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a b s t r a c t 

Continuous Authentication (CA) approaches are attracting attention due to the explosion of available sen- 

sors from IoT devices such as smartphones. However, a critical privacy concern arises when CA data is

outsourced. Data from motion sensors may reveal users’ private issues. Despite the need for CA in smart- 

phones, no previous work has explored how to tackle this matter leveraging motion sensors in a privacy- 

preserving way. In this work, a mechanism dubbed SmartCAMPP is proposed to achieve CA based on

gyroscope and accelerometer data. Format-preserving encryption techniques are applied to privately out- 

source them. Our results show the suitability of the proposed scheme, featuring 76 . 85% of accuracy while

taking 5.12 ms. of computation for authenticating each user. Interestingly, the use of cryptography does

not lead to a significant impact as compared to a non-privacy-preserving mechanism.

© 2021 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license

( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
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. Introduction

In the last years, a plethora of connected devices have rocketed 

orldwide, leading to the so called Internet of Things (IoT). Among 

hem, smartphones are significantly prominent –1.52 bn devices 

ere sold in 2019 1 . Beyond phone calls, they are able to store sen-

itive information such as pictures or documents. Therefore, their 

ecurity is paramount. 

Beyond their malware-related and advanced persistent threats 

e.g., Fancy Bear Android implant [1] ), a critical issue is ensuring 

hat the user is the right one. Since smartphones may be physically 

tolen, it is essential to check this issue at all times. This calls for 

he inclusion of Continuous Authentication (CA) approaches, such 

s those based on behavioral biometrics [2] . 

Smartphone-based CA mechanisms may leverage the growing 

mount of data provided by its sensors. Currently, an average de- 
� Editor: Modesto Castrillón Santana
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E-mail addresses: luis.hernandez@csic.es (L. Hernández-Álvarez),

fuentes@inf.uc3m.es (J.M. de Fuentes), lgmanzan@inf.uc3m.es (L. González-

anzano), luis@iec.csic.es (L. Hernández Encinas).
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ice counts on a wide array of them such as touch sensors, GPS or 

ccelerometer, to name a few [3] . 

Given that a great number of CA schemes are based on ma- 

hine learning techniques, which typically involve a training phase 

everaging data from different users, these processes may be out- 

ourced to a cloud–based infrastructure. However, sensorial infor- 

ation may reveal the identity or be used for profiling the user [4] .

herefore, building an outsourced CA mechanism for smartphones 

equires applying privacy protection techniques. 

Several previous works have addressed this particular setting, 

uch as [5] or [6] . However, no previous effort has leveraged 

n motion sensors, particularly accelerometer and gyroscope data, 

hich have been largely used in other contexts [7–9] . Neverthe- 

ess, [10] and [11] study a great number of CA proposals and their 

nalysis show the appropriateness of using accelerometers and gy- 

oscopes for CA purposes. These sensors are those that lead to 

hallenging results, e.g. [2,12] , and thus, they are chosen for this 

ork. However, they cannot be directly outsourced –it has already 

een shown that both sensors are useful to reveal private infor- 

ation such as the user’s PIN code [13] . To address this limita- 

ion, in this paper SmartCAMPP, an outsourced privacy-preserving 

A mechanism, is proposed. SmartCAMPP is designed for scenar- 

os in which the authentication decision is taken on an exter- 

al, untrusted third party. To foster its adoption in current out- 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
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Fig. 1. SmartCAMPP overview. 
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ourced settings, SmartCAMPP leverages a cryptographic technique, 

alled Format-Preserving Encryption or FPE [14,15] , that ensures 

hat transformed data keeps the format of the original one, so the 

ame database and computational components can be applied to 

perate with this new information. Consequently, this work offers 

he following contributions: 

• A privacy-preserving CA approach which, for the first time, ap- 

plies machine learning techniques over encrypted sensorial data 

using FPE. 
• Experimental analysis on a large-scale database containing real- 

world user-related data [16] to allow the comparison between 

FPE and non–FPE schemes, and establish a baseline for future 

investigations. 
• Experimental material released in GitHub to foster further re- 

search and ensure its repeatability. 

The remainder of this paper is as follows. Section 2 describes 

he related work. SmartCAMPP is introduced in Section 3 . The as- 

essment is shown in Section 4 . Lastly, Section 5 concludes the pa- 

er and points out future research lines. 

. Related work 

Many proposals have worked towards CA approaches apply- 

ng assorted features. For instance, gyroscope and accelerometer 

re combined in [17,18] . [19] further combines them with orienta- 

ion and magnetometer. On the other hand, [20] prefers other fea- 

ures such as GPS and other proposals like [21] work with screen 

ouches. Specially focused on managing access control in cloud 

ased applications, [22] fuses accelerometer, magnetometer and 

yroscope data through a trust manager and privacy protocols are 

nvisioned as a future step. To get deeper in CA approaches, an ex- 

ensive review about the state of the art of CA, user profiling, and 

elated biometric databases has been recently published [10] . For 

he sake of brevity, this section focuses on privacy-preserving CA 

pproaches. 

Despite the significant amount of CA approaches, privacy 

reservation has not received much attention in this context. 

rivacy-preserving approaches can be divided into a pair of cate- 

ories [23] , namely those in which an external server stores tem- 

lates to be used in the authentication process, and those in which 

he transformed version of the template is stored within the au- 

hentication device. 

Concerning the former type and in line with the proposed ap- 

roach, homomorphic encryption is a common technique. It en- 

bles the computation on encrypted data without accessing the 

ecret/private key. Data can be outsourced while being encrypted 

nd distances, e.g., Hamming distance [5] , or mathematical opera- 

ions, e.g. addition [24] , are computed to spot illegitimate users. 

With respect to template protection techniques, their goal is 

o securely store the users’ template generated in the enroll- 

ent phase of the authentication process [25] . The use of bio- 

etric hashes (called biohash) is a template protection technique. 

 hash of the biometric/behavioral data, commonly using a key, 

s computed and stored in the external server to be compared 

ith the users’ one in the authentication process, for instance, 

hrough a classifier [26] . Multi-party computation is other privacy- 

reservation approach and garbled circuits have been used in CA 

23] . In this case, a circuit (i.e., a function that can be executed 

n a privacy-preserving way) is generated from the input data and 

oth server and client verify its correctness using, for instance, the 

uclidean distance. Finally, data anonymization could be useful for 

sers’ privacy protection [27] , but the lack of data granularity and 

ts possible de-anonymization should be studied. 

Table 1 shows a comparison of privacy-preserving CA ap- 

roaches in smartphones. Assorted features have been applied, like 
190 
PS [24] or keystroke dynamics [27] . Algorithms to achieve privacy 

re also varied, being homomorphic encryption the most common 

5,24] . [27] proposes the simplest approach, where anonymization 

ased on removing sensitive data is applied. However, given the 

mount of de-anonymization techniques, the probability of recov- 

ring private data from publicly available information should be 

arefully studied. This is the case, for instance, of WiFi data [28] . 

n terms of continuously authenticating users, classifiers are com- 

only used [11] , but more alternatives appear when privacy is at 

take. They are quite assorted, being the comparison between the 

tored template and the received one through some distance met- 

ic [5,23] or a threshold value [27] a common choice. Finally, the 

ize (i.e., time span and amount of users) of the CA dataset in 

he evaluation process is specially relevant due to the continuity 

f the process. Just [26] and [5] carry out experiments on appro- 

riate datasets for CA, though [26] , in spite of the amount of users, 

oes not really specify the time span per user, and [27] points out 

hat, on average, 516.04 feature vectors are used, which could be 

nhanced to have a higher dataset. 

As compared to existing works, SmartCAMPP is the first 

rivacy-preserving approach for CA that applies gyroscope and ac- 

elerometer, features which have already been significantly stud- 

ed in non-privacy-preserving CA, using format-preserving encryp- 

ion for protecting users’ data and a classifier in the authentication 

rocess. 

. Proposed mechanism 

This Section introduces the proposed mechanism. In par- 

icular, Section 3.1 includes the problem formalization and 

ection 3.2 presents the stakeholders of the mechanism and its 

hreat model. Afterwards, Section 3.3 describes its goals, whereas 

ection 3.4 describes its messages and interactions. 

.1. Problem formalization 

The formalization of the problem includes an overview of the 

roposed mechanism and a description of the data features to use. 

he general scheme is shown in Fig. 1 , where U is the user, M U his

obile device, S the server, F U the encrypted data sent to S, and 

 U the authentication decision. 

Input data, V U , is collected from gyroscope and accelerometer 

nd defined by three spatial coordinates (x, y, z) whose ranges are 

hown in Table 4 . Such data is preprocessed, due to the character- 

stics of the used FPE system (see Section 3.4). Float numbers turn 

nto integers removing the decimal point and then, FPE is applied 

eading to F U . In Table 2 , as an example, the first feature before and

fter the encryption process for the first two users is presented. 

fter receiving the encrypted data, S analyzes it and generates R U 
hich is sent to M U . A more detailed description is presented in 

he following sections. 
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Table 1 

Related work comparison. 

Biometric feature Data protection alg. 

Authentication 

technique Dataset size 

[24] GPS, WiFi session 

duration, time 

start charging the 

battery, num. users 

interactions with 

device 

Homomorphic and 

Order Preserving 

encryptions 

Homomorphic 

operations 

- 

[26] Location, call 

information 

Biohashing SVM, KNN 100 users/ 1 

month data 

[5] Screen touches Homomorphic 

encryption 

Euclidean and 

Manhattan 

distance 

41 users/ 21,158 

data vectors in 

total 

[27] Keystroke 

dynamics and 

mouse movements 

Data 

anonymization 

Similarity score 15 users/1 session 

45min per user 

[23] Battery Garbled circuit Circuit evaluation 

(Manhattan or 

Euclidean distance) 

and oblivious 

transfer 

1 smartphone 

SmartCAMPP Accelerometer 

and gyroscope 

Format-preserving 

encryption 

SVM 50 users/ 120,000 

samples, 500 h. 

per user 

Table 2 

Example of user- and provider-based key encryption. 

Original Data Key Encrypted Data 

71.2604 6h0nh06diqq32ugqkakl 434858 

180.6605 6h0nh06diqq32ugqkakl 9326781 

1184.2775 6h0nh06diqq32ugqkakl 7708607 

71.2604 ebnic0adefju9otfeane 742147 

180.6605 7fyl8imtggs5z9zy3n9w 6115133 

1184.2775 faew3gek1l025jcacm5h 91757017 

3

b

p

3

Fig. 2. Enrollment Protocol. 
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.2. Model 

There are a pair of stakeholders in SmartCAMPP, whose capa- 

ilities are described as follows: 

• The user, U, whose behavioural biometric information is col- 

lected for authentication purposes. Such information is gath- 

ered from his mobile device, M U , in particular from its sensors, 

i.e. accelerometer and gyroscope. 
• A server, S, processes data received by M U in a continuous way, 

and provides an authentication decision to allow U to get access 

(or not) to M U . 

Concerning the threat model, the following attackers are 

ointed out: 

• An external attacker who has the intention of stealing informa- 

tion. It could be collected through the robbery of M U or sniffing 

data sent to S. 
• Honest-but-curious server, that is S, which can be understood 

as a legitimate participant that will follow the established pro- 

tocol but will try to learn all possible information from received 

messages [29] . 

.3. Goals 

The proposed mechanism has to fulfill three main goals: 

• Privacy preservation . Sensor data cannot be accessed by any 

party except from U . 
• Efficiency . The authentication decision, R U , has to be taken 

with short delay. Therefore, SmartCAMPP must be suitable to 

be run in a continuous fashion. 
191 
• Accuracy . The provision of the two aforementioned goals 

must not substantially increase (e.g., < 10% of difference) the 

amount of authentication errors, as compared to a non-privacy- 

preserving approach. 

.4. Description 

SmartCAMPP is a mechanism that is continuously and interac- 

ively run between M U and S, as depicted in Fig. 2 . Their interac- 

ion involves a set of exchanged messages, which will be sent over 

n encrypted channel by means of usual network protection tech- 

iques (such as TLS [30] ). As other applications, S only knows a 

seudo-identifier of the user, ђ ( ID U ), where ђ is a secure hash func-
ion, and ID U the identifier of M U (e.g., Android Advertising ID). 

martCAMPP is then run after the user enrolls in the system, for 

xample by downloading the corresponding app. 

Before its proper operation, it is necessary to train the classifier 

n S. In particular, several steps are carried out (see Fig. 3 ). Note

hat this approach is focused on the use of the cloud and then, in 

ase of unavailability, other authentication technique, e.g. password 

r fingerprint, should be used instead. 

Data acquisition. Firstly, M U retrieves sensor data from ac- 

elerometer and gyroscope and stores them for further processing. 
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Fig. 3. Verification Protocol. 
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2 https://pypi.org/project/pyffx/ 
3 https://github.com/luishalvarez/Smart-CAMPP.git 
his step is carried out regularly, following the sampling rate of 

ensors at stake. 

Data preprocessing. Each sensorial reading is composed by a 

et of features. Thus, in this step the selection of f features V U = 

 v 1 , . . . , v f } is carried out per reading. 
Data encryption. The set of selected features, V U , is encrypted 

y means of FPE, a type of algorithm that ensures that both out- 

ut (ciphertext) and input (plaintext) are in the same format, that 

s, both belong to the same domain [14,15] . Bellare at al. pro- 

ide a comprehensive treatment of the FPE problem, using what 

hey called type-1 and type-2 Feistel networks [14] . Based on their 

ork, this paper applies FFX mode of operation for FPE [15] , intro- 

uced herein. The encryption algorithm takes a key K, a plaintext 

, and a tweak T . The plaintext is taken over an arbitrary alphabet

hars . Assuming that n = | X| is a supported length, the encryption
roduces a ciphertext Y = F F X.Encr yptK T 

K 
(X ) ∈ Char s n . The recov-

ry of X from Y is computed by X = F F X.DecryptK T 
K 
(X ) . For this ap-

lication the use of FPE is preferred, as any other symmetric cryp- 

osystem would near-randomly transform the original data into a 

inary file, denaturalizing the information and complicating its use 

n artificial intelligence techniques. Moreover, with this technique 

here is no need to modify the structure of the database to be used 

nd, therefore, the computational processes are simplified, and al- 

ows the use of a cloud architecture (if necessary). Additionally, as 

t is proven with this proposal, the use of FPE can be added to an

lready existing CA procedure. 

In this work, V U is encrypted via FPE, producing F U = 

.F P E K (V U ) . In order to implement SmartCAMPP in a real-world

cenario, two alternative settings may come into play concerning 

he key for FPE. In the first one, called provider-based keying , the 

ncryption key is the same for all users ( K). Such key would be

istributed by a key distribution center KDC using a secure key- 
192 
ng protocol [31] . KDC is a trusted third party in charge of dis- 

ributing encryption keys to all M U . In the real world, this can be 

mplemented through certification authorities or as part of smart- 

hone app stores (e.g., Google Play). By contrast, in the second 

ase, called user-based keying , each user sets its own key ( K U ).

hus, F U = C.F P E K (V U ) in the first case, whereas F U = C.F P E K U (V U )

n the second one. 

Classification. The result of the previous encryption, F U , is then 

ncrypted again by M U for S with a shared key, k S , obtained by, for 

xample, a hybrid cryptosystem and gets CF U = C k S (F U ) . S decrypts 

he received data, CF U , with the shared key, k S , and obtains F U . Af-

er its normalization, it will be the input to a classifier, that will be 

sed either for training (while setting up the CA mechanism) or for 

ctually taking a decision R U , that is, either S determines that M U 

s being held by U or by an intruder. This decision is sent back to 

 U leveraging the previously established encrypted channel. 

Although a plethora of alternatives are available, in this study 

hree classifiers are explored: Support Vector Machine (SVM), Ran- 

om Forest (RF), and Logistic Regressor [32] , [33] . These are well- 

nown machine learning models that provide several implementa- 

ions options in their learning process, and their utility for CA has 

een demonstrated, specially with motion and biometric features 

see [11] , [10] and the references included therein). 

. Evaluation 

This Section focuses on the assessment of the proposal. In 

his regard, Sections 4.1 and 4.2 present the experimental set- 

ings and the data preparation issues. For the sake of compari- 

on against SmartCAMPP, Section 4.3 shows the performance of 

 non-privacy-preserving CA mechanism, which serves as a base- 

ine. Lastly, the achievement of SmartCAMPP goals are addressed 

n Sections 4.4 (privacy), 4.5 (performance) and 4.6 (accuracy), re- 

pectively. 

.1. Experimental settings 

This subsection describes the dataset used in the experiments 

s well as the developed prototype implementation. 

Data from 52 users was retrieved from the Sherlock database 

16] . In what comes to motion sensors, the information of each 

ubject is composed by 90 features, 48 from the accelerometer and 

2 from the gyroscope. Data was collected every 15 seconds for 

 period of 3 years. However, due to acquisition issues (i.e., void 

eadings) and the lack of continuity for all users, the data involved 

n the evaluation consists of 120,0 0 0 samples per user, i.e., 500 

ours, for 50 users. 

All experiments have been carried out on Intel Core i7 at 

.00 GHz and 16 GB of RAM. Cryptographic libraries (pyffx 2 [15] ) 

ere run on Python 3.7. For encryption, keys composed of 20 

andom alphanumeric symbols, namely 10 characters and 10 dig- 

ts with repetitions were considered. To foster further research in 

his direction, our prototype implementation has been released 3 . 

t must be noted that all experiments have been repeated three 

imes for the sake of soundness. In each one, a different test set 

as built to prevent over-fitting. 

.2. Data and classifier preparation 

This Section describes the feature selection process and the ap- 

lied classifier settings. 

https://pypi.org/project/pyffx/
https://cosec.inf.uc3m.es/lorena-gonzalez/b4a655f583054567e7c9c6deab626737119421b0f3c1f48c9932c4de23ab9151.py
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Table 3 

Training Features Analysis. 

No. features (acc + gyr) 10(5 + 5) 15(8 + 7) 20(10 + 10) 

Average Accuracy (%) 82.12 82.79 81.43 

Standard Deviation 7.88 10.19 10.58 

Max Accuracy (%) 88.79 93.45 93.49 

Min Accuracy (%) 61.44 59.54 58.03 

4

q

i

t

a

1  

w

a

1

a

e

4

(

s

t

t

c

f  

{  

{  

a  

f

t

h

a

d

o

p

o

c

d

a

p

b

a

t

H

c

a

b

a  

u

t

w

c

t

t

o  

c

4

n

F

d

R

fi

o

w

d

t

p

o

c

a

1  

E  

t

b

s

s

 

u

i

c  

m

o  

a  

e

t

[

t

4

F

t  

e

e

r

s

a

e

t

k

i

a

p

r

4

t

s

c

a

c

.2.1. Feature selection 

To reduce computational costs, authentication time, and the 

uantity of transmitted data, the number of sensorial features used 

n the classification process was reduced. The most relevant fea- 

ures V U were chosen based on a Chi-square statistical test. For this 

nalysis, a subset of 10 users, with training and test sets sizes of 

0,0 0 0 and 1,0 0 0 samples per label, respectively, and a SVM model

ith Radial Basis Function (RBF) kernel and default configuration 

re used. For the sake of brevity, Table 3 shows results for 10, 

5 and 20 features. The best average accuracy in this study was 

chieved with 15 features, from which 8 belong to the accelerom- 

ter and 7 to the gyroscope (see Table 4 ). 

.2.2. Classifier settings 

In these experiments, the three machine learning techniques 

SVM, RF and LR, recall Section 3.4 ) have been considered to as- 

ess the non-privacy-preserving mechanism (see Section 4.3 ). Af- 

erwards, the best one was selected to evaluate SmartCAMPP. In 

he following, we describe the choices made in what comes to 

lassifier parameters and the training and testing period. 

Parameterization. Two parameters were cross-validated 

or each classifier: C = { 0 . 1 ;1 ;10 ;100 ;1 , 000 } and gamma =
 ” auto ” ; ” scale ” ;0 . 001 ;0 . 01 ;0 . 1 } , for SVM; max _ depth =
 10 ;30 ;50 ;70 ;100 } and n _ estimators = { 200 ;500 ;1 , 000 } , for RF;
nd C = { 0 . 1 ;1 ;10 ;100 ;10 0 0 } and solv er = { ” newt on − cg ” ; ” lbfgs ” }
or LR [32] . 

Train and test periods. For the sake of real-world suitability, a 

rain-test distribution of 15:85% and training times of 48 and 72 

ours were set. These settings are in line with the expected us- 

ge of the system, which should be ready to operate after a re- 

uced period (i.e., shortly after the user buys the device). More- 

ver, both the training and test sets contain as much positive sam- 

les (from the user under study) as negative ones (from any of the 

ther users, taken at random). 

To determine the most suitable training time, an analysis was 

onducted for all users in a one-vs-all configuration. Thus, the 

ataset was processed to assign a label to the user at stake and 

 different one (always the same) to all remaining users. The ex- 

eriments of this study were carried out leveraging a RBF kernel- 

ased SVM considering the parameters stated above. The results 

re presented in Table 5 and demonstrate that 48 hours is the best 

raining size. 

Other works [2] justify the use of one-class classifiers for CA. 

owever, this option was discarded due to three reasons: 1) One- 

lass classifiers are used when the positive samples do not present 

 defined structure, as this complicates the establishment of a class 

oundary. For the biometric features used in this study we expect 

 pattern along time for each user [34] . 2) The use of external

sers’ data motivates the construction of a cloud-based infrastruc- 

ure, which is appropriate to study the classification performance 

ith encrypted data. 3) The experiments conducted with a one- 

lass SVM revealed that more training data is required to obtain 

he accuracy provided by the baseline SVM (see Table 6 ). In fact, 

raining data with 50,0 0 0 samples per user produces an accuracy 

f 73 . 02% , and this implies more memory resources and an in-

reased training time of 37 min. per subject. 
193 
.3. Baseline – Non-privacy-preserving CA 

Opposed to SmartCAMPP, a non-privacy-preserving CA mecha- 

ism, referred as baseline, does not apply any kind of encryption. 

eatures V U are sent in the clear to S both at training time and 

uring the authentication process. 

Table 6 presents accuracy, standard deviation, and Equal Error 

ate (ERR) of the baseline mechanism leveraging the three classi- 

er techniques (SVM, RF and LR). The EER is defined as the value 

f False Positive Rate (FPR, access allowed to unauthorized user) 

hen it is equal to the value of False Negative Rate (FNR, access 

enied to an authorized user), and defines the optimal point of 

he ROC (Receiver Operating Characteristic) curve. For clarity pur- 

oses, data from the three repetitions is shown, considering the 

ptimal parameters for each classifier after cross correlation (re- 

all Section 4.2.2 ). RF provides better outcomes than LR, but both 

re worse than SVM. In particular, the average accuracy of SVM is 

 . 31% better than RF, and 8 . 35% better than LR, while the average

ER of SVM is 1 . 89% better than RF, and 9 . 22% better than LR. In

erms of standard deviation, LR presents the smallest one, followed 

y SVM and RF. However, assuming a worst case considering the 

tandard deviation values, SVM still achieves the best accuracy re- 

ults, that is 70 . 53% , while RF reaches 67 . 97% . 

In the light of these results, SVM is the best option so it will be

sed to confront against SmartCAMPP (see Section 4.4 ). However, it 

s also interesting to assess the results of the cross–validation pro- 

ess of C and gamma . Table 7 shows the amount of users with opti-

al results for each configuration parameter. Thus, the best values 

f these parameters are the greatest possible ones, i.e., C = 1 , 0 0 0

nd gamma = 0 . 1 . This indicates that, for this application, it is ben-

ficial to define a severe model, focused on avoiding false posi- 

ives, and interpreting each training example with a high influence 

32,33] . This fact makes sense, as for CA purposes, it is preferable 

o fail with a false rejection than with a false acceptance. 

.4. Privacy preservation analysis 

SmartCAMPP is suitable to protect the users privacy leveraging 

PE. Considering the search space of all keys (recall Section 4.1 ), 

he number of possible keys is V R 20 
36 

= 36 20 ≈ 2 103 . This value is

quivalent to the number of keys of 103 bits, which implies an ad- 

quate security for the considered application [35,36] . 

It is important to note that this key size is a measure of the 

equired brute-force effort that S should carry out to reveal M U ’s 

ensor readings. For external attackers, the effort would be higher 

s all communications between S and M U take place leveraging an 

ncrypted channel (recall Section 3.4 ). Therefore, they would need 

o break both encryption keys to succeed. 

With respect to the privacy offered by each of the proposed 

eying schemes, namely user-based or provider-based , the former 

s more convenient as users will not have to share the same key 

nd so attackers would need to guess K i for each user. This also 

revents S from getting access to K, which would not always be 

ealistic in all settings. 

.5. Performance analysis 

There are two resource-intensive tasks in SmartCAMPP, namely 

he encryption and the classifier operation. Therefore, each one is 

tudied in the following. 

Concerning the encryption time, data from 10 users was en- 

rypted using random keys. Given that this task is carried out in 

 smartphone, the laptop was instructed to lower down the pro- 

essor speed to 1.6 Ghz., which is in line with current mid-range 
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Table 4 

Accelerometer and gyroscope selected features. 

Range (Hz) Feature Name Meaning 

0–10042.01 

0–10041.70 

0.003–7295.92 

acc_stat_x_dc_fft acc_stat_y_dc_fft 

acc_stat_z_dc_fft 

The DC component of the FFT on 

the x -axis (resp. y -axis and z -axis) 

0–87766.28 

0–150522.03 

0–108098.34 

acc_stat_x_var_fft 

acc_stat_y_var_fft 

acc_stat_z_var_fft 

The variance of the FFT values 

obtained from x -axis (resp. y -axis 

and z -axis) frequencies 

0–166.60 acc_stat_z_mean_fft The average energy across the FFT 

components on the z -axis 

0–4453-317 acc_stat_cov_y_x The y - x covariance of the sampled 

values 

0–256 0–256 gyr_stat_x_fourth_idx_fft 

gyr_stat_z_fourth_idx_fft 

The index (frequency) of the FFT 

with the fourth most energy on 

the gyroscope x -axis (resp. z -axis) 

0–28538.37 

0–15909.89 

0–17680.36 

gyr_stat__ x_ var __ fft gyr_stat__ 

y__ var__ fft gyr_stat_ z_ var_ fft 

The variance of the FFT values 

obtained from x -axis (resp. y -axis 

and z -axis) frequencies 

0–3041.09 

0–1899.45 

gyr_stat__ y__ dc__ fft gyr_stat__ 

z__ dc__ fft 

The DC component of the FFT on 

the gyroscope y -axis (resp. z -axis) 

Table 5 

Training Size Analysis. 

Training Set (hours; samples/label) 48 ;11 , 520 72 ;17 , 280 
Test Set (hours; samples/label) 272 ;65 , 280 408 ;97 , 920 
Average Accuracy (%) 81.39 79.08 

Standard Deviation 12.29 14.07 

Max Accuracy (%) 97.74 96.33 

Min Accuracy (%) 51.94 50.71 
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martphones available in the market 4 . On average, each encryption 

peration requires 5.05 ms. per sensorial reading. 

With respect to the classifier performance, there are two times 

t stake: training and operation. The time needed to train a model 

n the baseline (i.e., non-privacy-preserving) approach is 8 min. per 

ubject, while it increases to 26 min. per subject in SmartCAMPP. 

hese results follow expectations, since when data is encrypted, it 

oses part of its significance and becomes quasi-random. On the 

ther hand, the time taken to authenticate a user is 0.13 ms. per 

ensorial reading in the baseline mechanism and 0.2 ms. in Smart- 

AMPP. 

Thus, the overhead introduced by SmartCAMPP in operational 

ode (that is, after training) is 5.12 ms. per reading. Therefore, the 

erformance overhead is negligible for the proposed context. On 

he contrary, the training time is significantly higher, but it is irrel- 

vant as a period of 48 hours has been set for the training phase. 

Finally, the efficiency of SmartCAMPP is compared with [24] , for 

eing, to the authors knowledge, the only CA privacy-preserving 

roposal focused on reducing computation time. In [24] the au- 

hentication, in an optimized setting, takes 54 ms. in the device 

ide, which is far from the 5.25 ms required in SmartCAMPP, where 

uthentication involves 5.05 ms. in M U and 0.2 ms. in S. 
4 https://nanoreview.net/en/soc-list/rating , last access October 2020. 

b

d

e

Table 6 

Baseline authentication results. 

Model SVM RF 

Avg. Acc (%) St. D EER (%) Avg. Acc (%) 

1 st 82.24 11.74 17.18 80.99 

2 nd 82.25 11.75 17.17 80.98 

3 rd 82.30 11.71 17.13 80.88 

Overall 82.26 11.73 17.16 80.95 

194 
.6. Accuracy analysis 

SVM is the applied technique to assess SmartCAMPP, as it was 

he best alternative in the non-privacy-preserving scenario. Table 8 

epicts accuracy results when data is encrypted with a key for 

ach user ( user-based keying ) and with a single key for all of them

 provider-based keying ). The best accuracy is achieved in the first 

lternative ( 76 . 85% ), thus distinguishing both in 5 . 18% and less

han 2 in terms of standard deviation. 

None of the settings of SmartCAMPP is able to reach the base- 

ine accuracy ( 82 . 28% , recall Section 4.3 ). This is because increas-

ng the security of the data, by encrypting it, produces a decrease 

n the authentication performance. This trade-off will always be 

resent, since the encryption process distorts the original informa- 

ion. However, the difference in accuracy between the baseline and 

he user-based keying SVM is only of 5 . 4% , which is not a dramatic

eduction considering that it is a privacy-preserving approach. Be- 

ides, as in the baseline case, the best values of the parameters C 

nd gamma are 1,0 0 0 and 0.1, respectively (cf. Table 7 ). 

As a result, SmartCAMPP user-based keying is the most appro- 

riate alternative and not just in terms of accuracy and EER, but 

lso considering that any additional entity (e.g. KDC) has to be 

nvolved in the model. Then, a detailed accuracy analysis is car- 

ied out constructing ROC curves and studying EER for each user 

n the baseline mechanism ( Fig. 4 ) and in the SmartCAMPP user- 

ased keying one ( Fig. 5 ). These curves were built by increasing 

he authentication decision threshold from 0 (all users considered 

wners) to 1 (none user considered owner) in steps of 4 × 10 −5 , 

nd the EERs were calculated by intersecting each ROC curve with 

he line that joins the points (0,1) and (1,0). On average, EER and 

tandard deviation are 17 . 16% and 13 . 30% in the baseline mecha- 

ism and 23 . 24% and 10 . 26% in the user-based keying one. Results

etween both pair of mechanisms differ in 6 . 08% , being the stan- 

ard deviation lower in the latest. Comparing the ROC curves of 

ach mechanism, some specific users present a strange behavior in 
LR 

St. D EER (%) Avg. Acc (%) St. D EER (%) 

12.99 19.58 73.92 8.86 26.36 

12.98 19.56 73.94 8.84 26.32 

12.97 19.72 73.87 8.85 26.46 

12.98 19.62 73.91 8.85 26.38 

https://nanoreview.net/en/soc-list/rating
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Table 7 

Cross–validation results for SVM. 

C # Subjects (Baseline) # Subjects (SmartCAMPP) gamma # Subjects (Baseline) # Subjects (SmartCAMPP) 

0.1 1 0 auto 14 12 

1 1 0 scale 6 13 

10 4 5 0.001 0 0 

100 8 22 0.01 2 1 

1000 36 23 0.1 28 24 

Table 8 

SmartCAMPP accuracy. 

Model User-based keying Provider-based keying 

Avg. Acc (%) St. D EER (%) Avg. Acc (%) St. D EER (%) 

1 st 76.77 10.88 23.31 71.71 8.96 29.33 

2 nd 76.64 11.05 23.38 71.61 8.96 29.34 

3 rd 77.12 10.66 23.03 71.67 9.06 29.41 

Overall 76.84 10.86 23.24 71.66 8.99 29.36 

Fig. 4. ROC curves of each user for baseline SVM. 

Fig. 5. ROC curves of each user for user-based keying CA. 
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oth cases, slightly mitigated in the user-based keying mechanism. 

or example, there is an orange curve in the user-based keying case 

hose behavior is clearly different from the others, but discard- 

ng this user the accuracy and EER are improved to 77 . 32% and 

2 . 51% , respectively. Therefore, regardless of the approach, the be- 

aviour follows the same pattern, though with slightly higher val- 

es when encryption takes place, but still showing the feasibility 

f using FPE. 

Finally, SmartCAMPP user-based keying is compared to [26] and 

5] in terms EER, for being the only proposals, to the authors 

nowledge, that offer privacy-preserving CA and compute this met- 

ic (see Section 2 ). Note that datasets and authentication features 

re not analogous, but the comparison is useful for illustration pur- 

oses given their common goal. In [5] the lowest EER is 22.50% 

nd 45.77% the highest using Euclidean and Manhattan distance. 

esults are comparable or worse than in SmartCAMPP where the 

est EER is 23.03% and the worst 29.41%. This is a sensible re- 

ult as [5] applies discretization and distances which may lead to 

ata variations specially in continuous processes. On the contrary, 

n [26] EER is 10% on average and thus, better than in SmartCAMPP. 

his proposal works with biohashing generated from location and 

hone calls data and due to the hash property of generating a 

ifferent output just with a small change in the input, this tech- 

ique may not be feasible in behavioural features with extremely 

ssorted values, e.g. gyroscope and accelerometer. 

. Conclusion. Future work 

Continuous Authentication techniques are attracting attention 

f the research community. Given the growing relevance of smart- 

hones, in this work we have proposed SmartCAMPP, a CA mech- 

nism leveraging gyroscope and accelerometer information col- 

ected by the device. Although with slightly lower accuracy rate 

han in a non-privacy-preserving setting, SmartCAMPP achieves 

romising accuracy rates involving a negligible performance over- 

ead. 

SmartCAMPP is the first attempt to building a privacy- 

reserving CA approach for smartphones leveraging motion sen- 

ors. Hence, a wide array of alternatives exist for future works. 

s such, exploring the use of other sensorial information collected 

y smartphones, or determining the impact of other encryption 

echniques and artificial intelligence tools (Recurrent or pre-trained 

eural Networks), are envisioned work directions. Also, the use 

f other databases, like HMOG [2] , to confirm results, as well as 

he analysis of SmartCAMPP performance with special attention to 

sers’ activities (e.g. running, sleeping, etc.) are limitations of our 

roposal and interesting future research lines. 
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