22Þ

where, lr is the relative permeability of the medium, l0 is the rel-
ative permeability of the vacuum, V0 is the reference volume of the
MAP,mdi andmdj are dipole momentsmdi ¼ mdj ¼ vpm ¼ vpF

�T
M of

the i-th and j-th magnetic particles with vp being the particle vol-
ume. Note that rij represents the vectorial distance between the i-
th and j-th particles in the current configuration. If a homogeneous
distribution of magnetic particles is assumed, a representative vol-
ume element can be chosen along with its characteristic lattice (see
Fig. 1 for different distributions of magnetic particles). Following
the methodology used by Ivaneyko et al. (2012), the expression
for the magnetic potential can be simplified by substituting double
sum over pairs of indices i and j to a sum of index i multiplied by N
number of particles within a MAP. In addition, the symmetries of
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the infinite lattices result into the orientation of the magnetic
dipoles along the external magnetic field direction (H), and
identical magnetisation for all particles. Thus, the magnetic strain
energy function can be simplified as:

Wmg F;Mð Þ¼�Nv2
p

V0

�lrlo

4p
XM
i¼1

3 F�T
M

h i
�ri

h i
F�T

M
h i

�ri
h i

krik5
�

F�T
M

h i
� F�T

M
h i

krik3

2
4

3
5:
ð23Þ

Note that the distances ri will change with deformation according
to:

ri ¼ FRi ð24Þ
where, Ri is the distance between particles in the reference config-
uration. For the sake of simplicity, we take an affinity assumption
for the transformation from a microscale to a macroscale. This term
can be written depending on the characteristic length of the lattice
lc as Ri ¼ lcR

0
i , with R0

i being a dimensionless distance between par-
ticles. Note that the magnetic potential can be rewritten, for the
sake of convenience, depending on the magnetic particle’s volume

fraction / recalling the equalities / ¼ Nvp

V0
and / ¼ vp

l3c
. Therefore,

the magnetic strain energy function finally reads as:

Wmg F;Mð Þ¼�lrlo
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ð25Þ
where, the term c is added to account for the number of particles
per representative lattice selected (see Ivaneyko et al., 2012 for sim-
ilar approaches).

3.3. Derivation of the total stress

In order to obtain a complete expression for the total stress Ptot,
three parts of the strain energy functions are required which are
derived in the previous sections. The vacuum permeability of the
free space term M�

0ðF;MÞ in the total energy formulation has neg-
ligible effects as mentioned in the literature (Mehnert et al., 2017).
Hence, in this sequel XðF; Fv ;MÞ � WðF; Fv ;MÞ will be approxi-
mated onwards. Using the definition in Eq. (15), the total first
Piola–Kirchhoff stress tensor becomes

Ptot ¼ �pF�T þ @W
@F

ð26Þ

which can be further decomposed into several stress tensor parts:

Ptot ¼ �pF�T þ @We
m

@F
þ @Wv

m

@Fe F�v þ @Wmg

@F
¼ �pF�T þ Pe

m þ Pvm þ Pmg: ð27Þ

In the aforementioned equation, Pe
m ¼ @We

m
@F is the elastic component

of the mechanical contribution, Pvm ¼ @Wv
m

@Fe F
�v is the viscous compo-

nent of the mechanical contribution and Pmg ¼ @Wmg
@F is the magnetic

contribution. For the 8-chain model, the mechanical parts (elastic
and viscous parts) of the first Piola–Kirchhoff stress tensor become

Pe
m;8c ¼ 1� /½ � 2XGe

XK
k¼1

kCk

Nk�1
e

Ik�1
1;h

" #
F;

Pvm;8c ¼ 1� /½ � 2Gv
XK
k¼1

kCk

Nk�1
v

Ie1
� �k�1

" #
FeF�v ð28Þ
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while the same for the Lopez-Pamies (LP) model become

Pe
m;LP ¼ 1� /½ �

XK
k¼1

31�ae
kGe

kXI
ae
k
�1

1;h F;

Pvm;LP ¼ 1� /½ �
XK
k¼1

31�av
k Gvk Ie1

� �av
k
�1FeF�v : ð29Þ

Using Eq. (25), we obtain the magnetic stress tensor as
Pmg ¼�lrlo

4p
/2

c

�
X
i

�6 F�T
M

� �
� F�TFR0

i

� �� �
F�T

M
� �

� FR0
i

� �� �
þ6 F�T

M
� �

� FR0
i

� �� �
F�T

M
� �

�R0
i

� �
kFR0

i k5

2
4 �

15 F�T
M

� �
� FR0

i

� �� �
F�T

M
� �

� FR0
i

� �� �
R0

i �R0
i

� �
F

kFR0
i k7

þ
2 F�T

M
� �

� F�TF�T
M

� �
kFR0

i k3
�
3 F�T

M
� �

� F�T
M

� �� �
R0

i �R0
i

� �
F

kFR0
i k5

3
5 ð30Þ
3.4. Constitutive equations for magnetisation and flow rule

Note that it can be convenient to use the nominal magnetic field
vector as the independent magnetic variable instead of the nomi-
nal magnetisation (i.e., for FE implementation purposes). To this
end and without the loss of generality, the total energy function
XðF; Fv ;MÞ can be re-written by making use of the Legendre trans-

form (X̂ðF; Fv ;BÞ ¼ XðF; Fv ;MÞ � B �M) and Eq. (7) as ~XðF; Fv ;HÞ
(see Garcia-Gonzalez and Landis (2020) for a similar approach).
Therefore, the magnetic constitutive equation from Eq. (15) thus
reads as:

M ¼ � @ ~X
@H

: ð31Þ

To define such an evolution of the magnetisation M with respect to
the magnetic field H, the Froehlich-Kennely equation is used:

M ¼ Ms lr � 1
� �

H

Ms þ lr � 1
� �kHk ð32Þ

where, Ms is the saturation magnetisation of the magnetic particles
and lr is the relative magnetic permeability of the particles
(Ivaneyko et al., 2011, 2012). Now, the evolution of the viscous part
of the deformation gradient Fv must be defined by a consistent flow
rule obeying the remaining term @X

@Fv
: _Fv 6 0 from the second law of

thermodynamics. This is automatically satisfied by relating the vis-
cous deformation rate tensor Dv to the viscous stress as (Garcia-
Gonzalez, 2019):

Dv ¼ Fe _FvF�vF�e ¼ rvmffiffiffi
2

p
g

ð33Þ

with g being the polymer viscosity and rvm being the viscous contri-
bution to the Cauchy stress tensor rvm ¼ PvmF

T . The model formula-
tion using the 8-chain approach for the mechanical response in one-
dimensional case is presented in the Appendix with a set of scalar
equations for the calibration with various sets of experimental data.

4. Model validation

This section aims at validating the physical assumptions made
at the microscale and to see how they translate into the
magneto-mechanical responses of MAPs at the macroscale. To this
end, we first evaluate the model to predict experimental results for
uniaxial loading conditions (mechanical and magnetic loading).
Then, the model is tested at completely different loading condi-
tions to further validate its microstructural nature. In this regard,
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model predictions are closely discussed by means of uniaxial ten-
sion and shear mechanical loadings at different strain rates with
and without external magnetic fields. Note that all the magnetic
parameters will be identified directly from their physical meaning
and experimental data. Moreover, the mechanical parameters will
be calibrated following the same optimisation procedure used in
Refs.: Garcia-Gonzalez et al. (2018) and Garzon-Hernandez et al.
(2020). In addition, note that the modelling framework presented
at this stage does not include spatial discretisation and focuses
mainly on the constitutive and microstructural features. This
may represent a limitation as geometrical effects, i.e., magnetic
fringing effects, are not accounted for in these simulations. Future
work will implement the proposed constitutive equations in finite
element frameworks to provide spatial discretisation and allow for
incorporating such effects.
4.1. Magneto-mechanical uniaxial loading

Different sets of experimental data published in the literature
are taken to validate the applicability of the proposed model. At
first, we take the experimental data published by Schubert and
Harrison (2015) for MAPs composed of silicone polymeric matrix
filled with carbonyl iron powder (CIP) particles. Therein, they
performed uniaxial tests at relatively large strains under quasi-
static conditions for different concentrations of CIP ranging from
/ ¼ 0:0 to / ¼ 0:3. Moreover, these tests were conducted for
pure a mechanical loading as well as under a magneto-
mechanically coupled loading condition. For comparison with
the proposed model, we take the experimental data performed
on isotropic MAPs. Therefore, the representative lattice to com-
pute the summation terms in Eqs. (25) and (30) is the one rep-
resented in Fig. 3a (isotropic distribution). In addition, the
experimental data provided in Soria-Hernandez et al. (2019)
are also used. They performed magneto-mechanical tests on a
PDMS-CIP composite under a uniaxial tensile loading condition.
The experimental data are related to MAPs with a preferred ori-
entation (anisotropic) of the magnetic particles at different vol-
ume ratios (see Fig. 3b for particles distribution as perfectly
aligned chains).

At first, the mechanical material parameters are identified using
the two sets of experimental data mentioned above. The calibra-
tion is carried out for both experimental data and for both LP
(Eq. 291) and 8-chain (Eq. 281) models, see Mechanical, elastic
parameters in Tables 1 and 2. Fig. 3a shows the comparison
between model predictions and the experimental data for MAPs
with isotropic distribution of particles (Schubert and Harrison,
2015). The LP model is able to capture the nonlinear shape of the
stress–strain curve, while the 8-chain model presents some limita-
tions at the small stretch range. This is because of inherit incapabil-
ity of the 8-chain model in capturing experimental data at very
small strains (up to 20–30%), see Lopez-Pamies (2010). However,
both approaches capture the stiffening effect observed when
increasing the particles’ volume ratios /. Moreover, Fig. 3b pre-
sents the comparison between model predictions and the experi-
mental data from Soria-Hernandez et al. (2019) of a MAP with
chain-like distribution of particles. In this case, both LP and 8-



Table 1
Constitutive parameters used in the simulations of Figs. 3a, 4, 6, 7a, 9, 10 and 11. Note that viscous properties are only provided for the LP model.

Mechanical parameters for 8-chain model
Ge (kPa) Ne (–) Gv (kPa) Nv (–) g (Pas) g (–)
340 25 – – – 4:5

Mechanical parameters for LP model
Ge
1 (kPa) ae

1 (–) Ge
2 (kPa) ae

2 (–) Gv (kPa) av (–) g (Pas) g (–)
200 1 140 �5 200 1 2000 4:5

Magnetic parameters
Ms (kA=m) lr (–) lo (H=m)

1582 21:5 4p10�7

Table 2
Constitutive parameters used in the simulations of Figs. 3b, 6, 7b and 9. Note that viscous properties are only provided for the 8-chain model.

Mechanical parameters for 8-chain model
Ge (kPa) Ne (–) Gv (kPa) Nv (–) g (Pas) g (–)

8 12 8 5 2000 10

Mechanical parameters for LP model
Ge
1 (kPa) ae

1 (–) Ge
2 (kPa) ae

2 (–) Gv (kPa) av (–) g (Pas) g (–)
7 1:3 1 �1:2 – – – 10

Magnetic parameters
Ms (kA=m) lr (–) lo (H=m)

1582 21:5 4p10�7
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Fig. 3. a) A comparison between experimental data from Schubert and Harrison (2015) and model predictions for uniaxial tensile tests at different magnetic particle’s volume
ratio. A scheme of the representative lattice for isotropic MAPs is presented. Model parameters used are shown in Table 1. b) Comparison between experimental data (Soria-
Hernandez et al., 2019) and model predictions for uniaxial tensile tests at different magnetic particle’s volume ratio. A scheme of the representative lattice for chain-like MAPs
is presented. Model parameters used are shown in Table 2.
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chain models suitably fit the non-linear response of the material as
well as the stiffening effects for different /.

Once mechanical parameters are identified, the magnetic
parameters (Ms; lp; lo) associated with the CIP particles are taken
from literature, see Arias et al. (2006) and in Tables 1 and 2. The
effects of an external magnetic field on the tensile stress are pre-
sented in Fig. 4a. Here, we examine predictive capabilities of the
proposed model by simulating the experimental data from
Schubert and Harrison (2015). They conducted experiments on iso-
tropic MAPs with different volume fractions of particles under the
action of a constant magnetic field of 283 mT (milliTesla). Note that
the LP model is used here for the mechanical part as it has a better
capability in capturing mechanical stress–strain responses. Simu-
lation results are presented in Fig. 4a, where it is vivid that if free
mechanical boundary conditions are considered, a MAP would con-
tract. In order to balance the compressive stress originated due to
the magnetic field, a tensile force needs to be applied at the begin-
ning to keep a MAP sample at k ¼ 1. Therefore, in Fig. 4, there is an
initial stress at k ¼ 1.
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When comparing these results with experimental observations
from Schubert and Harrison (2015), a good predictive capability of
the model can be inferred from different perspectives. Regarding
the influences for the magnetic particles’ content, a clear relation-
ship can be observed: the higher the magnetic particles’ volume
ratio, the more relevant contributions to the magnetic stress. In
addition, the model predicts an accurate quantitative estimation
of stress values (note that no calibration is done at this stage).
The discrepancy in stress at unit stretch may be explained by an
experimental force balance or the adaptation of the experimental
grips before performing the test to avoid any pre-stress due to
the application of the magnetic field. Another potential explana-
tion is the smooth application of the external magnetic field during
the first stretching stage. In this regard, if the specimen is mechan-
ically constraint, a magnetic field actuating on the MAP will intro-
duce an internal stress due to magnetic particles interaction. Under
free mechanical boundary conditions, the MAP will try to compress
or expand (depending on the arrangement of the particles inside
it). However, if neither a compression nor an expansion is allowed,
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an internal stress will appear as predicted by the proposed model.
Moreover, we provide a comparison between model predictions for
tensile loading under the action of an external magnetic field and
under null magnetic field, see Fig. 4b. The model predictions cap-
ture the relative influence of the magnetic stress during the
stretching process. In this regard, an important magnetic stress
contribution is observed at the beginning of the tests leading to
higher stresses when the magnetic field is active for all the parti-
cle’s contents. However, this difference in stress with respect to
the corresponding test without external magnetic field decreases
with stretch leading to the eventual crossing between curves.
These results are also consistent with experimental observations
by Schubert and Harrison (2015).

Additionally, we simulate magneto-mechanical responses for
perfectly aligned chain-like anisotropic MAPs. In this regard,
Fig. 5 shows the model predictions for quasi-static tensile beha-
viour with different magnetic particles’ volume ratios, where the
MAP is subjected to an increasing magnetic field up to 200 kA/m
along the loading direction. Note that, unlike Fig. 4 where a con-
stant magnetic field is applied, a constant magnetic field rate is
applied in Fig. 5. These predictions are compared with simulations
at null magnetic field conditions and computed using the 8-chain
model for the mechanical part. When comparing these results with
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Fig. 5. Comparison between model predictions for uniaxial tensile tests at different
magnetic particle’s volume ratio and different magnetic conditions, with and
without external magnetic field for: a) isotropic distribution of magnetic particles.
Model parameters used are shown in Table 1.; b) chain-like distribution of magnetic
particles. Model parameters used are shown in Table 2.

126
the observations from Soria-Hernandez et al. (2019), a good corre-
lation is found. For instance, the magnetic contribution to the
stress is more significant with the increase of particles’ volume
fractions. Moreover, the influence increases with the application
of the magnetic field up to a given stretch value (k ¼ 1:2) and, from
this point, it progressively reduces leading to the convergence of
the stress–strain curves with and without magnetic field applied.
Note that, in this case with a perfectly aligned chain-like distribu-
tion of magnetic particles is assumed. Hence, the stress component
along the magnetic/stretching direction is always equal to or
higher than the corresponding one without the application of a
magnetic field.
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direction. Magnetic model parameters used are shown in Tables 1 and 2.
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To analyse further, we simulate different scenarios isolating the
magnetic contribution from the total stress in Fig. 6. In this regard,
a constant magnetic field rate along with a constant strain rate
(both along the same material direction) is applied. A continuous
increase of the magnetic stress in the loading direction is observed
until a stretch of around 1.18. The stress contribution is mainly
governed by attraction forces between particles along the field
direction (see Fig. 6). At some point, the magnetic particles reach
the saturation magnetisation Ms. From this point, the stretch
increase leads to larger distances between magnetic particles along
the direction of the field, resulting in a significant reduction of the
dipole–dipole interactions. This tendency continues until the parti-
cles are too far that no significant magnetic stress contribution is
observed along the loading direction. However, the particles along
the perpendicular directions to the field come closer due to the
Poisson’s effect. The approaching particles perpendicular to the
loading direction results in stress contributions that are mainly
governed by repulsion forces (see Fig. 6). Thus, the resultant mag-
netic stress along the stretching direction (same as the field direc-
tion) inverses its sign. From this point, larger stretches contribute
to the rearrangement of the particles leading to a chain-like parti-
cles’ distribution perpendicular to the field direction. This new
arrangement of the particles finally leads to the reduction of mag-
netic stress. Note that the analysis presented here is carried out for
isotropic distribution of the magnetic particles. Further
microstructural analyses will be presented in Section 5.

Finally, a generic viscosity of g = 2000 Pas is selected to evaluate
the capability of both LP and 8-chain models to capture strain rate
dependences. Model simulations for different magnetic particle’s
volume fractions and two different strain rates are shown in
Fig. 7. A stiffer response is observed at higher strain rates and its
relative importance is shown to decrease with the magnetic parti-
cle’s volume ratio which are common characteristics of polymeric
materials.
4.2. Magneto-mechanical shear loading

In the previous section, the physical consistency of the pro-
posed microstructural-based model is verified under uniaxial ten-
sile loading. Here, the model is validated for a different loading
scenario, i.e., shear data at different strain rates and magnetic con-
ditions. To this end, the work published by Pelteret et al. (2018) is
taken as a reference. In the study, they considered a parallel-plate
rotational rheometer which introduces a shear-like deformation
within a MAP that, at the same time, is subjected to an external
magnetic field in the axial direction. These tests are performed at
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different strain rates showing a significant influence on material
stiffness and hysteresis loops (see Fig. 8).

At first, the material parameters are calibrated to provide the
same stress levels as in Pelteret et al. (2018) (Fig. 8a). The cali-
brated parameters are presented in Table 3 for the 8-chain
approach. Then, the identified parameters are used to validate
the model for the material at higher deformation rates (Fig. 8b).
Note that our simulations start from a completely relaxed state
(deformation gradient equal to second order unit tensor) where
we only use one linear term for the viscous contribution (Eq.
(33)). The results presented in Fig. 8 show the ability of the model
to reproduce a shear loading on MAPs. In this regard, stiffer
responses are obtained when applying an external magnetic field,
independently of the strain rate or the shear direction. Moreover,
the viscous contributions are evident in both the nonlinear hys-
teresis loops and strain rate dependency by means of a material
stiffness. Therefore, this analysis provides a good validation of
the model hypothesis to predict the response of MAPs under a
mechanical shear load and a magnetic load at different strain rates
accounting for viscous deformation mechanisms.

5. Microstructural influences predicted by the model

A salient feature of the proposed microstructural-based
magneto-mechanically coupled model is that it allows for predict-
ing the mechanical responses to magnetic fields depending on the
arrangement of the particles within a polymeric matrix. This sec-
tion considers various options of the magnetic particles distribu-
tions within a MAP and evaluates their influences on the
magneto-mechanical stress contributions (see Fig. 1 for different
particle distributions). To this end, we apply a constant strain rate
and a constant magnetic field rate along the same material direc-
tion (same loading conditions as in Fig. 6). Simulations are con-
ducted taking three forms of particle distributions, i.e., isotropic
distribution; perfectly aligned chains along the stretch and field
direction; and perfectly aligned chains perpendicular to the stretch
and field direction. Results are shown in Fig. 9 along with represen-
tative schemes of the particle distributions considered. The evolu-
tion of the magnetic stress with stretch and magnetic field for the
isotropic distribution was previously discussed in detail in Sec-
tion 4.1. We may recall the change in the sign of the stress contri-
bution with the evolution of the stretch as a result of the
attenuation of attraction forces along the stretch/field direction.
On the contrary, the intensification of repulsion forces perpendic-
ular to the stretch/field direction (see scheme in Fig. 6) is revisited.
Moreover, when the magnetic particles are distributed forming
perfectly aligned chains, these effects are not presented and only
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Table 3
Constitutive parameters used in the simulations of Fig. 8.

Mechanical parameters for 8-chain model
Ge (kPa) Ne (–) Gv (kPa) Nv (–) g (Pas) g (–)

25 25 800 5 2000 –

Magnetic parameters
Ms (kA=m) lr (–) lo (H=m)

1582 21:5 4p10�7
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Fig. 8. Comparisons between literature data (Pelteret et al., 2018) and model predictions for shear tests with and without the application of an external magnetic field at
different strain rates: a) 0:1s�1; b) 1s�1. Model parameters used are shown in Table 3 along with / ¼ 0:075.
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attraction forces or repulsion forces for the case of chains along the
field or perpendicular to the field, respectively, govern MAP
responses. In contrast to the isotropic case (dash line), in a chain-
like anisotropic structure, a higher influence of the magnetic con-
tribution is observed (solid line). This last observation is also con-
sistent with the experimental results presented in Schubert and
Harrison (2015). For the chain-like anisotropic case, an increase
in magnetic stress is observed with the application of the magnetic
field until it reaches the magnetisation saturation value. From this
point, as the stretch is still increased, the particles are far from each
other resulting in lower magnetic interactions. This tendency
continues until the particles are too far that no significant stress
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contribution is observed. A similar tendency is observed for chains
aligned perpendicular to the field but with opposite sign in the
stress contribution, consistent with the observations from the
analysis conducted in Fig. 6. It is worth to mention that the results
provided by the proposed finite strain continuum framework are
consistent with computational approaches that explicitly consider
polymeric matrix and magnetic particles as two different phases
(see, for example, microstructural simulations performed in Keip
and Sridhar (2019), Mukherjee et al. (2020) and Zabihyan et al.
(2020).

Note that all the previous analysis presented considered distri-
butions of the magnetic particles either as perfectly isotropic or
perfectly aligned chains. From an experimental point of view, most
manufacturing processes of MAPs usually impose a magnetic field
during curing to induce a preferred orientation of the particles
leading to chain like distributions, see, for instance, Fig. 1 in
Hossain et al. (2015a). However, this alignment of particles form-
ing the chains is not perfect and presents a certain grade of wavi-
ness (see wavy distributions in Fig. 1). Therefore, a more realistic
arrangement of the magnetic particles is considered here. In this
regard, we assume that MAP specimens formed by a polymeric
matrix filled with particles oriented along a preferred direction
(X axis in Fig. 10). Therefore, the distribution of the particles inside
the MAP can be assumed as chains sufficiently far from each other
that are not interacting between them. For that, we determine the
distribution of the particles forming the chain as dependent on two
parameters (see Fig. 10): a distance between particles along the
chain direction dx; and a distance between particles along the per-
pendicular direction to the chain orientation dy. Thus, the factor
dy=dx determines how ‘‘wavy” the particles chain is while
dy=dx ¼ 0 leads to perfectly aligned chains, and higher values of this
wavy factor indicates worse alignment of particles. Note that high
enough values of dy=dx results, in practical terms, into two individ-
ual perfectly aligned chains with distance between particles equal
to 2dx. To analyse the effect of particles’ alignment along the
chains, we performed simulations of the response of a MAP with
different wavy factors dy=dx ranging from 0 to 2. In these cases, a
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cube specimen with all the particles’ chains aligned along the X
direction is defined. One of the cube’s sides perpendicular to the
chains orientation is restricted to not move in this direction X. A
constant strain rate along X direction (low enough to assume
quasi-static conditions) is applied on the opposite side of the cube.
In addition, a constant magnetic field is applied in the same direc-
tion (X). A scheme of the boundary and loading conditions applied
is shown in Fig. 10 (wavy chain distribution picture).

The effects of a magnetic field on different stiffness moduli (e.g.,
shear and elastic moduli) is a critical issue that has been
microstructurally investigated by many theoretical works, see
Han et al. (2013) and Ivaneyko et al. (2011). Note that the stiffness
moduli under a magnetic load largely depend on particles arrange-
ments. Therefore, it is crucial to analyse the influences of the wavy
factor dy=dx on the stiffness moduli, e.g., on an effective linearised
Young’s modulus. The effective linearised Young’s modulus is
understood here as the initial stiffness of the global MAP response
(considering both mechanical and magnetic contributions to the
stress). The modulus for a MAP under a null magnetic field is
shown in Fig. 10 as the reference, as well as the corresponding lin-
earised Young’s modulus for an isotropic distribution of the parti-
cles. We can observe a completely different mechanical response of
the MAP under the application of a magnetic field depending on
the arrangement of the particles. In this regard, when the particles
are perfectly aligned along the X direction, i.e., dy=dx ¼ 0, the mag-
netic field applied in X presents the highest influence into the
effective stiffness. Note that in this study, a magnetic field reduces
the stiffness maximally for the case of chain-like anisotropic MAPs
which is consistent with many theoretical studies (Borcea and
Bruno, 2001; Kankanala and Triantafyllidis, 2004; Han et al.,
2013; Ivaneyko et al., 2011). However, the effect is continuously
decreased with the increase of the wavy factor, even leading to
reverse effects at a given critical value (here identified at
dy=dx � 0:55). Before the critical value, a tensile internal stress
arises from attraction magnetic forces along X direction, indicating
that the MAP tries to contract along the applied magnetic field
direction. Note that the model parameters presented in Table 1
with / ¼ 0:3 have been used for these simulations, so the stress-
stretch curves of the material are the corresponding ones from
Fig. 3a. Due to the incompressibility condition assumed on the
MAP, the magnetic field also introduces a strong volumetric
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component that governs the material response over the mechani-
cal stress leading to a decrease in the stiffness. However, for wavy
factors larger than the critical one, the distribution of the magnetic
particles favours the repulsion forces between particles (see
scheme in Fig. 6) leading to an internal elongation of the MAP
along the field direction, in turn resulting into an increase of the
stiffness. Moreover, large enough values of the wavy factor result
into ‘‘isolation” of the magnetic particles considerably reducing
the effect of the magnetic field on the mechanical response. In
addition, we evaluate the effect of strain rate on these magnetic
effects. To this end, the linearised Young’s modulus of the MAP
depending on the way factor is plotted for different strain rate con-
ditions in Fig. 11. We can observe the same tendencies as for quasi-
static conditions but with an offset in the linearised Young’s mod-
ulus due to the strain rate hardening effects.

Overall, the results presented in this section illustrate the flex-
ibility of the proposed model to account for microstructural fea-
tures of MAPs and to predict their overall macroscopic
properties. To this end, the microstructural arrangements of the
magnetic particles within the MAP is described on the basis of a
characteristic lattice. This characteristic lattice is scaled up to pro-
vide the macroscopic magneto-mechanical response of the MAP by
adopting an affine network homogenisation. This framework pro-
vides thus a microstructural-based constitutive alternative to other
relevant approaches such as: variationally consistent phase-field
approach (Keip and Sridhar, 2019); microstructurally-guided expli-
cit continuum models (Mukherjee et al., 2020); FE2 approaches
(Zabihyan et al., 2020).
6. Conclusions

Most of the current approaches to model the magneto-
mechanical behaviour of magneto-active polymers (MAPs) are
based on phenomenological continuum models. These models are
relative good in capturing the main features of MAPs’ response to
external mechanical and/or magnetic stimuli. However, they still
present limitations to understand some of the underlying physics
such as the effects of magnetic particles’ arrangement within the
polymeric matrix and their interactions with the external magnetic
field. Novel approaches in the literature, such as the relevant works
in Keip and Sridhar (2019), Mukherjee et al. (2020) and Zabihyan
et al. (2020), provide links between microstructural features and
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the final continuum formulations. An alternative to these
approaches is to formulate the constitutive equations from a char-
acteristic lattice (Ivaneyko et al., 2012, 2014; Han et al., 2013).
However, the current version of the lattice model is still limited
to infinitesimal deformation theories and does not incorporate vis-
coelastic behaviours of MAPs. To the best of the authors’ knowl-
edge, this work, for the first time, proposes a continuum model
with direct links to the MAP microstructure accounting for viscous
(rate) dependences, non-linear mechanical response and magneto-
mechanical coupling within a thermodynamically consistent
framework. The proposed model is calibrated with experimental
data from the literature and its fundamentals are validated with
further published experimental evidences. Once validated, the
microstructural flexibility of the model is extensively explained
and we provide potential explanation to different observations in
MAPs such as the stiffening or softening and the expansion or com-
pression of MAPs under magnetic stimuli. In this regard, we point
to the distribution of magnetic particles forming irregular wavy
chains as a potential factor determining the consequences of mag-
netic fields on the mechanical responses of MAPs. Future avenues
may address the implementation of this model into FE solvers to
explore heterogeneous distribution of the magnetic particles (i.e.,
isotropic, wavy chains with different preferred orientation) leading
to ‘‘programmed” instabilities (see Goshkoderia et al. (2020) for
stability related analysis). Other future efforts may focus on exten-
sions of the proposed constitutive framework to model magneto-
active hydrogels or to incorporate dependences related to the mag-
netic particles’ shape (Goshkoderia and Rudykh, 2017).
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Appendix A. 1D formulation of the model

This appendix simplifies the model for one-dimensional (1D)
simulations where both the stretching and magnetic field are
applied along the same direction (hereafter referred to as X). The
sets of 1D equations to address uniaxial magneto-mechanical load-
ing, as well as their explicit implementation, are provided for a
quick testing of the 8-chain model and faster calibration purposes.
To this end, a scalar function of the XX component of P; PXX , accord-
ing to Eq. (15) is derived depending on the stretch along X direction
k, the XX and YY components of the viscous deformation gradient
FvXX and FvYY , and the X component of the magnetic field HX as:
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PXX k; FvXX ; F
v
YY ;HX

� � ¼ Pe
m;XX kð Þ þ Pvm;XX k; FvXX ; F

v
YY

� �
þ Pmg;XX k;HXð Þ � p k; FvXX ; F

v
YY ;HX

� �
=k ðA:1Þ

Note that isotropic conditions are assumed leading to FvZZ ¼ FvYY , as
well as incompressible conditions leading to the following form of
the deformation gradient:

F ¼
k 0 0
0 1=

ffiffiffi
k

p
0

0 0 1=
ffiffiffi
k

p

2
64

3
75 ðA:2Þ

The elastic component of the 1D mechanical stress can be written
as:

Pe
m;XX ¼ 1� /½ � 2XGe

XK
k¼1
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Ik�1
1;h

" #
k ðA:3Þ

where the term I1;h reads as:

I1;h ¼ X k2 þ 2
k
� 3
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Moreover, the viscous component of the 1D mechanical stress can
be written as:
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where the term Ie1 reads as:
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Regarding the 1D magnetic stress, it can be computed as:
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and, therefore:
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The pressure term p is defined from boundary conditions. For uniax-
ial loading and isotropic MAPs it becomes:

p ¼ Pe
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where:
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The magnetisation MX can be written as a function of the X
component of the magnetic field HX as:

MX ¼ Ms lr � 1
� �

HX

Ms þ lr � 1
� �

HX
ðA:14Þ

Finally, the evolution of FvXX and FvYY can be explicitly integrated,
using the flow rule given by Eqn. (33), as:
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XX ¼ Fv;nXX þ Dtffiffiffi
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where Dt is the time increment, nþ 1 and n refer to current and
previous step values, and:
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