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An analytical model to predict bearing failure of pinned-joint composite laminates is proposed. The
model combines a mass-spring model to reproduce the joint stiffness and a characteristic curve model
to predict bearing damage. When bearing failure was verified at any ply, the corresponding spring ele-
ment was removed from the model. The accuracy of the analytical model was validated through compar-
ison with experimental results. Analytical model predictions agreed with the load–displacement curves
and ultrasonic inspections of experimental tests. The present model predicted the different stages in the
bearing failure, considering the consecutive failure of the different plies.
1. Introduction

Fastener joining is the most widely used method of assembling
structural elements in the aerospace industry due to its facility to
assemble, disassemble, and repair, as well as its tolerance to envi-
ronmental effects [1]. Considering that the joints are very often the
critical part of a structure, the soundness of their design procedure
is reflected on the overall weight, performance and cost of the
product. The increased stress-intensity factor at the surrounding
of the hole makes the design and assembly process more critical
in the case of composite joints than in those based on metallic
components [2]. Structural safety needs to be ensured in the aero-
nautical industry, and therefore the study of mechanical joints in
structural composite components has received considerable atten-
tion in both the scientific literature and aeronautical standards
[3–10].

A major goal of research on the composite bolted joint has been
to provide strategies to design composite mechanical joints that
avoid catastrophic failure. The basic failure modes in pinned fibre
reinforcedmaterials are bearing, net-tension and shear-out failures
[3]. From these failure modes only bearing damage causes progres-
sive failure, and thus composite pinned joints are designed to fail
under this mode. Bearing failure occurs in the material immedi-
ately adjacent to the contacting bolt surface due primarily to
compressive stresses [4].
The complex-failure mode of composite bolted joints has been
investigated by several researchers in experimental studies, e.g.
[5,6]. However, due to the large range of different matrices, fibres,
and lay-ups available to the designer, the use of purely empirical
design procedures would be prohibitively expensive. It is essential
that all the aspects of joint design are well understood, and the
development of theoretical reliable models is required to optimise
the prediction of composite fastener joints bearing strength.

Due to the complexity of bearing damage, several authors have
proposed numerical models to predict composite bolted joint fail-
ure but few studies have focused on the development of analytical
models. The bearing failure of single-lap bolted joints has been pre-
dictedwith three-dimensional finite elementmodels, showing good
agreement with the experimental data [7–10]. Despite the accuracy
of the finite element method [11], the development of simplified
models can lead to a better understanding of this phenomenon.
Analyticalmodels include the ability to explicitly describe the phys-
ical behaviour of fastener joints, and the possibilities for conducting
parametric studies. The analyses of the stress field in single-lap
bolted joints have revealed that secondary bending causes non-uni-
form stress distributions throughout the thickness of composite
laminates in the vicinity of the bolt hole [12,13], and thus the devel-
opment of analytical model has been focused on the analysis of pin-
ned joints.

Therefore the analysis of pinned joints has received considerable
attention as a preliminary step in the study of composite fastener
joints, but also as representative of many assembly configurations
[14–16]. The Lekhnitskii method of complex stress function has
been extensively used to solve the pin-loaded circular hole problem

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compscitech.2013.10.014&domain=pdf
http://dx.doi.org/10.1016/j.compscitech.2013.10.014
mailto:ebarbero@ing.uc3m.es
http://dx.doi.org/10.1016/j.compscitech.2013.10.014
http://www.sciencedirect.com/science/journal/02663538
http://www.elsevier.com/locate/compscitech


in an infinite orthotropic plate. Other works, [17,18], extended this
method for arbitrary load direction while considering the presence
of friction. Whitworth et al. calculated the characteristic lengths in
tension and compressionwhere stresses had to be evaluated to pre-
dict bearing failure [19]. These characteristic lengths are a function
ofmechanical properties and stacking sequence of the laminate. In a
later work, Whitworth et al. predicted the bearing failure of pin-
loaded composite joints, showing conservative results when joint
strength was evaluated as a function of the ratio between plate
width and hole diameter [20]. Aluko and Whitworth analysed the
effect of the friction coefficient on the stress distribution around
the hole boundary for different staking sequences [21].

However, in these works, composite laminates were analysed as
a homogeneous anisotropic single layer, and in the present work
the Lekhnitskii method was applied to evaluate the failure of each
ply. Thus the progressive bearing failure of different plies can be
predicted. In addition, the development of a reliable analytical
model to predict mechanical behaviour of pinned-joint composite
laminates requires the consideration of the joint stiffness and a
degradation procedure to reproduce the damage on each ply.

Mass-spring models have been widely used to reproduce the
stiffness of fastener joints. Tate and Rosenfeld proposed a mass-
spring model to predict the stiffness and the load distribution on
bolted-joined isotropic plates [22]. Nelson et al. modified this mod-
el to analyse anisotropic composite bolted joints [23]. Recently,
McCarthy et al. have developed this model to study the effect of
bolt-hole clearance, friction coefficient, and torque level on mul-
ti-bolt composite joints [24,25]. Additionally, this model has been
modified to predict the through-thickness stiffness in tension-
loaded composite bolted joints [26]. The mass-spring models have
been applied preferentially to composite bolted joints while con-
sidering the equivalent stiffness of the composite plate.

In this work, the McCarthy model was modified to include the
consideration of different spring elements to reproduce the stiffness
of plies with different orientation. The bearing loads and displace-
ments determined in the mass-spring model were used to evaluate
the bearing failure of each ply. When the failure of any ply was ver-
ified, the corresponding spring element was removed from the
mass-spring model to reproduce the damage. In addition, an exper-
imental test campaign was conducted to validate the analytical
model predictions. Force–displacement curves and ultrasonic
inspection were used to analyse the bearing failure of pinned-joints
on carbon epoxy laminates.
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2. Model description

An analytical model to predict bearing failure of composite
laminate joints was developed using a pin configuration
(Fig. 1a). A tensile load is applied to composite and auxiliary
plates, and thus the bearing load is exerted by the cylindrical
pin on the composite plate. This problem was modelled in two
steps. First, a spring-mass model was developed to reproduce
the stiffness of the joint and to calculate the bearing displace-
ment and the bearing load applied on each ply of the laminate.
Then, a two-dimensional analysis was performed to calculate the
2

stresses on each ply and to apply a failure criterion to predict
the bearing failure.
2.1. Spring-mass model

Fig. 1b illustrates the spring model used to analyse the mechan-
ical behaviour of pinned-joint composite laminates. In this model
the following simplifying considerations are assumed:

– The problem is bidimensional; no through-the-thickness varia-
tion of the parameters is considered. Therefore, the stacking
sequence does not affect the laminate stiffness.

– The friction is neglected.
– The stiffness of each element in the model is lineal.

The particular model shown is for a quasi-isotropic laminate
(which includes plies oriented at 0�, 90�, 45�, and �45�). However,
the model can be used for any stacking sequence. The pin stiffness,
Kpin, includes the flexibility introduced by shear deformation,
Kpin-S, and bending moment, Kpin-B. The flexibility of the composite
plate under bearing loads, Kbe, was represented as three springs
in parallel considering the plies with different orientation. The
spring, Kpl, represents the stiffness of the composite plate. The
stiffness of the auxiliary plates is considered to be much higher
than composite laminate stiffness, and thus it was not included
in the model.

Once the stiffness values of all the springs shown in Fig. 2 are
known, displacements can be determined for a given force. The
equilibrium forces equations for each mass lead to a system of lin-
ear equations:

½M�f€xg þ ½K �fxg ¼ fFg: ð1Þ

For quasi-static conditions the acceleration can be neglected,
yielding:

½K �fxg ¼ fFg: ð2Þ

Displacement vector, {x}, can be found by multiplying the load
vector, {F}, by the inverse of stiffness matrix [K]. Considering the
spring-mass model shown in Fig 2, Eq. (2) yields:
The composite plate stiffness can be found considering a com-
posite laminate subjected to a uniform tensile load:

Kpl ¼
ELc �Wc � tc
pc � D=2

ð4Þ

where ELc is the equivalent elasticity modulus in the longitudinal
direction, which is calculated using the laminate theory; Wc and
tc are width and thickness of the composite plate, respectively; pc

is the distance between the hole surface and the plate-free end
where the load is applied; and D is the hole diameter.



Fig. 1. Schematic representation of the pinned joint: (a) test device used in the pinned-joint tests; (b) spring element model.
The pin stiffness, Kpin, is calculated considering two springs in a
series:

Kpin ¼ 2 � ts þ tc
3 � Gb � Ab

þ Lb
3

192 � Eb � Ib

" #�1

; ð5Þ

where Eb and Gb are Young and shear modulus of the pin material,
Ab and Ib, are the pin cross-section area and second moment of iner-
tia; ts is the thickness of the auxiliary plates; and Lb is the shank
length.

The bearing stiffness, Kbe, considers three springs in parallel,
corresponding to the bearing stiffness values of the plies oriented
at 0�, 90�, and ±45�. Plies oriented at 45� and �45� present the
same stiffness under longitudinal bearing loads, and thus they
were grouped in a single spring. The bearing stiffness of the plies
was determined by compressive experimental tests, as shown be-
low. For this model to be applied to a laminate with a different
3

stacking sequence, the bearing stiffness of all the orientations must
be included.

Kbe ¼ K0 þ K90 þ K�45 ð6Þ

For a given load, this model allows the calculation of the global
displacement, the bearing displacement, and the bearing load ap-
plied on each ply. Thus, a two-dimensional stress analysis was per-
formed to evaluate the bearing failure on each ply. Once the failure
of a ply was verified, the stiffness matrix, Eq. (3), was modified by
removing the contribution of the corresponding ply in bearing
stiffness, Eq. (6).
2.2. Bearing strength prediction

This section describes the method followed to predict the bear-
ing failure of the plies. For a given bearing displacement, deter-



Fig. 2. Composite plate with characteristic curve description.
mined from the spring model, the stress distribution along a char-
acteristic dimension around the hole must first be evaluated at
each ply. This characteristic curve around the hole, Fig. 2, indicates
the position were bearing failure appears, and thus stresses at
characteristic dimensions were used to predict bearing failure.

The characteristic curve model proposed by Chang et al. [27]
can be expressed as follows:

rdðhÞ ¼
D
2
þ ROT þ ðROT � ROCÞ cos h ð7Þ

where ROT and ROC are the tensile and compressive characteristic
lengths. The bearing displacement, x2 � x1, according to springs-
mass model, produced at any ply along x axis is denoted by u0. Thus,
the boundary condition within the contact region can be expressed
as:

u ¼ u0=c and v ¼ 0 when h ¼ �p
2

ð8Þ

u ¼ u0 and v ¼ 0 when h ¼ 0 ð9Þ

ðu0 � uÞ cos h ¼ v sin h when� p
2
6 h 6

p
2

ð10Þ

ry ¼ 0 when h ¼ �p
2

ð11Þ

sxy ¼ 0 when h ¼ �p
2

ð12Þ

where u and v are the displacements along x and y directions,
respectively, and c is a constant.

Aluko and Whitworth proposed the following trigonometric
series to express displacements u and v along the hole [21]:

u ¼ U1 cos 2hþ U2 cos 4h ð13Þ

v ¼ V1 sin 2hþ V2 sin 4h; ð14Þ

where U1, U2, V1, and V2 are determined by the boundary
conditions:

U1 ¼ c � 1
2c

u0 ð15Þ

U2 ¼ c þ 1
2c

u0 ¼ V2 ð16Þ
4

V1 ¼ c � 1
2c

þ c þ 1
c

� �
u0; ð17Þ

In the absence of body forces, the problem of generalized plane
stress of a plate reduces to the determination of a stress function
on the laminate plane, satisfying these boundary conditions (see
[17] for details). Zhang and Ueng showed that the stress functions
for an anisotropic plate loaded by a rigid pin with the same diame-
ter as that of the plate hole can be expressed as [18]:

/1ðz1Þ ¼ A� ln f1 þ
c � 1
2c

� q2 � ip2

2D� � c þ 1
c

� ip2

2D�

� �
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ð18Þ
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where A�, B�, D�, pk, and qk are constants that depend on elastic
properties of the lamina [18], i is the imaginary unit, and nk, c, are
defined as a function of the complex roots of the characteristic
equation:

fk ¼
zk þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2k � R2ð1þ l2

kÞ
q
Rð1� ilkÞ

ð20Þ

zk ¼ xþ lky; k ¼ 1;2 ð21Þ

D� ¼ ðl1 � l2Þ � g
Ex

ð22Þ

g ¼ ð1� myxmxyÞ
Ey

þ k
Gxy

ð23Þ

c ¼ B1fr � A1fr

A1fr
ð24Þ

A1fr ¼ ð19nþ 11nkþ 10k� 10myxÞþ gð11n� 6nkþ 15k� 15myxÞ ð25Þ

B1fr ¼ 10nð1� kÞ þ 10gð3k� 3myx þ 2nkþ nÞ ð26Þ

k ¼ �l1l2 ¼ Ex

Ey

� �1=2

ð27Þ

n ¼ �iðl1 þ l2Þ ¼ 2ðk� myxÞ þ
Ex

Gxy

� �1=2
; ð28Þ

where R is the hole radius, D� is a parameter that determinates the
anisotropy of the lamina, g is the friction coefficient, and lk are the
complex roots of the characteristic equation:

a11l4 þ ð2a12 þ a66Þ � l2 þ a22 ¼ 0: ð29Þ

The Lekhnitskii method has been widely used to express the
stress field around the hole on pin-loaded anisotropic laminates
as a function of the complex roots (29) and the stress functions
(18) and (19) [17]. In previous works the anisotropy parameter,
D�, was calculated for the whole laminate but in the present model
the stress field and the anisotropy parameter were estimated for
each ply with different orientations. Evaluation of stresses at all
the plies means not only the possibility to be applied to laminates
with any staking sequence, but also the ability to reproduce the



Table 1
Material properties of composite material and titanium. Data from experimental tests
and literature [15,32].
consecutive failure of the different laminate plies. The stress distri-
bution around the hole in the laminate plies yields:

rj
x ¼ 2Reðl2

1/
0
1ðz1Þ þ l2

2/
0
2ðz2ÞÞ ð30Þ

rj
y ¼ 2Reð/0

1ðz1Þ þ /0
2ðz2ÞÞ ð31Þ

sjxy ¼ 2Reðl1/
0
1ðz1Þ þ l2/

0
2ðz2ÞÞ; ð32Þ

where j is the ply index. The derivatives of the stress functions (18)
and (19) can be introduced into the above equations leading to the
following expressions:

rj
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where

Ak ¼
fkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2k � R2ð1� l2
kÞ

q ; k ¼ 1;2: ð36Þ

Once the stress field is known at the characteristic dimension of
each ply, stresses in local axes can be calculated and ply failure can
be predicted using an adequate failure criterion. In this work, the
Yamada-Sun failure criterion was used [28]. When failure criterion
was verified (e2 P 1) at any ply, the corresponding bearing spring
was removed from the mass-spring model to reproduce the ply
failure.

r1

XC

� �2

þ s12
S12

� �2

¼ e2 ð37Þ
Carbon epoxy IM7 MTM-45-1

Longitudinal modulus, E1 (GPa) 173
Transverse modulus, E2 (GPa) 7.36
In-plane shear modulus, G12 (GPa) 3.89
Major Poisson’s ratio, m21 0.33
Longitudinal tensile strength, XT (MPa) 2998
Longitudinal compressive strength, XC (MPa) 1414
Transverse tensile strength, YT (MPa) 37
Transverse compressive strength, YC (MPa) 169
In-plane shear strength, S12 (MPa) 120
Stiffness spring 0�, K0 (KN/m) 4908
Stiffness spring 90�, K90 (KN/m) 941
Stiffness spring ±45�, K±45 (KN/m) 1782
Compressive characteristic length 0�, ROC0 (mm) 4.20
Compressive characteristic length 90�, ROC90 (mm) 0.20
Compressive characteristic length ±45�, ROC±45 (mm) 1.21
Ply thickness (mm) 0.125
Titanium 6Al–4V

Young’s modulus, Eb (GPa) 110
Poisson’s ratio, mb 0.29
Yield stress, ryb (MPa) 1030
3. Experimental procedure

In this work a laminate made from carbon IM7 fibre and MTM-
45-1 epoxy resin with a quasi-isotropic lay-up ([±45/0/90]3S) was
used. Experimental characterization tests according to ASTM
D3039M y ASTM D3518M standards were conducted to determine
the mechanical properties. Shear modulus and shear stiffness were
taken from the literature [29].

Also, the mechanical behaviour under bearing loads was charac-
terized by compression tests on laminates with orientations at 0�,
90�, and ±45�. The specimen dimensions were 200 mm long,
20 mm wide, and 4 mm thick. These rectangular specimens were
subjected to a uniform bearing load. The results of the bearing
characterization tests were used to determine the value of the
bearing stiffness of each ply and the compressive characteristic
length (Roc). Thus the present approach requires these experimen-
tal tests to find the model parameters. The parameters were
5

determined by the characterization tests, and thus the model is a
predictive tool that can be used to analyse composite pinned joints
with any stacking sequence.

The bearing stiffness of each group of plies (K0, K90, and K±45)
was determined as a function of the bearing modulus (Ebe), the
hole diameter, the thickness of the plies group (tj) and the charac-
teristic length subjected to bearing stresses (L0):

Kj ¼ Ej
be

D � tj
L0

: ð38Þ

The bearing modulus was calculated as a function of the exper-
imental force–displacement slope (Kexp), the characteristic length
subjected to bearing stresses, and the specimen width (W) and
thickness (t).

Ej
be ¼ K j

exp
L0

t �W : ð39Þ

Substituting Eq. (39) in Eq. (38) and assuming that the charac-
teristic length subjected to bearing stress is the same for character-
ization compressive tests and pin-loaded tests, it yields:

Kj ¼ Kj
exp

D � tj
W � t ð40Þ

It should be noticed that the bearing stiffness is independent of
the characteristic length.

The compressive characteristic length was measured by analys-
ing the post-mortem specimens. The specimen under bearing load
failed by a transverse crack which started at a characteristic length
that depends on the laminate orientation. The values of compres-
sive characteristic lengths are shown in Table 1. This model consid-
ers only compressive bearing failure, so that tensile characteristic
length was not considered.

A pin of 6Al4V titanium alloy measuring 4.8 mm in diameter
was used in the pin-bearing tests. The properties of this material
were taken from the literature [12]. The friction coefficient
between the composite plate and the pin surface was 0.114,
according to previous research [10]. All material properties used
in the model are summarized in Table 1.



A series of pin-bearing ASTM D5961M standard tests were con-
ducted on CFRP laminates with quasi-isotropic stacking sequence
([±45/0/90]3S) using a universal test machine (Instron 8516). The
geometry of the composite plate and hole diameter were selected
to assure that bearing damage would be the main failure mecha-
nism. The test specimen consists of a rectangular plate of length
(Lc) equal to 200 mm, width (Wc) 30 mm, and thickness (tc)
3 mm. The hole was located centrally at 15 mm (distance ec) from
the edge, with a diameter (D) equal to 4.8 mm. The auxiliary-plate
thickness (ts) was 5 mm.

All specimens were loaded at a crosshead speed of 0.2 mm/min
to ensure quasi-static conditions. The specimens tested were ana-
lysed using non-destructive ultrasonic inspection. C-Scan images
obtained with a SONATEST pulse-echo transducer of 2 MHz were
used to study the delaminated area.
Fig. 4. Load–displacement curve, comparison between analytical model and
experimental data.
4. Results and discussion

Fig. 3 shows a typical load–displacement curve found in exper-
imental tests, where three peaks followed by load drops were ob-
served in all the tested specimens. Three different load drops were
distinguished, indicating different steps in the bearing failure evo-
lution. To evaluate the evolution of the damage to the composite
plate, some tests were conducted at different load levels and the
specimens were analysed by non-destructive ultrasonic inspec-
tions. C-Scan images are shown in Fig. 3, indicating the corre-
sponding load level.

The first peak load appeared for an average value of 6.39 kN.
After the first peak a load drop was detected in all the experimental
tests. This load drop corresponds to significant damage caused by
bearing failure. Ultrasonic inspections showed a significant in-
crease in delamination damage after the first peak load, as can be
seen by comparing Fig. 3b and c. This delamination damage was
produced by the propagation of cracks generated by bearing fail-
ure. Between the first and second load peaks, the slope of the
force–displacement curve was lower than the initial value, indicat-
ing a reduction in laminate stiffness. The delamination initiated at
the first load peak was propagated during the test, and thus before
the second load peak a significant delaminated area appeared
(Fig. 3d). The second load peak indicated bearing failure on differ-
ent laminate plies; subsequently, the slope of the force–displace-
ment curve was again reduced after the second load peak.
Fig. 3. Experimental load–displacement curve including C-Scan images from
ultrasonic inspections.
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Finally, a sudden drop occurred after maximum load was reached.
This load drop indicated the bearing failure of all the plies.

The mass-springs model was solved by imposing a uniform
velocity on the global displacement, X3, to reproduce the experi-
mental control displacement tests. For each incremental displace-
ment, the mass-springs model was used to calculate bearing
displacement. Then the bearing failure was evaluated in each ply
according to the bearing strength prediction model described in
Section 2.2. After bearing failure was verified, the stiffness of the
corresponding ply was removed from the spring-mass model for
the following increments of displacement. A comparison between
the load–displacement curve predicted by the analytical model
and the experimental results is shown in Fig. 4.

Analytical model predictions were in excellent agreement with
the experimental results. The analytical model was able to predict
the progressive failure by bearing load, showing the three peaks
observed in the experimental tests. The values of the three peaks
were accurately predicted with differences of less than 7%, as
shown in Table 2. The initial slope of the force–displacement curve
corresponds to the stiffness of the non-damage laminate. Accord-
ing to the analytical model, the first indicates the failure of the
plies oriented at 90�. The failure of these plies causes the first drop
load and the decrease in the slope of the force–displacement curve.
The second peak load is associated with the failure of the plies ori-
ented at ±45�, and therefore the failure of these plies results in a
significant drop load and a reduction in the force–displacement
curve. Finally, the maximum load indicates the failure of the plies
oriented at 0�, and subsequently the failure of the pinned-joint
laminate. The reduction of the slope after each ply failure was
accurately predicted by the analytical model, as shown in Table 2.
Table 2
Comparison of the model predictions (load slopes and peak loads) with the
experimental results.

First peak Second peak Maximum force

Peak loads observed in the load–displacement curve (kN)
Experimental 6.39 ± 0.32 12.75 ± 0.75 14.22 ± 0.70
Analytic model 5.97 13.41 14.31
Difference (%) 6.5 5.22 0.65

First slope Second slope Third slope

Load–displacement curve slopes (kN/mm)
Experimental 6.41 ± 0.83 6.20 ± 0.40 3.81 ± 0.22
Analytic model 6.11 5.58 4.13
Difference (%) 4.61 9.93 7.83



Differences between the predictions and the experimental data
were less than 10%, and initial stiffness was predicted with an error
of less than 5%.

However, there are some discrepancies between the analytical
model predictions and the experimental results. The main differ-
ence is that the analytical model considered the complete failure
of the laminate, when experimental tests showed a sudden drop
load followed by a new positive load–displacement slope. Bearing
damage is a localized mode of failure; hence, after the surface
around the hole is damaged, there is an increment of the pin dis-
placement up to the contact with a new composite surface. Never-
theless, the main objective of the analytical model was to provide
an efficient way to predict bearing failure and the stiffness of pin-
ned-joint composite laminates. To prevent the failure of these
joints, the design load must be lower than the load necessary to
reach the first peak load because, as was shown in Fig. 3, the dam-
age begins at the first peak.

5. Conclusions

An analytical model has been developed to predict the progres-
sive bearing failure of pin-loaded composite laminates. The present
model combines a spring-mass model to reproduce the stiffness of
the composite pinned-joint and a two-dimensional stress analysis
to predict the bearing failure. This can be used to analyse pin-
joined laminates with any stacking sequence.

The inclusion of different spring elements reproducing the bear-
ing stiffness of all the plies was necessary to calculate the bearing
load and to predict the bearing failure on each ply. Bearing dis-
placement determined with the spring-mass model was used to
calculate the stress field at a characteristic dimension. The inde-
pendent analysis of stress field and failure criterion at plies with
different orientation was included to predict the consecutive bear-
ing failure of all the layers.

The proposed model reproduced the different stages in the pro-
gressive bearing failure in excellent agreement with the experi-
mental data. The present model provides an accurate method to
predict bearing failure of a composite laminate under a pinned-
joint configuration. The error in predicting initial stiffness was less
than 5%, and the first peak load was predicted with an error of less
than 7%. Thus this model can be used as a predictive tool in the de-
sign of pinned-joint composite laminates. The understanding of
this failure can be used to develop future models in order to predict
the bearing failure of other fastener joint configurations such as
single-lap bolted joints.
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