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Abstract

Dynamic factor models provide a useful way to model large sets of time series. These data often have

heterogeneity and cluster structure and the formulation and estimation of dynamic factor models should

be adapted to these features. This article presents a procedure to fit Dynamic Factor Models with Cluster

Structure (DFMCS), where some of the factors are global and others group-specific, to heterogeneous

data that may include multivariate additive outliers and level shifts. The procedure starts with an

initial cleaning of the times series from outlying effects. Then a first estimation of the possible factors

is applied to the cleaned data and these factors are used to build the common component of each series.

The groups are found by studying the joint dependency of these common components. Then additional

factors are estimated by using the series in each cluster and, finally, all the factors found are classified

as global or group-specific. We show in a Monte Carlo study that the procedure works well and seems

to be better than other alternatives in terms of estimation of factors and loadings as well as in terms of

misclassification rates for the series. An example of an electricity market is presented to illustrate the

advantages of cleaning for outliers and taking into account the cluster structure for understanding and

forecasting.
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1 Introduction

The study of multiple related time series is an important area of research where George Tiao has made

seminal contributions. Among them, Box and Tiao (1977) presented a method to order a set of time series

for predictability and found linear combinations of integrated time series that were stationary. This result

prepared the way for the development ten years later of the concept of cointegration by Engle and Granger

(1987). Tiao and Box (1981) and Tiao and Tsay (1989) developed general procedures to fit VARMA and

VAR models that have been very useful for modelling small sets of related time series. However, as the

dimension of the parameter matrices in these models grows with the squared of the number of series, new

procedures are required for large data sets and Dynamic Factor Models (DFM) have proved to be useful in

these cases. DFM may assume a contemporaneous relationship between the factors and the series, see, for

instance, Peña and Box (1987), Stock and Watson (1988, 2002), Bai and Ng (2002), Lam and Yao (2012),

Onatski (2012), and recently, Chen, Tsay and Chen (2019), among others, but also allow for lags in the

factor effects, as in Forni et al. (2000, 2005, 2015). Large sets of series often contain outliers and cluster

structure and the DFM should be adapted to these features. The presence of groups in panel data has

been well documented. For instance, Lin and Ng (2012) estimated the allocation of the series to the groups

by threshold panel regression, Bonhomme and Manresa (2015) minimized a least squares criterion for all

possible groups and cross-sectional units, and Su et al. (2016) used a new variant of Lasso in the estimation.

In the same way, the dynamic evolution of time series may be affected by some global factors, that reflect

the evolution of the global economy, and some specific factors, that are group-dependent.

Dynamic Factor Models with Cluster Structure (DFMCS) have been studied, first, assuming that the

classification of the observed series into the clusters is known. Wang (2010) proposed a multifactor model

where the series in each group are affected by global and specific factors and derived conditions for iden-

tification of these models. Hallin and Lǐska (2011) proposed a two clusters model where the factors define

four orthogonal subspaces: (1) strongly common variables that are common factors in the two clusters; (2)

strongly idiosyncratic variables for both clusters; and (3) and (4) where the variables are common factors for

a group, and idiosyncratic variables for the other. This model is very flexible, but the number of subspaces

grows to 2k for k groups. It is again assumed that the number of groups and the allocation to the series to

the groups is known. Ando and Bai (2017) proposed a more general model assuming unknown membership.

The main weakness of their procedure is the allocation of the series to the groups, which can avoid a correct

estimation of the factors, as we will show in this work. Barnichon and Mesters (2018) presented a DFMCS
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to separate aggregate labor market forces and demographic-specific trends and decomposed the factors into

a common component and several demographic specific components. These results are a good example of

the importance of taking into account the clusters when they exist, because by ignoring them, we may miss

some specific factors. On the other hand, when the group structure is included the specific factors are better

estimated increasing our understanding of the problem and the forecast precision, as we will show in this

work. As a simple illustration, suppose we generate a set of m = 300 time series with two groups and with

one factor in each group. The first group includes 25% of the data, i.e., m1 = 75 time series, and a specific

factor formed by independent N(0, 1/3); the second group has m2 = 225 series and a specific factor formed

by independent N(0, 1). The group-specific factor loadings are drawn from a N(0, 1) as well as the error

term, that is white noise. Then, if we fit the standard dynamic factor model using the Ahn and Horenstein

(2013) test to identify the number of factors, only one factor is usually found (70% in 100 cases) whereas

using the groups structure identified by the procedure proposed in this article, the two factors are found

100% of the times.

An important problem when dealing with time series is outlier detection, a field in which George Tiao

has also carried out pioneer work (Chang, Tiao and Chen, 1988). Large data sets are often recorded by

controlling devices that automatically collect them using wireless sensor networks. However, sensor nodes

sometimes fail to record the data correctly and these failures will produce outliers in the time series. Outliers

in DFM have been studied, among others, by Baragona and Battaglia (2007) and Galeano and Peña (2019).

These last authors proposed a procedure to clean the series from outliers based only on linear projections

of the data, that can be applied in large data sets. This article presents a new procedure to fit DFMCS

that has some advantages over previous methods. First, clusters are found by a powerful method that builds

clusters of time series by linear dependency, proposed by Alonso and Peña (2018). Second, a set of rules

to classify the estimated factors as global or specific is presented. Third, the procedure is made robust to

additive outliers and level shifts using the results of Peña and Galeano (2019) for outlier detection in large

data sets and by a new method to find outlying series that do not follow the DFMCS. We show in a Monte

Carlo study that the procedure seems to work better than previous proposals and illustrate the advantages

of taking into account outliers and groups in understanding and forecasting time series from an electricity

market.

The rest of the paper is organized as follows. Section 2 introduces the Dynamic Factor Model with

Cluster Structure. Section 3 proposes a procedure to fit these models. Section 4 generalizes the proposed

procedure to make it robust to outliers and outlying time series. Section 5 illustrates the performance of the
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proposed procedure with a simulation study. Section 6 shows an application to series of electricity demand

in New England. Finally, Section 7 concludes.

2 Dynamic factor models with cluster structure

Let xt = (x1t, . . . , xmt)
′

be an m-dimensional vector of stationary time series with zero mean. We assume

that each component of the vector of observed series can be written as a linear combination of global and

specific factors in k groups plus idiosyncratic noise. Then, we have the Dynamic Factor Model with Cluster

Structure (DFMCS), that can be written as:

xt = P0f0t +
k∑
i=1

Pifit + nt, (1)

where f0t = (f01t, . . . , f0r0t)
′

is an r0-dimensional vector of global factors, P0 =
[
P′0,1| · · · |P′0,k

]′
is an m×r0

global factor loading matrix and P0,i, for i = 1, . . . , k, is the mi × r0 loading matrix for the mi

series of the i-th group and k ≥ 1 is the number of clusters. The vectors fit = (fi1t, . . . , firit)
′

are

ri-dimensional vectors of specific factors corresponding to the i-th cluster, and Pi =
[
0′i,1| · · · |P′i,i| · · · |0′i,k

]′
is the m × ri matrix of specific factor loadings, that only affect to the mi time series in the i-th group.

We have assumed, without loss of generality and to simplify the exposition, that the series are ordered, so

that the first m1 series correspond to the first group and the last mk to the last group, and
∑k
i=1mi = m.

It is well known that in DFM we have to impose identification restrictions and the usual assumptions are

orthonormal columns in the loading matrix and diagonal covariance matrix of the factors or vice versa.

The identification of the DFMCS has been studied by Wang (2010) and the conditions needed can be

written as: (1) P′0P0 = Ir0 , where Ir0 is the identity matrix of order r0; (2) P′iPi = P′i,iPi,i = Iri for

i = 1, . . . , k; (3) P′0Pi = P′0,iPi,i = 0r0×ri ; and (4) the covariance matrix of the r =
∑k
j=0 rj factors is

diagonal. Note that also P′iPj = 0ri×rj , for i 6= j. We can write this model as an standard factor model

calling ft = (f ′0t, f
′
1t, . . . , f

′
kt)
′
, and P = [P0|P1| · · · |Pk], we have

xt = Pf t + nt, (2)

and the previous conditions implied the usual identification restriction P′P = Ir.

The idiosyncratic term or noise, nt = (n1t, . . . , nmt)
′
, is a general sequence of stationary time series
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with mean 0m, and weak dependency as stated in Bai and Ng (2002) or Ahn and Horenstein (2013).

The global and specific factors are orthogonal and follow a diagonal vector autoregressive moving average,

VARMA(p, q), model Φ (B) ft = Θ (B) ut, where the polynomials Φ (B) = Ir − Φ1B − · · · − ΦpB
p and

Θ (B) = Ir −Θ1B − · · · −ΘqB
q have diagonal parameter matrices, B is such that Bft = ft−1, the roots of

the determinantal equation |Φ (B) | = 0 as well as those of |Θ (B) | = 0 are outside the unit circle, and ut

is a sequence of uncorrelated and identically distributed (i.i.d.) random vectors with mean 0r and diagonal

covariance matrix Σu. Additionally, we assume that both noise processes appearing in the factor model are

uncorrelated for all lags, i.e., E
[
ntu

′
t−h
]

= 0m×r, for all h = 0,±1,±2, . . . We assume that the number of

clusters and the allocation of the series to the clusters are unknown.

The estimation of a DFMCS requires obtaining the following parameters: (1) The number of global

factors, r0, the number of groups, k, and the number of specific factors in each of the k groups, r1, . . . , rk;

(2) The label variables gi ∈ {1, . . . , k} for each of the time series which indicate to which group the

series belongs. We call G the m × 1 vector with components gi, for i = 1, . . . ,m; (3) The loading matrices

of the global and specific factors, P0,P1, . . . ,Pr and the time series of these factors, f01,t, . . . , f0r0,t and

f11,t, . . . , f1r1,t, . . . , fk1,t, . . . , fkrk,t, respectively. Given the estimated factors and noises, where n̂t = xt−P̂f̂t,

estimators of the parameters of the univariate ARMA models for the factors and noises can be computed.

In Section 3 we will describe the proposed procedure to find the groups and estimate the factors, assuming

that we have a sample that is free from outlier effects. In Section 4 we will present the procedure to remove

the effects of multivariate additive outliers and level shifts as well as possible outlying time series.

3 Fitting the DFMCS

The procedure we propose has the following four steps: (1) The observed time series are cleaned from

additive outliers and level shifts. Additionally, outlying time series are removed; (2) An initial set of factors

and their loadings is estimated from the time series obtained in step 1 and they are used to build the

common component of each time series. Then, the clustering algorithm proposed by Alonso and Peña (2018)

for finding groups of time series with similar linear dependency is applied to these common components to

find the groups; (3) A set of factors and their loadings are estimated in each group of time series and all the

factors found now as well as those found in step 2 are compared and classified as global or specific; (4) The

effect of the global factors is removed from each of the time series and the group-specific residuals obtained

are then used to re-estimate the specific factors. Finally, groups are checked for possible recombination.
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Remark 2. Step 4 is included because, first, it usually improves the estimation of the specific factors

and, second, the specific factors obtained in step 4 are orthogonal to the global factors as they are computed

from residuals from the global factors. This latter property is not guaranteed for step 3.

To simplify the exposition, we present next steps 2 − 4 of the procedure assuming that the time series

have already been cleaned. The cleaning process of Step 1 will be explained in Section 4. We start with

an initial estimation of the factors and factor loadings. This is carried out by minimizing

SE1 =
T∑
t=1

‖xt −Pft‖2 , (3)

where ‖·‖ denotes the Euclidean vector norm. The solution is equivalent to using PCA. Let

Γ̂x (0) =
1

T

T∑
t=1

xtx
′
t. (4)

be the sample covariance matrix of the time series xt. Then, the eigenvectors associated to the rc largest

eigenvalues of the matrix Γ̂x (0) provide us with an estimate of the factor loading matrix P̂, with columns

p̂1, . . . , p̂rc . The number of factors, rc, is determined by using the test proposed by Ahn and Horenstein

(2013) based on the ratios of consecutive eigenvalues of the matrix Γ̂x (0) in (4). Note that the matrix P̂ is

expected to include all the global factors and some (or all) of the group-specific factors, so that the number

of factors in this matrix, rc, will be in general larger than the true number of global factors, r0. Also, in

practice, when the factors are of different degree of strength, the results of these type of tests in real time

series are usually better if they are applied twice, as suggested by Lam and Yao (2012). Then, the factors

are estimated by f̂i,t = p̂′ixt, for i = 1, . . . , rc, and the common component by ct = P̂P̂′xt.

The groups are now built applying the algorithm proposed by Alonso and Peña (2018) for clustering

time series by dependency to the m time series of common components, ct. The measure of linear

dependency used is the Generalized Cross Correlation (GCC), defined for two stationary time series, zt and

st, as:

GCC(zt, st) = 1−
(

|Rzs,p|
|Rzz,p| |Rss,p|

)1/(p+1)

,

where Rzs,p is the 2 (p+ 1) squared symmetric non negative definite matrix that corresponds to the cor-

relation matrix of the vector stationary process (zt, zt−1, . . . zt−p, st, . . . , st−p)
′
, and Rzz,p and Rss,p are,

respectively, the (p+ 1) squared and positive definite correlation matrices of the vectors (zt, zt−1, . . . , zt−p)
′

and (st, st−1, . . . , st−p)
′
. The GCC measure is non negative, reaches its largest value, equal to 1, if one of
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the series is a linear combination of its past and the values of the other series, and it is equal to 0, if the two

series are uncorrelated. Therefore, we compute the estimators ĜCC (ci,t, cj,t) for all pairs of time series

(ci,t, cj,t), with i 6= j, and build the m × m dissimilarity matrix with elements dij = 1 − ĜCC (ci,t, cj,t).

Then, we apply a hierarchical clustering algorithm with single linkage to the dissimilarity matrix. The

number of clusters is obtained by the a modification of the Silhouette algorithm proposed by Rousseeuw

(1987), adding the restriction that the clusters must have a minimum size. We implement this restriction by

omitting time series in the dendrogram analysis that have a relatively small dependency with the rest (for

instance, the 90% percentile of the dendrogram’s unions). Once the groups are formed, the omitted time

series are assigned to the closer cluster in the single linkage sense. In this way, we obtain an estimated value

of k, the number of groups, and an estimator of the vector G that gives the allocation of the series to the

k groups.

In the third step we use the series in the groups to estimate new sets of factors and their

loadings. Let rs1, . . . , r
s
k be the number of factors found in each group by using the Ahn and Horenstein

(2013) test applied to the eigenvalues of the sample covariance matrices of the time series in each

group. The specific loading matrices P̂i of dimension m× rsi and columns p̂i1, . . . , p̂irsi are built

by adding to the eigenvectors corresponding to the largest rsi eigenvalues in the i-th group, a

set of zero values for the observations not included in the group. The factors in each group are

estimated by f̂sij,t = p̂′ijxt, with j = 1, . . . , rsi . These group factors are expected to include all the specific

factors and some (or all) of the global factors.

Now, in order to decide whether a factor is global or specific, we compare the set of rc factors found in

step 2 and the set of
∑k
i=1 r

s
i factors found in step 3. Note that the factors contained in the first set may be

a rotation of the factors contained in the second set and, therefore, it is not evident which ones should be

classified as global and which as specific. Consequently, we first decide if each factor f in the first set of rc

factors is global or specific by applying the following three simple rules:

1. If f does not belong to any of the second set of factors then f is a global factor.

2. If f belongs to only one of the sets of the second set of factors then f is a specific factor in

this group.

3. If f belongs to more than one of the second sets of factors then f is a global factor.

We decide if a factor, f , belongs to a set of specific factors by computing the empirical canonical correlation

between the factor, f , and the ones in the set, f̂si1,t, . . . , f̂
s
irsi ,t

, with i = 1, . . . , k. When the empirical canonical
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correlation of factor f with elements of the set is higher than some threshold value, ρ0, we say that f belongs

to this set. The threshold value of ρ0 = 0.9 seems to work well in the Monte Carlo exercise. Afterwards, we

check if any of the groups with rs1, . . . , r
s
k factors include any factor that does not belong to the set of factors

found in step 2. If this is the case, the factor is classified as specific factor in the corresponding group.

In step four, we compute the residuals vt = xt − P̂0f̂0t, where f̂0t is the vector of estimated global

factors obtained in step 3 and P̂0 is the loading matrix corresponding to these factors, and the specific

factors are re-estimated using the series vit corresponding to each group. As the clustering is

based on the dependency among the series we have to check that this dependency is generated by different

specific factors and not for different loadings of the global factors. To illustrate this problem, consider the

very simple model  x1t

x2t

 =

 a1m1

b1m2

 ft +

 n1t

n2t

 ,
where xit is mi × 1, with m = m1 + m2, and 1mi

= (1, . . . , 1)′ is also mi × 1. In this model, there are two

groups of time series of similar dependency. For simplicity, let us assume that the noises are i.i.d. with the

same variance σ2 and let us call s = var (ft) /σ
2 the signal to noise ratio. Then, the cross-correlations of

any two variables in the first and second group of series will be respectively r1 = a2s/
(
1 + a2s

)
and r2 =

b2s/
(
1 + b2s

)
, while the correlation between series in different groups will be r12 = abs/

√
(1 + a2s) (1 + b2s).

Consequently, if a is very different from b, the clustering should detect two groups of time series. Thus, we

must verify that the groups obtained are due to different specific factors and not due to differences between

factor loadings in a global factor. Therefore, we check whether all the groups have at least one

specific factor. We may face the following cases: (1) All the k groups found include at least one specific

factor, and we conclude that we have a DFMCS with k groups; (2) k1 groups, ( 1 ≤ k1 < k )

contain specific factors, and k2 = k − k1 groups only contain global factors, then we have a

DFMCS with k1 + 1 groups; and (3) All the groups only contain global factors, then we have

the standard DFM.

Given the estimated factors, groups and loadings
(
P̂0f̂0t, P̂1f̂1t, . . . , P̂k f̂kt

)
, we can compute the residuals

from all the factors, or idiosyncratic component, n̂t = xt − P̂0f̂0t −
k∑
i=1

P̂if̂it and fit AR(p) models to the

idiosyncratic time series by

SE2 =

T∑
t=1

∥∥∥∥∥n̂t −
p∑
i=1

Φin̂t−i

∥∥∥∥∥
2

+ Tg (φ) , (5)

where Φi are diagonal matrices and g (φ) is a penalty function on the number of fitted AR parameters. The
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minimization of SE2 requires choosing the penalty function. In this article we will concentrate in finding

the common component of the DFMCS, as the estimation of (5) has well established standard solutions. Of

course, it is possible to put both problems together and find the global minimizer of all the parameters, but

this requires an iterative procedure which for large time series will be very slow. Therefore, in this article

we will concentrate in estimating the common component.

4 Robustification of the procedure

The fitting of the DFMCS is made robust in two ways. First, we clean the observed time series from the

effects of (univariate or multivariate) additive outliers and level shifts. Second, we eliminate from the set of

observed time series those outlying time series that do not follow the DFMCS.

4.1 Cleaning of additive outliers and level shifts

In practice, the observed time series can be affected by univariate and/or multivariate additive outliers

and/or level shifts. The effects of these outliers can be severe, see Tsay, Peña and Pankratz (2000), Galeano,

Peña and Tsay (2006), and Galeano and Peña (2019). For instance, they can produce strong bias in

the sample estimates of autocovariance matrices and model parameters. In our case we have to

eliminate their effects on the observed time series before fitting the DFMCS for two main reasons: (i) the

dependency between two series might be created, or hidden, due to the effect of large outliers; and (ii) we

need a robust estimate of the covariance matrix to estimate the factors.

Let xt = (x1t, . . . , xmt)
′

be a vector of time series following the DFMCS model (1). Then, a multivariate

additive outlier (MAO) appears at time t = a, if instead of xt we observe the vector time series yt =

(y1t, . . . , ymt)
′
, given by

yt = xt + w(a)I
(a)
t , (6)

where w(a) =
(
w

(a)
1 , . . . , w

(a)
m

)′
is the size of the MAO and I

(a)
t is a dummy variable such that I

(a)
t = 1, if

t = a, and I
(a)
t = 0, if t 6= a. Consequently, only the observation at time t = a is affected by the presence of

the MAO, and the effect in each time series xit, 1 ≤ i ≤ m, depends on the weights w
(a)
i . On the other

hand, a multivariate level shift (MLS) appears at time t = l, if instead of xt we observe yt given by

yt = xt + w(l)S
(l)
t , (7)
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where w(l) =
(
w

(l)
1 , . . . , w

(l)
m

)′
is the size of the MLS and S

(l)
t is a step variable such that S

(l)
t = 1, if t ≥ l,

and S
(l)
t = 0, if t < l. Therefore, all the observations, from time t = l onwards, are affected by the presence

of the MLS depending on the weights w
(l)
i . In general, the time series can be affected by several MAOs

and MLSs, as follows

yt = xt +
A∑
i=1

w(ai)I
(ai)
t +

L∑
i=1

w(li)S
(li)
t , (8)

for t = 1, . . . , T , where w(a1), . . . ,w(aA) are the sizes of the MAOs at locations a1, . . . , aA, and w(l1), . . . ,w(lL)

are the sizes of the MLSs at locations l1, . . . , lL. The method to clean the observed time series, y1, . . . ,yT ,

defined in (8), from the effects of MAOs and MLSs proceeds following the next four steps:

1. Find the direction that maximizes the kurtosis coefficient of the projected time series, as explained

in Galeano, Peña and Tsay (2006), and project the observed time series in this direction (see remark

3 below). Then, search for additive outliers and level shifts in the projected time series using the

algorithm proposed by Chen and Liu (1993) (see remarks 4 and 5 below). If no additive outliers and

level shifts are found, go to step 2. Otherwise, let T (l) =
{
l̃1, . . . , l̃L̃

}
be the vector of sorted locations

of the level shifts found and let y1, . . . ,yL̃+1 be the sample mean vectors of the time series in the

subintervals
(

1, l̃1 − 1
)
,
(
l̃1, l̃2 − 1

)
, . . . ,

(
l̃L̃−1, l̃L̃ − 1

)
,
(
l̃L̃, T

)
. Then, define l̃0 = 1 and l̃L+1 = T+1

and build the series corrected by the detected level shifts:

y∗t = yt − (yi+1 − y1),when l̃i ≤ t < l̃i+1 − 1, for i = 0, . . . , L.

Let T (a) =
{
ã1, . . . , ãÃ

}
be the vector of locations of the additive outliers found. Then, the observations

y∗ã1 , . . . ,y
∗
ãÃ

are replaced with their interpolated values using Exponentially Weighted Moving Average

(EWMA) smoothing with moving average window width equal to 4 (see remark 6 below). Repeat this

step with the time series y∗t until no more additive outliers and level shifts are found. For simplicity,

the time series obtained at the end of this step is denoted by y∗t .

2. Detect and clean MAOs and MLSs as in step 1 with directions that minimize the kurtosis coefficient

of the projected time series. The vector of time series obtained is still denoted by y∗t .

3. Let ndir be the total number of directions obtained in steps 1 and 2. Then, compute a random direction

as explained in Peña and Prieto (2007) (see remark 3 below), and project the time series y∗t in this

direction. Afterwards, search for additive outliers and level shifts in the projected time series and
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correct them as in steps 1 and 2. Then, repeat this step ndir times until ndir random directions have

been generated. The time series obtained after this process is still denoted by y∗t .

4. Search and clean for additive outliers and level shifts in the m univariate time series in y∗t obtained

at the end of step 3.

Several remarks on this cleaning procedure are in order:

Remark 3. The methods to obtain the directions in Galeano, Peña and Tsay (2006) and in Peña and

Prieto (2007), make use of the covariance and the precision matrices for standardizing the time series to be

projected to have zero mean vector and identity covariance matrix. On the one hand, if T > m and the

covariance matrix is well conditioned, the standardization can be done even if the number of variables is

large, because both algorithms are affine equivariant, so that, they are independent of the standardization

used. On the other hand, if T ≤ m or if the covariance matrix is ill-conditioned, the projected time series

are obtained using the most important principal components of the observed time series.

Remark 4. We use a modification of the procedure proposed by Chen and Liu (1993) for detecting

additive outliers and level shifts in univariate time series (see Galeano and Peña, 2019) rather than the one

proposed in Bianco et al. (2001) that appears to work better, but is slower. As the procedure for detecting

univariate outliers is run a large number of times it is important that the algorithm used is fast.

Remark 5. With multiple testing, as in this case, it is necessary to control the detection of false MAOs

and MLSs by selecting appropriate critical values. In the Chen and Liu procedure used in steps 1, 2 or 3

for detecting additive outliers and level shifts in projected time series, we use the (1− α)
1/(2Tnpro) quantile

of the standard half-normal distribution, where npro is the number of projections already generated in the

corresponding step. This quantile corresponds to the distribution of the maximum of all the likelihood

ratio test statistics for an additive outlier and a level shift in all the existing projections, assuming that

these statistics are independent. Similarly, in step 4, we use the (1− α)
1/(2Tm)

quantile of the standard

half-normal distribution, because the Chen and Liu procedure is run independently on every observed time

series. Nonetheless, it is important to note that the proportion of false detection of MAOs and MLSs is

expected to be smaller than α, because the likelihood ratio test statistics for detecting additive outliers and

level shifts are dependent. Consequently, α is an upper bound of the proportion of false MAOs and MLSs

detected by the cleaning method. This is confirmed in the simulations shown in Section 5.

Remark 6. We clean MAOs by using a fast interpolator. The optimal interpolator of a linear time

series is a linear combinations of the values at both sides of the point to be interpolated with weights given
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by the inverse autocorrelation function (see Peña and Maravall, 1991). Thus, computing it many times

would heavily increase the computational cost of the procedure. Instead, we interpolate by Exponentially

Weighted Moving Average (EWMA) smoothing and use a window of four observations before and after

the point to be interpolated. In this way, the probability of including outliers in the computation of the

interpolator is small. The weights used are (4/15, 2/15, 1/15, 1/30) that result from using the exponentially

decreasing weights (1/2, 1/4, 1/8, 1/16) divided by the sum of twice all the them. These weights ensure that

the interpolation is unbiased.

Remark 7. In steps 1, 2 and 3, we clean the detected MAOs and MLSs in the m time series components.

It is true that not all the time series might be affected by these effects, but the proposed cleaning should not

have important effects in good observations. Therefore, although we may loss efficiency, we win robustness.

Remark 8. As noted in Tsay, Peña and Pankratz (2000), we cannot assume that by removing the

effects of the outliers in each observed time series they become outlier-free. To illustrate the importance of

searching for multivariate outliers in steps 1, 2 and 3, a small simulation is conducted in the supplementary

material of the paper.

Finally, Section 5 shows some simulations that illustrate the good performance of the proposed procedure

for cleaning the effects of MAOs and MLSs.

4.2 Detecting outlying time series

In practice, there exists the possibility that a few of the observed time series are not generated by a DFMCS.

We will call this series outlying time series. To detect them, we can rely on the information provided

by the clustering procedure used to build the groups. If we have outlier series that do not follow a DFM

they will have small correlation with the rest of the series and they will not be included in the initial

allocation to the groups, as explained in Section 3. Let yst = (ys1t, . . . , y
s
st)
′

be the set of s suspicious time

series that are omitted in the dendrogram analysis in step 2. The goal is to test whether any of the series in

yst are independent from the set of factors ft = (f1t, . . . , frt)
′
. In other words, we are interested in testing

the null hypothesis H0 : ysit is independent of ft = (f1t, . . . , frt)
′

versus the alternative hypothesis H1 : ysit is

not independent of ft = (f1t, . . . , frt)
′
, for i = 1, . . . , s. For that, we use the statistic proposed in Robbins

and Fisher (2015) to test for independence between two sets of time series. This statistic is the log of the

determinant of the matrix formed by residual autocorrelation matrices after fitting VARMA models to the

two sets of series. The statistic, denoted by Λp, where p is the order of the maximum autocorrelations used,

follows a χ2 distribution with degrees of freedom equal to the product of the dimensions of the two sets
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of series to test for independence. Therefore, one option would be to test directly H0 versus H1 with the

whole set of factors. However, as noted in the simulations in Robbins and Fisher (2015), we have checked

that the log-determinant statistic is more powerful when the dimensions of the two sets of time series to test

for independence are small. For this reason, we first compute the log-determinant statistics for each ysit, for

i = 1, . . . , s, and each factor fjt, for j = 1, . . . , r, as well as their associated p-values, denoted by pij , and

then, we label as non-outlying time series to those suspicious time series such that min
1≤j≤p

pij < cα, where

cα = χ2
1,(1−α)1/(sr) is the (1− α)

1/(sr)
quantile of the χ2

1 distribution. This quantile corresponds to the 1−α

quantile of the distribution of the minimum of r× s independent χ2
1 distributions. Finally, the outlying time

series are eliminated from the fitting of the DFMCS. The simulations shown in Section 5 suggest that this

is a simple, efficient and powerful method to detect outlying time series.

Remark 9. An alternative way to label non-outlier series is to use the False Discovery Rate (FDR). Fol-

lowing Cuesta-Albertos and Febrero-Bande (2010), we can define a global p-value of the test of independence

for the suspicious time series ysit as follows:

pi = inf

{
r

j
pi(j) : j = 1, . . . , r

}
,

where pi(1), . . . , pi(r) are the sorted p-values for the tests corresponding to the time series ysit in increasing

order. Then, we can apply the Benjamini-Hochberg method to control the FDR and label as non-outlier

series those time series such that p(i) ≤ i
sα,where p(1), . . . , p(s) are the sorted p-values of the set of suspicious

time series. Note that the Benjamini-Hochberg method is valid even if the statistics are dependent, because

the distribution of these statistics is χ2
1 (see, Benjamini and Yekuteli, 2001). The simulation analysis in

Section 5 suggests that the results with this method are similar to the one proposed before. Therefore, for

simplicity, we use the method described previously.

5 Monte Carlo Results

In this section we present Monte Carlo results to: (1) show the performance of the proposed procedure

with clean time series; (2) compare its performance to the one proposed by Ando and Bai (2017); and

(3) show its robustness for outlier detection. As measures of performance we use: (i) for finding clusters,

the Adjusted Rand Index (Hubert and Arabie, 1985); (ii) for loading estimates, the discrepancy measure

proposed by Gao and Tsay (2019a,b); (iii) for factor estimates,the trace ratio suggested by Stock and Watson
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(2002), and used by Bai and Li (2006) and Poncela and Ruiz (2016), among others.

In the study 12 scenarios (DGP) have been considered. They include different number of groups (k = 2

and 3), number of factors (r = 6 and 10), structure for the factors (AR(1) and i.i.d.), structure for the noises

(i.i.d., heteroscedastic with cross-sectional dependence and serial and cross-sectional dependence) and signal

to noise ratio (noise variances σn = 1, 2 and 3). Here we present the results for the six scenarios with

factors generated by an AR(1) model, those for i.i.d. factors are in the supplementary material.

The first three DGPs are similar to the ones proposed by Ando and Bai (2017): k = 3 groups, with one

global factor, r0 = 1, and thee group-specific factors in each group, r1 = r2 = r3 = 3, with m1 = m2 = m3

for m = 300 and 600, and T = 200 and 400. In this DGP1-DGP3 scenarios, the global factor is a

generated by an AR(1) model with autoregressive parameter φ = 0.75 and the global factor noise, ut, is a

vector of uniform [0, 1] variables and the elements of the factor-loading matrix P0 follow an uniform [−2, 2].

Each specific factor of group i, fi,t, is generated by an AR(1) with φ = 0.75 and the corresponding noises

and the factor loadings follow a N(0, 1). Three structures are considered for the idiosyncratic component. In

DGP1 the ni,t are assumed N(0, σn). In Ando and Bai (2017), σn was fixed to 1, but here, we consider three

values {1, 2, 3} in order to evaluate the effect of different signal to noise ratios. In DGP2 the errors

are heteroscedastic with cross-sectional dependence, ni,t = 0.2n1
i,t + δtn

2
i,t, where δt = 1, if t is odd, and

zero otherwise, and the vectors n1 = (n1
1,t,n

1
2,t, . . . ,n

1
m,t)

′ and n2 = (n2
1,t,n

2
2,t, . . . ,n

2
m,t)

′ are independent

and follows a multivariate N(0m,ΣΣΣn) with elements 0.3|i−j|σ2
n, for i, j = 1, . . . ,m. In DGP3 the errors have

serial and cross-sectional dependence: ni,t = 0.2ni,t−1+ei,t where the vector eeet = (e1,t, e2,t, . . . , em,t)
′
follows

a multivariate N(0m,ΣΣΣn) with elements 0.3|i−j|σ2
n, for i, j = 1, . . . ,m.

The next three scenarios are more difficult since first, the number of global factors can be bigger than the

number of group-specific factors and, second, we do not have symmetry in the number of group-specific

factors and in the size of the clusters. In all of them k = 2, the number of global factors is r0 = 2, the

numbers of group-specific factors are r1 = 1 and r2 = 3, respectively, and the number of elements in the

groups are m1 = m/3 and m2 = 2m/3. Again m is 300 and 600, and T is 200 and 400. These three scenarios

(DGP4, DGP5 and DGP6) assume that the factors follows an AR(1) model with autoregressive parameter

φ = 0.75 and the idiosyncratic components follow the same structure as DGP1-DGP3, respectively.

5.1 Performance of the procedure

We present first the results for the true number of groups and factors. Table 1 gives the selected

number of clusters. Alonso and Peña (2018) showed that finding groups by applying directly the GCC
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to the set of series works well and we have compared our proposal, denoted by Proposal in this table, that

use the estimated common component of the series to the method, denoted by TS-GCC, that use

the observed time series. In the first row of each method we report the mean of the selected number

of clusters and, in the second raw, the number of iterations out of 100 where the true number of clusters

was selected. For DGP 1–3 and all values of σn, both methods select around three clusters and work

well. However, when we increase the noise and decrease the signal to noise ratio, the TS-GCC method fails,

whereas the proposed method continues to obtains very good results. See scenarios 4–6, where the true

number of clusters is two. For those scenarios when σn = 3, the TS-GCC method obtains a mean number

of clusters in the range (2.07, 9.65), whereas the proposed one obtain values in the range (1.24, 2.75). The

results improve for larger T and m. In particular, for T = 400 and m = 600, our proposal selects the

correct number of clusters in almost all the iterations.

Table 1 around here.

Table 2 shows the results for the classification of the factors. NG denotes the means of factors

classified as global and NSi with i = 1, 2, 3 the mean of factors classified as specific. For DGP 1–3, we

expect that NG is around one and the NSi are around three. For DGP 4–6, we expect that NG is around

two, NS1 around one, and NS2 around three. Table 2 shows that the proposed procedure properly

identifies the type of the factors even when the signal is weak, as in the case σn = 3. As expected, the

classification improves for larger T and m.

Table 2 around here.

5.2 Comparison with other procedures

We now compare our procedure to the one proposed by Ando and Bai (2017). In Table 3, we report the

mean of the Adjusted Rand Index (ARI) of three different methods: ABCi corresponds to the first step of

Ando and Bai clustering, ABCf to their final solution and Proposal to the proposed procedure. The ARI,

proposed by Hubert and Arabie (1985), compares two different cluster partition, C = (C1, . . . , Ck) and

15



C ′ = (C ′1, . . . , C
′
k′) using the following formulas:

ARI(C,C ′) =

∑k
i=1

∑k′

j=1

(#(Ci

⋂
C′

j)
2

)
−
∑k
i=1

(
#(Ci)

2

)∑k′

j=1

(#(C′
j)

2

)
/
(
n
2

)(∑k
i=1

(
#(Ci)

2

)
+
∑k′

j=1

(#(C′
j)

2

))
/2−

∑k
i=1

(
#(Ci)

2

)∑k′

j=1

(#(C′
j)

2

)
/
(
n
2

) .
The closer this index to one, the higher is the agreement between the two partitions. The results in

Table 3 imply that the proposed clustering procedure improves the ABC one, that does not have a good

performance at scenarios 4–6 for all values of σn.

Table 3 around here.

Table 4 reports the mean of the discrepancy measure proposed by Gao and Tsay (2019a,b) that compares

the linear space spanned by the columns of the theoretical loadings, M (P), with the linear space spanned

by the columns of the estimated loadings, M
(
P̂
)

, using the following expression

D
(
M(P),M

(
P̂
))

=

√
1− 1

min (r1, r2)
tr
(
HPHP̂

)
,

where P is the theoretical loading matrix having rank r1, P̂ is the estimated loading matrix having rank

r2, and HP = P (P′P)
−1

P′ and HP̂ = P̂
(
P̂′P̂

)−1
P̂′. This measure is equal to 0 if and only if either

M
(
P̂
)
⊂ M (P) or M (P) ⊂ M

(
P̂
)

, and it is equal to 1 if and only if M (P) ⊥ M
(
P̂
)

. For factor

estimates evaluation, we use the trace ratio measure suggested by Stock and Watson (2002), and given by:

tr

(
F′F̂

(
F̂′F̂

)−1
F̂′F

)
tr(F′F)

,

where F represents the theoretical factors and F̂ the estimated ones. The closer to one the measure,

the higher is the canonical correlation between the estimated and the true factors. For reasons of space, we

present the results with the trace ratio measure results in the supplementary material. In these tables, ABCf

corresponds to final solution of Ando and Bai clustering and Proposal to the proposed procedure.

In these tables, CF denotes the discrepancy measure (trace ratio measure) between the generated global

loading (factors) and the estimated ones with the two procedures and GFi denote these statistics for the

specific factors. The results point out that the accuracy of the estimation decreases with the decrease of
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the signal to noise ratio, due to the increases of the variance of the idiosyncratic component, and increases

with the variance of the factors. This explains why the specific factors, that have large variance than

the global factor, are estimated better. At scenarios DGP 1 – 3, with ten factors, the increase in precision

in the estimation of the global factor goes from 20− 45% and for the specific factors is around 20%. Similar

results are obtained at scenarios DGP 4 – 6, where our proposal generally improves the ABC in factors

estimation, specially for the global factors. The worst results for our proposal are in the difficult cases

DGP4 – DGP6 when σn = 3, and T and m are small, but they are still clearly better than those of

ABCf.

Table 4 around here.

5.3 Robustification

To analyze the performance of the time series cleaning method proposed in Section 4.1, sets of 100 time

series are generated following one of the six DGPs. For each generated time series, we introduce four MAOs

at locations a =
[
T
5

]
,
[
2T
5

]
,
[
3T
5

]
, and

[
4T
5

]
, and two MLSs at locations l =

[
T
3

]
and

[
2T
3

]
. In all cases, the

sizes of MAOs and MLSs is given by w = ω × diag
(
Γ̂x (0)

)
, where Γ̂x (0) is the sample covariance matrix

of the series without the MAOs and MLSs, and ω is chosen such that the size of the corresponding AO or

LS in the projected time series on the direction of the multivariate outlier is equal to 10 times the standard

deviation of the projected time series without the outlier. This might look as a large size but note that

as the optimal direction is unknown, the size of the univariate outlier for any other projection

will be much smaller. Indeed, in most of the possible projections, the size of the AO or LS will be close to

0.

Then, we apply the time series cleaning method to each generated time series. The critical values used are

those described in remark 5 for α = 0.05. Table 5 shows two measures of the performance of the method

averaged over the 100 generated time series: (1) the proportion of true detection of MAOs

and MLSs; and (2) the proportion of false detection of MAOs and MLSs. Note, first, that the

procedure does a remarkable job in cleaning the time series from the effects of MAOs and MLSs, as most

of the proportions of true detection of MAOs and MLSs are over the 90%. Nevertheless, it seems that the

procedure is able to detect slightly more precisely the MLSs. This is reasonable because a MLS may have

a larger effect in the observed time series than a MAO. Second, the larger σn, the better the performance.

This is because the size of the MAOs and the MLSs generated increases slightly when the variance of the
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noise increases. Third, as noted in remak 5, the procedure is able to control the detection of false MAOs

and MLSs. Anyway, the critical values selected look conservative, as expected.

Finally, we run a final Monte Carlo experiment to analyze the performance of the procedure for detecting

outlying time series. For that, we generate sets of 100 time series following one of the six DGPs

and
[
m
10

]
independent time series following the same model as the factors. Then, we fit a

DFMCS to obtain the estimated factors and use the proposed method to find outlying time

series. The significance level in the test is α = 0.05. Table 6 shows the proportion of true detection of

outlying time series averaged over the 100 generated time series data sets. As it can be seen, the procedure

detects very well the time series that are independent of the estimated factors. Indeed, all the proportions

are over the 95%. Note that an increment of the number of time series does not improve the results, but

an increase of the number of observations leads to a larger frequency of detection.

Tables 5 – 6 around here.

6 Analysis of Electricity Demands in New England

We analyse a dataset of hourly day-ahead demand for the ISO New England electricity market from Jan-

uary 2004 to December 2016. The data set is available at www.iso-ne.com. The New England region is

divided in eight load zones: Connecticut (CT), Maine (ME), New Hampshire (NH), Rhode Island (RI),

Vermont (VT), Northeastern Massachusetts and Boston (NEMA), Southeastern Massachusetts (SEMA) and

Western/Central Massachusetts (WCMA). Each of the time series, Dt,i, for 1 ≤ i ≤ 192 and 1 ≤ t ≤ 4749,

corresponds to the demand of electricity in one of the eight regions at one of the 24 hours in a given day, that

is, we have 192 time series. The number of points in each series is 365 (or 366) days and 13 years, making a

total of 4749 data points. As an example, Figure 1 represents the 24 series of demands for Connecticut. The

series require a seasonal difference and a logarithm transformation to become stationary (see Garćıa-Martos

and Conejo, 2013), so that the series analyzed are Xt,i = ∇7 logDt,i.

Figure 1 around here.

In order to illustrate the relevance of outlier detection we will present the cluster solution with the original

time series, Xt,i and the cluster solution with the outlier corrected time series, Xc
t,i. First, three factors
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are selected for the series Xt,i using the two-steps Ahn and Horenstein’s procedure with loadings

shown in Figure 2. It is clear that hour 02:00 has a different behaviour that the others: the first factor is

essentially measuring the effect of this second hour and the second and third factors also have a peak at

this hour.

Figure 2 around here.

When we apply the cleaning procedure to Xt,i, in the first step, projections in directions of maximum

kurtosis, the procedure identifies 70 MAOs in seven time series projections, an average of 10 outliers

per projected time series. Once the outlier effects are removed, as explained in Section 4, the second step,

projections in directions of minimum kurtosis, identifies 23 MAOs in five time series projections, i.e., 4.6

outliers in average per projected time series. After removing these outliers, the third step, random projec-

tions, finds 20 MAOs in twelve random projections, i.e., 1.66 outliers in average per projected time series.

Finally, the fourth step, univariate search, discovers 59 additive outliers in 47 out of the 192 components,

i.e., 1.25 outliers in average in those components with detected outliers. In summary, the procedure detects

113 MAOs and 59 univariate additive outliers and cleans 2.38% of the total number of data points of all the

time series.

Table 7 shows the number of outliers detected by day of the week. The largest number of MAOs appears

at Sundays and Mondays. Note that 24 out of the 56 MAOs detected on Sundays correspond to the

daylight saving time days, where the demand is set to zero at the second hour. In the period considered, at

the beginning of the sample daylight saving time days occur on April, but after the application of the Energy

Policy Act in 2007, the daylight saving time days are on the second Sunday in March. Of course, when we

take a week seasonal difference, the outlier appears twice in a seven days interval. These 24 data points

represent the 21.18% of the total number of data points cleaned. Moreover, the number of MAOs detected

in festive days is 15 and 11 of them are on Mondays. Therefore, the number of MAOs on Mondays that

are not festive days is 11 that is a similar number to the MAOs detected in other days. The univariate

outliers detected look scattered uniformly on the seven days of the week.

Table 7 around here.

With all the outlier corrected series, the two-steps Ahn and Horenstein’s test finds two factors, that
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explain 77.1% and 8.8% of the total variability, respectively. The loadings of these two factors are shown in

Figure 4. The first one is almost an average of the series with “similar” weights (in the range 0.037−−0.100)

to all of them. Therefore, it reproduces the global dynamic of the differentiated series. The second factor

gives negative weights to series of 1th – 11th hours and positive to the 12th – 24th hours. Note that these

factors also differentiate across regions, since the loadings for the second (ME) and seventh (SEMA) regions

are different to the weights of the remaining regions. Thus, if we do not consider the possible presence of

clusters in this data we may conclude that a DFM with two factors will be appropriate for these

data.

Figure 4 around here.

We search for clusters using the GCC of the series. First, to see the effect of the outliers, we apply this

measure to the original series. Figure 3(a) shows the dendrogram obtained. The demand series of the

second hour (blue cluster) appear at the top, revealing that these series are far away from the others. No

other groups are found. However, the dendrogram for the outlier corrected time series in Figure

3(b) shows clearly two clusters. The first one (in red) contains the time series of demand for hours

11:00 – 24:00 and the second one (in green) contains the ones for hour 01:00 – 10:00. The

Silhouette statistics also indicates two clusters. Thus, we conclude that the series corrected from outliers

form two groups: the first one broadly including daylight hours and the second one the night hours.

Figure 3 around here.

When the two-steps Ahn and Horenstein’s procedure is applied to series at the two groups, seven factors

are obtained in each cluster. These seven factors explain the 96.8% and 97.6% of the variability of the

series at the first and the second group, respectively. As some of these factors may be global and others may

be specific, we compare the two factors found with all the series and the fourteen factors found

in the two groups applying the rules presented in Section 3. The two initial factors are classified

as global factors. The first has canonical correlations with the factors in the two groups of 0.984 and 0.967.

The second has weaker correlations, 0.673 and 0.799, respectively, but its canonical correlation with the set

of all the specific factors is almost one. This implies that its effect is distributed among several factors found

in the groups. Now, we apply step 4 of the procedure and obtain the Rt,i = Xc
t,i − P̂0f̂0t, where P̂0 and f̂0t
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are the estimated loadings and factors, respectively for the two global factors. The Ahn and Horenstein’s

test applied to Rt,i, for series at each group, obtains six and five factors for the first and the second clusters,

respectively. These factors are clearly specific and orthogonal to the two global factors. Figures 5 and 6

show the loadings for these specific factors. Note that two extreme zones from the geographical point of

view, Maine (ME) and Southeastern Massachusetts (SEMA), have the largest effect in almost all the specific

factors in both groups, whereas for the global factors the situation was just the opposite: these zones have

the smallest weights in the two global factors in Figure 4. Regarding the effect of each hour, in the two global

factors (see Figure 4) the first one gives more relative weight to the afternoon (13:00–19:00), whereas the

second one differentiate between the night (1:00–7:00) and the rest of the hours, with a peak in 17:00–19:00.

A richer picture appears in the structure of the group factors. In group one the three first factors give

more weight to hours from 11:00–18:00 than those from 19:00–24:00, and factors four and six account for a

peak in electricity demand when most people return home, hours 17:00-18:00. In the second group the first

two factors have opposite peaks of demand around 1:00-2:00 and 7:00-8:00. The other three factors have

small variability in the hours but they differentiate strongly among the eight zones.

Figures 5 and 6 around here.

Finally, we perform an out of sample prediction exercise to compare the model fitted with and without

cluster effects. Thus we consider: (1) the fitted DFM with two factors (M1); and (2) the fitted DFMCS model

with two global factors and eleven specific factors (M2). The first ten years of data were used as training

period for the estimation of the models and the last three years (1095 days) as testing period. Seasonal

ARIMA models (as in Garćıa-Martos and Conejo, 2013, and Alonso et al, 2016) were fitted

to the factors in models M1 and M2. For simplicity, in both models the idiosyncratic terms are

assumed to be white noise. We perform a one-day ahead prediction exercise using a rolling windows across

the testing period. We calculate the mean absolute prediction errors as well as the root mean squared

prediction errors using the following expressions:

MAE =
1

192

1

1095

192∑
i=1

1095∑
t=1

|Xt,i − X̂t,i|

and

RMSE =

(
1

192

1

1095

192∑
i=1

1095∑
t=1

(Xt,i − X̂t,i)
2

)1/2

,
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where Xt,i corresponds to the i-th series at day t and X̂t,i is its prediction. The MAE and RMSE for model

M1 were 0.0526 and 0.1131, while for model M2 were 0.0487 and 0.1100, respectively. These results point

out that introducing the cluster structure and the specific factors produce a moderate improvement on the

overall out of sample prediction. The MAE and RMSE calculated at the time series of cluster 1 (cluster

2) are 0.0545 and 0.0734 (0.0501 and 0.1522) for model M1, and 0.0502 and 0.0677 (0.0465 and 0.1505) for

model M2, an improvement of 7.88% in MAE and 7.86% in RMSE (7.04% and 1.10%), respectively. That

is, the improvement is observed in both clusters and is higher on the first one.

7 Conclusions

We have presented a robust and efficient way to estimate a Dynamic Factor Model with Cluster Structure.

The proposed procedure can be used as a starting point for other estimation methods for these models

or applied by itself for large sets of time series. A Monte Carlo study have shown its good performance

with respect to some alternatives. This research can be extended in several ways. It is easy to show that

our procedure will provide a consistent estimation of the factors under general assumptions (Stock and

Watson, 2002, Bai and Ng, 2002) when m and T go to infinity, if we assume a fixed known value of k, and

mi = αim, with αi > 0, and
∑k
i=1 αi = 1. However, a general proof of the consistency of the method will

require a consistent estimate of the groups labels. This result could be obtained by a similar analysis to

the one made by Bonhomme and Manresa (2015) and Ando and Bai (2017), but more research is needed to

define the set of assumptions required for the proof. Also, the model can be extended to a hierarchical

structure in the grouping, so that calling m the set of data and gi the data belonging to group i-th so that

∪ki=1gi = m and gi ∩ gj = 0 ∀i, j we have factors affecting groups gi but also factors that affect to groups

C1, . . . , Ch, with h < k and where ∪hi=1Ci = m and Ci ∩ Cj = 0 ∀i, j. These topics will be the subject of

further research.
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Figure 1: Demands at 01:00 – 24:00 for Connecticut from January 2004 to December 2016.
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Figure 2: Estimated loadings of the three initial factors using all (log differentiated) original series, Xt,i.
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Figure 3: (a) Dendrogram obtained with the original series, Xt,i. (b) Dendrogram obtained with the outlier
corrected series, Xc

t,i.
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Figure 4: Estimated loadings of the two initial factors using all outlier corrected series.
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Figure 5: Estimated loadings for six specific factors using the outlier corrected series at group 1 (Hours
11:00–24:00).
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Figure 6: Estimated loadings for five specific factors using the outlier corrected series at group 2 (Hours
1:00–10:00).
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σn = 1 σn = 2 σn = 3
Method T m DGP 1 DGP 2 DGP 3 DGP 1 DGP 2 DGP 3 DGP 1 DGP 2 DGP 3
TS-GCC 200 300 3.00 3.00 3.00 3.13 3.00 3.00 3.96 3.02 3.94

100 100 100 94 100 91 47 99 62
Proposal 3.01 3.03 3.02 3.00 3.04 3.00 3.01 3.01 3.00

99 97 98 100 96 100 99 99 100
TS-GCC 400 300 3.00 3.00 3.00 3.00 3.00 3.03 3.13 3.00 3.30

100 100 100 100 100 97 97 100 93
Proposal 3.08 3.17 3.08 3.04 3.05 3.03 3.02 3.06 3.02

94 88 93 97 96 97 99 96 98
TS-GCC 200 600 3.00 3.00 3.00 3.00 3.00 3.03 2.99 3.00 2.86

100 100 100 91 100 88 51 100 51
Proposal 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

100 100 100 100 100 100 100 100 100
TS-GCC 400 600 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 2.99

100 100 100 100 100 100 100 100 99
Proposal 3.00 3.02 3.00 3.00 3.00 3.00 3.00 3.00 3.00

100 99 100 100 100 100 100 100 100
Method T m DGP 4 DGP 5 DGP 6 DGP 4 DGP 5 DGP 6 DGP 4 DGP 5 DGP 6
TS-GCC 200 300 4.21 2.60 3.61 5.97 3.29 5.34 5.11 2.39 3.42

61 84 66 44 66 44 9 37 27
Proposal 2.01 2.00 2.02 2.00 2.02 2.04 1.24 1.25 1.28

99 100 98 100 99 98 57 58 56
TS-GCC 400 300 2.53 2.24 2.77 7.81 2.57 4.49 9.65 3.22 6.16

84 92 83 21 85 63 3 80 33
Proposal 2.01 2.01 2.00 2.00 2.00 2.00 2.00 2.03 2.05

99 99 100 100 100 100 100 99 98
TS-GCC 200 600 3.26 2.46 3.19 2.43 2.68 2.69 2.07 2.75 2.29

76 89 78 93 87 88 99 85 93
Proposal 2.00 2.00 2.00 2.00 2.00 2.01 2.00 2.01 2.03

100 100 100 100 100 99 100 99 97
TS-GCC 400 600 2.83 2.27 2.49 3.30 2.46 2.22 4.63 2.49 2.33

80 91 88 75 90 92 61 87 87
Proposal 2.00 2.00 2.00 2.00 2.00 2.00 2.01 2.00 2.00

100 100 100 100 100 100 99 100 100

Table 1: Mean of selected number of clusters at scenarios 1–6 (global and group-specific factors are AR(1)),
T = 200 (400) and m = 300 (600). TS-GCC denotes the clustering procedure that computes the GCC
among the observed time series; Proposal denotes the clustering procedure that computes the GCC among
the estimated common component of the series. First row reports the mean of the selected number of
clusters and the second raw reports the number of iterations out of 100 where the true number of clusters
was selected.
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σn = 1 σn = 2 σn = 3
Factor T m DGP 1 DGP 2 DGP 3 DGP 1 DGP 2 DGP 3 DGP 1 DGP 2 DGP 3

NG 200 300 1.00 1.00 1.00 0.99 0.96 0.96 0.95 0.96 0.83
NS1 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
NS2 3.00 3.00 3.00 3.00 3.00 3.00 2.98 3.00 2.99
NS3 3.00 3.00 3.00 3.00 3.00 3.00 3.00 2.98 3.00
NG 400 300 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.01 0.96
NS1 3.00 3.00 3.00 3.00 3.00 3.00 3.00 2.98 3.00
NS2 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
NS3 3.00 3.00 3.00 3.00 3.00 2.98 3.00 3.00 3.00
NG 200 600 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.97 0.95
NS1 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
NS2 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
NS3 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
NG 400 600 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
NS1 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
NS2 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
NS3 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

Factor T m DGP 4 DGP 5 DGP 6 DGP 4 DGP 5 DGP 6 DGP 4 DGP 5 DGP 6
NG 200 300 1.98 2.01 2.00 1.81 1.89 1.67 1.01 1.01 0.46
NS1 0.98 1.00 0.98 0.98 0.98 0.96 0.94 0.96 0.91
NS2 3.02 2.99 3.01 3.06 3.02 3.02 3.07 3.00 3.19
NG 400 300 2.00 2.00 2.00 2.00 2.00 1.95 1.89 1.89 1.47
NS1 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.98 0.95
NS2 3.00 3.00 3.00 3.00 3.00 3.02 2.99 3.03 3.09
NG 200 600 2.00 2.00 2.00 1.94 2.00 1.79 1.84 1.79 1.35
NS1 1.00 1.00 1.00 0.98 1.00 0.95 0.97 0.96 0.88
NS2 3.00 3.00 3.00 3.06 3.00 3.12 3.06 3.09 3.23
NG 400 600 2.00 2.00 2.00 2.00 2.00 2.00 1.97 2.00 1.90
NS1 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.99
NS2 3.00 3.00 3.00 3.00 3.00 3.00 3.03 3.00 3.03

Table 2: Results for factor classification for scenarios 1–6 (global and group-specific factors are AR(1)),
T = 200 (400) and m = 300 (600). NG denotes the means of factors classified as global factor and NSi with
i = 1, 2, 3 denote the mean of factors classified as specific factors.
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σn = 1 σn = 2 σn = 3
Method T m DGP 1 DGP 2 DGP 3 DGP 1 DGP 2 DGP 3 DGP 1 DGP 2 DGP 3
ABCi 200 300 .044 .042 .043 .044 .048 .040 .037 .039 .039
ABCf .831 .823 .814 .770 .822 .783 .779 .789 .710

Proposal .990 .991 .987 .983 .985 .974 .974 .984 .957
ABCi 400 300 .055 .059 .051 .051 .059 .048 .051 .053 .042
ABCf .807 .847 .803 .794 .827 .808 .803 .824 .740

Proposal .987 .979 .985 .989 .987 .987 .988 .986 .983
ABCi 200 600 .036 .039 .034 .037 .037 .034 .034 .033 .029
ABCf .864 .822 .780 .835 .781 .785 .787 .864 .757

Proposal .991 .994 .990 .985 .990 .976 .976 .987 .962
ABCi 400 600 .049 .052 .049 .049 .047 .044 .046 .045 .043
ABCf .799 .838 .796 .854 .790 .809 .779 .842 .775

Proposal .996 .994 .994 .993 .996 .990 .989 .993 .987
Method T m DGP 4 DGP 5 DGP 6 DGP 4 DGP 5 DGP 6 DGP 4 DGP 5 DGP 6
ABCi 200 300 -.004 -.006 -.005 -.004 -.000 -.000 -.003 -.004 -.001
ABCf .121 .213 .094 .086 .149 .115 .030 .052 .029

Proposal .929 .955 .917 .877 .921 .824 .460 .504 .403
ABCi 400 300 -.002 -.006 .002 -.002 .000 -.003 -.003 -.002 -.000
ABCf .181 .209 .152 .096 .146 .052 .036 .140 .056

Proposal .962 .968 .959 .945 .955 .922 .927 .935 .846
ABCi 200 600 -.002 -.003 -.003 -.003 .001 -.001 .000 -.004 -.002
ABCf .193 .295 .167 .153 .258 .126 .095 .131 .063

Proposal .948 .960 .939 .897 .947 .859 .845 .892 .710
ABCi 400 600 -.003 .004 -.002 -.004 -.005 -.005 -.006 -.002 -.006
ABCf .327 .369 .276 .158 .226 .134 .132 .198 .105

Proposal .963 .970 .961 .953 .964 .940 .929 .957 .909

Table 3: Clustering performance evaluation using the Adjusted Rand Index at scenarios 1 – 6 (Common and
group-specific factors are AR(1)), T = 200 (400) and m = 300 (600). ABCi denotes the first step of Ando
and Bai clustering, ABCf their final solution and Proposal denotes the clustering procedure that computes
the GCC among the estimated common part of the series.
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σn = 1 σn = 2 σn = 3
Method Factor T m DGP1 DGP2 DGP3 DGP1 DGP2 DGP3 DGP1 DGP2 DGP3
ABCf CF 200 300 .900 .900 .908 .923 .899 .918 .924 .902 .944

GF1 .238 .226 .248 .320 .242 .290 .299 .278 .443
GF2 .246 .211 .277 .307 .247 .282 .275 .267 .398
GF3 .220 .252 .255 .332 .234 .295 .301 .297 .393

Proposal CF .361 .333 .387 .432 .391 .462 .477 .430 .517
GF1 .148 .117 .171 .205 .159 .235 .250 .197 .289
GF2 .150 .119 .170 .207 .163 .234 .246 .192 .283
GF3 .153 .122 .176 .206 .165 .238 .243 .191 .283

ABCf CF 400 300 .893 .894 .900 .910 .898 .897 .920 .902 .931
GF1 .250 .205 .248 .300 .246 .252 .262 .242 .332
GF2 .229 .165 .250 .254 .204 .247 .279 .253 .334
GF3 .248 .212 .255 .252 .234 .259 .295 .225 .355

Proposal CF .323 .310 .336 .368 .335 .391 .400 .355 .434
GF1 .111 .094 .126 .146 .115 .167 .173 .136 .201
GF2 .110 .091 .123 .147 .116 .168 .173 .136 .200
GF3 .114 .095 .128 .145 .116 .167 .172 .135 .200

ABCf CF 200 600 .899 .901 .918 .904 .903 .914 .918 .902 .941
GF1 .228 .222 .249 .221 .294 .264 .341 .212 .355
GF2 .165 .230 .294 .252 .251 .300 .341 .210 .373
GF3 .203 .218 .297 .239 .282 .328 .261 .216 .345

Proposal CF .306 .265 .329 .372 .318 .406 .429 .370 .470
GF1 .143 .109 .165 .196 .151 .226 .240 .185 .276
GF2 .144 .111 .164 .200 .153 .229 .236 .184 .271
GF3 .143 .110 .163 .199 .153 .229 .236 .184 .273

ABCf CF 400 600 .903 .887 .889 .893 .909 .907 .910 .891 .921
GF1 .244 .209 .274 .217 .236 .263 .277 .212 .323
GF2 .246 .189 .246 .196 .265 .256 .264 .193 .292
GF3 .247 .202 .241 .224 .275 .252 .330 .219 .289

Proposal CF .255 .233 .273 .306 .272 .332 .339 .296 .375
GF1 .104 .082 .118 .137 .107 .159 .164 .126 .191
GF2 .101 .081 .117 .137 .106 .158 .165 .127 .192
GF3 .102 .080 .117 .139 .108 .160 .166 .128 .192

Method Factor T m DGP4 DGP5 DGP6 DGP4 DGP5 DGP6 DGP4 DGP5 DGP6
ABCf CF 200 300 .871 .855 .877 .883 .861 .874 .894 .898 .894

GF1 .392 .325 .406 .449 .333 .415 .542 .428 .489
GF2 .598 .556 .667 .683 .624 .627 .635 .706 .689

Proposal CF .303 .265 .320 .361 .310 .408 .433 .355 .490
GF1 .165 .138 .187 .213 .171 .253 .256 .230 .291
GF2 .145 .126 .149 .171 .146 .193 .191 .161 .209

ABCf CF 400 300 .879 .873 .869 .863 .877 .891 .893 .874 .894
GF1 .310 .355 .314 .398 .298 .372 .722 .299 .403
GF2 .595 .551 .612 .576 .624 .696 .721 .609 .644

Proposal CF .255 .229 .267 .289 .258 .323 .335 .293 .372
GF1 .141 .116 .144 .162 .131 .178 .192 .154 .225
GF2 .119 .110 .126 .133 .123 .154 .155 .137 .169

ABCf CF 200 600 .870 .859 .863 .879 .869 .892 .883 .873 .898
GF1 .348 .334 .294 .422 .349 .468 .461 .324 .525
GF2 .562 .501 .578 .606 .548 .631 .652 .618 .677

Proposal CF .261 .223 .288 .334 .275 .372 .392 .324 .451
GF1 .149 .121 .171 .196 .156 .226 .247 .189 .292
GF2 .119 .100 .132 .153 .121 .172 .181 .143 .207

ABCf CF 400 600 .862 .848 .867 .879 .871 .883 .882 .876 .885
GF1 .293 .257 .251 .357 .310 .379 .328 .314 .367
GF2 .495 .433 .529 .612 .564 .649 .634 .609 .658

Proposal CF .206 .181 .226 .255 .214 .285 .296 .247 .335
GF1 .115 .098 .130 .145 .118 .164 .171 .140 .196
GF2 .095 .083 .104 .115 .094 .128 .136 .110 .151

Table 4: Loadings estimates evaluation using the discrepancy measure proposed by Gao and Tsay (2019) at
scenarios 1 – 6 (Common and group-specific factors are AR(1)), T = 200 (400) and m = 300 (600). ABCf
denotes the final solution of Ando and Bai clustering and Proposal denotes the clustering procedure that
computes the GCC among the estimated common part of the series.
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Proportion of true detection Proportion of false detection
σn = 1 σn = 2 σn = 3 σn = 1 σn = 2 σn = 3

DGP MAO MLS MAO MLS MAO MLS MAO MLS MAO MLS MAO MLS
1 .960

(.187)
.950
(.207)

.992
(.075)

.995
(.050)

.975
(.135)

.965
(.177)

.001
(.002)

.002
(.002)

.001
(.002)

.001
(.002)

.001
(.002)

.001
(.002)

2 .962
(.175)

.965
(.177)

.962
(.178)

.955
(.202)

.995
(.035)

1
(0)

.001
(.002)

.001
(.003)

.001
(.002)

.000
(.002)

.002
(.004)

.001
(.002)

3 .977
(.142)

.965
(.177)

.955
(.199)

.955
(.202)

.987
(.102)

.990
(.100)

.001
(.002)

.000
(.001)

.001
(.002)

.001
(.002)

.001
(.002)

.001
(.002)

4 .977
(.118)

.970
(.156)

.995
(.035)

.990
(.070)

.980
(.140)

.980
(.140)

.001
(.002)

.000
(.001)

.001
(.002)

.000
(.001)

.002
(.003)

.001
(.003)

5 .970
(.171)

.970
(.171)

.980
(.126)

.985
(.111)

.990
(.100)

.990
(.100)

.002
(.004)

.001
(.002)

.019
(.015)

.001
(.003)

.034
(.021)

.001
(.003)

6 .972
(.158)

.970
(.171)

.977
(.142)

.980
(.140)

1
(0)

1
(0)

.000
(.001)

.000
(.001)

.001
(.002)

.001
(.002)

.001
(.002)

.001
(.002)

1 .980
(.140)

.980
(.140)

.990
(.100)

.990
(.100)

1
(0)

1
(0)

.014
(.003)

.000
(.000)

.001
(.001)

.000
(.000)

.000
(.001)

.001
(.001)

2 .955
(.199)

.940
(.227)

.995
(.050)

1
(0)

1
(0)

1
(0)

.009
(.006)

.000
(.000)

.011
(.007)

.000
(.001)

.021
(.010)

.001
(.002)

3 .960
(.196)

.960
(.196)

.990
(.100)

.990
(.100)

1
(0)

1
(0)

.012
(.005)

.000
(.001)

.000
(.000)

.000
(.001)

.000
(.001)

.000
(.001)

4 .975
(.148)

.965
(.177)

1
(0)

1
(0)

1
(0)

1
(0)

.012
(.004)

.000
(.000)

.001
(.001)

.000
(.000)

.001
(.002)

.000
(.001)

5 .965
(.177)

.960
(.196)

.995
(.053)

1
(0)

.985
(.111)

.990
(.100)

.010
(.005)

.000
(.000)

.013
(.008)

.000
(.001)

.023
(.011)

.001
(.002)

6 .980
(.116)

.960
(.183)

.990
(.100)

.990
(.100)

.990
(.100)

.990
(.100)

.011
(.005)

.000
(.000)

.001
(.002)

.000
(.000)

.000
(.001)

.000
(.000)

1 .942
(.200)

.970
(.156)

.982
(.124)

.980
(.140)

.997
(.025)

.990
(.070)

.001
(.002)

.001
(.002)

.001
(.002)

.000
(.001)

.001
(.002)

.001
(.003)

2 .895
(.291)

.895
(.303)

.970
(.151)

.965
(.177)

.990
(.100)

.990
(.100)

.001
(.001)

.001
(.003)

.001
(.002)

.001
(.002)

.001
(.002)

.001
(.003)

3 .927
(.239)

.920
(.253)

.960
(.187)

.955
(.202)

.962
(.185)

.955
(.202)

.000
(.001)

.001
(.002)

.001
(.002)

.001
(.002)

.001
(.002)

.001
(.002)

4 .952
(.193)

.950
(.207)

.972
(.146)

.965
(.177)

.955
(.199)

.955
(.202)

.001
(.002)

.000
(.001)

.001
(.002)

.000
(.001)

.001
(.002)

.001
(.002)

5 .960
(.180)

.950
(.207)

.932
(.240)

.915
(.256)

.990
(.100)

.990
(.100)

.003
(.004)

.000
(.001)

.012
(.012)

.001
(.002)

.030
(.021)

.002
(.003)

6 .920
(.253)

.925
(.250)

.980
(.140)

.980
(.140)

.990
(.100)

.990
(.100)

.000
(.001)

.001
(.002)

.001
(.001)

.001
(.002)

.001
(.001)

.000
(.001)

1 .942
(.215)

.945
(.223)

.975
(.144)

.970
(.156)

1
(0)

1
(0)

.000
(.001)

.000
(.000)

.000
(.001)

.000
(.000)

.000
(.001)

.000
(.001)

2 .962
(.185)

.970
(.156)

.990
(.100)

.990
(.100)

1
(0)

1
(0)

.001
(.002)

.000
(.000)

.008
(.006)

.000
(.000)

.017
(.010)

.001
(.001)

3 .967
(.165)

.965
(.162)

.960
(.196)

.960
(.196)

.990
(.100)

.990
(.100)

.000
(.000)

.000
(.000)

.000
(.000)

.000
(.001)

.000
(.000)

.000
(.001)

4 .995
(.050)

.990
(.100)

.990
(.100)

.990
(.100)

.980
(.140)

.980
(.140)

.000
(.000)

.000
(.000)

.001
(.003)

.000
(.001)

.001
(.002)

.000
(.000)

5 .965
(.177)

.960
(.183)

.995
(.050)

1
(0)

1
(0)

1
(0)

.002
(.003)

.000
(.000)

.013
(.008)

.000
(.001)

.020
(.010)

.001
(.001)

6 .972
(.158)

.970
(.171)

.995
(.050)

.995
(.050)

.990
(.100)

.990
(.100)

.000
(.000)

.000
(.000)

.000
(.000)

.000
(.000)

.001
(.001)

.000
(.000)

Table 5: Proportion of true detection of MAOs and MLSs and proportion of false detection of MAOs and
MLSs (in parenthesis, standard deviation).
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(T,m)
DGP (200, 300) (400, 300) (200, 600) (400, 600)

1 .992
(.019)

.998
(.005)

.994
(.017)

.995
(.010)

2 .993
(.016)

.997
(.007)

.988
(.022)

.996
(.008)

3 .994
(.019)

.995
(.010)

.990
(.023)

.996
(.009)

4 .995
(.015)

.996
(.008)

.994
(.017)

.995
(.009)

5 .992
(.023)

.996
(.009)

.991
(.021)

.994
(.009)

6 .987
(.024)

.998
(.006)

.991
(.018)

.994
(.009)

Table 6: Proportion of outlier series that are detected by the proposed procedure (in parenthesis, standard
deviation).

Day of the week
Outlier type Monday Tuesday Wednesday Thursday Friday Saturday Sunday Total

MAO 22 10 5 3 9 8 56 113
Univariate AO 14 9 7 11 10 7 4 59

Table 7: Number of outliers detected by day of the week.
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