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Abstract

The interest on forecasting Value at Risk (VaR) has been growing over the last two

decades due to the practical relevance of this risk measure for financial and insurance in-

stitutions. Furthermore, VaR forecasts are often used as a battleground when alternative

models are fitted to represent the dynamic evolution of time series of financial returns. There

is a vast amount of alternative methods for constructing and evaluating VaR forecasts. In

this paper, we survey the new benchmarks proposed in the recent literature.

Keywords: Backtesting, extreme value theory, GARCH, quantile, risk.

1 Introduction

"The advantage of knowing about risks is that we can change our behaviour to

avoid them.", Engle (2003).

Value at risk (VaR) measures the potential loss in value of a risky portfolio over a defined

period of time for a given probability. Forecasting VaR attracts a great deal of attention in the

Financial Econometrics literature due to its relevance for financial and insurance institutions.

Some adverse results along history have forced the agencies that regulate financial activity to look

for a quantitative way to define the risk associated with a position in the market; see Granger

(2002) for alternative definitions and measures of risk. The Basel accords explicitly recognize

the role of VaR that financial institutions must implement and report in order to monitor their

financial risk and to determine the amount of capital subject to regulatory control. Consequently,

VaR is now established as the most popular risk measure designed for controlling and managing

market risk. Although VaR has been mainly analyzed as a measure of risk associated with

financial institutions, the recent Solvency 2 regulation also establishes it as the risk measure

to be considered by insurance companies operating in the European Union; see Dowd and

Blake (2006) and Sandström (2011) for a description of applications of VaR in the insurance
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sector. Also, the recent deregulation has also heightened the importance of risk management

in electricity markets; see, for example, Chan and Gray (2006). All in all, forecasting VaR is

crucial for many different sectors.

From a methodological point of view, VaR is a quantile of the density of returns and forecasting

quantiles raises several issues of interest. Furthermore, forecasting VaR is also important as it is

routinely implemented as an empirical check for alternative models to forecast conditional means

and variances; see, for example, Asai and McAleer (2008), Martens et al. (2009), Wilhelmsson

(2009), Grigoletto and Lisi (2009) and Brownlees and Gallo (2010) among many others.

In this paper, we survey recent methodological and empirical developments in VaR forecasting

and testing, updating previous surveys in the literature; see Kuester et al. (2006), Christoffersen

(2009), Gourieroux and Jasiak (2010a) and Chen and Lu (2012) for previous surveys and Em-

brechts et al. (2000), Dowd (2007), McNeil et al. (2005), Jorion (2006), Danielsson (2011) and

Christoffersen (2012) for comprehensive textbooks. Given that the number of recent contribu-

tions related with VaR forecasting and testing is extremely large, in an attempt to focus this

survey, we only describe univariate models, leaving apart the interesting discussion on multivari-

ate VaR forecasts. Furthermore, we only consider the VaR on the left tail of the distribution of

returns as it concentrates most of the interest in the literature. Finally, note that although the

Basel accords require daily forecasts of the VaR for returns over a holding period of 10 days,

they allow these forecasts to be obtained from returns over shorter holding periods by using the

square-root-of-time-rule. Consequently, we focus on daily one-step-ahead VaR forecasts corres-

ponding to returns over a holding period of one day1. Moving to daily one-step-ahead forecasts

of the VaR corresponding to returns over a holding period of 10 days, as required by the Basel

accords, raises interesting forecasting issues.

The rest of the paper is organized as follows. Section 2 describes the VaR and establishes

notation. Section 3 is devoted to the description of alternative procedures for point VaR fore-

casting while Section 4 deals with the construction of VaR forecast intervals. Section 5 describes

backtesting procedures. Section 6 describes empirical implementations of VaR forecasting. Fi-

nally, Section 7 concludes the paper.

2 VaR as a risk measure

"VaR is defined as a worst-case scenario on a typical day", McAleer (2009).

The VaR is defined as the 100α% quantile of the distribution of returns, such that, at time t,

there is an 100α% probability that the return of a portfolio over a one-day holding period, Rt,

will fall bellow it. By regulatory convention, the VaR is positive and, consequently, it is given

by

VaRαt = − sup [r | P [Rt ≤ r] ≤ α] . (1)

The probability in (1) is usually defined with respect to the distribution of returns conditional

on the information available at time t− 1.2

1We focus on the horizon allowed by the Basel accords. However, in other sectors, the required VaR horizon

could be different.
2There are some authors who define the VaR with respect to the marginal distribution of returns; see, for
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The Basel accords describe an standard approach to obtain VaR forecasts which is known

to render VaR estimates larger than necessary, leading to excessively high capital requirements

(CR); see, for example, Pérignon et al. (2008), McAleer (2009) and Pérignon and Smith (2010b).

Alternativelly, the accords allow financial institutions to use internal models to forecast their

VaR. From the perspective of financial institutions, using the standard approach is undesirable

given that regulatory capital involves an opportunity cost. Hence, they have incentives to use

their own VaR forecasts; see Pérignon et al. (2008) who present empirical evidence about the use

of internal models being widespread among large financial institutions. Although internal VaR

models are subjected to supervisory approval based on qualitative and quantitative standards,

financial institutions enjoy a large degree of freedom in devising the precise nature of their

models. This flexibility does not, however, imply that they are tempted to pursue the lowest

possible VaR forecasts. The relation between the VaR and the CR is non-monotonic, as it takes

into account not only the magnitude of the VaR but also the number of past VaR violations (i.e.

actual losses exceeding the VaR). Specifically, the regulatory capital required to be held on day

t+ 1 is determined as follows

CRt+1 = max
{
V aRαt , (3 + k)V aR

α
t

}
, (2)

where V aR
α
t = 1

60

∑59
j=0 V aR

α
t−j . The penalty k ranges between 0 and 1 and its value is de-

termined by the number of VaR violations during the last 250 business days. The expression

for CR in (2) suggests that lower capital charges could be achieved by lower VaR forecasts.

This, however, need not be the case as lower VaR forecasts are possibly violated more often,

thus increasing CR through the effect of the penalty factor k. Apart from direct costs due to

the larger amount of capital that needs to be put aside, a large number of violations may also

damage the institution’s reputation; see McAleer and da Veiga (2008) for a discussion. Further-

more, underestimation of the own level of risk may lead to insuffi cient amount of CR to cover

potential losses, thus increasing the risk of bankruptcy. Finally, note that the Basel accords

establish that when ten or more VaR violations occur during a period of 250 business days,

the financial institution may be forced to adopt the standard approach. On the other hand,

the exaggeration of the own level of risk implies an excessive amount of CR, directly affecting

the profitability of the bank. Another at least as undesirable consequence is that such banks

appear more risky than they actually are, thus generating reputational concerns about their risk

management systems. This affects the perception of investors and can induce underinvestment

in VaR-overstating and VaR-understating banks. Indeed, Jorion (2002) shows that VaR dis-

closures are informative about the future variability in trading revenues, thus corroborating the

idea that analysts/investors may be using VaR forecasts to support investment decisions. As a

consequence, there are incentives for financial institutions to pursue VaR forecasts as accurate

as possible.

The obvious benefit of VaR is that it is easily and intuitively understood by non-specialists;

see Embrechts et al. (2000), Krause (2003) and Jorion (2006). However, the VaR has been

criticized as a risk measure for not being coherent; see Acerbi and Tasche (2002) for the definition

of coherent risk measures. In particular, the VaR is not subadditive given that the VaR of a

diversified portfolio could be greater than the sum of the VaRs of the individual portfolios; see

Krause (2003) for an interesting example. However, Danielsson et al. (2013) show that, for

example, Lien et al. (2014).
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continuous random variables, either the VaR is coherent and satisfies subadditivity or the first

moment of returns does not exist. Furthermore, they also explore the potential for violations of

the VaR subadditivity and conclude that, for most practical applications, the VaR is subadditive.

Consequently, for a very large class of distributions and practical situations, one does not have

to worry about subadditivity violations of the VaR and there is no reason to choose alternative

risk measures, solely for reasons of coherence.

A second limitation of VaR is that it does not measure losses exceeding itself. It is possible

to have two distributions with the same VaR, but the losses that exceed VaR could be totally

different. However, Danielsson et al. (2006) show that for heavy tailed distributions, as those

observed in financial returns, the choice of downside risk measures does not seem to matter

much as all of them order risk in a similar manner.

3 Forecasting VaR

"The statistical estimation of rare events belongs to the world of extremistan",

Embrechts (2009).

This section describes and illustrates some of the most popular VaR forecasting procedures

proposed in the literature. We survey first procedures based on directly forecasting the α quantile

of the distribution of returns (one-step procedures). Second, we describe two-step procedures

based on estimating first the conditional mean and variance and then the conditional quantile3.

All procedurs are summarized in Table 1.

3.1 Data and design of empirical study

The procedures described along this paper are illustrated by implementing them to forecast and

backtest the 1% VaR of a series of S&P500 returns corresponding to a holding period of 1 day,

observed daily from July 25, 2005 to May 19, 2014.4 This observation period is split into an

in-sample period with T observations reserved for estimation and an out-of-sample period with

H observations reserved for backtesting. In order to choose T, Kuester et al. (2006) point out

that estimation of the models usually used to forecast VaR should be based on large periods

of time. However, Halbleib and Pohlmeier (2012) show that there is a trade-off between using

large samples to estimate stable parameters and using recent samples to estimate parameters

which easily adapt to the market conditions. On the other hand, when choosing H, Engle and

Manganelli (2004), Escanciano and Olmo (2010) and Escanciano and Pei (2012) show that the

backtesting procedures to work adequately when the ratio between H and T is small; Engle

3Note that this classification is not the usual one in the literature according to which VaR forecast procedures

are classified into parametric, semiparametric and non-parametric. However, we prefer to describe, first, those

procedures that estimate directly the quantile of the distribution of returns without setting any particular spe-

cification for the conditional mean and variance of returns (one-step) and, second, those methods that estimate

the conditional moments and then the quantile of standardized returns.
4 In this survey, all procedures are illustrated for α = 0.01 as this is the quantile required by the Basel accords.

However, the recent stress tests implemented to financial institutions, require VaR forecasts for levels smaller

than 1%. For example, Chan and Gray (2006) and Chen et al. (2008) consider forecasting the 0.5% VaR while

Danielsson et al. (2013) also consider 0.1%, 0.05% and 0.03% VaR forecasts.

Esther
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and Manganelli (2004), Escanciano and Olmo (2010) and Escanciano and Pei (2012) consider

H/T = 0.1 and Boucher et al. (2014) choose H/T = 250/1040. Consequently, to illustrate the

effects of T and H/T on the estimation and backtesting results, we consider two alternative

splits of the observation period. First, the in-sample period goes up to May 27, 2010 with

T = 1220 and H = 1000. Second, the in-sample period covers observations up to May 21, 2013

with T = 1970 and H = 250. All VaR forecast procedures considered are implemented using

a rolling window scheme so that the size of the sample used for estimation is maintained fixed.

Then, the VaR is forecast one-step-ahead during the out-of-sample period.

Figure 1 plots the S&P500 returns for the full observation period with vertical lines in the

dates corresponding to the two splits considered. Figure 1 also plots the sample autocorrelations

of returns and absolute returns and the cross-correlations between returns and absolute returns

together with the corresponding 95% asymptotic confidence bounds for each of the subperiods

considered. The bounds for the autocorrelations of returns are constructed using the heterosce-

dasticity correction proposed by Diebold (1988). Figure 1 shows that, as usual, returns oscillate

around zero and show volatility clustering. The autocorrelations of absolute returns are positive

and significant with the exception of those corresponding to the second out-of-sample period.

Therefore, only in this out-of-sample period, corresponding to the last year of data, returns

seem to be homoscedastic. Finally, the cross-correlations between returns and future absolute

returns are always negative and significant suggesting asymmetric heteroscedasticity. However,

the cross-correlations between returns and past absolute returns are not significant. Therefore,

there is not evidence of volatility in the conditional mean of returns. Note that the evidence

of conditional heteroscedasticity is stronger in both in-sample periods while the evidence of

leverage is similar in the in-sample and out-of-sample periods.

3.2 One-step VaR forecasts

In this subsection, we describe the procedures based on directly forecasting the quantile of the

distribution of returns, namely, Historical Simulation, CAViaR, nonparametric estimators of the

return distribution and Extreme Value Theory.

3.2.1 Historical Simulation

Consider that Rt, the return at time t, has been observed for t = 1, ..., T. The oldest procedure

to forecast the VaR is based on Historical Simulation (HS) as follows

V̂ aR
HS

t = −R(ω), (3)

where R(ω) is the ωth-order statistic of returns with ω = [T × α]. HS is by far the most

popular procedure to forecast VaR used by commercial banks; see, for example, Pritsker (2006),

Pérignon et al. (2008), Pérignon and Smith (2010b) and Berkowitz et al. (2011). For instance,

Pérignon and Smith (2010b) document that almost three-quarters of banks that disclosure their

VaR method, report using HS. The popularity of HS is due to its simplicity and smoothness.

However, V̂ aR
HS

t can exhibit predictable jumps when large negative returns either enter into or

drop out of the window used to obtain them. Furthermore, HS is based on assuming independent

and identically distributed (iid) returns which is an inadequate assumption. Finally, note that

empirical quantiles are not effi cient estimators of extreme quantiles.
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The HS estimator of VaR is illustrated implementing it to obtain one-step-ahead 1% VaR

forecasts of the S&P500 returns over the two out-of-sample periods described in the previous

subsection56. The top panel of Figure 2, that plots the corresponding forecasts, shows that

V̂ aR
HS

t is a stepwise function with a smooth evolution. Consider first the forecasts obtained

using the first data split. Until August 2013 the samples used in the rolling window contain

the observations corresponding to the years 2008 and 2009 and the VaR forecasts are highly

influenced by these observations. Consequently, the V̂ aR
HS

t has low variability and is very large

in the first part of the out-of-sample period decreasing by the end, when the effect of the crisis

of 2008 disappears. However, when the VaR is forecast using the second split of the data, the

level estimated for the last year is nearly constant and very different from the VaR forecasts

obtained before. Therefore, VaR forecasts obtained using HS are very sensitive to the sample

used. The effect of high volatility periods may have long run effects. The top panel of Figure

2 also illustrates that too many observations in the moving window for HS results in sluggish

adaptation to the dynamic changes in the true distribution of returns.

Recently, Zikovic and Aktan (2011) propose forecasting the VaR using Weighted Historical

Simulation (WHS) by introducing Exponential Weighted Moving Average into the VaR forecast

so that the most recent observations have larger weights with the smoothing parameter chosen

by minimizing the Lopez (1999) size adjusted function, which is defined later in this survey.

In an empirical application, they show that the optimal decay factor is rather constant over

different time frames and always close to 0.99.

The corresponding one-step-ahead forecasts, denoted as V̂ aR
WHS

t , are plotted in the bottom

panel of Figure 2. First, observe that V̂ aR
WHS

t does not depend on the particular split used in

its estimation. The one-step-ahead forecasts obtained for the period May 22, 2013 to May 19,

2014 are the same regardless of whether they have been obtained using T = 1220 observations,

as in the first split, or T = 1970 observations, as in the second split. Furthermore, V̂ aR
WHS

t

oscillate around a constant level which is clearly smaller than V̂ aR
HS

t , implying lower risk. It

is important to note that Zikovic and Aktan (2011) also find that V̂ aR
WHS

t yields significantly

lower forecasts than other alternative procedures. It could be worth to further investigate why

this is the case. Finally, V̂ aR
WHS

t have larger variability than V̂ aR
HS

t .

3.2.2 CAViaR

An alternative VaR forecast procedure is based on representing directly the dynamic evolution

of quantiles. The Conditional Autoregressive Value at Risk (CAViaR) was introduced by Engle

and Manganelli (2004) as follows

V̂ aR
CAV

t = β0 + β1V̂ aR
CAV

t−1 + β2l (Xt−1) , (4)

where l(·) is a function of a finite number of lagged observable variables, Xt−1, usually past

returns. Three alternative specifications for l(·) are proposed. First, they propose the adaptive

5Note that sample sizes of T = 1220 or 1970 could seem to be too large to compute V̂ aR
HS

t . Most authors

use smaller sample sizes. However, some works use similar or even larger samples. For example, Angelidis et al.

(2007) estimate V̂ aR
HS

t with T = 1750 observations while McNeil and Frey (2000) and Bao et al. (2006) consider

sample sizes larger than 2000 observations.
6All estimates in this paper have been obtained using Matlab codes by the first author.
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function, denoted by CAV(1), in which β0 = 0 and β1 = 1 and l (·) =

{[
1 + exp

(
G

[
Rt−1 + V̂ aR

CAV

t−1

])]−1
− α

}
,

where G is some positive finite number. The second specification proposed is the absolute value

function, denoted by CAV(2), in which l (·) = |Rt−1|. They also propose the asymmetric slope,

denoted by CAV(3), in which l (·) = β3 (Rt−1)
+ + β4 (Rt−1)

− , where (x)+ = max (x, 0) and

(x)− = −min (x, 0) . Finally, they propose the Indirect GARCH specification which is given by

V̂ aR
IG

t =

(
β0 + β1

(
V̂ aR

IG

t−1

)2

+ β2R
2
t−1

)1/2

. (5)

The Indirect GARCH in (5) is adequate when the volatility of returns is given by a GARCH(1,1)

model and the standardized returns are iid.

The parameters of the CAViaR model can be estimated by the quantile regression approach

developed by Koenker and Basset (1978); see also Komunjer (2005) who extends this approach

to the tick-exponential Quasi Maximum Likelihood (QML) estimator.

Figure 3 plots the one-step-ahead 1% VaR forecasts for the two splits of the data considered,

obtained using the adaptive (first row), absolute (second row), asymmetric (third row) and

the Indirect GARCH (fourth row) functions. The adaptive and absolute forecasts are highly

dependent on the estimation period used and rather different from the forecasts obtained when

implementing the asymmetric slope function and the Indirect GARCH. Furthermore, these two

latter forecasts are similar between them and do not depend on the estimation period in which

they are based.

The CAViaR procedure has been extended in several directions. First, Gourieroux and

Jasiak (2008) propose a dynamic adaptive quantile procedure which ensures that the estimated

quantiles do not cross at different VaR levels. They also introduce two alternative estimators of

the parameters. First, an asymptotically effi cient information-based estimation method which is

obtained by maximizing the inverse KLIC measure and, second, an L-Moment estimator which

is easier to compute but is not fully asymptotically effi cient. A second extension of CAViaR has

been proposed by De Rossi and Harvey (2009) who combine it with signal extraction, approxim-

ating some of the forms of the function l(·) to the filtered estimators of time-varying quantiles.

Third, several authors propose extending the Indirect GARCH in equation (5) by allowing for

asymmetries. For example, Yu et al. (2010) and Gerlach et al. (2011) specify the equation of

the VaR in (5) as a TGARCH model and propose EM-type and Monte Carlo Markov Chain

(MCMC) estimators, respectively. The Monte Carlo results in Gerlach et al. (2011) suggest

that there are not differences between forecasting the VaR using the MCMC procedure and

the parameter estimator of Koenker and Bassett (1978). Furthermore, the asymmetric exten-

sion proposed does not seem to provide more accurate forecasts. More recently, Chen, Gerlach,

Hwang and McAleer (2012) also propose a Threshold-CAViaR model for intra-day ranges es-

timated using a Bayesian approach via the link with the Skewed-Laplace distribution. Fourth,

Huang et al. (2010) extend the CAViaR model by allowing the parameters in (4) to be a

function of past returns. Finally, several authors propose introducing explanatory variables in

the CAViaR equation. For example, Jeon and Taylor (2013) introduce implied volatility as a

regressor while Rubia and Sanchis-Marco (2013) introduce liquidity and trading activity.

Taylor (2008a) propose the conditional autoregressive expectiles procedure based on using

Asymmetric Least Squares, which is the least squares analogue of quantile regression. There is
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a one-to-one mapping from expectiles to quantiles and, according to Taylor (2008a), estimating

expectiles is more attractive from a computational point of view.

Analyzing whether all these extensions make a significant improvement in VaR forecasts should

be considered in future research.

3.2.3 Nonparametric estimators of predictive distributions

The CAViaR procedure represents directly the evolution of quantiles, assuming a particular

specification of this evolution. Alternatively, several authors propose nonparametric estimators

of the returns distribution avoiding the effects of potential misspecification. These nonparametric

methods are computationally more complicated but inferential gains can be obtained when the

assumptions of the parametric models are wrong. Next, we describe some of the nonparametric

procedures proposed to forecast VaR.

Chen and Tang (2005) propose forecasting the VaR by implementing kernel smoothing on

the empirical distribution of returns in such a way that the estimator of the VaR is a weighted

average of the order statistics around R(ω). Taylor (2008b) proposes a related procedure based

on forecasting quantiles using a double kernel smoothing estimator of the cumulative distribution

function which provides greater accuracy for tail quantiles that are changing relatively quickly

over time. This procedure is adapted from the double kernel estimator of Yu and Jones (1998)

which is also considered by Cai and Wang (2008).

Alternatively, Geweke and Amisano (2011) propose a nonparametric model, which is a specific

case of an artificial neural network model with two hidden layers, to obtain predictive distri-

butions of daily returns over horizons of one to several trading days. Their model is estimated

using MCMC methods. Also, Ferraty and Quintela-del-Río (in press) propose a nonparametric

estimator when there are explanatory variables.

Finally, Xu (2013) proposes a fully nonparametric quantile regression model based on a double-

smoothing local polynomial estimation of the conditional distribution function and the imple-

mentation of the empirical likelihood.

The nonparametric procedures are not illustrated in this survey due to their computational

complexity.

3.2.4 Extreme Value Theory

The quantile of the distribution of returns can be estimated by implementing Extreme Value

Theory (EVT) which models the tails of the distribution of returns without making any specific

assumption concerning the center of the distribution; see Rocco (2014) for a detailed and very

useful survey on EVT in finance. In applying EVT, one can adopt three different approaches,

two of them parametric and the third non-parametric.

The first parametric approach is the Block Maxima (BM) that divides the sample into m

subsamples of n observations each and picks the maximum of each subsample. When m and n

tend to infinity, the limiting distribution of the adequately rescaled block maxima is one of three

distributions which belong to the Generalized Extreme Value (GEV) distribution. The GEV

distribution depends on a parameter, ξ, known as the shape parameter. The three distributions
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just mentioned correspond to ξ > 0 (Fréchet), ξ = 0 (Gumbel) and ξ < 0 (Weibull). In the

context of fat tailed distributions, the quantity of interest is often the inverse of ξ, known as the

tail index. The shape parameter can be estimated by Maximum Likelihood (ML) and the VaR

is estimated based on the distribution of extremes; see, for example, Longin (2000). The BM

approach has been implemented to forecast VaR by, for example, Diebold et al. (2000).

The second EVT parametric approach is the Peak Over Threshold (POT) method, according

to which the observations exceeding a high threshold, u, are modelled separately from non-

extreme observations. As u tends to infinity, the distribution of the exceedances, appropriately

scaled, belongs to the Generalized Pareto Distribution (GPD) whose main parameter is ξ, the

same shape parameter as that of the corresponding GEV distribution. In this case, the VaR

forecast is given by

V̂ aR
GPD

t = −R(k+1) +
σ̂

ξ̂

((
α

k/T

)−ξ̂
− 1

)
, (6)

where k is the number of observations over the threshold and ξ̂ and σ̂ are ML estimates of the

shape and scale parameters of the GPD distribution, respectively.

Finally, it is also possible to nonparametrically estimate the shape parameter without assum-

ing a particular model for the tail. Several estimators can accomplish this task being the most

popular the Hill estimator which only works in the Fréchet case (ξ > 0); see Hill (1975). The

corresponding VaR forecast is given by

V̂ aR
HILL

t = −R(k+1)

(
α

k/T

)−ξ̂
, (7)

where ξ̂ = 1
k

k∑
j=1

(
log(R(j))− log

(
R(j+1)

))
; see Peng and Qi (2006b) and Hill (2010) for the

asymptotic properties of the tail index estimator for dependent, heterogeneous processes. In

practice, the number of data points in the tails is limited leading to small sample biases. To

address this problem, Huisman et al. (2001) propose a robust small sample bias-corrected

estimator of ξ based on a linear regression of a set of Hill estimators obtained with different

number of observations in the tail. Gomes and Pestana (2007), Gomes et al. (2007), Gomes et al.

(2008) and Gomes et al. (2012) propose alternative estimators of ξ with minimum variance and

reduced bias. Gourieroux and Jasiak (2010a) point out that the accuracy of the Hill estimator

and its extensions is rather poor due to the diffi culty involved in estimating the probability of

infrequent events. Another problem is that the Hill-type estimators depend on the number of

observations in a very erratic way; see McNeil and Frey (2000) who show that the EVT method

based on the GPD distribution gives more stable quantile estimates than the Hill estimator.

Any EVT approach entails choosing an adequate cut-off between the central part of the

distribution and the tails. When working with threshold exceedances, the cut-off is induced

by the number of observations in the tail, k, while in the BM procedure, it is implied by the

choice of the number of blocks. The choice of the cut-off may have severe consequences on risk

estimates. If it is too low, the VaR forecasts are biased and the asymptotic limit theorems do

not apply. Conversely, if u is too large, the VaR forecasts have large standard deviations due to

the limited number of observations over the threshold. Danielsson et al. (2001) and Ferreira et

al. (2003) develop bootstrap methods for optimal threshold selection in the context of the Hill

and GPD estimators, respectively. The former authors choose the threshold by minimizing the
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asymptotic MSE of the Hill estimator. However, the selection of the threshold using bootstrap

procedures is very time consuming. Alternatively, Gonzalo and Olmo (2004) propose a single

step approach to threshold selection. Gencay and Selcuk (2004) determine u using a combination

of the mean excess function and the Hill plots. Chavez-Demoulin et al. (2014) propose including

a sensitivity analysis across several threshold values for a full POT application. Alternatively,

Li et al. (2010) propose choosing u in such a way that the bias of the tail index estimator is

reduced; see Scarrot and MacDonald (2012) for an excellent review of alternative procedures to

chose or estimate the threshold.

Further to the problem of choosing an adequate threshold, Embrechts (2009) points out several

caveats of EVT being specially important the fact that the rate of convergence in all EVT-based

estimation procedures could be arbitrarily slow depending on the underlying distribution of

returns. Furthermore, the asymptotic properties of EVT are based on the assumption of iid

returns which is usually not satisfied in practice. Consequently, EVT needs to be modified

complicating its implementation. In order to overcome this problem, several authors propose

approaches based on self-exciting market point processes (SEMPP) which take into account

the time between exceedances. There are two SEMPP models proposed in the literature: the

Hawkes-POT model introduced by Chavez-Demoulin et al. (2005) and the ACD-POT model

proposed by Herrera and Shipp (2013) who consider the time between exceedances as a stochastic

process modeled as the ACD model of Engle and Russell (1998). Another related idea is to

include the inter-exceedance times as covariates in the POT as proposed by Santos and Alves

(2012a). Very recently, Chavez-Demoulin et al. (2014) propose a non-parametric extension to

fit time-varying volatility in situations where the stationarity assumption can be violated by

erratic changes in regime. They propose a Bayesian procedure allowing the intensity of the

occurrence of exceedances to depend on past exceedances as well as on their size allowing the

GPD distribution for the tails to vary over time.

3.3 Two-step VaR forecasts

The VaR forecast procedures described above model directly the quantile of the distribution

of returns. Alternatively, the VaR can be forecast assuming particular specifications for the

conditional distribution of returns. Consider the following model of returns

Rt = µt + εtσt, (8)

where µt and σt are the conditional mean and standard deviation respectively, and εt is an iid

sequence with variance 1. Thus, the one-step-ahead VaR conditional on information available at

time t− 1 is given by

V aRαt = µt + qαε σt, (9)

where qαε is the α quantile of the distribution of εt. Next, we describe alternative specifications

proposed in the literature to represent µt, σt and q
α
ε .

3.3.1 Conditional mean

In order to forecast the VaR in equation (9) one needs to estimate the conditional mean, µt.

Given that the linear dependence of returns is usually very weak, most authors have represented
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it by AR(1) or MA(1) models; see, for example, McNeil and Frey (2000), Kuester et al. (2006),

Bali and Theodossiou (2007), Halbleib and Pohlmeier (2012) and Ardia and Hoogerheide (2014).

Consider again the series of S&P500 returns. The sample autocorrelations of returns plotted

in Figure 1 are not significant in any subperiod. Given that the sample mean of returns is

not significantly different from zero, the dependence in S&P500 returns seems to be adequately

represented by a white noise in each of the two estimation subperiods and, consequently, we

consider µt = 0.

3.3.2 Conditional variance

When representing the conditional variance, it is very popular to choose models within the

GARCH family and, in particular, the GARCH(1,1) model of Bollerslev (1986) given by

σ2t = β0 + β1ε
2
t−1 + β2σ

2
t−1, (10)

where β0 > 0, β1 ≥ 0, β2 ≥ 0, and (β1 + β2) < 1; see McNeil and Frey (2000), Engle (2003),

Christoffersen and GonÇalves (2005), Giannopoulos and Tunaru (2005), Kuester et al. (2006)

and Bali and Theodossiou (2007) among many others for VaR estimates obtained after fitting a

GARCH(1,1) model to represent conditional variances. The popular RiskMetrics model is based

on the Integrated GARCH (IGARCH) model which is given by equation (10) with β0 = 0 and

β1+β2 = 1. The Basel accords recommend to use the Gaussian IGARCH model with β2 = 0.95;

see, for example, Gourieroux and Jasiak (2010a).

The GARCH(1,1) model in (10) can be extended to cope with the asymmetric response of

volatility to positive and negative returns. Among the many alternative asymmetric GARCH

models, the Exponential GARCH (EGARCH) model of Nelson (1991) has often been shown as

having an adequate performance when forecasting the VaR; see, for example, Bali and Theodo-

siou (2007). The volatility in an EGARCH (1,1) model is given by

log(σ2t ) = β0 + β1 [|εt| − γεt] + β2 log(σ2t−1). (11)

Some authors, as Giot and Laurent (2003) and Sajjad et al. (2008), consider modelling the

volatility by fitting the APARCH model of Ding et al. (1993). However, the results obtained

from the APARCH and EGARCH models are usually very similar; see Rodríguez and Ruiz

(2012). Furthermore, Dark (2010) obtains estimates of the power parameter very close to one

for a large range of stocks.

Consider again the S&P500 returns which, as mentioned above, are characterized by asymmet-

ric conditional heteroscedasticity. Consequently, we fit the GARCH (1,1) and EGARCH(1,1)

models to analyse the effects of misspecification of the conditional variance on VaR forecasts.

The distributions of the errors considered when maximizing the quasi-log-likelihood are Gaus-

sian, Student and Skewed—Student of Hansen (1994). Figure 4 plots rolling window estimates

of the parameters of the EGARCH(1,1) model together with their 95% asymptotic confidence

bounds for each of the two sample sizes considered when the Skewed—Student distribution is

maximized7. Note that the estimates of β0, β1, β2 and the leverage parameter, γ, could be

7The results when the parameters are estimated by maximizing the Gaussian and Student log-likelihoods are

similar and not reported to save space. Also, similar conclusions are obtained when estimating the GARCH

parameters.
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rather different when they are obtained using the first rolling window scheme, with T = 1220,

and when using the second one, with T = 1970. However, the parameters of the Skewed—Student

distribution are rather stable. These estimation results are in concordance with the comment by

Gerlach et al. (2013): "The accuracy of parameter estimation seems particularly affected during

the crisis period, where extreme outlying returns have big influence on parameter estimation

and effi ciency".

Chiu et al. (2005) compare the VaR forecasts obtained when an asymmetric GARCH model

is fitted to represent the conditional variance with those obtained fitting the model proposed

Maheu and McCurdy (2004) which includes jumps. In an empirical exercise, they conclude that

omitting the presence of jumps leads to understate VaR forecasts and brings larger unexpected

loss.

Some authors also suggest incorporating long-memory in the volatility when computing the

VaR; see, for example, Degiannakis (2004), Caporin (2008) and Dark (2010). However, given that

the VaR forecasts required by the Basel accords are short run, the inclusion of long-memory is

expected not to make any fundamental difference; see, for example, So and Yu (2006) supporting

this result. Finally, Sajjad et al. (2008) propose a Markov-switching APARCH model in which

the volatility persistence can take different values depending on whether it is in a high or low

volatility regime.

Although most of the literature has focused on GARCH-type models to represent the dynamic

evolution of volatilities, several authors also consider stochastic volatility (SV) models. Some

applications of SV models to the estimation of VaR can be found in Lehar et al. (2002), Fleming

and Kirby (2003), Gónzalez-Rivera et al. (2004) and Chen, Gerlach, Lin and Lee (2012). None

of these papers find important differences on VaR forecasts by using GARCH or SV models.

Furthermore, McAleer (2009) points out that the computational burden of SV can be quite severe

while econometric software packages do not yet seem to have incorporated SV algorithms.

Bao and Ullah (2004) analyse the biases incurred when VaR forecasts obtained using paramet-

ric procedures with estimated parameters. Some authors propose corrections for these biases.

When the GARCH model is fitted, Duan (2004) and Moraux (2011) propose a correction based

on the Delta method assuming Gaussian returns. However, the Delta method is only appropri-

ate when the parameter estimator is Normal; see Hall and Yao (2003). Lönnbark (2010) also

proposes a bias correction that relies on the normality of the VaR and returns and, consequently,

not very useful in empirical applications. Hartz et al. (2006) propose a bias-correction method

for improving the VaR forecasting ability of the GARCH model with Normal errors. Recently,

Gourieroux and Zakoïan (2013) propose a correction of the 1/T asymptotic bias in the cover-

age probabilities within the context of a parametric model with known error distribution that

improves the accuracy of one-step-ahead VaR forecasts. Their procedure, which cannot be im-

plemented when the conditional volatility follows a GARCH specification, also has an alternative

bootstrap approach.

Regardless of the procedure implemented to forecast the VaR, Boucher et al. (2014) show that

the specification bias can be very large, sometimes of the same order of magnitude of the VaR

itself, and propose a general framework to take into account the specification and estimation

uncertainty by empirically adjusting the VaR forecasts by outcomes of the backtesting procedures

described in the next section. Using simulated data, they show that by dynamically adjusting
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for estimation bias, the performance of every method is improved. The bias strongly depends

upon the VaR level and, consequently, Boucher et al. (2014) do not recommend using procedures

that use information on different quantiles to estimate the VaR as those used by, for example,

Xiao and Koenker (2009), Wang et al. (2012) and Yi et al. (2014).

Finally, it is important to mention that, due to the availability of intradaily ultra-high fre-

quency data (UHFD), there is a growing literature that proposes estimating the daily volatility

using measures based on this type of observations; see Giot and Laurent (2004), Clements et

al. (2008), Coroneo and Veredas (2012) and Fuertes and Olmo (2013). Brownlees and Gallo

(2010) forecast daily VaR using realized volatility, bipower realized volatility, two-scales realized

volatility, realized kernel volatility and the daily range. They conclude that VaR forecasts based

on UHFD have improved properties with respect to those based on GARCH models with the

simple daily range delivering very accurate forecasts. Furthermore, they show that the intra-

daily sampling frequency plays a bigger role in fitting the tails of the distribution than the choice

of the UHFD volatility measure with low frequencies performing better than high frequencies.

Arroyo et al. (2011) base the VaR forecast on the histogram of intra-daily observations. More

recently, Louzis et al. (2013) survey the literature on using UHFD for VaR forecasting and also

compare several alternative estimators of the volatility; see also Huang and Lee (2013).

3.3.3 Conditional Quantile

The third component needed to compute the VaR in equation (9) is qαε , the α% quantile of the

distribution of standardized returns. There are three main alternatives to obtain qαε . First, q
α
ε is

given when a particular distribution for εt is assumed. Second, one can implement the methods

described in the previous subsection to compute the quantile of the returns standardized using

the estimated conditional mean and variance. Third, the quantile of the distribution of εt can

also be obtained by simulation using resampling methods.

Assuming a given distribution for standardized returns The most popular parametric

distributions for standardized returns are the Gaussian, the Student and the Skewed-Student

distribution of Hansen (1994); see, for example, Giot and Laurent (2003), Kuester et al. (2006),

Bali and Theodosiou (2007), Sajjad et al. (2008), Pérignon and Smith (2010a), Halbleib and

Pohlmeier (2012), Louzis et al. (2013) and Ardia and Hoogerheide (2014) for applications using

these distributions.

Figures 5 and 6 plot the VaR forecasts obtained when the GARCH(1,1) and EGARCH(1,1)

models, respectively, are fitted to the S&P500 returns and the errors are Normal (top panels),

Student (middle panels) and Skewed-Student (bottom panels). First, note that neither the

GARCH nor the EGARCH forecasts depend on the split used to estimate the parameters.

Therefore, we can conclude that, regardless of the specific model fitted to the conditional variance

and the error distribution, the differences in the estimated parameters, observed in Figure 4, do

have remarkably small effects on VaR forecasts. This result is in concordance with Gónzalez-

Rivera et al. (2007) who analyse the implications of estimating the parameters of the RiskMetrics

model under different loss functions and conclude that there are not important effects on the out-

of-sample performance of VaR forecasts. Furthermore, Ardia and Hoogerheide (2014) recently

show that the impact of the updating frequency (and, consequently, of the parameter estimates)
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on the quality of VaR forecasts is remarkably small. It seems that the quality of the estimates

of the parameters of the conditional variance does have very minor effects on VaR forecasts.

Second, observe that the VaR forecasts generated when the GARCH model is fitted to estimate

the conditional variance are smoother than those obtained when the EGARCH model is fitted.

The GARCH forecasts are more similar to the CAViaR (absolute and asymmetric) and EVT

(GPD and Hill) forecasts. Third, Figures 5 and 6 show that, regardless of the particular model

for the conditional variance, the risk is larger when the Student distribution is assumed as

the conditional distribution of returns. When this distribution is assumed to be the Skewed-

Student distribution, the risk is forecast in between the risk under Normality and the risk of

the Student errors. We observe larger differences between the VaR forecasts obtained under

different assumptions of the error distribution during the August to December 2011 period. The

differences between VaR forecasts are negligible during the last year of the out-of-sample period

when the risk has been relatively small.

An alternative leptokurtic and asymmetric distribution considered in the context of VaR

forecast is the Skewed-Generalized-t (SGT) distribution proposed by Theodosiou (1998); see Bali

and Theodossiou (2007), Bali et al. (2008) and Chen and Hung (2011) for applications of the

SGT distribution to VaR forecasting. The SGT distribution has the attractive of encompassing

most of the distributions usually assumed for standardized returns as, for example, the Gaussian,

Generalized Error Distribution (GED), Student and Skewed-Student distributions. However,

in our experience, the maximization of the log-likelihood based on a SGT distribution is very

complicated. Consequently, we will not consider further this distribution in this survey. Recently,

Ergen (2015) also considers the Skewed-t distribution of Azzalini and Capitanio (2003).

The Laplace distribution, useful in defining quantiles and performing quantile regression, has

also been considered to represent the distribution of the errors in the context of GARCH models.

For example, Guermat and Harris (2001) propose it in the context of RiskMetrics while Chen and

Gerlach (2013) propose a new distribution called asymmetric two-sided Weibull distribution that

generalizes the asymmetric Laplace distribution previously proposed by Chen, Gerlach and Lu

(2012) by allowing different Weibull distributions for positive and negative returns. Estimation

and forecasting are carried out by a Bayesian MCMC procedure. However, in the empirical

application, estimating the VaR of seven daily time series of financial returns, the results are

comparable to those obtained when the asymmetric Student distribution is fitted. Taking into

account the additional computational effort involved in using Bayesian procedures, it does not

seem worth the additional effort.

Also, several authors propose modelling the distribution of εt by assuming mixtures of Normal

or GED distributions; see, for example, Kuester et al. (2006) and Broda et al. (2013).

Finally, time-varying skewness and kurtosis have also been introduced in the distribution

of εt. Bali et al. (2008) and Dark (2010) consider SGT and Skewed-Student distributions,

respectively, with time-varying parameters which depend on past information. Wilhelmsson

(2009) and Grigoletto and Lisi (2009) propose volatility models that allow for time-varying

skewness and kurtosis. More recently, Grigoletto and Lisi (2011) model the distribution of εt
by a Pearson Type IV which can be considered as a skewed version of the Student distribution

in which the moments depend on parameters that evolve over time. Finally, in the context

of RiskMetrics, Gerlach et al. (2013) propose an asymmetric Laplace distribution allowing for

time-varying skewness and kurtosis and an asymmetric response of volatility to positive and
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negative past returns. In the empirical application, they conclude that time-varying moments

are not relevant to forecast VaR.

Conditional Historical Simulation Above, we describe HS as being one of the most popular

VaR procedures among practitioners. However, HS has the important limitation of not taking

into account the evolution of conditional variances that characterizes financial returns. To over-

come this limitation, Hull and White (1998) propose implementing HS to returns standardized

using the volatility estimated after fitting a GARCH-type model. Very recently, Dupuis et al.

(in press) propose a robust estimator of the volatility based on weighted likelihood combined

with HS choosing optimally the rolling window length and the smoothing parameter value.

Finally, Francq and Zakoïan (2015) propose a one-step QML estimator of the parameters

of the conditional volatility and quantile, based on reparametrizing the model and derive its

asymptotic distribution. When compared with the asymptotic distribution of the more popular

two-step QML estimator, they show that none of the methods is superior in every situation.

If the errors have a distribution admitting moments of any order, the two-step estimator may

be superior. However, when the distribution of the errors does not have a finite fourth order

moment, then the one-step estimator will be better.

The first panel of Figure 7 plots the VaR forecasts, denoted as Conditional Historical Simu-

lation (CHS), obtained using HS after fitting the GARCH8 model to estimate the conditional

variance. First, we can observe that the VaR forecasts do not depend on the particular split

used to obtain them. Second, it is possible to observe that the CHS one-step-ahead forecasts are

very similar to those obtained when fitting the GARCH model assuming conditional Normality.

Conditional EVT Alternatively, instead of assuming a particular distribution of εt, Daniels-

son and de Vries (2000) and McNeil and Frey (2000) propose to estimate qαε in equation (9)

implementing EVT to the standardized returns which are iid if the conditional mean and vari-

ance are correctly specified; see Chan and Gray (2006) for a nice description of conditional EVT

(CEVT) and its application to forecast the VaR of daily electricity prices. In particular, McNeil

and Frey (2000) propose filtering first the returns after estimating a GARCH model and then

applying EVT to the tails of the innovations while bootstrapping the central part of the distri-

bution. Jalal and Rockinger (2008) show that this procedure appears to perform a remarkable

job in combination with a well chosen threshold estimation such as the one of Gonzalo and Olmo

(2004). However, the results when implementing a GARCH model with conditionally Student

errors are not so different.

Recently, Mancini and Trojani (2011) propose robustifying this procedure by estimating the

GARCH parameters using the M-estimator of Mancini et al. (2005) and then fitting GPD to

the tails of the residuals. The GPD is estimated using the robust estimator of Dupuis (1999)

and Juarez and Schucani (2004) which, according to the authors, is less sensitive to the choice of

the threshold than classical methods. Finally, resampling is carried out from this distribution.

8Note that, as in any of the conditional procedures described later, the same methodology could be applied

to the returns standardized using any other of the alternative procedures available to estimate the conditional

variance.
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Finally, in the context of GARCH(1,1) and AR(1)-GARCH(1,1) models, Chan et al. (2012)

and Chan et al. (2013) respectively, propose an estimator of the tail index based on the solution

of a sample moment equation in which the unknown parameters are replaced by their QML

estimates.

As an illustration, the first panel of Figure 8 plots the one-step-ahead 1% VaR forecasts

obtained using CEVT with BM and blocks of n = 30 observations. Note that the BM forecasts

are larger than the GARCH forecasts plotted in Figure 5 and depend on the split of the sample

used for their estimation. The middle and bottom panels of Figure 10 plot VaR forecasts obtained

using CEVT with the GPD and Hill procedures, respectively, with k = 100 as suggested by

McNeil and Frey (2000). Note that the VaR forecasts obtained by both procedures are rather

similar between them and similar to the forecasts obtained when fitting the GARCH model with

Student errors. Furthermore, the GPD and Hill forecasts do not depend on the particular split

used for their estimation. Finally, note that, once more, the main differences between the VaR

forecasts obtained with the GPD and Hill procedures appear in the period between August and

December 2011 when there is a clear increase in the risk of S&P500 returns.

To illustrate the role of the threshold on VaR forecasts, Figure 11 plots the one-step-ahead

1% VaR forecasts of the S&P500 returns obtained using EVT with the GPD (first column)

and Hill (second column) estimators and the threshold estimated using the procedures proposed

by Gonzalo and Olmo (2004) (first row) and Gencay and Selcuk (2004) (second row). We

can observe differences between the VaR forecasts obtained in each case. First of all, note

that, regardless of whether the VaR is computed using GPD or Hill, the risk is larger when

the threshold is chosen implementing the procedure proposed by Gencay and Selcuk (2004).

Furthermore, the forecasts of the VaR plotted in Figure 10 for k = 100, are somehow in between

those obtained when implementing Gencay and Selcuk (2004) and Gonzalo and Olmo (2004).

Also, it is important to point out that when implementing the former procedure, the VaR

forecasts are the same regardless of the particular split chosen for the estimation period. However

when implementing the procedure by Gonzalo and Olmo (2004), the VaR forecasts are different

depending on the particular split used for the estimation.

Filtered Historical Simulation The quantile qαε can be estimated using bootstrap methods

that do not assume any particular distribution of the errors; see Ruiz and Pascual (2002) for a

review of the literature on using bootstrap procedures in financial time series and, in particular,

on VaR forecasting. In particular, Barone-Adesi et al. (1999, 2002) propose a bootstrap method

called Filtered Historical Simulation (FHS), based on using random draws with replacement

from the standardized residuals which does not incorporate parameter uncertainty; see Engle

(2003) and Pritsker (2006) for implementations. More recently, Pascual et al. (2006) propose

a bootstrap procedure that allows incorporating the parameter uncertainty. As we will see in

more detail bellow, bootstrap procedures have the advantage of allowing the construction of

confidence intervals for the estimated VaR.

The second and third rows of Figure 7 plot the VaR forecasts obtained after implementing FHS

without and with parameter uncertainty, respectively. First of all, observe that VaR forecasts

do not depend on the particular split used. Second, the forecasts obtained with and without

parameter uncertainty are different with the former being larger. Therefore, it seems that

incorporating the parameter uncertainty may have an effect when using bootstrap to obtain the
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conditional quantile of the distribution of conditional returns.

Bayesian methods Within the context of the VaR computed in a fully specified model,

Hoogerheide and van Dijk (2010) propose estimating the model parameters and the density of

returns using Bayesian methods based on importance sampling.

Quantile regression Xiao and Koenker (2009) propose a two-step approach of quantile regres-

sion estimation for linear GARCH models. In the first step, they use a quantile autoregression

sieve approximation for the GARCH model by combining information over different quantiles.

In the second stage, estimation of the GARCH model is carried out based on the first-step

minimum distance estimation of the scale process.

3.3.4 Semiparametric methods

The two-step procedures considered in this subsection are based on estimating, first, the condi-

tional mean and variance and, second, the quantile of the corresponding standardized returns.

These procedures assume parametric specifications of the conditional mean and variance. How-

ever, semiparametric and nonparametric specifications of the conditional moments have also

been considered in the literature. For example, Fan and Gu (2003) introduce a semiparametric

model to estimate the volatility as a discretization of the IGARCH(1,1) model of RiskMetrics.

In order to estimate the decay factor needed for the RiskMetrics methodology they propose two

alternatives, one resulting in a data dependent decay factor which remains constant in the fore-

casting period, and the other which adapts automatically to changes in stock price dynamics,

adding flexibility to the first decay factor. Additionally, Fan and Gu (2003) propose a symmetric

nonparametric estimation approach to estimate the quantiles of the standardized residuals. Al-

ternatively, Martins-Filho and Yao (2006), based on the two stage approach of McNeil and Frey

(2000), propose a nonparametric estimation procedure for the conditional mean and variance

using the local linear estimator of Fan (1992). Furthermore, they propose a method based on

L-Moment theory instead of the GPD used by McNeil and Frey (2000).

Chen et al. (2008) propose estimating the local volatility adaptively and to model the stand-

ardized returns using the Generalyzed Hyperbolic distribution. According to these authors, this

nonparametric adaptive methodology has the attractive of being able to estimate homogeneous

volatility over a short time interval and reflects sudden changes in volatility.

Finally, Gourieroux and Jasiak (2010b) also propose a semiparametric method based on a

local approximation of the conditional density in a neighborhood of a predetermined extreme

value. Given that the procedure requires a large number of observations around the quantile,

they implement their procedure to compute the intradaily VaR.

3.4 Combining VaR forecasts

Recently, several authors propose forecast VaR combining several procedures. For example,

McAleer et al. (2013a,b) consider mixing alternative risk models while McAleer et al. (2010)

provide a procedure for choosing one risk model at the beginning of the forecast period that

is modified depending on the past history of VaR violations. Alternatively, Jeon and Taylor
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(2013) propose combining CAViaR forecasts with those obtained from a new estimator based

on implied volatilities merging information from the historical time series of returns and the

information supplied by the expectation of risk in the market. Finally, Halbleib and Pohlmeier

(2012) consider several alternative VaR forecasts and point out that none of them is valid on its

own. Consequently, also propose data-driven optimal combinations.

4 The uncertainty of VaR forecasts (VaR forecast intervals)

"Statistical point estimates should always be accompanied by confidence intervals

as we are taught in Statistics 101", Embrechts (2009).

Boucher et al. (2014) argue that a key reason for the lack of accuracy of VaR forecasts in

empirical applications is that they are subject to specification and estimation uncertainty; see

also Jorion (2009) for the reasons of VaR forecasts failure during the global crisis. In spite of the

importance of having measures of uncertainty associated with VaR forecasts, very few empirical

papers report VaR forecast intervals. In this section, we review the literature on the uncertainty

of VaR forecasts.

In the context of HS, Jorion (1996) and Ridder (1998) could be the first in pointing out the

need to consider the estimation uncertainty associated with V̂ aR
HS

t forecasts when the returns

are assumed to be Gaussian; see also Dowd (2006) for the uncertainty of a related VaR measure

based on order statistics and Gourieroux and Jasiak (2010a) for the asymptotic distribution

of V̂ aR
HS

t . However, as far as we know, there are not analytical measures of the uncertainty

associated with the WHS procedure. Furthermore, there are not available procedures to compute

intervals for CAViaR forecasts.

There are also proposals to construct forecast intervals for VaR forecasts obtained using

the Hill estimator. For example, Peng and Qi (2006a) carry out Monte Carlo experiments to

compare the performance of three alternative intervals, namely, the Normal approximation, the

likelihood ratio and the data tilting and conclude that the latter performs best. More recently,

Chavez-Demoulin et al. (2014) provide forecast intervals for the Bayesian nonparametric POT

procedure they propose. However, there are not proposals to construct forecast intervals for

VaR’s obtained using BM.

In the context of nonparametric procedures to compute directly the quantile of the distri-

bution of returns, Chen and Tang (2005) emphasize the importance of the uncertainty of VaR

forecasts and develop a procedure for its estimation based on a kernel estimation of the spectral

density function of a series built using the smoother function. Xu (2013) also derives the asymp-

totic distribution of the nonparametric estimator. Forecast intervals for the VaR, automatically

shaped by the data, can be constructed based on inversion of the empirical likelihood confidence

intervals for the conditional cumulative distribution function.

In the context of two-step procedures, Taniai and Taniguchi (2008) take into account the

parameter uncertainty using the asymptotic properties of the residual empirical process, when

the VaR forecast are based on CHS after fitting the RiskMetrics model. More recently, Francq

and Zakoïan (2015) obtain forecast intervals for VaR when the parameters are estimated either

by the two-step or the one-step methods. If the errors belong to the class of regularly-varying



Nieto & Ruiz 19

distributions with proportional tails, the asymptotic distribution of the extreme conditional

quantiles is also available; see Chan et al. (2007). However, this distribution is unconditional.

More recently, Gong et al. (2010) propose employing empirical likelihood to obtain conditional

forecast intervals for the conditional quantile in the context of ARCH models. Also dealing with

CHS, Spierdijk (in press) considers using bootstrap procedures based on extracting replicates

with replacement from the assumed distribution of the standardized errors. She shows that, in

spite of its inconsistency, accurate VaR forecast intervals are obtained for various symmetric dis-

tributions without fourth order moments. However, she shows that this bootstrap scheme fails

when the error distribution is asymmetric and does not have finite fourth order moments. Al-

ternatively, she proposes a residual subsample bootstrap as proposed by Sherman and Carlstein

(2004) which seems to work in this latter case. The subsample bootstrap is based on extracting

without replacement bootstrap samples of a size smaller than that of the original sample. The

bootstrap samples are extracted from the empirical distribution of standardized residuals.

Chan et al. (2007) derive the asymptotic distribution of the CEVT quantile estimator of

McNeil and Frey (2000) without assuming a specific parametric distribution of εt. They propose

two alternative methods to construct VaR forecast intervals. The first method is based on the

asymptotic Normality of the VaR estimator. Alternatively, they propose to construct confidence

intervals by the tilting method of Hall and Yao (2003) and Peng and Qi (2006a). Note that the

VaR forecast intervals constructed in this way do not incorporate the parameter uncertainty.

Several authors propose implementing bootstrap procedures to obtain forecast intervals for

the VaR obtained using FHS; see Dowd (2007) and Christoffersen and GonÇalves (2005) who

show that the forecast intervals for HS are too narrow and do not contain the true VaR with

the desired frequency while the methods that properly account for the conditional variance

dynamics imply forecast intervals with coverages close to the nominal. Bootstrap procedures

are also implemented by Hartz et al. (2006). Also in the context of FHS and, based on the

asymptotic behaviour of the GARCH residuals, Gao and Song (2008) derive the expression of the

asymptotic variance of V̂ aR
FHS

t and use it to construct forecast intervals based on the Normal

approximation. Using simulated data, they show that the bootstrap method of Christoffersen

and GonÇalves (2005) performs better than the asymptotic approximation they propose; see also

Mancini and Trojani (2011) for an implementation of the procedure proposed by Christoffersen

and GonÇalves (2005) to compute the uncertainty of VaR forecasts.

It is important to note that, when the VaR is obtained using the Bayesian procedure of Hoo-

gerheide and van Dijk (2010), one can obtain their corresponding standard deviations. Finally,

Li et al. (2011) also construct forecast intervals in the context of nonparametric estimation of

the conditional mean and variance.

5 Backtesting point VaR forecasts

The validation of internal VaR forecasts is of paramount importance to guarantee that financial

and insurance institutions have adequate capital to cope with large unexpected losses. In the

light of the vast number of alternative VaR forecasting procedures available, model diagnosis

is of essential importance for internal risk management. In order to asses the accuracy of

VaR estimates, the Basel accords develop a statistical testing device known as backtesting.
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According to their requirements, the backtesting should be based on at least 250 one-step-ahead

VaR forecasts; see Campbell (2007) for a survey on backtesting procedures. In this section, we

summarize the most popular backtesting procedures which are closely related with the literature

on forecast interval evaluation. First, we briefly describe the procedures based on the binary hit

variable. The lack of power of the most popular tests based on the hits sequence has also lead to

propose testing for several VaR levels jointly. Finally, when several alternative estimators of the

VaR are adequate according to the backtesting tests, one may additionally want to rank them.

We also describe tests designed to compare and choose among alternative VaR forecast models.

Table 2 summarizes the tests described in this section.

5.1 VaR adequacy

5.1.1 Tests for a single VaR level

Many popular procedures for evaluating the performance of VaR forecasts are based on VaR

failures. Consider the failure process given by Iαt = 1 (Rt < −V aRαt ) , t = T + 1, ...T +H, where

1 (·) is the indicator function. A necessary condition for an optimal VaR forecast is that it is

conditionally unbiased so that

E
t−1

[Iαt ] = α. (12)

Most traditional backtesting procedures are based on testing some of the implications of this

condition. The most popular backtesting procedure, known as unconditional coverage (UC) test,

was proposed by Kupiec (1995) and tests the null hypothesis H0 : E [Iαt ] = α. However, this is

not the hypothesis of interest in (12) and, consequently, the UC test ignores conditional coverage

since violations can cluster over time. We should not be able to predict whether the VaR will

be violated since if we could, then that information could be used to construct a better VaR

forecast. Furthermore, Escanciano and Pei (2012) show that the unconditional coverage test

is always inconsistent in detecting non-optimal VaR forecasts obtained using HS and FHS and

propose an alternative data-driven weighted backtesting procedure with good power properties

for these procedures. The lack of power of the UC test has also been documented by Pritsker

(2006), de la Pena et al. (2007) and Pérignon and Smith (2008) among others. de la Pena et

al. (2007) propose swapping the null and the alternative hypothesis so that the probability of

choosing the wrong model is reduced.

Alternatively, Christoffersen (1998) proposes the very influential conditional coverage (CC)

test, where the null hypothesis is H0 : E
[
Iαt |Iαt−1

]
= α. The likelihood ratio (LR) statistic

for CC, LRcc, is given by the addition of the unconditional statistic plus the independence

statistic based on testing whether Iαt are iid Ber (α) random variables against the alternative

of first order Markov dependence. Note that the LRcc test only takes into account the first

order autocorrelation of the hit sequence. Furthermore, Escanciano and Olmo (2010) show that

the use of standard unconditional and independence backtesting procedures can be misleading

because they do not take into account the uncertainty associated with parameter estimation.

They quantify this risk in a very general class of dynamic parametric VaR models and propose

a correction of the standard backtests taking it into account. They show that one of the main

determinants of the corrected asymptotic variance is the forecasting scheme used to generate

the VaR forecasts, i.e. whether one uses recursive, rolling or fixed parameter estimates. Later,
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Escanciano and Olmo (2011) analyze the effects of model misspecification on the UC and LRcc
tests and propose using a block-bootstrap procedure to implement robust backtests.

Table 3 reports the p-values of the LRcc test implemented to the VaR forecasts obtained

with each the procedures illustrated above and for the two different sample splits considered.

Table 3 shows that, according to the LRcc test, different models are rejected depending on the

particular period considered. The procedures that are not rejected in any of the two periods are

the CAViaR with the asymmetric function, the GARCH model with Skewed-Student errors, the

EGARCH model with Student and Skewed-Student errors, the CHS, the CEVT with GPD and

the bootstrap. On the other hand, HS, WHS, GARCH-t and FHS are rejected in both periods.

For all other models, they are rejected or not depending on the particular period evaluated

without any particular pattern.

It is important to note that, in spite of the many limitations described later in this survey,

the Kupiec (1995) and Christoffersen (1998) tests are still the most popular ones both among

practitioners and in the academic literature; see, for example, Chan and Gray (2006), Brownlees

and Gallo (2010), Pérignon and Smith (2010b), Grigoletto and Lisi (2009, 2011), Zikovic and

Aktan (2011), Chen, Gerlach, Hwang and McAleer (2012), Halbleib and Pohlmeier (2012), Rubia

and Sanchis-Marco (2013), Dias (2013) and Liu and Tse (in press). Their popularity is due first

to their simplicity and second, because they are implicitly incorporated in the Basel accords for

determining market risk capital requirements.

Berkowitz et al. (2011) extend and unify the above tests showing that they can be interpreted

as LM tests. They note that the centered hits sequence, defined as δαt = Iαt −α, form a martingale

difference sequence and, consequently,

E [δαt ⊗Xt−1] = 0, (13)

where Xt−1 includes any vector contained in the information set available at time t − 1. In

particular, Berkowitz et al. (2011) propose the following Portmanteau test

LB (τ) = (H) (H + 2)
τ∑
j=1

(H − j)−1 r2j , (14)

where rj is the order j sample autocorrelation of δαt . Under the null, LB (τ) is asymptotically

χ2
(τ). For small sample sizes and for the 1% VaR, Berkowitz et al. (2011) show that the

asymptotic critical values can be highly misleading. Alternatively, they rely on the Monte Carlo

testing technique proposed by Dufour (2006).

Table 3 also reports the p-values of the LB (τ) test in (14) for τ = 5 and 20 for the same

procedures and periods considered above when using the asymptotic critical values. First of all,

observe that the number of rejected procedures increases with respect to that obtained using

the LRcc test. This is clear in the first split considered. Therefore, it seems that considering

the dependence between failures with more than one lag could be important to decide about the

adequacy of VaR forecasts. In the very tranquil period (2), the results of the LRcc and LB (τ)

tests are identical. Also note that results for the two values of τ considered are very similar.

Only the EGARCH models with Normal and Skewed errors and the bootstrap are not rejected

in any of the out-of-sample periods considered.

The dynamic quantile (DQ) test, proposed by Engle and Manganelli (2004), can be obtained

by testing the orthogonality restriction in (13) when Xt−1 includes lags of VaRαt and of δαt .
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Berkowitz et al. (2011) show that the DQ test appears to be the best backtest for the 1% VaR

with all other tests having much lower powers. However, Herwartz (2009) analyzes the finite

sample performance of the DQ test and shows that it is oversized in conventional sample sizes

when using the asymptotic distribution.

The last column of Table 1 reports the p-values of the DQ test9. In period (1), the results are

very similar to those of LRcc while, in period (2), the number of models rejected is even smaller

than when implementing the LRcc test. Note that in the very tranquil period (2), only the

WHS model is rejected. The models which are not rejected in any of the out-of-sample periods

considered are the same as when implementing the LRcc test plus CEVT with MB.

The fact that the DQ test is based on a linear regression with a binary dependent variable, has

inspired some authors to propose VaR diagnostics based on logit regressions; see Clements and

Taylor (2003) and Patton (2006) who propose an LR test. Herwartz and Waichman (2010) show

how to use bootstrap and Monte Carlo procedures to approximate the finite sample distribution

of the DQ and LR tests. Their Monte Carlo results show that when α = 0.01, both tests have

serious distortions if the asymptotic approximation is used to approximate the finite sample

distribution even when H = 3000. However, using the DQ test and approximating its finite

distribution by bootstrapping gets the best results. They also show that the power of both

tests is very low regardless of how the finite sample distribution is approximated. Furthermore,

in their Monte Carlo experiments, Gaglianone et al. (2011) show that the asymptotic critical

values of the LM-type tests are only accurate if the sample size corresponds at least to four years

of daily observations, i.e., H ≥ 1000.

The backtesting methodologies described above only focus on the number of VaR exceptions

and totally disregard their magnitude. Wong (2010) criticizes the statistics proposed by Chris-

toffersen (1998) because they are two-tailed and, consequently, they can reject a risk model for

overconservative. However, note that, as mentioned above, a risk model can also be rejected

for being overconservative as this is not desirable for financial institutions. Alternatively, Wong

(2010) proposes the tail risk statistic defined as follows

TR = − 1

T

T∑
i=1

(Rt − α)I(Rt < α). (15)

The TR statistic tells a risk manager the size of aggregate tail losses a portfolio may incur

over the period considered. The asymptotic distribution of the TR statistic is derived under

the assumption of Normal returns. Consequently, Wong (2010) proposes using Berkowitz and

O’Brien (2002) and Kerkhof and Melenberg (2004) and transforming the non-Normal density

into a Normal one and applying the saddlepoint analysis to the transformed variable. However,

this transformation complicates the empirical application of the TR statistic. Alternatively,

Colletaz et al. (2013) propose the Risk Map as a new method for validating risk models which

jointly accounts for the number and magnitude of extreme losses and graphically summarizes all

information about the performance of a risk model. The Risk Map boils down to the intuition

that a large loss not only exceeds the regular VaR with level α but is also likely to exceed

a VaR defined with a much lower probability. In order to test a risk model, Colletaz et al.

9The computation of the DQ test has been carried out implementing the Matlab codes of Simone Manganelli

available at http://www.simonemandanelli.org/Simone/Research.html
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(2013) propose testing whether the sequences of exceptions (with respect to the 1% VaR) and

superexceptions (with respect to the lower quantile) satisfy the conditions of the unconditional

coverage test of Kupiec (1995). The corresponding p-value is reported in a three-dimensional

Risk Map.

Alternatively, instead of testing implications based on hits, several authors consider tests based

on the duration sequence, i.e. the number of observations between two consecutive failures; see

Christoffersen and Pelletier (2004) and Haas (2005). Under a correct VaR model, durations

should have a geometric distribution with an average equal to the reciprocal of the coverage

probability; see Candelon et al. (2011) for further developments of duration tests in the context

of GMM. Santos and Alves (2012b) also propose an independence test based on durations. Very

recently, Ziggel et al. (2014) propose a weighted test of the unconditional coverage and iid

assumptions extending the duration test of Christoffersen and Pelletier (2004). The weighted

test allows the user to choose the weight with which the test of unconditional coverage enters the

joint test of conditional coverage. It is based on iid Bernoulli random variables and, according

to the authors, it is very intuitive and easy to implement.

The tests described above are based on the LM principle and have low finite sample power

against a variety of model misspecifications; see Christoffersen et al. (2001) and Gourieroux and

Jasiak (2010a) who point out that the count of exceedances may be misleading as an instrument

of VaR control. The problem arises because the binary variables, δαt , are constructed to represent

rare events and, in finite samples, there could be few extreme observations leading to a lack of

information needed to reject a misspecified model. LM tests sacrifice too much information

implying a reduce power against misspecified VaR forecast models. Alternatively, tests based

on the quantile regression methodology, which can be interpreted as Wald tests, have been

proposed. For example, Gaglianone et al. (2011) propose a backtest that relies on the quantile

regression of Koenker and Xiao (2002). They propose the following random coeffi cient model

that can be used to construct a Wald test for the null hypothesis that a given VaR model is

correctly specified

Rt = β0(Ut) + β1(Ut)V aRt, (16)

where Ut are iid U(0,1) variables and βi(Ut), i = 0, 1 are assumed to be comonotonic in Ut. The

null hypothesis of adequate coverage can be written as a Mincer and Zarnowitz (1969) test as

follows

H0 :

{
β0(α) = 0

β1(α) = 1.
(17)

The corresponding test, denoted as VaR Quantile Regression (VQR), uses more information

to reject a misspecified model, which makes it to deliver more power in finite samples than the

LM tests described above. The asymptotic distribution of the VQR test is based on the strict

stationarity of Rt and VaRt. The Monte Carlo experiments reported by Gaglianone et al. (2011)

show that, when α = 0.01, the empirical size of the VQR test is much larger than the nominal

in small samples. However, when the sample size is as large as T = 2500, all tests have similar

sizes close to the nominal. With respect to power, the DQ and VQR tests have similar powers

in small samples with the second being preferred if T ≥ 1000. Furthermore, it is important to

note that extensions of the methodology proposed by Gaglianone et al. (2011) to multivariate

VaR forecast models and/or to ten-step-ahead VaRs are not straightforward.

Finally, Hoogerheide et al. (2012) propose an extension of the forecast rationality and op-
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timally tests proposed by Patton and Timmermann (2012) which involve no observations of the

target variable. They show that the power of the new test is larger than that of the traditional

unconditional and conditional coverage tests in the context of simple AR and ARCH models.

5.1.2 Tests for multiple VaR levels

Several authors show that the conclusions about which model is more adequate to forecast

the VaR depend on the particular quantile of the distribution of returns being forecast; see,

for example, Giacomini and Komunjer (2005), Kuester et al. (2006), Gerlach et al. (2011),

Gaglionone et al. (2011) and Chen, Gerlach, Lin and Lee (2012). Therefore, when looking at

the adequacy of VaR forecasts, it seems important to look for tests in which several quantiles

are tested jointly.

Berkowitz (2001) proposes testing for the adequacy of the whole density. A weakness of this

test is that models with a superior density forecast may not necessarily meet the requirements

of risk managers that are mainly concerned about forecasting the tails. Consequently, Hurlin

and Topkavi (2007) propose a new VaR validation procedure that is half way between focusing

on one single VaR level and using the whole forecast density by looking at violations over

multiple coverages. The proposed test extends the LM test of Berkowitz et al. (2011) in

(14) to the multivariate case by considering the vector of centered hits which is defined as

δt = (δα1
t , ..., δ

αm
t )′. Joint conditional accuracy of VaR forecasts implies that Cov(δt, δt−j) = 0

for j 6= 0. Consequently, Hurlin and Topkavi (2007) propose the following statistic

Qm(J) = T
J∑
i=1

(
vecR̂j

)′ (
R̂−10 ⊗ R̂

−1
0

)(
vecR̂j

)
, (18)

where R̂j = D1/2ĈjD
1/2 with D = Im � Ĉ0, being � the element to element multiplication and

Ĉj = 1
H

∑H
t=1 δtδ

′
t−j ; see Sajjad et al. (2008) for an empirical application of this test. Herwartz

(2009) shows that the test in (18) is oversized when using the asymptotic distribution. By using

Monte Carlo critical values, the test in (18) turns out to be more powerful than the DQ test.

However, a false specification of the tail features of the distribution of the errors is likely to come

along with a failure of the VaR model which Herwartz (2009) shows that remains undetected

when implementing the statistic in (18). Furthermore, Leccadito et al. (2014) point out that

if the coverage rates considered in the test are very close to each other, then the matrix R̂0 is

singular and, consequently, the Qm(J) test cannot be calculated. Gourieroux and Jasiak (2008)

also consider multilevel tests.

Alternatively, Perignon and Smith (2008) propose a multilevel test that extends the uncon-

ditional test of Kupiec (1995). However, the authors only present a graphical analysis rather

than a formal testing procedure. Alternatively, Escanciano and Velasco (2010) propose omnibus

specification tests extending the unconditional, conditional and independence tests of Kupiec

(1995) and Christoffersen (1998) to test a possible continuum of quantiles. The asymptotic

critical values are approximated by subsampling which accounts for parameter estimation un-

certainty. More recently, Leccadito et al. (2014) propose two alternative multilevel tests. The

first test is a multilevel generalization of the Christoffersen (1998) test while the second is a

Pearson-type test based on the bivariate distribution of the total number of violations for all

levels considered and its lag. They show that the proposed tests are superior with respect to
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those of Hurlin and Topkavi (2007) and Pérignon and Smith (2008). However, there is not

comparison with the tests proposed by Escanciano and Velasco (2010).

5.2 Comparing alternative VaR forecasts

The backtesting procedures described above are designed to test whether a particular procedure

gives accurate VaR forecasts. However, when several accurate estimators are available, one often

wants also to decide which estimator is best among them. With this goal, Lopez (1999) proposes

to choose the procedure that minimizes C(m) =
∑T+H

t=T+1C
(m)
t where

C
(m)
t =

 f
(
Rt, V aR

(m)
t

)
if Rt < V aR

(m)
t ,

g
(
Rt, V aR

(m)
t

)
if Rt ≥ V aR(m)

t ,

where the index m stands for VaR procedure m and f(x, y) and g(x, y) are functions such that

f(x, y) ≥ g(x, y); see Lopez (1999) and Sener et al. (2012) for a description of alternative

functions. Sarma et al. (2003) and Angelidis and Degiannakis (2007) use the Regulatory Loss

function (RLF) in which f(Rt, V aR
(m)
t ) =

(
Rt − V aR(m)

t

)2
and g

(
Rt, V aR

(m)
t

)
= 0. More

recently, Sener et al. (2012) propose a loss function that penalizes for the magnitudes of the

errors, the autocorrelations between the errors and excessive capital allocations.

It is important to note that, if quantile forecasts are to be assessed, Gneiting (2011) propose

using a consistent scoring Generalized Piecewise Linear (GPL) family of functions. A function

is consistent for the α quantile if and only if it is of the following form

S(x, y) =

{
(I(x ≥ y)− α) 1

|b|
(
xb − yb

)
if b ∈ R/ {0}

(I(x ≥ y)− α) if b = 0.

Gneiting (2011) points out that the loss functions proposed by Lopez (1999) and extended

by Caporin (2008) are not of the GPL form and, consequently, this could explain why these

functions are not able to properly distinguish between the true Data Generating Process (DGP)

and alternative models to forecast the VaR; see Caporin (2008).

Table 4 reports the values of C(m) for RLF for those models that are not rejected by at least

two backtests in each of the out-of-sample periods considered. In the first out-of-sample period,

the minimum C(m) is obtained by the EGARCH model with Student errors. However, when

looking at the values of C(m) in the second very tranquil out-of-sample period, all the models

have similar results and therefore, it is not obvious whether one can identify a "best" model.

On the other hand, Giacomini and Komunjer (2005) and Bao et al. (2006) compare competing

VaR forecasts using C(m) with C(m)
t defined with the following predictive quantile loss function

(PQLF)

C
(m)
t = [α− 1 (Rt < V aRαt )] [Rt − V aRαt ] . (19)

Table 4 reports the corresponding values of C(m). It is remarkable that, regardless of the out-

of-sample period, the values of C(m) are very similar among all models and periods considered.

For example, only the CAViaR with the Absolute Value function and the EVT with BM seems

to be slightly higher in periods (1) and (2).

Giacomini and Komunjer (2005) also propose to compare two VaR forecasts versus their

combination using a conditional quantile forecast encompassing test of superior predictive ability.
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A rejection of the test provides statistical evidence that the combination outperforms the two

individual forecasts.

Alternatively, when trying to establish the superiority between two models, Sarma et al.

(2003) propose testing H0 : {θ = 0} against H1 : {θ < 0} , where θ is the median of the distri-

bution of the loss differential between procedure i and procedure j, zt = C
(i)
t −C

(j)
t . Under the

null hypothesis, the exact distribution of Sij =
∑T+H

t=T+1 1 (zt ≥ 0) is binomial with parameters

(H, 0.5) while the asymptotic distribution is given by

Sij − 0.5H√
0.25H

a∼ N (0, 1) ; (20)

see Diebold and Mariano (1995). If H0 is rejected, model i is significantly better than model j for

the chosen loss function. Note that the statistic in (20) can be obtained as the t-statistic of the

regression of zt on a constant using the Newey andWest (1987) heteroscedasticity autocorrelation

consistent standard errors.

An alternative to the test in (20) is the test of conditional predictive ability, proposed by

Giacomini and White (2006), which takes into account the estimation uncertainty due to model

selection. The one-step-ahead conditional predictive ability (CPA) statistic is given by

CPA = H

(
H−1

T+H−1∑
t=T

ht∆C
(m)
t+1

)′
Ω̂−1H

(
H−1

T+H−1∑
t=T

ht∆C
(m)
t+1

)
, (21)

where Ω̂H is a consistent estimate of the variance of ht∆C
(m)
t+1 and ht is a q × 1 vector given

by ht =
(

1,∆C
(m)
t

)′
. Under the null hypothesis of equal conditional predictive ability, CPA is

asymptotically distributed as a χ2
q .

On the other hand, Bao et al. (2006) and Angelidis and Degiannakis (2007) propose to com-

pare alternative VaR forecasts using the test of superior predictive ability (SPA) of Hansen

(2005). The null hypothesis, that the benchmark model (m = 0) is not inferior than the altern-

atives, is tested with the following statistic

SPA = max

[
max

m=1,...,M

H1/2zm
ω̂m

, 0

]
, (22)

where ω̂2
m is a consistent estimator of ω2

m = var
(
H1/2zm

)
and zm = H−1

∑H
t=1(C

(0)
t − C

(m)
t ).

The estimation of ω2
m and the p-values of SPA can be obtained using the stationary bootstrap of

Politis and Romano (1994) with the optimal block-size chosen by the block selection algorithm

proposed by Politis and White (2004, 2009). Recently, Sener et al. (2012) propose a predictive

ability test that does not require a benchmark model allowing for the simultaneous comparison

of several procedures.

Table 4 reports the p-values of the SPA test when, for each out-of-sample period, each model

is selected as benchmark against all the others. We can observe that, in period (1), when the

RLF function is used, none of the models is rejected as inferior against the others if the nominal

size of the test is 1%. On the other hand, the results are completely different when the PQLF

is implemented. In this case, several models are rejected depending on the particular period

considered. Consequently, we can conclude that the ranking of the models is highly dependent

on the period considered and the function used for it.
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5.3 A final remark on backtesting

The literature on forecasting and backtesting VaR largely assumes that the appropriate data

are used. However, Frésard et al. (2011), using information from annual reports of the largest

200 US and international commercial banks, document that a large fraction of them artificially

boost the performance of their models by polluting their returns with extraneous profits such

as intraday revenues, fees, commissions, net interest income and revenues from market making

or underwriting activities. They find that over the period 2005-2008, less than 6% of the largest

commercial banks in the world evaluate their VaR models using the appropriate uncontaminated

data. They also show that all available backtesting procedures are highly sensitive to data con-

tamination. For example, using the "traffi c light" approach developed by the Basel Committee,

23.5% of the VaR models are rejected when tested with uncontaminated data whereas 10.8%

are rejected when tested with returns that include both fees and intraday trading revenues.

Therefore, data contamination has dramatic implications for model validation and can lead to

the acceptance of misspecified VaR models and significantly reduced regulatory capital.

6 VaR forecasting in practice

"Overall, this crisis has reinforced the importance of risk management", Jorion

(2009).

In spite of its limitations, the main advantages of VaR are simplicity, wide applicability and

universality. Although a myriad of procedures are currently available for forecasting and testing

VaR, no consensus has been reached on which procedures are best. As the illustration above

shows, for a given returns series, the ranking of VaR forecast procedures depend on the period of

time considered, the procedures compared and the measures used to compare them. Dias (2013)

also points out the importance of market capitalization and the particular period when ranking

the performance of different procedures. She concludes that VaR is always wrongly estimated if

we do not take crises and non-crises periods into account and that market capitalization has a

positive effect on the estimation of VaR. There are many papers comparing the performance of

alternative VaR forecasts with very mixed results; see, for example, Angelidis et al. (2007). In

this section, we focus on those that consider the performance of VaR forecasts during the recent

financial crisis.

In practice, banks appear to be wary of being overly optimistic about their level of market

risk during tranquil periods. In fact, empirical evidence presented by Berkowitz and O’Brien

(2002), Pérignon et al. (2008) and Pérignon and Smith (2010b) suggests that they systematically

overestimate their VaR; see also Pérignon and Smith (2010a) for an analysis of the potential

causes of this overestimation. The opposite situation seems to occur in times of stressed market

conditions. During the 2007/2008 financial crisis, banks systematically underestimated their

VaR; see, for example, Chen, Gerlach, Lin and Lee (2012). This alternation of over- and un-

derestimation of market risk levels may, at least to some extent, be due to the fact that VaR

measures typically are calibrated using historical data. Following a period of calm financial

markets, the VaR estimates and the accompanying CR can decline to low levels, but then they

might underestimate risk during a period of stress that lies ahead.
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With respect to the comparison of VaR forecasts obtained using different procedures, Chen,

Gerlach, Lin and Lee (2012) compare empirically a range of parametric models combined with

four error distributions implemented to four Asia-Pacific stock markets. They conclude that

GARCH models always outperform stochastic volatility models when estimated using MCMC

methods. Furthermore, asymmetric models were favoured pre-crisis while models with Skewed-

Student errors are ranked best during and post crisis. In this latter period, all models forecast

VaR less accurately and anti-conservatively. Also, Gerlach et al. (2013) conclude that allowing

for skewness in the error distribution may be important in the post-crisis period. However, in

the pre-crisis period models with Student errors or symmetric Laplace distributions can do a

good job. Similar conclusions are obtained by Halbleib and Pohlmeier (2012) who conclude that

models with Skewed-Student distribution can do a good job during the crisis period. They also

show that the CEVT procedure can have a reasonable performance.

Recently, Boucher et al. (2014) conclude that the RiskMetrics and GARCH-based models

are among the preferred ones. However, many authors conclude that methods assuming specific

densities may yield wrong forecasts when the model for the conditional moments is misspe-

cified and conclude that EVT procedures produce the most accurate forecasts of extreme losses.

For example, Zikovic and Aktan (2011) carry out an extensive empirical comparison of proced-

ures implemented to daily returns of seven stock indexes and two commodities observed from

04/01/2000 to 02/01/2009. They conclude that the CEVT is satisfactory with the WHS being

a viable alternative. In the context of exchange rates, Wang et al. (2010) conclude that, when

compared with HS, EVT is more appropriate to forecast the VaR of the Yuan. On the contrary,

other authors as, for example, Sener et al. (2012), rank EVT as having the worst performance

in a more extensive analysis of series and procedures. Sener et al. (2012) conclude that VaR

forecasts based on asymmetric CAViaR and EGARCH models have the best performance. The

preference of CAViaR is also established by Chen, Gerlach, Hwang and McAleer (2012) and

Chen and Lu (2012). Also, Tolikas (2014) have shown that when EVT is based on the GEV dis-

tribution, the corresponding VaR forecasts underestimate risk. Alternatively, he proposes using

the Generalized Logistic distribution for the extremes which performs better during the crisis

period. Chen and Gerlach (2013) also conclude that differences between models are dominated

by the error distribution.

7 Conclusions

In this paper, we review recent contributions on forecasting and backtesting the VaR measure of

risk. The obvious benefit of VaR is that it is easily and intuitively understood by non-specialists.

The different procedures and tests have been illustrated by estimating the VaR of a series of

daily S&P500 returns observed over a period that covers the recent global financial crisis.

In the empirical illustration considered in this survey, when looking at the adequacy of al-

ternative procedures to obtain VaR forecasts, the results of a particular test could be different

depending on the number of out-of-sample observations and the particular period being ana-

lyzed. There is not a procedure that clearly outperforms others and, except the EGARCH model

with Skewed-Student errors, all of them are rejected by one test and/or out-of-sample period.

It seems that rather simple forecasts based on modelling the evolution of conditional variance

with asymmetric GARCH-type models and asymmetric leptokurtic errors are among the most
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competitive ones. Time varying skewness and kurtosis of the distribution of standardized re-

turns does not seem to improve VaR forecasts. Introducing bias correction, the uncertainty of

VaR forecasts and their validation are important topics that still deserve more research to reach

more conclusive results on the performance of alternative procedures.

It is important to note that although this paper is devoted to surveying VaR forecasting

procedures, the recent Basel accords suggest using Expected Shortfall (ES) in place of VaR; see

Acerbi and Tasche (2002) for a definition of ES. Therefore, ES is likely to gain prominence in

the future; see, for example, Wu and Xiao (2002), Yamai and Yoshiba (2005), Komunjer (2007),

Chen (2008), Chen et al. (2012), Lönnbark (2013), Stoyanov et al. (2013), Brandtner (in press)

and Xu (in press) for some recent references on forecasting ES. However, Gneiting (2011) shows

that it is not possible to measure the adequacy of ES using a consistent scoring function.
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Table 1. Summary of VaR forecast procedures

Procedures Mnemonics Selected recent papers Extensions

Direct (one-step) forecasts of the quantile of returns

Historica l S imulation HS Pritsker (2006)

Weighted H ist.S imul. WHS Zikovic and Aktan (2011)

CAViaR

Adaptive

Absol. Value

Asym . slop e

Ind irect GARCH

CAV(1)

CAV(2)

CAV(3)

IG

Engle and Manganelli (2004)

Dy. Adaptive Quantile Gouri. and Jasiak (2008)

S ignal extraction DRos. and Harvey (2009)

Asymmetry Gerlach et al. (2011)

T im e-vary ing param . Huang et al. (2010)

Explanatory variab les Rub. and Sanc-Mar (2013)

Cond. Autoreg. Exp ect. Taylor (2008a)

Nonparam etric

Kernel sm ooth ing

Art.neural network

Quantile regression

Cai and Wang (2008)

Ferra . and Quin .-R . (in press)

Xu (2013), Yan et al. (2013)

,

Ext. Value Th.

B lo ck Maxima

Peak over threshold

H ill

EVT-BM

EVT-POT

EVT-H

D ieb old et a l. (2000)

Chav.-D em . et a l. (2014)

H ill (1975)

(Two-step) forecasts: conditional variance and quantile of standardized returns

Conditional variance

GARCH-typ e Bali and Theodosiou (2007)

Sto chastic Volatility SV Chen, G er., L in and Lee (2012)

Nonparam etric

Realized volatility Louzis et a l. (2013)

Quantile of standardized returns

Given distribution

Conditional H istorica l S imulation CHS Hull and White (1998) Robust Dupuis et a l. (in press)

Conditional Extrem e Value Theory CEVT McNeil and Frey (2000) Robust Mancin i and Tro jan i (2011)

F iltered H istorica l S imulation FHS Bar.-Ad. et a l. (1999, 2002)

Bayesian Hoog. and van D ijk (2010)

Quantile regression
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Table 2 Summary of VaR backtesting procedures

Procedures Mnemonics Selected recent papers Extensions

Adequacy

Single level Number of V iolations

Unconditional coverage

Conditional coverage

L ikelihood ratio

Portmanteau

Dynam ic Quantile

UC

CC

LRCC

LB

DQ

Kupiec (1995)

Christoffersen (1998)

Christoffersen (1998)

Berkow itz et a l. (2011)

Engle and Manganelli (2004)

Param eter uncerta inty Escanciano and O lmo (2010)

Bootstrap Escanciano and O lmo (2011)

Logit regressions Patton (2006)

Magnitude of v io lations
Tail risk

R isk map
TR

Wong (2010)

Colletaz et a l. (2013)

Durations Christoffersen and Pelletier (2004)

Quantile regression VQR Gaglionone et al. (2011)

Forecast rationality Hoogerheide et a l. (2012)

Multip le levels W hole density Berkow itz (2001)

V iolations Hurlin and Topkavi (2007)

Omnibus Escanciano and Velasco (2010)

Perason-typ e Leccacito et a l. (2014)

Ranking

Regulatory Loss Function RLF Lop ez (1999)

Generalized P iecew ise L inear GPL Gneiting (2011)

Pred ictive Quantile Loss Function PQLF G iacom in i and Komunjer (2005)

M edian of loss d ifferentia l Sarma et al. (2003)

Conditional pred ictive ab ility CPA G iacom in i and White (2006)

Sup erior pred ictive ab ility SPA Bao et al. (2007) No b enchmark Sener et a l. (2012)



Nieto & Ruiz 45

Table 3. p-values of backtesting tests of S&P500 one-step-ahead 1% VaR forecasts obtained

using alternative procedures during different periods: (1) 28th May 2010 - 19th May 2014

(H = 1000); (2) 22nd May 2013 - 19th May 2014 (H = 250). CAViaR computed using (1)

Adaptive; (2) Absolute value; (3) Asymmetric. The models rejected when the significance level

is 10% appear in bold.

LRCC LB(5) LB(20) DQ

(1) (2) (1) (2) (1) (2) (1) (2)

HS 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.33

WHS 0.00 0.00 0.00 0.02 0.00 0.08 0.00 0.00

CAV iaR(1) 0.16 0.08 0.00 0.00 0.00 0.00 0.00 0.28

CAV iaR(2) 0.38 0.00 1.00 0.00 0.13 0.00 0.00 0.28

CAV iaR(3) 0.57 0.56 0.02 1.00 0.01 1.00 0.62 0.60

IG 0.03 0.00 0.00 0.00 0.00 0.00 0.08 0.28

GARCH −N 0.05 0.34 0.04 0.99 0.52 0.94 0.02 0.25

GARCH − t 0.03 0.08 0.00 0.00 0.00 0.00 0.07 0.28

GARCH − S 0.75 0.56 0.01 1.00 0.08 1.00 0.71 0.58

EGARCH −N 0.01 0.63 0.76 1.00 0.62 1.00 0.01 0.31

EGARCH − t 0.21 0.93 1.00 1.00 0.01 1.00 0.12 0.70

EGARCH − S 0.90 0.93 0.12 1.00 0.55 1.00 0.99 0.68

CHS 0.90 0.56 0.00 1.00 0.00 1.00 0.12 0.53

CEV T −MB 0.43 0.08 1.00 0.00 1.00 0.00 1.00 0.28

CEV T −GPD 0.38 0.56 0.00 1.00 0.14 1.00 0.45 0.58

CEV T −Hill 0.03 0.56 0.00 1.00 0.00 1.00 0.07 0.58

FHS 0.08 0.08 0.00 0.00 0.00 0.00 0.04 0.28

Bootstrap 0.76 0.56 0.01 1.00 0.76 1.00 0.82 0.59



Nieto & Ruiz 46

Table 4. Comparison of VaR forecasts obtained by alternative procedures. The values reported

for C(m) are the statistic obtained for each model. The minimum C(m) appears in bold. The

values reported for the SPA test are p-values of the null that the model is inferior to all other

models considered. In bold the models not rejected as inferior when the significance level is

10%.

28th May 2010-19th May 2014 22nd May 2013-19th May 2014

C(m) SPA C(m) SPA

RLF PQLF RLF PQLF RLF PQLF RLF PQLF

CAV iaR(1) - - - - 0.02 0.17 1.00 0.00

CAV iaR(2) 2.22 0.54 0.47 0.00 - - - -

CAV iaR(3) 9.24 0.32 0.61 0.85 0.00 0.06 0.93 0.99

GARCH −N - - - - 0.35 0.06 0.36 1.00

GARCH − t - - - - 0.35 0.06 1.00 0.00
GARCH − S 4.42 0.33 0.43 0.65 0.03 0.06 0.89 0.95

EGARCH −N 8.45 0.33 0.06 0.70 1.29 0.06 0.65 0.89

EGARCH − t 0.66 0.33 0.04 0.00 0.23 0.07 0.72 0.01
EGARCH − S 2.25 0.31 0.02 0.99 0.76 0.07 0.63 0.41

CHS 5.56 0.33 0.38 0.75 0.07 0.06 0.78 0.95

CEV T −BM 2.77 0.45 0.98 0.00 0.08 0.10 1.00 0.00
CEV T −GPD 4.70 0.33 0.48 0.74 0.01 0.06 0.91 0.71

CEV T −Hill - - - - 0.02 0.06 0.79 0.72

FHS - - - - 0.37 0.37 1.00 0.00

Bootstrap 5.67 0.33 0.65 0.89 0.04 0.06 0.83 0.98
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Figure 1: S&P500 returns (first row) observed from 25th July 2005 up to 19th May 2014 with vertical lines

separating the in-sample and out-of-sample periods considered. Sample autocorrelations of returns (first

column), sample autocorrelations of absolute returns (second column) and cross-correlations between

returns and absolute returns (third column) for returns observed during: i) 25th July 2005 up to 27th

May 2010 (second row); ii) 28th May 2010 up to 19th May 2014 (third row); iii) 25th July 2005 up to

21th May 2013 (fourth row); iv) 22th May 2013 up to 19th May 2014 (fith row).
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Figure 2: Rolling window one-step-ahead 1% VaR forecasts of S&P500 returns based on i) T=1220 and

H=1000 (continuous line) and ii) T=1970 and H=250 (discontinuous line), obtained using HS (top panel)

and WHS (bottom panel) procedures.
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Figure 3: Rolling window one-step-ahead 1% VaR forecasts of S&P500 returns based on i) T=1220 and

H=1000 (continuous line) and ii) T=1970 and H=250 (discontinuous line), obtained using CAViaR with

the adaptive function (first panel), the absolute value function (second panel) asymmetric function (third

panel) and Indirect GARCH (fourth panel).
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Figure 4: Rolling window estimates and 95% confidence intervals of the EGARCH(1,1) parameters ob-

tained maximizing the Skewed-Student likelihood fitted to S&P500 returns based on i) T=1220 and

H=1000 (continuous line) and ii) T=1970 and H=250 (discountinuous line)
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Figure 5: Rolling window one-step-ahead 1% VaR forecasts of S&P500 returns based on i) T=1220

and H=1000 (continuous line) and ii) T=1970 and H=250 (discontinuous line), obtained after fitting

a GARCH model assuming: i) Normal conditional returns (top panel); ii) Student conditional returns

(middle panel); and iii) Skewed-t conditional returns (bottom panel).
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Figure 6: Rolling window one-step-ahead 1% VaR forecasts of S&P500 returns based on i) T=1220

and H=1000 (continuous line) and ii) T=1970 and H=250 (discontinuous line) obtained after fitting the

EGARCH model assuming: i) Normal conditional returns (top panel); ii) Student-ν conditional returns

(middle panel); and iii) Skewed-t conditional returns (bottom panel).
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Figure 7: Rolling window one-step-ahead 1% VaR forecasts of S&P500 returns based on i) T=1220 and

H=1000 (continuous line) and ii) T=1970 and H=250 (discontinuous line), obtained using: a) CHS (top

panel); b) FHS (middle panel); and c) Bootstrap (bottom panel).
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Figure 8: Rolling window one-step-ahead 1% VaR forecasts of S&P500 returns based on i) T=1220 and

H=1000 (continuous line) and ii) T=1970 and H=250 (discontinuous line), obtained using CEVT with i)

BM (first row), ii) GDP (second row), and iii) Hill estimator.
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Figure 9: One-step-ahead 1% VaR forecasts of S&P500 returns obtained using CEVT with GPD (first

column) and Hill (second) column procedures with the threshold chosen as proposed by Gonzalo and

Olmo (2004) (first row) and Gencay and Selcuk (2004) (second row). Continuous and discontinuous lines

represent the forecasts obtained with the first and second splits of the sample, respectively.




