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This Web-Appendix contains:

1. The choice of γ for prediction of pregnancy outcome from hormone levels (Section 5.1).

2. A simulation study demonstrating our method on a highly unbalanced design mimicking

the pregnancy outcome dataset (Section 5.1).

3. A simulation study comparing our estimation method with the R function slm for balanced

design (Section 5.2).
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1. The choice of γ for prediction of pregnancy outcome from hormone levels

(Section 5.1)

In order to choose the constant γ of the LASSO-type estimator, for the pregnant women

dataset studied in this work we consider a grid of values for γ from 0.2 to 2.1 and we compute

the misclassification error rate for each value of γ. It is important to note that our estimation

method is based on a unified EM algorithm exploiting the fact that the model is linear, so

the impact of the choice of the γ of the LASSO estimation part is hard to define in the

complete iterative estimation procedure.

For our classification problem, we choose γ focusing on the misclassification error rate. In

practice, for this dataset, γ is chosen so that the misclassification error rate is minimized.

In Figure 1, we can see the misclassification error rate against different values of γ for

this specific dataset. It is clear here that the best performance of our algorithm, for the

classification problem, is obtained with γ = 0.35.

γ

Figure 1. Pregnancy outcome from hormone levels: Error rate for different values of γ.
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2. Simulation study on a highly unbalanced design (Section 5.1)

In order to assess the performance of our method in a scenario similar to the one provided

by the real dataset we conducted the simulation study described below. The objective was to

overcome the misspecification problems detected in the real dataset while still dealing with

a highly unbalanced design and two uneven groups.

To this end, we used model (9) to sample observations from two groups that replicate the

structure of the normal and abnormal groups in the real dataset. That is, we kept the

number of individuals in each group and for the simulated normal group we also preserved

the observed time points for each individual. For the simulated abnormal dataset, however,

we did not retain the observed design. Indeed, we believe that its highly sparse structure

makes the fitting of this group very difficult. Then, we replaced the observed time points of

the abnormal group by those of 49 randomly chosen individuals from the normal group. In

this way, the level of “unbalance” or “sparsity” in both simulated groups was similar. The

data was simulated as follow:

• Y n
ij = φi + f̄n(tij) + εij, i = 1, . . . , 124, j = 1, . . . , ni with φi ∼ N (0, σ̄2

φ,n) i.i.d. and

εij ∼ N (0, σ̄2
n) i.i.d. independent. The design points tij , i = 1, . . . , 124, j = 1, . . . , ni are

those observed in the real dataset for the normal group, and f̄n, σ̄
2
φ,n, σ̄

2
n are the parameter

estimates obtained for the normal group in the real dataset analysis.

• Y ab
ij = φi + f̄ab(tkij) + εij, i = 1, . . . , 49, j = 1, . . . , nki with φi ∼ N (0, σ̄2

φ,ab) i.i.d. and

εij ∼ N (0, σ̄2
ab) i.i.d. independent. The design points tkij, i = 1, . . . , 49, j = 1, . . . , nki corre-

spond to 49 randomly chosen individuals from the normal group, that is ki ∈ {1, . . . , 124},

i = 1, . . . , 49,. Also, f̄ab, σ̄
2
φ,ab, σ̄

2
ab are the parameter estimates obtained for the abnormal

group in the real dataset.

We have adjusted f̄n and f̄ab up to an additive constant so that sample means of observations

in each group of the simulated dataset equal those of the real dataset. Then, we have
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simulated 150 datasets in this way, with the 49 randomly chosen individuals requested to

sample the abnormal group possibly varying from one dataset to another. We have ran

the EM algorithm with the specifications used for the real dataset and described above.

In Table 1 we present the average classification result over 150 samples. There is a clear

improvement in classification with respect to the real dataset, with a decrease in the number

of misclassified individuals in the two groups and a reduction in the global error rate of

almost 3 points (11.8% versus 14.4% of the within sample error rate). However, there is still

a large difference between the group specific misclassification error rates, which are 38.6% in

the abnormal group versus 1.2% in the normal group. This is due to the complexity of the

datasets (the real and the simulated one), for which many of the trajectories of individuals in

the abnormal group present the shape characteristic of the normal group. In this framework

any classification method will fail to achieve perfect classification.

Table 1

Classification in the simulation study: Within sample and cross–validation average error rates over 150 simulated
datasets.

Within sample error rate Leave-one out C.V.

Group Normal Abnormal Total Normal Abnormal Total

Normal 122.56 1.44 124 119.63 4.37 124
Abnormal 18.91 30.09 49 17.37 31.63 49

Total 141.47 31.53 173 137.00 36.00 173

3. Simulation study and comparison with slm function for balanced data

(Section 5.2)

As described in Section 5.2, we have generated 100 datasets each one consisting on two

groups of observations with values described in Table 2. The objective was to compare our

method with that of Bayes classification in SLMM’s based on smoothing splines estimation

of f . The difference between this simulation study and the one presented in Section 5.2 is
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Table 2

Parameter values used in the simulation study

Group 1 Group 2

N 10 10
m 20 20
A 1 1.5
ω 50 80
a1 10 20
a2 11 21
a3 50 40
a4 60 70
a5 62 72
b1 1 2
b2 1 2
b3 -2 -1
b4 4 3
b5 5 4
σ2 0.25 0.25
σ2
φ 1 1

μX 10 10
σ2
X 1 1

pX 0.3 0.3
θ1 0.5 0.3
θ2 0.1 -0.1

that here we explore the case of a perfectly balanced dataset (same number of individuals

in the two groups and same mean number of observations per individual).

Indeed, we considered 10 individuals for each group and the resulting median number

of observations per individual was 17 in both groups. This design is kept fixed for all

the datasets. We have then estimated the model parameters separately in each group.

For our estimation procedure we have ran the EM algorithm with γ = 0.70 and using

the same dictionary used for the real dataset adding 128 Haar functions defined by (t �→

27/21I[0,1]

(
27t
100

− k
)
, k = 0, . . . , 27 − 1). For smoothing splines estimation we have considered

the slm function of assist package with f is periodic with period equal to 1 and
∫ 1

0
f = 0,

i.e. f ∈ W 0
2 (per) = W2(per)� span{1} where W2(per) is the periodic Sobolev space of order

2 in L2 and span{1} represents the set of constant functions.

In Table 3 we present the average classification results over 100 samples. There is a clear
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Table 3

Classification in the simulation study: Average error rates over 100 simulated datasets by using semiparametric
LME (SLMM) and smoothing splines.

SLMM Smoothing Splines

Group Group 1 Group 2 Total Group 1 Group 2 Total

Group 1 9.97 0.03 10 7.83 2.17 10
Group 2 0.56 9.44 10 1.77 8.23 10

Total 10.53 9.47 20 9.6 10.4 20

improvement in classification with respect to Ke and Wang’s approach since we obtained

a small average number of misclassified individuals (smaller than one) using our method.

Using smoothing splines in this simulation framework, we obtained a larger average number

of misclassified individuals (close to four). It looks like our method’s performance improves

in a balanced scenario, compared to the results obtained under an unbalanced design (see

Section 5.2). However, in both cases it outperforms the classification results obtained with

the smoothing splines estimation based method.




