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MAX phases exhibit excellent combination of ceramic and metallic-like properties. In this

work, MAX phase Ti3SiC2 powder was synthesized starting-off with different combinations

of elemental powders and carbides. The powders used were Ti, Si, C, SiC and TiC in different

combinations, molar ratios and powder size. Powders were heat treated on a vacuum furnace

for different times and temperatures for in situ production of the Ti3SiC2 MAX phase. High

purity synthesized samples were analyzed by X-ray diffraction (XRD) and scanning electron

microscopy (SEM) in order to identify and quantify the different phase constituents present.

The main phase constituents in the powders produced were Ti3SiC2 and TiSi2. Up to 94%

of Ti3SiC2 MAX phase was obtained using Ti:SiC:C as starting powders in a molar ratio of

3:1.5:0.5. Different phase constitution was observed on the surface and the centre of the

samples. An optimal starting powder composition, molar ratio, heat treatment temperature

and time is proposed for the formation of high purity Ti3SiC2 MAX phase. Selected mixture

was studied thermodynamically and a reaction mechanism of formation of the MAX phase

is proposed.

© 2020 SECV. Published by Elsevier España, S.L.U. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Estudio de la síntesis de polvos de la fase MAX Ti3SiC2 por sinterización
sin presión

r e s u m e n
lave:

e fases MAX

lurgia

Las fases MAX presentan una excelente combinación de propiedades cerámicas y metálicas.

En este trabajo se sintetizaron polvos de fase MAX Ti3SiC2 a partir de diferentes combina-

ciones de polvos elementales y carburos. Los polvos utilizados fueron Ti, Si, C, SiC y TiC

en diferentes combinaciones, proporciones molares y tamaño de partícula. Los polvos se

sinterizaron en un horno de vacío a diferentes tiempos y temperaturas para la producción
onding author.
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in situ de la fase MAX Ti3SiC2. Las muestras sintetizadas de alta pureza se analizaron medi-

ante difracción de rayos X (XRD) y microscopía electrónica de barrido (SEM) para identificar

y cuantificar las diferentes fases constituyentes presentes. Las principales fases consti-

tuyentes en los polvos producidos fueron de Ti3SiC2 y TiSi2. Se obtuvo hasta un 94% de fase

MAX Ti3SiC2 utilizando como polvos de partida Ti:SiC:C en una proporción molar de 3:1,5:0,5.

Se observó diferente formación de fase en la superficie y en el centro de las muestras. Final-

mente, se propone una composición óptima de polvo de partida, relación molar, temperatura

de sinterización y tiempo para la formación de la fase MAX de Ti3SiC2 de alta pureza. La mez-

cla seleccionada se estudió termodinámicamente y se propone un mecanismo de reacción

para la formación de la fase MAX.

© 2020 SECV. Publicado por Elsevier España, S.L.U. Este es un artı́culo Open Access bajo
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Table 1 – Summary of initial mixtures reported for successful synthesis of Ti3SiC2 used in this work.

Authors Initial powders Molar ratios Technique Phases

Sun [10] Ti:Si:C 5:2:3 PDS Ti3SiC2, TiC, TiSi2
Sun [10] Ti:SiC:C 5:2:1 PDS Ti3SiC2, TiC, TiSi2
El Saeed [12] Ti:SiC:C 3:1.2:0.8 SHS Ti3SiC2, TiC
Córdoba [13] TiC:Si 3:1 PS Ti3SiC2, TiC, Ti5Si3
Córdoba [13] Ti:SiC 3:2 PS Ti3SiC2, TiC, TiSi2, Ti5Si3
Córdoba [13] Ti:SiC:C 3:1.5:0.5 PS Ti3SiC2, TiC
Li [15] Ti:SiC:C 3:1.1:2 SHS Ti3SiC2, TiC, Ti5Si3
Ngai [21] Ti:Si:C 3:1.2:1.8 MA-PS Ti3SiC2, SiC, TiSi2
Yang [22] Ti:Si:TiC 1:1:2  PS Ti3SiC2, TiC
Yang [22] Ti:Si:TiC 2:2:3  PS Ti3SiC2, TiC

Table 2 – Detailed list of initial powders used and their characterization.

Powder Supplier D50 (�m) D90 (�m) Purity (%)

Ti TLS Technik GmbH, Germany 8.36 14.23 99
Si Alfa Aesar GmbH, Germany 3.95 9.68 99.9
Cc Ismaf, Spain 23.78 57.60 99.5
Cf Alfa Aesar GmbH, Germany 13.03 30.81 99
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Table 5 – Quatification of detected phases (XRD) present in selected mixtures (surface and powders) after heat treatment
in vacuum atmosphere at 1300 ◦C temperature for 2 h.

Initial mixture Sample Detected phases (%)

Ti3SiC2 TiC TiSi2 Ti5Si3 C SiC

Ti:Si:Cf Surface 82 13 – – 5 –
3:1.1:3.1 Powder 83 10 – – 7 –

Ti:SiC Surface 91 – 3 – – 6
3:2 Powder 83 – 11 – – 6

Ti:SiC:Cc

3:1.5:0.5 
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 phases on the surface of the samples often dif-
 those present on the interior of the sample [25].
mixtures, according to the amount of Ti3SiC2 phase
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resent in the internal zone of the sample (Table 5
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Table 6 – EDS point analysis of mixtures Ti:Si:Cf = 3:1.1:3.1, Ti:SiC = 3:2 and Ti:SiC:Cc = 3:1.5:0.5 for points shown in Fig. 2.

Sample Sample Analysis point Element (at %) Phase

Ti Si C

Ti:Si:Cf

3:1.1:3.1
Surface 1  58 20 22 Ti3SiC2

2 67 2 31 TiC
3  1 4 95 C

Powder 4  52 16 32 Ti3SiC2

5 7 49 53 SiC
6  2 2 96 C

Ti:SiC
3:2

Surface 1  49 23 28 Ti3SiC2

2 7 44 49 SiC
3  31 69 – TiSi2

Powder 4  56 23 21 Ti3SiC2

5 5 54 41 SiC
6  27 70 3 TiSi2

Ti:SiC:Cc

3:1.5:0.5
Surface 1  57 23 20 Ti3SiC2

2 3 71 26 SiC
Powder 3  47 24 29 Ti3SiC2

4 1 53 46 SiC
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Table 7 – Gibbs free energy calculation of different possible reactions during the synthesis process at temperature range
from 1000 ◦C to 1400 ◦C.

Reaction �G [J]

1000 ◦C 1100 ◦C 1200 ◦C 1300 ◦C 1400 ◦C

3Ti + SiC + C → Ti3SiC2 (I) −3.45 × 105 −3.43 × 105 −3.40 × 105 −3.37 × 105 −3.34 × 105

Ti + C → TiC (II) −1.69 × 105 −1.67 × 105 −1.66 × 105 −1.64 × 105 −1.63 × 105

5Ti + 3SiC → Ti5Si3 + 3C
(III)

−3.96 × 105 −3.98 × 105 −4.00 × 105 −4.02 × 105 −4.04 × 105

Ti + 2SiC → TiSi2 + 2C (IV) 1.18 × 103 5.38 × 102 −1.56 × 102 −9.05 × 102 −1.71 × 103

6Ti + 5SiC → Ti5Si3 + TiSi2 + 5C
(V)

−3.95 × 105 −3.98 × 105 −4.00 × 105 −4.03 × 105 −4.05 × 105

Ti5Si3 + 2SiC → Ti3SiC2 + 2TiSi2
(VI)

−7.83 × 104 −8.19 × 104 −8.56 × 104 −8.96 × 104 −9.37 × 104

TiC + Ti5Si3 + 3SiC → 2Ti3SiC2 + 4Si(g)

(VII)
4.73 × 105 4.37 × 105 4.01 × 105 3.64 × 105 3.28 × 105
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Table 8 – Summary of phase percentage of mixture Ti:SiC:Cc = 3:1.5:0.5 heat treated at 1300 ◦C increasing the isothermal
time from 2 to 6 h.

Time Sample Detected phases (%)

Ti3SiC2 Ti5Si3 TiSi2 SiC

2 h Surface 94 – – 6
Powder 90 5 – 5

4 h Surface 95 2 – 3
Powder 92 – – 8

6 h Surface 98 2 – –
Powder 94 – 6 –

Fig. 4 – SEM micrographs of the surface (left) and powders (right) of the samples Ti:SiC:Cc with a molar ratio of 3:1.5:0.5 heat
treated a .
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Table 9 – EDS point analysis of mixture Ti:SiC:Cc = 3:1.5:0.5 heat treated at 1300 ◦C for points shown in Fig. 4.

Heat treatment time Sample Analysis point Element (at %) Possible phase

Ti Si C

2 h Surface 1 51 19 30 Ti3SiC2

2 1 55 44 SiC
Powder 3 45 19 36 Ti3SiC2

4 5 51 44 SiC
5 60 37 3 Ti5Si3

4 h Surface 1 50 21 29 Ti3SiC2

2 1 57 42 SiC
3 59 36 5 Ti5Si3

Powder 4 58 20 22 Ti3SiC2

5 1 53 46 SiC
6 h Surface 1 53 22 25 Ti3SiC2
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Table 11 – EDS point analysis of mixture Ti:SiC:Cf = 3:1.5:0.5 heat treated at 1300 ◦C for points shown in Fig. 5.

Heat treatment time Sample Analysis point Element (at %) Possible phase

Ti Si C

2 h Powder 1 50 28 21 Ti3SiC2

2 1 61 38 SiC
3 32 63 5 TiSi2
4 61 36 3 Ti5Si3

4 h Powder 1 53 20 27 Ti3SiC2

2 2 55 43 SiC
3 32 67 1 TiSi2

6 h Powder 1 63 15 22 Ti3SiC2

2 1 59 40 SiC
3 38 60 2 TiSi2
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