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Difference in persistent 
tuberculosis bacteria 
between in vitro and sputum 
from patients: implications 
for translational predictions
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Ulrika S. H. Simonsson1*

This study aimed to investigate the number of persistent bacteria in sputum from tuberculosis 
patients compared to in vitro and to suggest a model-based approach for accounting for the potential 
difference. Sputum smear positive patients (n = 25) provided sputum samples prior to onset of 
chemotherapy. The number of cells detected by conventional agar colony forming unit (CFU) and most 
probable number (MPN) with Rpf supplementation were quantified. Persistent bacteria was assumed 
to be the difference between  MPNrpf and CFU. The difference in persistent bacteria between in vitro 
and human sputum prior to chemotherapy was quantified using different model-based approaches. 
The persistent bacteria in sputum was 17% of the in vitro levels, suggesting a difference in phenotypic 
resistance, whereas no difference was found for multiplying bacterial subpopulations. Clinical trial 
simulations showed that the predicted time to 2 log fall in  MPNrpf in a Phase 2a setting using in vitro 
pre-clinical efficacy information, would be almost 3 days longer if drug response was predicted 
ignoring the difference in phenotypic resistance. The discovered phenotypic differences between 
in vitro and humans prior to chemotherapy could have implications on translational efforts but can be 
accounted for using a model-based approach for translating in vitro to human drug response.

Treatment of tuberculosis (TB) is today consisting of an extensive treatment duration with a combination of 
several  drugs1. Shortening the time to treatment success is a pillar in TB research in order to improve the qual-
ity of life for patients, increase adherence and potentially improve relapse rates. The latter is an ambition that 
is likely to depend on drugs capability to act on hard-to-kill  persisters2. One part of the current efforts in drug 
development against TB focuses on the relevance of drug effect on persisters when generating candidate drugs 
for further  development3. Due to the expected importance of these phenotypically resistant bacteria in treatment 
of TB, it is crucial to determine an experimental drug’s efficacy not only on multiplying bacteria, but on persist-
ers as well. It is important that research efforts that are initiated utilize informative pre-clinical experimental 
methods and analyze the generated data in an innovative manner. Usage of exposure–response models is an 
informative way of incorporating information from multiple sources, such as pharmacokinetics and data from 
one or several biomarkers into one analysis. As the biomarkers tell different stories about the status of disease, 
models incorporating different biomarkers are important to make informed  decisions4 and prospectively predict 
different experimental conditions.

Originally developed using in vitro data, the Multistate Tuberculosis Pharmacometric (MTP)  model5 
describes the relationship between three subpopulations of Mycobacterium tuberculosis, a fast-, a slow- and a 
non-multiplying state (persisters) corresponding to difference in metabolic activity which the bacteria can switch 
between (Fig. 1). The framework has been applied to describe in vitro natural growth and drug effect  data5,6, 
in vivo  data7 and also on clinical trial  data8,9 bridging exposure from a population pharmacokinetic model as for 
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example  rifampicin10 and biomarker data. As the model has ability to describe data from both pre-clinical and 
clinical phase of drug development, it has a role in translational efforts which previously have been demonstrated 
in a study that predicted rifampicin early bactericidal activity (EBA) efficacy data based on in vitro information 
and translational  factors11. It has also been used as a show case example of important quantitative pharmacol-
ogy work that can accelerate drug  development12. Clinical trial simulation can also be used to evaluate potential 
difference in efficacy for subgroups such as renal impairment for drugs that are renally  cleared13, the implication 
of concomitant  food14 or polymorphism for drugs being given concomitant with a drug with enzyme inductive 
 properties15. What differentiates the MTP model from other empirical in silico  models16 is the incorporation of 
the persisters state denoted as non-multiplying bacteria. Bacteria are described as being able to transfer to and 
from the different substates and the change from a multiplying to a stationary phase culture in vitro allowed the 
quantification of the ratio of fast- and slow-multiplying bacteria to persistent bacteria in the original analysis 
based on in vitro CFU  data5. It is not possible to directly quantify proportion of persistent bacteria in relation 
to the multiplying bacteria in humans using only the CFU biomarker since TB patients are only presented with 
symptoms when they are in the stationary phase.

Studies have shown that using a most probable number (MPN) assay in media supplemented with culture 
filtrate containing resuscitation promoting factors (rpfs) quantifies an occult population corresponding to per-
sisters, which constitutes a majority of the total bacterial  population17. In contrast to CFU counts that lack the 
ability to quantify subpopulations not able to grow on plates, assays such as  MPNrpf provide direct information 
on persisters. Note that CFU is able to inform about persisters indirectly for instance under assumptions of a 
model like the MTP model. By using a model-based analysis, it is possible to simultaneously analyze CFU and 
 MPNrpf counts to investigate how the biomarkers are related. Further, since the  MPNrpf biomarker quantifies 
persistent bacteria it could be used to investigate if the relative amount of persistent bacteria is the same in an 
in vitro system as in patients.

The aim of this analysis was to investigate if there is a difference in number of persistent bacteria between TB 
patients and in vitro and to suggest a model-based approach for accounting for the potential difference.

Results
Pharmacodynamic modeling. This study included simultaneous analysis of CFU and  MPNrpf biomarker 
data from 25 patients prior to treatment. The biomarker data was simultaneously analyzed with non-linear 
mixed effects modeling using the MTP model. Re-estimation of the system carrying capacity  (Bmax) enabled for 
adjustment from the in vitro estimate to the magnitude of the biomarker quantity derived from sputum samples, 
provided by patients. In this way, the model accounted for that the inoculum in vitro is different from baseline 
biomarker in human. As such, the difference in persistent bacteria between in vitro and in human is not due to 
difference in baseline/inoculum. The addition of inter-individual variability (IIV) in  Bmax was statistically sig-
nificant for all implementation approaches (∆OFV = 13.64, − 9.86, − 9.86 for Method 1, 2 and 3 respectively). IIV 
was not supported by the data when added on any of the initial bacterial number parameters.

The addition of a clinical conversion factor (CCF), adjusting the contribution of the persister bacterial sub-
population to the total bacterial load (i.e.  MPNrpf quantity) in sputum relative to in vitro was statistically signifi-
cant (∆OFV = − 7.07, − 12.74, − 12.74 for Methods 1, 2 and 3 respectively) using all different approaches to handle 
the predictions. CCF was not statistically significant for any of the other bacterial subpopulations, regardless 
of the different approaches to handle the predictions. The estimates of CCF from the different approaches to 

Figure 1.  Schematic illustration of the Multistate Tuberculosis Pharmacometric model. F, fast-multiplying 
bacterial state; S, slow-multiplying bacterial state; N, non-multiplying bacterial state;  kG, growth rate of the 
fast-multiplying state bacteria;  kFS, time-dependent linear rate parameter describing transfer from fast- to slow-
multiplying bacterial state;  kSF, first-order transfer rate between slow- and fast-multiplying bacterial state;  kFN, 
first-order transfer rate between fast- and non-multiplying bacterial state;  kSN, first-order transfer rate between 
slow- and non-multiplying bacterial state;  kNS, first-order transfer rate between non-multiplying and slow-
multiplying bacterial state.  Bmax is the system carrying capacity per ml sputum.
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handle the predictions was 0.17, 0.18 and 0.24 for Method 1, 2 and 3, respectively (Table 1). Using method 1 for 
simplicity, this is to be interpreted as the human persistent bacteria was only 17% of what was predicted from a 
stationary in vitro culture. The model without CCF systematically under-predicted the CFU data (Fig. 2) whereas 
the final models including CCF successfully described both CFU and  MPNrpf data, as seen in Fig. 3. All final 
parameters are presented in Table 1.

The results suggest to include CCF as a translational factor accounting for the difference in amount of per-
sister mycobacteria in clinical  MPNrpf sputum samples from patients relative to in vitro. The biomarker  MPNrpf 
includes quantitative information on persister mycobacteria that remains undetected using CFU as a biomarker. 
The final model was defined as in Eqs. (1), (2) and (3) where each differential equation describes the dynamics of 

Table 1.  Parameter estimates of the final Multistate Tuberculosis Pharmacometric (MTP) model applied 
to CFU and  MPNrpf data. a Parameter values from implementation method 1 as defined in the materials and 
methods section. b Parameter values from implementation method 2 as defined in the materials and methods 
section. c Parameter values from implementation method 3 as defined in the materials and methods section. 
d The pharmacokinetic parameters were the same for all hypothetical drugs. FIX, the parameter was fixed 
according  to5. RSE, relative standard error as obtained from the covariance step in NONMEM.

Parameters Description Population estimate %RSE

MTP model parameters

Fixed effects

 kG  (days−1) Fast-multiplying bacterial growth rate 0.206 FIX –

 kFN  (days−1) Transfer rate from fast- to non-multiplying state 8.98·10–7 FIX –

 kSN  (days−1) Transfer rate from slow- to non-multiplying state 0.186 FIX –

 kSF  (days−1) Transfer rate from slow- to fast-multiplying state 0.0145 FIX –

 kNS  (days−1) Transfer rate from non- to fast-multiplying state 0.00123 FIX –

 kFSLin  (days−2) Time-dependent transfer rate from fast- to slow-multiplying state 0.00166 FIX –

 F0  (ml−1) Initial bacterial number of fast-multiplying state 4.11 FIX –

 S0  (ml−1) Initial bacterial number of slow-multiplying state 9,770 FIX –

 Bmax  (ml−1)a System carrying capacity per ml sputum in human 5.54·106 71.3

 Bmax  (ml−1)b System carrying capacity per ml sputum in human 7.47·106 59.7

 Bmax  (ml−1)c System carrying capacity per ml sputum in human 2.68·106 41.8

 CCFa Persistent translational factor 0.24 51.3

 CCFb Persistent translational factor 0.17 43.8

 CCFc Persistent translational factor 0.19 14.2

Random effects

 IIV in  Bmax
a (%CV) Inter-individual variability of  Bmax 206 9.88

 IIV in  Bmax
b (%CV) Inter-individual variability of  Bmax 206 9.88

 IIV in  Bmax
c (%CV) Inter-individual variability of  Bmax 206 9.88

Residual error parameters

 Add  CFUa Additive error of CFU prediction 250 17.4

 Add  MPNrpf
a Additive error of  MPNrpf prediction 1.90·10–4 17.8

 Add  CFUb Additive error of CFU prediction 206 15.5

 Add  MPNrpf
b Additive error of  MPNrpf prediction 1.90·10–4 300

 Add  CFUc Additive error of CFU prediction 207 15.4

 Add  MPNrpf
c Additive error of  MPNrpf prediction 1.90·10–4 6.70

Drug pharmacokinetic parametersd

 CL/F (L/h) Oral clearance 8.00 –

 V/F (L) Apparent volume of distribution 60.0 –

 ka  (h−1) Absorption rate constant 1.00 –

Exposure–response parameters

Killing of fast-multiplying state

 FDk (L  mg−1 days−1) Second-order fast-multiplying state death rate 0.33 –

Killing of slow-multiplying state

 SDk (L  mg−1 days−1) Second-order slow-multiplying state death rate 0.33 –

Killing of non-multiplying state

 NDk (L  mg−1 days−1) Second-order non-multiplying state death rate 0.33 –

Inhibition of fast, killing of slow and non-multiplying bacteria

 FGon/off Fractional inhibition of growth of fast-multiplying state 1.00 –

 SDk (L  mg−1 days−1) Second-order slow-multiplying state death rate 0.30 –

 NDk (L  mg−1 days−1) Second-order non-multiplying state death rate 0.31 –
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Figure 2.  Visual predictive checks (VPCs) for the final models without the CCF. For each method to handle 
the predictions, human baseline CFU and  MPNrpf observed data (circles) and simulations (shaded areas) 
are displayed. From top to bottom, shaded areas represent 95% confidence intervals of the 90th (light grey), 
median (dark grey) and 10th (light grey) percentiles of simulated data based on 1,000 simulations. The red circle 
indicates the median of observed data.

Figure 3.  Visual predictive checks (VPCs) for the final models with the CCF. For each method to handle 
the predictions, human baseline CFU and  MPNrpf observed data (circles) and simulations (shaded areas) 
are displayed. From top to bottom, shaded areas represent 95% confidence intervals of the 90th (light grey), 
median (dark grey) and 10th (light grey) percentiles of simulated data based on 1,000 simulations. The red circle 
indicates the median of observed data.
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fast-multiplying, slow-multiplying and persister mycobacteria, respectively. The simultaneous analysis of CFU 
and  MPNrpf data was performed using the sputum sampling compartment method as following:

in which the sputum production rate  (kproduction) was given from kproduction =
Volumesputum

Durationsampling
 (mL/h). Finally, the 

model predictions of CFU and  MPNrpf for TB patients prior to treatment were handled as following:

where volume denotes the collected volume of sputum during a collection interval.
The percentage of persisters in human sputum prior to treatment in relation to total bacterial amount ranged 

from 96 to 97% in Methods 1, 2 and 3, compared to 99% in vitro predicted at day 150 in a stationary culture. The 
relative percentage of persisters to total bacteria was similar between in vitro and in humans due to the large 
proportion of persisters in both systems.

Clinical trial simulations of four different hypothetical drugs with similar PK showed direct consequences of 
the findings in this work for a biomarker that depicts total bacteria, as  MPNrpf. For a drug that in combination 
inhibits the growth of fast multiplying bacteria and kills slow- and non-multiplying bacteria, the predicted time 
to 2 log fall in total bacterial number  (MPNrpf) in human based on only in vitro information with and without 
accounting for the CCF is shown in Fig. 4. On a typical level, the predicted time to 2 log fall in  MPNrpf in human 
was almost 3 days shorter when accounting for the difference in phenotypic resistance between in vitro and 
human. For a drug only killing fast- slow- or non-multiplying bacteria, there was no difference in predicted CFU 
and as such no impact of difference in phenotypic resistance on human CFU readouts (Fig. 5).

Discussion
We show in this work using both CFU and MPN biomarker data, that the persistent bacteria in human sputum 
was only 17% of what is predicted from a stationary in vitro culture prior to chemotherapy, i.e. there is a differ-
ence in phenotypic resistance between in vitro and human. There was no difference in the number of multiply-
ing bacteria, implying no difference in the CFU readouts when predicting a drug effect in human from in vitro 
(Fig. 5), as CFU is informed by multiplying bacteria. However, for more informative biomarkers like  MPNrpf 
which contains information on total bacteria, the lower number of persisters in human compared to in vitro 
is visible in the biomarker readouts, prior to chemotherapy (Fig. 4). Such differences will have direct effect on 

(1)
dSampleCFU

dt
= kproduction · (F + S)

(2)
dSampleMPN−Rpf CCF

dt
= kproduction · (F + S + (CCF ∗ N))

(3)PRED = log

(

Sample

Volumesputum

)

Figure 4.  Typical predictions of log10  MPNrpf in human using only in vitro information without accounting 
for the clinical conversion factor (CCF) (dark grey) and in human using in vitro information and accounting for 
CCF (red) after hypothetical killing of (a) fast-, (b) slow- and (c) non-multiplying bacteria, and (d) combination 
effect including inhibition of fast-multiplying bacteria and killing of slow- and non-multiplying bacteria. The 
blue horizontal line illustrates a 2 log fall threshold in  MPNrpf when accounting for the CCF.
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time to eradication, happening earlier in human than predicted from in vitro when ignoring the CCF (Fig. 4), 
and can be taken in to account by the developed model. Unless accounted for the difference, the predictions of 
human treatment length will be longer as persisters most often is the bacterial population which is most dif-
ficult to kill and will remain in the patients at the end of treatment when the CFU readout is negative. This can 
be seen for a drug with combination effect on different subpopulations in the simulations (Fig. 4) revealing that 
the predicted time to 2 log fall in  MPNrpf would take almost 3 days longer if drug response was predicted from 
in vitro preclinical information but ignoring difference in phenotypic resistance between human and in vitro. 
This have implications for drug development as many of the new regimens will focus on shortening current 
treatment lengths. For the hypothetical drugs killing fast-, slow- or non-multiplying bacteria, low EBA activity 
is predicted as described by  MPNrpf (Fig. 4) and CFU (Fig. 5). This is in line with EBA results for drugs killing 
slow- or non-multiplying bacteria, like pyrazinamide and clofazimine,  respectively9,18.

In this work, we did not have experimental data on potential difference between in vitro and human with 
respect to persisters during treatment. As such, the simulations are assuming that the drug effect is similar 
between in vitro and human regardless of the difference in initial levels of persisters. Future studies should 
evaluate potential difference in treatment effect between in vitro and humans with respect to persisters for 
instance by including longitudinal biomarker data on persisters (for instance MPNrpf counts) in addition to 
CFU counts. Initial bacterial burden have earlier been shown to be a predictor for treatment  response19. As such, 
a difference in initial bacterial level of persisters could potentially result in a difference in treatment effect on 
persisters. Despite the difference in levels of persisters between in vitro and humans, the persisters will remain 
the major sub-population both in vitro and in humans. The identified difference in phenotypic resistance can be 
accounted for in a model-based translational  framework11. To show this we used samples from sputum smear 
positive patients that was collected prior to onset of chemotherapy, followed by mycobacterial quantification 
using CFU, and MPN counts treated with  RPFs17. We described these data with a previously developed model, 
the MTP model, predicting different bacterial sub-populations and compared the human subpopulation predic-
tions to model predicted in vitro bacterial sub-states. In order to translate in vitro drug efficacy to human, the 
relative ratio of persisters to total bacteria needs to be accounted for. We propose that a conversion factor is used 
when translating from in vitro to humans. In order to facilitate this, we present three different implementation 
strategies (Methods 1–3) that can be employed dependent on the data, for instance with the sputum sampling 
compartment in an clinical  setting8. The translational factor was evaluated on all three different subpopulations 
and found to only be supported (compared to a model without the factor) for the persistent subpopulation.

The three the different approaches to handle the predictions resulted in similar results. The value of the CCF 
ranged from 0.17 to 0.24, which implies that 17–24% of the in vitro predicted amount of persisters appear in 
sputum. That corresponds to a situation where the typical ratio of persister mycobacteria to total bacterial load 
ranges from 96 to 97% compared to 99% without the translational factor, in sputum at 150 days after inoculum. 
The reason for the difference in persisters between in vitro and patients is not known but could be due to lung 
barrier preventing persisters that are within lesions to be coughed up in sputum. Alternatively, the statistically sig-
nificant translational factor could be due to the fact that on solid media, bacteria grow in absence of an immune 

Figure 5.  Typical predictions of log10 CFU in human using only in vitro information without accounting for 
the clinical conversion factor (CCF) (dark grey) and in human using in vitro information and accounting for 
CCF (red) after hypothetical killing of (a) fast-, (b) slow- and (c) non-multiplying bacteria, and (d) combination 
effect including inhibition of fast-multiplying bacteria and killing of slow- and non-multiplying bacteria. The 
blue horizontal line illustrates a 2 log fall threshold in CFU when accounting for the CCF.
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system whereas in humans it is likely that the growth is controlled. The relationship between persisters to total 
bacterial number prior and post chemotherapy is of importance in translational efforts to measure treatment 
response in a more representative manner of TB which should be studied further in simulation studies. Further 
investigation is encouraged analysing  MPNrpf and CFU counts over time not only prior to chemotherapy but 
also during treatment in patients, as the ratio of persisters to total bacterial burden may vary more over time and 
treatment and the presented model can be used to model this relationship.

In order to account for differences in magnitude of bacterial load between the in vitro and human sputum 
samples,  Bmax was re-estimated. Further, adjusting for differences between individuals with respect to CFU and 
 MPNrpf counts, an IIV parameter was found to be statistically significant. Independent of approach to handle 
the predictions, a CCF was statistically significant which enabled adjustment of the predicted persister bacteria 
contribution to the predicted total biomarker quantity in TB patients (i.e.  MPNrpf). As the re-estimation of 
 Bmax only affects the magnitude of bacterial load and not the model-predicted relative amounts of the different 
bacterial states, the predictions without the translational factor is solely based on CFU with respect to relative 
amounts of the different bacterial sub-states. Thus, the introduction of the translational factor enabled adjustment 
of the relative amounts of multiplying and non-multiplying bacterial sub-states to the relative amounts derived 
based on CFU data only. Further, by informing the model with both biomarkers simultaneously, the flexibility 
of the MTP model system can be used to describe clinical data without re-estimation of the system parameters 
related to transfer between bacterial states. As the transfer rates governs the relative ratio between the multiply-
ing, slow-multiplying and persister sub-states, the introduction of the translational factor enabled adjustment 
of relative ratio of the sub-states while keeping the semi-mechanistic structure of the model. It is desirable to be 
able to adjust for different relative amounts of bacterial sub-states without re-estimation of system parameters 
in absence of data, as studying natural growth of TB in humans is not ethical or plausible.

The model-based analysis of human sputum CFU and  MPNrpf in relation to the in vitro predicted relative 
bacterial amounts identified differences in relative ratio of the persister subpopulation between in vitro and 
in sputum from TB patients. This allowed development of three different implementations of a model-based 
translational approach for accounting for this difference when predicting human CFU and/or  MPNrpf based 
on in vitro information. As different biomarkers tell different stories about disease and bacterial burden, it is 
beneficial to utilize frameworks that can analyse more than one biomarker simultaneously over time as an alter-
native to develop new biomarkers. Thus, the developed strategy has potential to increase understanding of TB 
disease status under treatment and possibly have impact on decision-making of which candidate drugs to reject 
or advance in preclinical and clinical development.

With this strategy we discovered phenotypic differences between in vitro and humans prior to chemotherapy, 
which could have implications of translational efforts. The identified difference between human sputum and 
in vitro can be accounted for using a model-based approach for translating in vitro to human drug response.

Materials and methods
Patients and study design. The study was approved by Leicestershire, Northamptonshire, and Rutland 
Research Ethics Committee (07/Q2501/58) and was conducted in line with the Declaration of Helsinki. Spu-
tum smear positive patients (n = 25) provided baseline sputum samples prior to onset of chemotherapy, after 
informed consent was obtained. The number of cells detected by conventional agar CFU and MPN with and 
without Rpf supplementation were quantified. Both MPN and CFU growth assays were performed in quad-
ruple replicates (11). Raw data from all 25 patients can be found in supplementary materials of the original 
 publication17. In this work, CFU and  MPNrpf data were used. More information on sample handling protocols 
can be found in the original  study17.

Pharmacodynamic modeling. Observed bacterial numbers from both CFU and  MPNrpf assays were 
transformed to natural logarithms. The MTP  model5 (Fig. 1), initially developed on in vitro data but used to 
describe in vivo7 and clinical  data8,11, was utilized to predict the bacterial numbers of different bacterial sub-
populations in  vitro and in human, corresponding to multiplying (F), semi-dormant (S) and persistent (N) 
mycobacteria 150 days after inoculum. The following differential equations defined the MTP model:

Transfer rates was denoted with two-letter subscripts referring to the origin and direction, respectively, where 
kFS = kFSlin · t was unique for time after infection (days) dependency. The flows were assumed to mirror change 
in metabolic activity. The parameter  kG was defined as the growth rate of multiplying bacteria and  Bmax as the 
carrying capacity in the system, limiting the growth in stationary phase. To adjust the model-predicted mag-
nitude of bacterial number given the clinical data,  Bmax was estimated using both CFU and  MPNrpf data. An 
IIV parameter was tested for  Bmax and the initial number of each bacterial sub-state at inoculums (assumed to 
occur 150 days prior to the sampling time-point). The predicted bacterial number  (ml−1) of fast-multiplying, 
slow-multiplying and persistent bacteria was defined as the distinct quantity in each compartment presented 

(4)
dF

dt
= kG · log

(

Bmax

F+ S+N

)

· F+ kSF · S− kFS · F− kFN · F

(5)
dS

dt
= kFS · F + kNS · N − kSN · S − kSF · S

(6)
dN

dt
= kSN · S + kFN · F − kNS · N
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above. The difference in relative ratio of different bacterial subpopulations in human compared to in vitro, prior 
to chemotherapy, was predicted.

CFU and  MPNrpf data were simultaneously analysed and the difference in persisters between in vitro and 
human was handled using three different approaches. First, a previously developed approach (Method 1) was 
applied, the sputum sampling compartment  method8. Model-prediction of CFU was defined as average sum of 
multiplying and slow-multiplying (semi-dormant bacterial) number  (ml−1) within the sputum collection time 
interval and the prediction of  MPNrpf as the average sum of multiplying, semi-dormant and persistent bacte-
rial number  (ml−1), in the assumed sputum sampling interval of 15 min. This approach required inclusion of a 
sputum sample compartment defined for CFU as:

and for MPN:

where kproduction =
Volumesputum

Durationsampling
  (mL/h). A sample was defined as the bacterial number in a volume (mL) that 

was collected over the assumed duration of 15 min described by the sampling interval. Prior to start of each 
individuals sampling interval, the amount in the sample compartment was set to 0. Predictions of CFU and 
 MPNrpf were defined as:

in which PRED is the natural logarithm of the average bacterial number  (ml−1) over the sampling interval of 
fast-multiplying and slow-multipying bacteria for CFU, and fast-multiplying, slow multipying and persistent 
bacteria for  MPNrpf. The sample volume was assumed to be 5 mL, which is a plausible value based on a previ-
ous  report20. Both the duration of the sampling interval and the volume collected was specified in the dataset.

Apart from estimating  Bmax to adjust the model-predicted biomarker magnitude, a clinical translational factor 
was estimated to adjust for each of the model-predicted bacterial sub-populations contribution, to the model-
predicted biomarker quantity in sputum. The translational factor was evaluated on the model-prediction of the 
fast-multiplying, slow-multiplying and persistent state, estimating the percentage of a given bacterial subtype in 
sputum in relation to the MTP model-predicted number, based on in vitro estimates. The CCF was introduced 
one at the time as follows:

Adjusting the fast-multiplying, slow-multiplying and persistent bacteria (i.e. Rpf-dependent bacilli) contribution 
to the model-predicted  MPNrpf biomarker quantity in sputum, respectively.

In the second approach used for evaluation (Method 2), the predictions of the different bacterial subpopula-
tions were defined as the predicted bacterial number  (ml−1) in the fast-multiplying and slow-multiplying com-
partments for CFU, whereas for MPN, the predictions were defined as the bacterial number  (ml−1) in all states:

In addition to re-estimation of  Bmax, CCF was estimated in the same fashion as for the sputum sampling compart-
ment method. The parameter was constrained to be positive and was implemented one at the time as follows:

Adjusting for each model-predicted bacterial subpopulations contribution to the total model-predicted  MPNrpf 
biomarker quantity.

(7)
dSampleCFU

dt
= kproduction · (F + S)

(8)
dSampleMPN−Rpf

dt
= kproduction · (F + S + N)

(9)PRED = log

(

Sample

Volumesputum

)

(10)
dSampleMPN−Rpf CCF

dt
= kproduction · ((CCF ∗ F)+ S + N)

(11)
dSampleMPN−Rpf CCF

dt
= kproduction · (F + (CCF ∗ S)+ N)

(12)
dSampleMPN−Rpf CCF

dt
= kproduction · (F + S + (CCF ∗ N))

(13)PREDCFU = log(F+ S)

(14)PREDMPN−Rpf = log(F+ S+N)

(15)PREDMPN−Rpf = log((CCF ∗ F)+ S+N)

(16)PREDMPN−Rpf = log(F+ (CCF ∗ S)+N)

(17)PREDMPN−Rpf = log(F+ S+ (CCF ∗N))
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In the third approach used for evaluation (Method 3), the CCF was estimated on the differential equations 
describing the dynamics in the compartment of each bacterial subpopulation. The CCF was constrained to be 
positive and was introduced one at the time as following:

Adjusting for the model-prediction of each bacterial subpopulation to the total biomarker quantity, which was 
defined for CFU as:

and for MPN as:

The different implementation methods to handle the predictions for difference in persistent bacteria between 
in vitro and humans were subsequently used to predict the different bacterial subpopulations at 150 days after 
inoculum. The ratio of persisters to total bacteria for in vitro and in human was calculated as follows:

Simulations was performed to investigate the consequences of the results in an EBA trial setting. The typical total 
bacterial number  (MPNrpf) and CFU was predicted in human from in vitro with and without the translational 
factor. The four different hypothetical scenarios of drug effect were killing of (a) fast, (b) slow, (c) non-multiplying 
bacteria as mono-effects and (d) inhibition of fast, killing of slow and non-multiplying bacteria as a combina-
tion effect (Table 1). The pharmacokinetic parameters for the hypothetical drugs was assumed to reflect a one-
compartment disposition model with first order absorption and rapid elimination (Table 1).

Statistical analysis. Modeling and simulation were performed using NONMEM (version 7.4; Icon Devel-
opment Solutions, Elliot City, MD, USA)21. A hierarchical model with addition of one parameter was considered 
statistically significant at a 5% significance level if ∆OFV (calculated by NONMEM, as proportional to − 2 x 
log-likelihood of the data) reduced by 3.84 for 1 degree of freedom (χ2 distribution). Visual predictive checks 
(VPCs) was performed to assess the predictive performance of the model, describing the 5th, median (50th) 
and 95th percentiles of the biomarker data (n = 1,000 simulations). All model diagnostics were conducted using 
Xpose and  PsN22,23.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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