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Abstract: There is a growing trend in robotics for implementing behavioural mechanisms based
on human psychology, such as the processes associated with thinking. Semantic knowledge has
opened new paths in robot navigation, allowing a higher level of abstraction in the representation
of information. In contrast with the early years, when navigation relied on geometric navigators
that interpreted the environment as a series of accessible areas or later developments that led
to the use of graph theory, semantic information has moved robot navigation one step further.
This work presents a survey on the concepts, methodologies and techniques that allow including
semantic information in robot navigation systems. The techniques involved have to deal with a
range of tasks from modelling the environment and building a semantic map, to including methods
to learn new concepts and the representation of the knowledge acquired, in many cases through
interaction with users. As understanding the environment is essential to achieve high-level navigation,
this paper reviews techniques for acquisition of semantic information, paying attention to the two
main groups: human-assisted and autonomous techniques. Some state-of-the-art semantic knowledge
representations are also studied, including ontologies, cognitive maps and semantic maps. All of
this leads to a recent concept, semantic navigation, which integrates the previous topics to generate
high-level navigation systems able to deal with real-world complex situations.
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1. Introduction

In recent years, there is a growing interest in adding high-level information to several robotics
applications to achieve more capable robots, even able to react to unforeseen events. Following
this trend, the mobile robotics field is starting to include semantic information to navigation tasks,
leading to a new concept: semantic navigation. This type of navigation brings closer the human way
of understanding the environment with how the robots understand it, providing the meanings to
represent the explored environment in a human-friendly way [1].

People identify the place where they are both spatially and conceptually. If a person moving
through an indoor environment is asked about the trajectory of their displacement, they will not
answer in terms of nodes or coordinates. Instead, people tend to provide concepts such as “I was in
the living room and I went to the kitchen to drink a glass of water”. In this regard, there are efforts
towards including semantic concepts of the environment in robot navigation. This can be achieved
by implementing cognitive maps, an approach able to encode information about the relationships
between concepts in the environment. Concepts are high-level (abstract) entities that group objects
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(e.g., chair, table, bed) and places (e.g., bedroom, office, kitchen), utilities (e.g., used for sitting) and
the relationships between them. Objects and places detected in the environment are translated into
physical entities. These entities can also be related to concepts, such as the utility of an entity. This kind
of representation allows robots to build maps that can be understood by humans, thus reducing the
gap between geometric interpretation and high-level concepts.

Semantic maps provide a representation of the environment considering elements with high-level
of abstraction [2]. These possess different meanings for humans including the relationships with spatial
elements used in low-level navigation systems. Semantic navigation requires connecting the high-level
attributes with the geometric information of the low-level metric map. This high-level information can
be extracted from data coming from a range of sensors, allowing the identification of places or objects.
Adding semantic meaning to the elements in the scene and their relations also facilitates human-robot
interaction (HRI) since the robot will be able to understand high-level orders associated with human
concepts. For instance, Kollar and Roy applied these concepts to understanding natural language
interactions when a person requests a robot to find a new object and the robot must look for that object
in the environment [3]. Therefore, adding semantic knowledge in mobile robots navigation tasks poses
an important advance with respect to traditional navigation techniques that generally use metric [4–6],
topological [7–9], or hybrid maps (a combination of the previous two ones) [10,11].

When adding this high-level information to navigation systems, the first issue to address is how
to represent knowledge. In this regard, Ontologies are one of the best ways of obtaining high-level
representations of knowledge through hierarchies of concepts [12]. Since commonly concepts of entities,
such as objects, tend to be separated from physical and real objects in the environment, spatial and
conceptual hierarchies arise. Galindo et al., propose to make two categories of hierarchies [13].
The spatial hierarchy contains metric information of the environment, and its nodes represent open
areas such as rooms or corridors. The arcs represent the possibility of navigating from one node to
another. The conceptual hierarchy models semantic knowledge from environment information. In this
approach, all concepts derive from the Thing entity. This is the highest-level concept from which the
rest of concepts in this architecture derives. The hierarchy has three levels, with Thing in the first one.
On the second level, there are the entities Room and Object, and the next level contains specifications
of those concepts (kitchen, bedroom, bed). Figure 1 depicts the content of the three levels in the
conceptual hierarchy and how this is related to the spatial one. The spatial hierarchy includes the
abstract node that encodes all knowledge at the top level, the environment topology is placed at the
middle level and the sensory information, such as images or gridmaps, is located at the bottom level.
This knowledge is considered when creating semantic map. These maps are representations of the
environments enhanced with information associated with objects, known places, actions that could
take place, etc. Also, notice that semantic navigation requires that the robot integrates several skills.
In this type of navigation, the communication between the robot and the human user acquires greater
relevance since high-level commands issued by the user can be understood directly by the robot.
For this reason, a dialogue capability for the human-robot interaction is recommendable. Another skill
the robot must have is the ability to detect elements of the environment, allowing the robot to make a
classification of rooms.

Summarising, semantic navigation is a paradigm that integrates high-level concepts from the
environment (objects or places) in a navigation stack. Relationships between concepts are also exploited
such as the most likely places that contain certain kinds of objects, or the actions that can be performed
with determined objects. With the knowledge generated from these concepts and relationships, a robot
can perform inferences about the environment that can be integrated into navigation tasks, allowing a
better localization or planning to decide where not detected objects could be located. In this regard,
semantic navigation brings significant benefits to mobile robot navigation.

1. Human-friendly models. The robot models the environment with the same concepts that
humans understand.

2. Autonomy. The robot is able to draw its own conclusions about the place to which it has to go.
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3. Robustness. The robot is able to complete missing information, such as failures by detecting objects.
4. Improves the location: The robot constantly perceives elements congruent with the knowledge

about its location. For example, if it perceives a sofa, it confirms that it is in a living room.
5. Efficiency: When calculating a route, you do not need to explore the entire environment. It is

possible to focus on a specific area for partial exploration.

Figure 1. The spatial and semantic information hierarchies [13].

The rest of this paper is organized as follows. Section 2 presents different mechanisms for
semantic information acquisition in robot navigation applications, focusing on whether the acquisition
is fully autonomous or assisted by a human. After acquiring the information, it is important to study
formalisms to represent and handle that knowledge. Section 3 reviews the main trends in knowledge
representation. The high-level (semantic) knowledge allows for richer navigation. In this regard,
Section 4 explores the principles of semantic navigation, describing the main elements that constitute a
semantic navigator. The current study raised a series of open issues that are reviewed in Section 5 and,
finally, Section 6 reviews the main contributions of this work.

2. Acquisition of Semantic Information in Robot Navigation

One of the tasks to solve in the navigation of mobile robots is the acquisition of information from
the environment. In the field of semantic navigation, information includes concepts such as objects,
utilities or room types. The robot needs to learn the relationships that exist between concepts included
in the knowledge representation model. The existing techniques that address this task can be grouped
into two categories: those that allow the robot to acquire information through the assistance of a
human, and those that focus on the autonomous acquisition by the robot.
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2.1. Human-Assisted Information Acquisition

Recognizing objects and places is a difficult task for robots. For this reason, some techniques
involve users in the process of object identification to create augmented maps. In these cases, robots
can use multimodal interaction (e.g., through voice, tactile screens, computer vision or keyboards) [14].
Zender et al., presented a system able to create conceptual representations of indoor environments [15].
In this case, the robot had previous knowledge about spatial concepts, and the role of the user was
to assist the robot in the process of labelling the places. In Zender et al., the robot communicated
through utterances. While walking with the robot, the user expressed what he/she considered
relevant, providing instructions such as You are in the hallway or This is the charging station. The work
of Nieto-Granda et al., describes something similar: A user acted as a guide to assist the robot in
the process of associating spatial regions with semantic labels [16]. Pronobis and Jensfelt presented
a multi-layer semantic mapping algorithm that combines information about the presence of objects
and the semantic properties of the space (room size, appearance, etc.) [17]. With this information
the system performs a classification of rooms, integrating data provided by the user as additional
properties on the existing objects. Finally, the user provided information about the existence of
an object, and the robot treated it as another source of information. In the approach presented by
Petalson et al., the robot learns places through interaction with the user [18]. This work did not
consider adding objects to the semantic map. In contrast, the work of Crespo et al., implemented
dialogues in natural language between users and the robot through voice and keyboard interfaces [19].
This system was able to include objects in the map as well as their semantic relations. For instance,
the robot asked the user about the possible uses of an object or the interaction possibilities with objects
in the environment. An extension of this system is explored in Barber et al. [20]. This version addresses
the problem of path planning. If the destination is a known object or place, the system solves a classic
navigation problem towards the position of the object or place. Conversely, if the destination or
goal is an unknown place or object, the system starts an inference process based on the relationships
between objects. For instance, if the goal is drinking something cold, the system selects cold water
as a valid objective. The inference system relates cold water to the refrigerator, which is related to
the kitchen. Then, the system decided to navigate to the kitchen. Kruijiff et al., introduced a system
that aims at improving the mapping with explanatory dialogues between human and robot using
natural language [21]. Similarly, Hemachandra et al., presented a system to associate spatial and
semantic information. This was done with the user and robot moving and interacting together through
a path [22].

2.2. Fully Automated Information Acquisition

Apart from the previous approaches that rely on information coming from interaction with
humans, other works try to deal with the problem of information acquisition autonomously.
Gemignani et al., divided these methods into three categories [23]. The first one includes those
methods that acquire characteristics from the environment using metric data from laser sensors
to obtain high-level information. Galindo et al., presented a system that represents knowledge of
the environment as an augmented topological map with semantic knowledge through a linkage
called anchoring [13]. The second category includes techniques that use classification and clustering
for automatic segmentation and labelling of metric maps. In this category, we can find the works
proposed by Goerke and Braun [24], Brunskill et al. [25], and Friedman et al. [26], using Adaboost,
spectral clustering and random fields of Voronoi, respectively, to generate two-dimensional topological
maps. The third category deals with object recognition and place labelling using visual cues. The work
of Wu et al., tackled the problem of visual-spatial categorization for mobile robots [27]. The system
predicted the semantic category of a place based on images, distinguishing between places such
as kitchen, living room, etc, integrating system of visual characteristics called CENTRIST (census
transform histogram). Tian et al., combined range data with images to create the cognitive map and
localize the robot [28]. The depth information improved the map created. Authors claimed that
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the depth information of the RGB-D sensor has significantly improved the loop closure as well as
feature matching, and that provides a better spatial cognitive map. Apart from these three categories,
other authors proposed adding a fourth one that tries to classify places using information about the
actions that people perform in the environment [29].

2.2.1. Understanding the Environment

High-level navigation systems need rich information to generate representations of the
environment. Object recognition, people detection and classification techniques are therefore one of
the pillars on which a semantic navigation is founded. Although exploring these techniques is not the
main focus of this work, they are necessary to understand better how semantic navigators work.

Object and people detection
Semantic navigators integrate methods for object detection such as SIFT [30] combined with other

methods used in [31], [32] or [33]. More specifically, the work of Ekwal et al., proposed a mobile
robot that autonomously navigates in a domestic environment [31]. This work pursued integrating
spatial and semantic knowledge in a service robot, putting together SLAM and an object detection
system to generate a high-level representation of the environment. The work presented in Ekvall
and Kragic describes a computer vision system that is part of an autonomous robot system that
performs pick-and-place tasks using programming by demonstration for automatic interpretation of
the teacher’s instructions [32]. The work of Lopez aimed at enabling a mobile robot, with a camera and
a laser sensor, to navigate in an environment while looking for known objects [33]. The development
of a system of active visual search [34], combining semantic tracks to guide the process of object search
is also interesting. The proposal starts from an unknown environment and implements an exploration
strategy that takes into account the task of finding an object. The planner adapts the behaviour of the
search depending on the current conditions using an indirect search algorithm [35] (e.g., when looking
for a cellphone, the robot will look for a table first as it it likely that a phone can be on top of it).

The ability to detect and identify objects is often used in the task of places classification required
by the semantic navigation. Mozos et al., presented a system of recognition of furniture to accomplish
this task [36]. Semantic navigation, therefore, can get a direct benefit from place classification methods
that allow finding the location of a particular object. Joho and Burgard considered the problem of how
background knowledge about the location of usual objects can be used to find an object in an unknown
environment [37]. Astua et al., proposed a system that allows a mobile robot to differentiate among
objects in a scene and use that information in semantic navigation [38]. The requirements of objects
detection in this field are less than those applied to handling and gripping objects [39] in terms of the
precision of location. However, there are works where objects and their distances are used for the
classification of places [40] or for assessing the presence of objects in a location to make inferences [41].

A recent trend in object detection is semantic segmentation, a paradigm that assigns a class
label to the pixels in an input image [42]. To achieve this, classifiers such as Pyramid scene parsing
network (PSPNet) [43] are integrated on the approach for guiding a robot autonomously relying only
on visual information. Another work, proposed using semantic segmentation and detection masks
as observations and use deep learning to learn navigation policies [44]. The proposal uses high-level
semantic and contextual features in the segmentation process coupled with detection masks. Also,
this system takes advantage from the fact that once an agent has been trained in similar environment,
it can discover commonly encountered objects and contextual cues, which allows learning policies that
are able to generalize to unseen environments.

Together with object detection, the detection of people is a problem widely addressed. A complete
system can be found in Luo et al. [45] where authors performed bulk segmentation, detection of
head and shoulders and a time refinement. Additionally, the people detection algorithm used in
Crespo et al. [29] included the detection of legs proposed by Aguirre et al. [46]. The diagram of the
system is represented in Figure 2. The approach gets data from the room noise using microphones
connected to an Arduino and the movement of people in the environment through the detection of legs.
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By combining data on a Support Vector Machine (SVM), the system is able to differentiate different
types of rooms. A recent work exploits other kind of environmental data, combining information
coming from an artificial nose with visual information [47]. By doing so, the system is able to detect
objects that emit certain kinds of gas. Authors argue that this system could be useful in certain indoor
environments where information associated with these kinds of objects may help exploiting new
semantic relationships.

EnvironmentDataCapturer

MicNode

/microphones

/Micros

num_people

/people_tracker_measurement

leg_detector

Turtlebot Drivers
- minimal
- 3dsensor

/scan

/odom

/number_people

SVM

Sample

LABELED ROOM!

Arduino

Figure 2. Office 3D semantic map renderings [29].

Labelling
In the last decades, a number of researchers have proposed methods to label rooms or areas where

the robot can move. Labelling consists of naming such room or region to uniquely identify it with
respect to other regions, and also to attach it to a category that provides certain properties that can be
taken into account in the navigation process. The information provided by each category depends
on the level of abstraction allowed by the detection and classification process and the ontology used.
This means that the perception capabilities of the robot are directly related to the level of abstraction
provided by the labelling process. Kostavelis and Gasteratos faced the problem of semantic navigation
by breaking it down into discrete tasks [48]. This work addressed the objectives of place recognition
and region categorization. The navigator uses machine learning techniques to manage dynamic
changes in the explored environment and this work assumes that the robot should be able to classify
and label all places. The semantic navigator also uses information related to the category of the place.
The categories that can be handled depends on the complexity of the system. The categories can be
therefore simplified to room, hall, door or can model more complex information, leading to more detailed
representations such as kitchen, living room, bedroom for defining rooms. In any case, the cognitive
navigator relates categories to regions of the environment.

Literature on methods of labelling places for robot navigation is wide. Drouilly et al., discussed
the differences between labelling in indoor places and outdoor ones since in the latter usually there
is no clear separation between different places [49]. This work uses RGB-D information for semantic
mapping, including a labelling layer that relies on a Random Forest classifier. Cleveland et al., presented
an automatic robotic system that generates semantic maps in retail environments using point clouds
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to recognize and label objects [50]. From the 3D information, the system uses SIFT features to
perform classification.

In labelling, there is a trend that intend to identify regions of interest in the environment, such
as floor, walls or doors [51]. But, although this endows the system with some knowledge regarding
navigation, it does not categorize the place. This task was addressed in Shi et al. [52] where the system
differentiates between halls, offices, reading rooms and doors. Besides, the authors weighted the
advantages and disadvantages of using different sensors for the semantic labelling of places. Another
work used Scale-invariant feature transform (SIFT) [53] features to characterize different areas [54].
This information was combined with a probabilistic description logic. Hernandez et al., presented a
preliminary proposal for a toposemantic navigation model based on visual information for indoor
environments [55]. This system relies on region detection at the lowest level and use this information
to grow on abstraction, adding information from objects detected in the scene. A recent work proposed
a vision-based three-layer perception framework based on transfer learning for mobile robots during
semantic navigation [56]. This proposal includes a place recognition model to distinguish different
regions in rooms and corridors.

Apart from those systems that perform object recognition and classification using visual
information, the work of Mozos et al., proposed using laser range-finder measurements for semantic
labelling of places [57]. Observations are classified by applying a sequence of binary classifiers based
on AdaBoost. Sousa et al., adapt techniques normally used in computer vision to laser range measures
to distinguish between rooms and corridors using SVM [58]. Additionally, a labelling approach based
on a multi-sensory system was described in Pronobis et al. [59]. This system combine visual cues with
laser range data with a SVM classifier to distinguish between indoor environments (corridor, office
and meeting room).

At this point, it should be clear that mobile robot navigation can benefit from adding high-level
semantic knowledge. Topological navigators can be generated from the results of classifiers labelling
the nodes of the map. Also, semantic navigators that use the methods presented in this work can be
built on a topological or geometric navigator. Mozos et al., used data from a system that returns a
plane of 360 degrees to distinguish between room, hallway, door and entrance hall [60]. To achieve
this, the system only used geometric data. In contrast, many proposals use computer vision to detect
and recognize objects for place labelling. For instance, Rottmann et al., used Haar features to get
the number of specific objects present in the environment to perform Semantic Place Classification of
Indoor Environments With Mobile Robots [61].

Different categorizations of places were discussed in Charalampous et al. [62], dividing the
classifications of indoor places into two types:

• Indoor single scene interpretation. Different works converge here. Mueller and Behnke
proposed a framework to perform semantic annotations of RGB-D data [63]. Authors used
the implementation of a Random Forests classifier to group the scenes, and SVM to predict objects
and indoor scenes. The model is based on Conditional Random Field (CRF) to provide unary
features. Another approach that is also supported by CRF and Random Forests is presented
in Wolf et al. [64], while in Gutierrez-Gomez et al. [65] authors proposed segmenting the scene
into fragments of neighbouring 3D points. Having in mind low-level features such as textures
or normal entropy, researchers manage to differentiate the areas of the scene that change over
time from those that are static. This makes it easier to recognize places when the robot returns to
visit a place.

• Indoor large scale interpretation. This category includes works such as the proposal of
Hermans et al. that proposed a method for semantic segmentation of 3D scenes in different
places [66]. The 3D reconstruction process is carried out by adding new scenes to those previously
acquired. The locations are then labelled with distance, colour, and normal orientation information.
Ranganathan, proposed an online method that segments RGB streams and labels inferring the
parameters in a Bayesian model [67].
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Besides, methods of place recognition supported by binary characteristics descriptors are
suggested [68]. This represents a tendency to categorize places using statistical hypotheses.
Mafra et al., proposed a place recognition system for UAV navigation that combines 2D and 3D
information [69]. This approach codifies the information into a hierarchical Bag of Binary Words
visual vocabulary. In Lu et al., authors presented a framework that includes cost maps in layers,
each one of these maps has a distinctive semantic meaning [70]. However, it is quite widespread that
researchers join topological or geometric maps with data from objects located in the environment.
Wong et al., combined a metric map with objects in space [71]. Something similar was proposed by
Zhao and Chen [72]. This work introduced a method that combines SLAM with an object labelling
system. In this line is also the work of Deeken et al., that presented a framework called SEMAP [73].
This approach was developed in ROS to store and manipulate objects on a semantic map.

Table 1 shows the trends of different works regarding the acquisition of information from the
environment in semantic navigators. This table shows which works use a human assistant to label the
place where the robot is located. Besides, the table provides information about what works also allow
a human assistant to interact with the robot so that it learns the objects that surround it and/or the
relationships between those objects with other elements of the environment. Regarding the acquisition
of information through the sensors of the robot, the table shows which works employ a processing
of the information received by laser range data. It also takes into account who applies grid map
segmentation techniques. Also, it is shown what authors use the information of the objects detected
by the robot to acquire relevant information to label the place where it is located. It is worth noticing
that some works follow a hybrid scheme, using both information acquisition through interaction with
humans as well as autonomous information acquisition processes.

Table 1. Comparison between information acquisition methods.

Acquisition by Human Interaction Autonomous Acquisition

Paper Place Labeling Learning Objects and Relationships Laser Range Data Segmentation Object Detection

[19] YES YES (BOTH) NO NO YES
[15] YES YES (BOTH) YES YES YES
[16] YES NO YES NO YES
[17] YES YES (OBJECTS) YES YES YES
[74] YES NO NO NO NO
[75] YES NO NO NO NO
[21] YES DOORS NO NO NO
[23] NO YES (OBJECTS) NO YES YES
[13] NO NO YES NO YES
[24] NO NO YES NO NO
[25] NO NO YES YES NO
[28] NO NO YES NO YES

Crespo et al., included techniques designed to recognize patterns in the actions of individuals
to label a room, that is, labelling a place depending on what people do in them [29]. Kollar and Roy
relied on probabilistic methods based on Naive Bayes for the classification of places, obtaining the
probabilities of objects locations [3]. It is a fact that some objects tend to be or belong in certain types of
places in the environment. Object-object relations (for example, a sofa can be near a remote control and
vice versa) and object-scenario (a sofa, a remote control, and a TV are related to a living room) can be
useful to predict the location of a great variety of objects and scenarios. Another work also introduced
a Bayesian approach for semantic mapping [76]. This proposal combined a semantic, topological and
geometrical mapping of the space and nodes relative to objects. The task of localization included
information from methods of place classification.

3. Representation of Semantic Knowledge

The literature offers different ways of representing high-level knowledge in navigation tasks.
Semantic navigation approaches builds upon some of these knowledge representation paradigms.
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This is the case of Pronobis and Jensfelt that propose a spatial representation in a layered structure [17]
as shown in Figure 3. This representation can describe usual knowledge as relationships between
concepts (e.g., a kitchen contains-the-object cereals). Additionally, instances of knowledge are described
as relations between instances of concepts (object-1 is-an-instance-of cereals), or relations between
instances and other instances (place X has–the-object object Y). Relationships in the conceptual map can
be predefined, acquired or inferred. These relations can also be deterministic or probabilistic (modelling
uncertainty). This semantic navigation system bases inference on deductions on the unexplored space,
such as predicting the presence of objects in a location with a known category. Additionally, this system
is able to predict the presence of a room in unexplored space. Adding features to objects can also
provide useful information since they can modify the functionalities of the objects [19]. For instance,
a broken chair may not be used for sitting and be located in a workshop instead of in a living room.

Figure 3. Spatial representation in a layered structure [17]. The conceptual layer contains concepts
knowledge, relationships between concepts and spatial entities instances.

Galindo et al., presented one of the first works in the semantic navigation field, introducing
multi-hierarchical models of representation [13]. This work proposed NeoClassic as a tool for
representing knowledge and Descriptive Logics (DL) as inference mechanism [77]. The inputs to
the classification system are outlines and, therefore, simple volumes, such as boxes or cylinders,
represent furniture.

Some authors include features of the environment such as the sound level or the number of
people in each room [78]. Gaps authors left in their conclusions haven been covered, such as the
problem of autonomously learning new properties and categories of rooms by the robot, heading to
an auto extensible semantic mapping. Ruiz-Sarmiento et al., introduce a novel representation of a
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semantic map called Multiversal Semantic Map [79]. The authors provide measures of uncertainty
when they categorize an object into degrees of belief. An object can be labelled as a microwave with a
certainty of 0.6 and as a bedside table with 0.4, for example. This type of semantic map contains all the
categories considering all the possibilities. The work of Galindo et al. [13] was extended and different
combinations of possible bases or universes were considered, such as instances of ontologies [80] with
annotations of belief (certainty) about the concepts and relationships that are useful fundamentals.

The potential of this representation was extended in subsequent works that implemented semantic
navigation schemes. For example, the planner was improved in Galindo et al. [81] and a more recent
work includes autonomous generation of objectives [82]. The work of Zender et al., follows a similar
line but, in this case, the multi-hierarquical representation is replaced by a simple hierarchy [15]. This
is achieved by moving the map data from sensors to conceptual abstractions. The tool selected to code
this information was Ontology Web Language-Description Logic (OWL-DL), resulting in an ontology
that defined an office domain.

Other authors, such as Nüchter and Hertzberg, use Prolog to implement networks of constraints
that code properties and relations between the different flat surfaces of a building (walls, floor, ceiling
and doors) [83]. The classification is based on two techniques: contour detection and a cascade of
classifiers that use distance and reflectivity data.

Other acquisition systems, representation systems and use of semantic maps can also be found.
One example is KnowRob-Map by Tenorth et al., where Bayesian logics networks are used to predict
the location of objects according to their relationships [84]. All of this is implemented in SWI-Prolog
and using an OWL-DL ontology. They use networks with Bayesian logic to predict where an object
can be (within the semantic environment) based on their relationships. For example, if a knife is
used to cut meat, meat is cut for cooking and the kitchen is the place to cook, the knife can be in the
kitchen. In contrast, The ontology of concepts that represents semantic knowledge can be seen as lists
implemented using a database scheme [19] as shown in Figure 4. The reasoning can be performed as
queries to the database. Alternatively, the ontology can be translated into lists of facts and rules and
inferences can be made through a reasoning engine such as NeoClassic [13].

ConceptualRoom ConceptualObject

PhysicalRoom PhysicalObject

Utility

 Characteristic

Interaction

Meaning

Figure 4. Knowledge representation on concept lists linked each other [19].
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From these works, ontologies can be considered as the tool to formalize semantic knowledge.
In robots navigation tasks, the way of mapping the environment is an essential stage. The type

of map for the navigator depends on the abstraction level, resulting in different kinds of navigation.
In a geometric navigator, the required mapping information corresponds to distances from the robot
sensors [85]. The map in these approaches aims to distinguish those zones in the space corresponding
to obstacles from the accessible areas. In contrast, topological navigators use the connectivity between
different areas to model the environment [86]. This allows building a tree-like space representation to
calculate routes. Pronobis and Jensfelt added one extra level of abstraction, performing what they call
semantic mapping [17]. This work considers applications where the robot moves in domestic or office
environments, created by and for humans. Concepts such as rooms, objects and properties (such as
the size and shape of the rooms) are important in the tasks of representing knowledge and generate
efficient behaviours in the robot.

3.1. Ontologies

Ontologies are formal tools to describe objects, properties, and relationships in a knowledge
domain. According to Prestes et al., two definitions capture the essence of the purpose and scope
of ontologies [87]: On the one hand, Studer et al., building on the initial works of Gruber et al. [12],
stated that an ontology is “an explicit formal specification of a shared conceptualization” [88]. On the other
hand, the work of Guarino considered an ontology as a series of “logical theories that explain what
a vocabulary tries to transmit” [89]. Therefore, we can establish that an ontology is constituted by a
set of terms and their definitions as shared by a given community, formally specified in a language
readable by a machine, such as first-order logic. More specifically, in the field of robotics, ontologies for
representing knowledge are useful as they allow building models of the environment in which relevant
concepts are hierarchically related to each other. In general terms, ontologies are composed by classes,
which represent concepts at all levels, relations, which represent associations between concepts, and
formal axioms, which are restrictions or rules that provide consistency to the relationships [90].

Even though ontologies have in common these elements, there are different ways to classify
and differentiate them. Prestes et al., group ontologies by their level of generality, separating them
in four kinds [87]. (i) Top-level ontologies describe general concepts such as space, time, objects,
events, actions, etc. This generality makes them suitable for different domains. (ii) Domain ontologies
describe concepts oriented to solve different problems if they are in a specific domain. Concepts
relative to a domain ontology for a home environment could be a living room, a kitchen, a couch,
sitting, etc. (iii)Task ontologies describe tasks or generic activities (e.g., grab something). And, finally,
(iv) application ontologies are associated with one particular domain and to one task. task (e.g., fry
an egg).

3.2. Cognitive Maps

When building cognitive maps, knowledge is extracted from present and historical information
(previous knowledge), imitating the mechanisms of the human brain to solve complex cognitive
problems in a flexible way [91]. This study concluded that, when asking people to describe concepts
related to places (living room, kitchen, etc.), the definitions were usually built using the objects these
places contain. Following these ideas, Milford et al., presented RatSLAM, a computational model of the
hippocampus of rodents developed with Continuous Attractor Networks (CAN) of three dimensions
that translate the robot position of the robot in the position of cells [92]. Shim et al., presented a
mobile robot that uses a cognitive map for navigation tasks [93]. The map is built using a RatSLAM
approach with an RGB-D sensor [28] which added depth information, invariable to lighting conditions.
The cognitive map generated by its version of the RGB-D-based cognitive mapping algorithm is shown
in Figure 5.
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Cognitive maps have been applied in scene recognition. For example, Rebai et al., presented an
approach for indoor navigation that builds a visual memory that allows spatial recognition without
storing visual information [94]. This approach builds the visual memory using Fuzzy ART, a model
capable of rapid stable leaning of recognition categories in response to arbitrary sequences [95].
Authors propose this idea as a way of imitating the biological processes that encode spatial knowledge,
mimicking how animals recognize previously visited places through cognitive maps. To achieve
this, data association mechanisms are implemented to describe the robot environment that allows
recognizing places already visited [96]. The system consists of constructing an incremental visual
memory using Fuzzy ART and the visual features are used as input signals to create a visual cell
representing the perceived scene (see Figure 6). In addition to this a bio-inspired process of Visual
attention (VATT) is obtained, consisting of processing a certain part of the scene with more emphasis,
while the rest is dismissed or suppressed.

Figure 5. Cognitive map generated with a version of the cognitive map construction algorithm based
on RGB-D [93].
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Figure 6. Cognitive map modules based on visual memory [94].

The authors also indicate that this idea is exploited in the construction of cognitive maps and
recognition of places using visual localization [97], besides being applied in navigation of mobile
robots. At these points is where it makes sense to study it for this paper.

3.3. Semantic Maps

Semantic mapping is the map that takes into account complex semantic concepts of the
environment, such as objects and their usefulness, different types of rooms and their uses, subjective
sensations transmitted by a place in a user, etc. These concepts are related to each other offering
valuable information about the environment that is reflected in the semantic map.

Being aware of the implications of the choice of technology and the level of abstraction to
be used in the mapping, Wu et al., considered of great importance the application that has the
mapping in service robots and present a hybrid model of the semantic map [98]. Classifying the
navigation maps into two categories: the metric maps and the topological maps. To reach a map
with the advantages of both categories and reducing the limitations, the hybrid maps [99] outstand.
All belong to traditional maps and focus on representing the geometric structure of space, describing
the quantitative coordinates and connectivity between locations. However, the functionality of the
locations and the complexity of the partial space are not considered. Nor are high-level semantic
concepts used to interact with people. This situation where the robot planner, location and navigation
based on these types of maps do not meet the needs of the robot’s service tasks, motivated the definition
of semantic maps [98], as a more suitable option than cognitive maps.

The paradigm of the development of semantic maps used by Pronobis and Jensfelt is based
on space properties [17]. These properties can be described as attributes that characterize discrete
space entities identified by the robot, such as places, rooms, or locations. Additionally, the properties
make them correspond with human concepts and provide another layer of spatial semantics shared
between the user and the robot. Each property is connected to a sensory information model. High-level
concepts, such as room types, are defined by properties.
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• Objects. Each object class corresponds to a property associated with the place. A particular
location is expected to display a certain number of a particular type of object, and a certain
amount of them is observed.

• Door. Determines whether a location is determined by a door.
• Shape. The geometric form of the room extracted from the information of laser sensors.
• Size. The relative size of the room extracted from the sensory information of the laser.
• Appearance. The visual appearance of a place.
• Associated space. The amount of free space visible around a placeholder not assigned to any place.

Conceptual map is shown in Figure 7. Every specific instance of the room is represented by a set
of random variables, one for each property associated with that place.

Entering into concepts of creation of semantic maps (without being the same as a cognitive map),
some works explore this concept and its application in mobile robotics. Nuechter and Hertzberg proved
that semantic knowledge can help a robot in its task of reaching a destination [83]. And part of this
knowledge has to be due to objects, utilities, events or relationships in the robot environment. The data
structure that supports space-related information about this environment is the map. A semantic
map increases the typical geometric and/or topological maps with information about entities (objects,
functionalities, etc.) that are located in the space. This implies the need to add some mechanism of
reasoning with some previous knowledge. In this way, a semantic map definition is reached:

A semantic map in a mobile robot is a map that contains, in addition to spatial information
about the environment, assignments of mapped features of known class entities. In addition
to the knowledge of these entities, regardless of the content of the map, some kind of
knowledge base must be available with an associated reasoning engine for inferences [83].

Figure 7. Structure of conceptual map graph model [17].

The differentiation of elements of the environment is called as semantic mapping by many authors,
also in outdoor navigation works. Li et al., they differentiate in the image that perceived from the
environment what is road, sidewalk, wall, terrain, vegetation, traffic sign, pole and car [100]. Returning
to indoor navigation, in the case of work that has already been mentioned [83], the authors focused on
differentiating the following elements from the environment: wall, door, floor and ceiling. Rules were
created using Prolog to implement the restrictions of the characteristics that differentiate the classes,
being these purely visual. In Figure 8 the network of restrictions that defined these elements is shown,
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while Figure 9 shows the result of the object detection such as the fire extinguisher, a printer and an
indoor tree in a flowerpot. The low-level mapping was a 3D SLAM.

Figure 8. Contrains for a scene interpretation [83].

Once the image was rendered, a classification was carried out considering the outline of the
objects apart from the depth and camera images. Then, the points corresponding to the 2D projection
of the object (ray tracing) were chosen. Then it was paired with a 3D model at those points, followed
by an evaluation step.

Figure 9. Rendered image for an office 3D semantic map [83].

Nieto-Granda et al., also implemented a semantic map, responding to the need to classify regions
of space [16]. Methods for automatically recognizing and classifying spaces are presented. Separating
semantic regions and using that information to generate a topological map of an environment.
The construction of the semantic map is done with a human guide. The partition of this map provides
a probabilistic classification of the metric map, assigning labels, leaving for a future work the automatic
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assignment of these labels (a topic later solved in other works such as the proposal of Crespo et al. [19]).
The symbolic treatment of the map and a path taken by the planner is shown in Figure 10.

For these authors, the literature of semantic mapping has focused on developing mapping
techniques that work by supporting human interactions, so that the representation of space is shared.
One of the strategies used is to represent the relationship between a place and the knowledge associated
with it (including the functionality of the place and the location of the objectives). Unlike works like
Mozos et al. [57], which construct a topological map on a geometrical map, provide a continuous
classification of the geometric map in regions labelled semantically. This multi-variable distribution is
modelled as a Gaussian model. Each spatial region is represented using one or more Gaussian in its
geometric map coordinate framework.

Naik et al., recently proposed a graph-based semantic mapping approach for indoor robotic
applications that builds on OpenStreetMap [101]. This work introduces models for basic indoor
structures such as walls, doors, corridors, elevators, etc. The models allows querying for specific
features, which allows discovering task-relevant features in the surrounding environment to improve
the robot planner.

Kuipers proposed a quantitative and qualitative model of space knowledge on a large scale [102],
based on multiple representations of interaction and serves as the basis for previous authors in the
representation of relations of objects, actions and dependencies of the environment. On a smaller
scale of space, the work of Beeson et al., providing a representation of the more specific working
environment [103].

(a) Gaussian regions. (b) Robot’s path.

Figure 10. Rooms and dooways represented by Gaussian regions and the robot’s path to room 4 from
room 9 [16].

4. Semantic Navigation

Several approaches for mobile robot navigation systems appeared in the last decade, with semantic
navigation gaining interest. The work of Zender et al., follows this idea presenting a system able to
create conceptual representations based on different abstraction level maps [15]. This approach is
grounded on two aspects widely studied in the field fo psychology: how humans adopt a hierarchical
representation of spatial organizations [104,105], and how humans perform a categorization of spatial
structures [106,107]. This system includes a laser range finder, a camera and voice interaction
capabilities for HRI. Crespo et al., further developed this system by adding semantic knowledge
to objects [108]. This resulted on a multi-layer conceptual spatial map as shown in Figure 11, where the
lowest layer corresponds to the metric map (the goal is a coordinate or point in space) and is suitable
for low-level navigation (geometric navigation) as it includes metric measurements of free space and
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obstacles. The next layer, consists of a navigation graph that is able to differentiate between kinds of
areas (hall, room and entrance). The topological map use some reference elements of the environment
(nodes) according to the connections between them (arches). And finally, the conceptual map put
together a conceptual ontology and information obtained through dialogues with the users.

Semantic navigation allows mobile robots to perform a semantic planning. As an example,
Sun et al., recently presented a planning system for indoor navigation and household tasks [109].
The tasks implemented are move to region, move obstacles, clear a region of objects and moving objects
to another region. The robot is able to plan a path to an object using information from a semantic map
instead of fixed coordinates.

Figure 11. Multi-layer conceptual spatial map [108].

4.1. Principles of Semantic Navigation

Approaches of semantic navigation follow some common principles, including a framework for
topological mapping that includes geometrical information, adding topological abstraction. Integrating
a lower level navigator is common in semantic navigation approaches. Examples can be found in the
work of Mozos et al. [57], where authors describe how to generate a topological map, assuming that the
robot has a priori map of the environment, using an occupation grid approach [110]. Following these
ideas, Crespo et al., presented an interface to integrate different low-level navigators in a semantic
navigation system [78].

The semantic navigation methods also integrate approaches for classification of places, or labelling,
as studied in Section 2.2.1. Kostavelis et al., use a histogram-based classification method to
classify indoor environments in university buildings (e.g., corridors, laboratories, meeting-rooms,
offices, etc.) [111]. Another approach uses AdaBoost for classification of six indoor places (room,
corridor, doorway, kitchen, office, seminar room and laboratory.) [57]. More recently, another
work includes a place classification method based on people activities, resulting on the labelling
of six environments (cafeteria, library, corridor, exhibition room, conference room and indoor soccer
field) [29]. These approaches include a partition of unsupervised places, for instance segmenting the
environment to have distinguishable places on top of a topological map [111], or creating an ontology
that relates a conceptual hierarchy to the spatial hierarchy needed by a lower-level navigator [19].
Yang et al., include semantic knowledge into a Reinforcement Learning approach [112]. Authors use
a graph representation to model knowledge and Graph Convolutional Networks [113] to handle
relationships between features.

Finally, a conceptual representation of the detected places is necessary. In this sense,
Kostavelis et al., proposed the use of augmented navigation graphs to relate the concepts of the
conceptual hierarchy of places with each other [111]. Figure 12 shows how the nodes of the topological
map (topometric) are matched with categories of the conceptual hierarchy. This conceptual hierarchy
can also be expanded adding objects, utilities and subjective evaluations [108].
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Figure 12. Augmented navigation graph and relations between mapping levels [111].

4.2. Elements of the Semantic Navigation

In recent decades, cognitive robotics applied to navigation has led to a combination of mobile
robotics with a high level of perception. In this regard, semantic navigators involve two concepts [114].
The first one is related to the ability of the robot to self locate and to generate a metric map of the
explored environment. The second one is semantic interpretation and it refers to the ability of the
robot to understand its environment. Therefore, cognitive robots should be able to carry out semantic
inferences based on mechanisms of interpretation of the context, even when places are visited for the
first time [48].

The work of Kostavelis and Gasteratos points out the basics of a framework for cognitive
(semantic) navigation, separating the problem into a set of tasks [48]. The first one involves low-level
navigation, which includes geometric and numerical attributes that the robot uses for localization.
Next, the high-level navigation is considered to deal with the cognitive attributes to perform semantic
inferences about the robot’s location. This task can be separated in three sub-tasks: (i) Spatial
abstraction, that deals with the representation of the spatial information learnt; (ii) Recognition
of places, where the system recognizes instances of places to navigate from one location to another;
and (iii) Classification of places, that allows generalizing, recognizing places even if some information
is not available. Finally, an interface is necessary to connect the low-level with the high-level
navigation modules.

Semantic navigation is gaining popularity, with recent works offering insights about current
trends and future directions of this research area. Table 2 gathers the main features that define semantic
navigation, paying special attention to the reasoning module. In this regard, the work of de Lucca
Siqueira et al. [115] proposed behaviour trees and finite-state machine (FSM) to model the possible
states of the agent and the transitions between these states [116]. Conversely, another work does not
implement a reasoning module, adding instead semantic concepts to the planning task [117]. The work
of Talbot et al., uses semantic knowledge to infer the destination modelling the environment as a
physical system, treating spatial specifications as the mass in a mass-point system [118]. Under this
assumption, spatial constraints are modelled as forces applied to a moving mass.
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Table 2. Comparison between navigators with semantic knowledge.

Features

Ref Reasoning System Object Detection Environments Elements Taken
into Account Place Classification User Interaction Learning Possibility

[115] Behavior tree, FSM Unused or unspecified Weather, task location, energy source location,
events, a room, a position, etc. Environment context Unused or unspecified No

[119] Unused or unspecified A version of the Convolutional Neural
Network (CNN)

Roads, buildings (red), road markers, lawns,
vehicle, pedestrian, bike, sky, fence, pole, etc.

They classified 11 classes for example,
Road and Tree Unused or unspecified Unused or unspecified

[118] The used spatial constraints as a
mass in a point-mass system Unused or unspecified Unused or unspecified Unused or unspecified Unused or unspecified Unused or unspecified

[117] Extracting useful navigation
information from semantic roles

This paper use the NLPIR Chinese word
segmentation system Manual labeling Speech Recognition Library (SRL) Unused or unspecified

[15] A description-logic reasoner
A component for detecting and
following people [25] and a method
based on [32]

Doorways, Corridors, rooms. Smaller objects,
like cups, books, etc.

Based on functionality, it depends on
the objects inside the area Speech recognition Yes

[111] Unused or unspecified Unused but they claim that they will use
object recognition

The norm between the detected features and
the visual words is calculated and the
representative histogram is formed

A frame is acquired, converted into an
appearance based histogram and the
SVM infers the label of the place

Unused or unspecified Unused or unspecified

[120] Unused or unspecified
Extracting 2D straight segments as a
basic primitive and using
ground-hypothesis

Edges and environment images features Unused or unspecified Unused or unspecified No

[103] The Hybrid Spatial Semantic
Hierarchy (HSSH) frame-work Unused or unspecified gateways and path fragments

Using gateways and path fragments,
they formulate a criterion for
detecting topological places

Clicking or drawing on
the LPM display No

[19] A reasoning system based on a
relational BD implementation Object and label detection Objects in the environment and labels Classification according to room

utility

The keyboard can be
used. They also used a
voice dialog system.

Yes

[49]
A semantic cost function that takes
into account high-level
image constraints

Unused or unspecified It uses object position in images Unused or unspecified There is no interaction Unused or unspecified

[79] Unspecified objects are characterized through
geometric and appearance features Objects Depending on the objects that are

anchored with types of room Unused or unspecified

Several processes of
obtaining semantic
knowledge are analyzed
but not used yet
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Beeson et al., focused on inferring topological maps from instructions of routes using the Hybrid
Spatial Semantic Hierarchy (HSSH) framework [103]. Another approach proposed descriptive logic as
a reasoning system, allowing inferring new knowledge about the world [15]. Crespo et al., followed a
similar line, proposing a system able of reasoning and making inferences about world concepts [19].
This work presents a reasoning system implemented following a relational database scheme, extending
the inference capabilities of Zender et al. [15]. A different approach proposed a semantic high-level
scene interpretation mechanism to select the optimal path towards a given goal [49]. This system
integrates a semantic cost function that considers sets of semantic places connected topologically
through the robot’s actions or metric constraint.

From the approaches analysed, there is a consensus about the need for an object detection mechanism
to provide a raise with the level of abstraction when representing concepts of the environment. Many
works already include an object detection system [15,19,79,117,119,120] while others mention it as
future works [111]. The analysis also offers other interesting insights such as the kind of elements
of the environment considered to extract semantic knowledge. Some proposals integrate features of
the environment [103,115,119,120], while other works use detected objects [15,19,79,119], and others
analyse frames (stored real-world pictures and/or coordinates) [49,111,120]. Table 2 summarises the
methods for place classification reviewed.

Interaction with users is also an important feature for a semantic navigator with many works
integrating these kinds of systems [15,19,103,117]. Usually, these systems are based on spoken
dialogues, except for Beeson et al., where a graphical interface is used instead of [103]. Finally,
another common ground is the ability of a semantic navigator for learning new semantic knowledge as
some works point out [15,19,79].

5. Open Issues and Questions

An extensive review of literature in semantic information for robot navigation raises some
interesting questions that practitioners should take into consideration.

Is a knowledge representation model better than another? When comparing between knowledge
representation models it is important to establish comparison criteria. This is still an open problem
since abstract representations of information are not easy to evaluate. Experts in psychology have not
reached a consensus about the knowledge representation that our brain uses to process information.
In fact, multiple analogies have been used to try to understand our internal representation.

How essential is an object recognition mechanism in navigation? In general, proposals for semantic
navigation include a object detection mechanisms. Most of the semantic navigators need information
about the objects in the scene to provide high-level classification of places. Therefore, an object
recognition mechanism is a key feature to integrate into such systems and it is desirable having a
system as generic as possible, that is, without the need to be trained to detect all specific objects in
the environment. For instance, a system should be able to recognize a new instance of an object
(e.g., a chair) in any environment without specific training for that chair. New machine learning
techniques are leading the way to achieve a high level of generalization, but at the cost of great
amounts of data for training [121,122].

Are there environments more suitable for semantic navigation than others? This question has been
discussed by many researchers. Despite its advantages, it is not clear yet how robots that use
current semantic-based techniques for navigation will coexist with humans. One of the concerns
regards the number of people in the environment as robots using high-level semantic navigation rely
on object detection. A crowded environment is more prone to multiple occlusions, thus reducing
the chances for information acquisition. Some authors propose solutions to this problem, but still
extensive experiments are necessary to define the kind of environments more suitable for this type of
navigation techniques.

Indoor semantic navigation methods are reusable in outdoor environments? This issue is usually
arises when a new semantic navigation system emerges. In the state of the art, there are semantic
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navigators for indoor and also for outdoor environments, but are they so different? It is reasonable to
consider whether the progress in either application is usable on the another. The question that remains
open is whether a navigator will emerge that serves both for indoors and outdoors, having defined
ontologies wide enough to consider the two levels of relationships and the functional sensory ability
for both situations.

What is still lacking to see robots in everyday environments such as homes, hospitals, etc.? Semantic
navigation involves several disciplines of robotics. For this reason, aspects such as object recognition
and human-robot interaction must be integrated with a robust low-level navigation system.

What applications, other than navigation, can benefit from the same semantic map scheme?
The management of semantic knowledge and the management of ontologies can be applied to other
tasks apart from navigation. The RoboEarth project includes a knowledge system implemented with
Prolog that allows a robot to accomplish tasks like cooking a pizza. Therefore, it is reasonable to think
that the inclusion of semantic maps can be useful to develop other tasks. It can also be applied to
user interaction to obtain information of any kind, not only relative to the navigation. Besides, object
detection can be improved with the inclusion of the semantic map. This means that many applications
can be improved by integrating techniques described in this work.

6. Conclusions

This contribution reviews the state of the art in mobile robot navigation paying special attention
to the role of semantic information. From this idea, a high-level navigation category arises, that is,
semantic navigation that can be defined as the ability of a robot to plan the path to its destination taking
advantage of the high-level information provided by the elements of the environment. Exploiting this
information in the real world allows more optimal navigation.

To achieve high-level navigation, some previous steps must be considered. First, information
acquisition allows identifying the main components in the environment following two procedures.
This process can be eased by interacting with humans, who will provide the information pieces
required or, conversely, the robot can autonomously detect people, objects and other elements in
the environment.

This ability to acquire information is an open problem that has been addressed in the contributions
mentioned in the present work. In the case of autonomous detection, the elements found in the
environment will be limited by the sensors the robot includes. There is a difference, therefore,
between acquiring information directly from the environment and acquiring knowledge from
interaction with humans since this last option allows more abstract relationships. The first case deals
with the idea of recognizing objects, shapes, corners, or any item suitable for obtaining information
from the environment. In this case, multiple techniques for object detection, segmentation and frame
analysis have been included. In the second case, it deals with the idea of the system being able to
learn new concepts, such as relationships. The most widespread technique among the authors facing
this problem is the robot’s dialogue with a human user. Through this dialogue or interaction with the
user, the robot learns new concepts. Interaction with humans is, therefore, a useful ability from two
points of view. On the one hand, through the interaction the system recognizes the objective of the
navigation. On the other hand, using interaction, the system can learn some concepts. From the works
presented in this paper, it can be stated that interaction by voice and dialogue predominates. However,
some authors choose a display or keyboard interface.

In this paper, different types of maps have also been reviewed. These maps can be used in
semantic navigation. Two types of maps can be distinguished according to what different authors
have been discussing, that is, semantic and cognitive maps. All authors agree that the way of mapping
the environment define the navigation to be carried out. As more general conclusions, it is observed
that the bio-inspired models are important. An attractive feature for semantic navigation is that it
works with abstractions similar to those performed by humans to plan their path and classify their
environment according to their usefulness.
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The ability to reason is one of the main capabilities of a high-level navigator. The more concepts
it can manage, the more knowledge it can extract. This allows that even when there is very little
information, non-specific information or very abstract information, the robot reaches its destination.
The works that have included concepts of high-level of abstraction have used ontologies that allow
them to manage conceptual hierarchies. In this case, some reasoning system is added. These systems
extract information and make inferences about the defined ontologies. The systems reviewed include
a series of reasoning techniques, such as behaviour trees, finite state machines, reasoners based on
descriptive logics and reasoners that access relational databases. These reasoners are identified as
flexible and powerful, while those that access relational databases are faster and can work with a larger
volume of concepts.

Regarding the components that a semantic navigation approach has to implement,
different authors identified some common grounds. These are the low-level navigator, a high-level
navigator and an interface that links both. The high-level navigator must allow working with a level of
abstraction enough to represent semantic concepts of the environment to recognize and classify places.
These minimum components are complex enough to generate different research directions within the
semantic navigation. In this paper, works focused on one or more of the capabilities of the high-level
navigator have been gathered.

From a technical point of view, it has been discussed that, although many works deal with some
issue related to semantic navigation, there are not so many complete semantic navigators. However,
some works provide interesting solutions to many of the problems separately. It can be expected
that in the short or medium term, systems will emerge from the idea of integrating the different
partial solutions.

For all this, it is foreseen that semantic navigation will improve in the next years, incorporating
better systems for objects detection, as well as more general systems of reasoning and interacting with
the user.

This survey required thorough bibliographical research in well-known databases. We used mainly
Scopus, Web of Science (WoS), and Google Scholar. About the topics surveyed, we tried to cover the
main aspects relative to semantic navigation, such as mapping, information acquisition, human-robot
interaction, inference and reasoning, etc. Therefore, these were the main keywords derived from these
topics. For the papers gathered in this survey, we considered those contributions that addressed one or
more aspects related to a semantic navigation system. Additionally, some papers were included to
explain concepts related to those fields (e.g., computer vision algorithms that were later integrated
into a semantic navigation system).
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