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Abstract

Over the last few years, there has been an increasing interest in the
creation of Computerized Adaptive Tests (CATs) based on Decision Trees
(DTs). Among the available methods, the Tree-CAT method has been
able to demonstrate a mathematical equivalence between both techniques.
However, this method has the inconvenience of requiring a high perfor-
mance cluster while taking a few days to perform its computations. This
article presents the Merged Tree-CAT method, which extends the Tree-
CAT technique, to create CATs based on DTs in just a few seconds in
a personal computer. In order to do so, the Merged Tree-CAT method
controls the growth of the tree by merging those branches in which both
the distribution and the estimation of the latent level are similar. The
performed experiments show that the proposed method obtains estima-
tions of the latent level which are comparable to the obtained by the
state-of-the-art techniques, while drastically reducing the computational
time.
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1 Introduction1

Computerized Adaptive Tests (CATs) have been a significant advance in the2

field of psychometrics by being able to estimate the examinee’s latent level θ3

(e.g., reading comprehension, IQ, and so forth) with greater precision than the4

classical linear tests using a smaller number of items (Weiss, 2004). This is5

due to the fact that the examinee receives a personalized test. Moreover, this6

customization of the test, together with the possibility of incorporating various7

mechanisms that control for the exposure rate of each item, hinders their leakage8

among the participants.9

Concisely, CATs estimate the latent level of the examinee each time he/she10

responds to an item. This is conducted by means of a probabilistic model11

that uses the responses given to the previously administered items, and the12

characteristics of those. This estimation is then used to select the next item to13

be administered, among those that satisfy the established exposure condition, by14

using an optimization criterion. As an example, some of the proposed criteria are15

Minimum Expected Posterior Variance (MEPV) (Van der Linden and Pashley,16

2009), Maximum Fisher Information (MFI) (Lord, 2012; Weiss, 1982), Kullback-17

Leibler Information (KLI) (Chang and Ying, 1996) and Maximum Likelihood18

Weighted Information (MLWI) (Veerkamp and Berger, 1997). Unfortunately, as19

stated in the literature (Ueno and Songmuang, 2010), the high computational20

time required by some of these criteria when selecting the next item implies an21

excessive waiting time for participants. This makes it difficult to use CATs that22

apply these criteria in practical settings.23

Over the past few years, several articles have proposed decision trees (DTs)24

as an alternative to CATs. The fact that DTs build the test before its admin-25

istration solves the aforementioned computational issue. Among those contri-26

butions, Ueno and Songmuang (2010) proposed a DT that obtains more precise27

scores than the estimates of the CATs using a smaller number of items per in-28

dividual. Michel et al. (2018) used this proposal to estimate the quality of life29

of patients with multiple sclerosis, obtaining a DT with a smaller bias in the30

selection of items. Also on these lines, Yan et al. (2004) proposed a regression31

tree to estimate the test subjects’ scores. The novelty of this work lies in the32

proposal to merge those nodes that meet a similarity criterion. This criterion,33

based on a t-statistic, enables to have a sufficient number of observations in34

each node. However, the main problem of the former proposals is that they35

estimate test dependent scores rather than latent levels. This fact prevents the36

comparison of estimates between different tests, which is one of the fundamental37

characteristics of CATs.38

Recently, Delgado-Gómez et al. (2019) mathematically showed an equiva-39

lence between CATs and DTs by proposing the Tree-CAT method. This method40

integrates the advantages of both techniques: A precise estimation of the actual41

latent level of the examinee plus the construction of the test before its admin-42

istration. In their proposal, each branch has an associated density function43

characterizing the distribution of the latent variable of the examinees progress-44

ing through that branch. This density function is used to assign an item to45
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each node by sequentially solving linear optimization problems. The main dis-46

advantage of this method is that the construction of the tree requires a high47

performance cluster due to its growth, taking about a week to create a test with48

only 10 items per examinee.49

In the current article, we propose the Merged Tree-CAT method, which50

builds upon the previous method so that a tree of any depth can be created51

on a personal computer in a few minutes. To that end, the growth of the tree52

is controlled by merging branches with similar distributions and estimates of53

the associated latent level. This idea was already conceptualized by Yan et al.54

(2004), although in the present article the objective and merging criterion are55

different, as we are working with distributions instead of samples.56

The rest of the article is structured as follows. Section 2 describes the57

proposed Merged Tree-CAT method. Section 3 shows the results obtained in two58

experiments aimed at evaluating the proposed method. In those experiments,59

the performance of the Merged Tree-CAT method is compared to the original60

Tree-CAT method and with respect other three CAT techniques widely used in61

the literature. Finally, Section 4 concludes the article with a discussion on the62

benefits of the proposed method.63

2 Merged Tree-CAT method64

Before starting to describe the Merged Tree-CAT method we introduce the no-65

tation that will be used.66

67
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M : Depth of the tree (number of tree levels).
m: Tree level.
Zm: Number of nodes in level m.
N : Number of items in the item bank.
i: Item from the item bank.
Ki: Number of responses to item i
ki: Response given by the examinee to item i(ki =

1, . . . ,Ki).
ri: Maximum exposure rate of item i.
cmi : Capacity of item i after the creation of the level

m− 1. For the first level, c1i = ri, i = 1, . . . , N .
Ei: Fitness index of item i.
θ: Latent level of the examinee.
f(θ): Prior density function of the latent level.

θ̂ki
n : Estimation of the latent level θ given the response

ki in the node n.
fki
n (θ): Posterior density function of the latent level θ

given the response ki in the node n.
Pi(θ, ki): Probability that the examinee with a latent level

θ gives the response ki to item i.
Pi(ki): Probability that the examinee gives the response

ki to item i.
αi: Probability that the first item administered to the

examinee is the item i.
K∗: Maximum number of branches per level.
δ: Minimum similarity between distributions of two

branches to merge.
L1: Lower limit of an interval containing the latent

level θ with probability p.
L2: Upper limit of an interval containing the latent

level θ with probability p.
Dki

n : Probability that an examinee is in the node n and
gives the response ki to item i.

Aki
n : Set of items answered by those examinees that in

the node n gave the response ki to item i.

68

2.1 Tree structure69

The Merged Tree-CAT method generates a tree with as many M levels as the70

maximum number of items to be administered to each examinee. Each m level71

(m = 1, . . . ,M) is composed of Zm nodes, with each node having the structure72

shown in Figure 1.73
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Figure 1: Node structure.

This figure shows how a node n of the tree is composed by an item i and74

a set of Ki branches corresponding to each of the possible ki responses to the75

item (ki = 1, . . . ,Ki). Each one of these branches has associated the posterior76

density function fki
n of the latent level from the set of participants that have77

reached this node and have chosen the response ki. In addition, the node also78

implicitly contains the estimation of the latent level θ̂ki
n of these participants,79

given by (Bock and Mislevy, 1982):80

θ̂ki
n =

∫ ∞
−∞

θfki
n (θ)dθ. (1)

The top line in Figure 1 represents the linkage of this node with another81

previous node in the tree. For the first level m = 1, this line joins the root of82

the tree which contains only the prior density function f(θ) of the population.83

2.2 Building of the first level (m = 1)84

The Merged Tree-CAT method initiates the building of the tree by determining85

the item with which each examinee begins the test. To do so, firstly, the Ei86

fitness index is calculated for each of the N items from the item bank. This index87

represents how far the item is from the optimum according to an established88

criterion. As an example from the criterion MEPV, which will be used later for89

experiments, Ei is given by (Delgado-Gómez et al., 2019):90

Ei =

∫ ∞
−∞

(
Ki∑

ki=1

(
θ − θ̂ki

)2
Pi(θ, ki)

)
f(θ)dθ, (2)

where θ̂ki is the estimation of the latent level when the examinee gives the k-th91

response to item i.92
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Once the Ei fitness indexes, i = 1, . . . , N have been calculated for each93

item, the assignation of items is carried out by solving the following linear94

programming problem:95

min
N∑
i=1

αiEi (3)

s.t.

N∑
i=1

αi = 1 (4)

αi ≤ ri i = 1, . . . , N (5)

αi ≥ 0 i = 1, . . . , N (6)

where αi is the probability that the examinee will receive item i to start the test96

and ri represents the maximum allowed exposure rate. Please note that when97

no exposure rate control is applied (ri = 1, i = 1, . . . , N), the Merged Tree-CAT98

method creates a single node containing the item with the highest fitness index.99

On the other hand, when ri < 1, i = 1, . . . , N , the method creates multiple100

nodes. Concisely, each of these nodes would contain one of the items for which101

αiz > 0, where αiz = min {riz , 1−
∑z−1

s=1 αis} and iz is the z-th item with higher102

fitness index, z = 1, . . . , N . The examinee would start the test randomly among103

these nodes according to these probabilities αiz . Therefore, in this case, it can104

be understood that the method simultaneously generates a forest of trees.105

Once the items have been assigned to the nodes n = 1, . . . , Z1 of the first106

level, the posterior density functions fki
n of the latent level can be calculated,107

that according to Bayes’ theorem, are given by:108

fki
n (θ) = f(θ|ki) =

Pi(θ, ki)f(θ)∫∞
−∞ Pi(θ, ki)f(θ)dθ

. (7)

Next, the Merged Tree-CAT method analyzes the possibility of merging109

branches between the different nodes of the first level according to a conditional110

criterion based on the similarity of estimates and distributions. This criterion111

seeks to limit the growth of the tree so that it is computationally tractable and112

the construction time of the tree is reduced.113

For this purpose, the criterion determines whether the number of branches114

of the nodes at this level exceeds the maximum number K∗ of branches per115

level. That is, if,116

Z1∑
n=1

Kin > K∗, (8)

where in is the item assigned to the node n. When this condition is met, two117

branches with associated estimations θ̂ks
u and θ̂kt

v , are merged if118 ∣∣∣θ̂ks
u − θ̂kt

v

∣∣∣ < L2 − L1

K∗
, (9)
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where L1 and L2 are the limits of the interval containing the prior latent level119

of the examinee with a probability p:120 ∫ L1

−∞
f(θ)dθ =

∫ ∞
L2

f(θ)dθ =
1− p

2
. (10)

On the other hand, when condition (8) is not met, the criterion merges two121

branches if condition (9) and the following intersection condition (Cha, 2007)122

are met:123 ∫ ∞
−∞

min {fks
u (θ), fkt

v (θ)}dθ > δ. (11)

That is, the similarity between the distributions given by the intersection must124

exceed a prefixed minimum similarity δ. In this way, the growth of the125

tree is constrained in a probabilistic manner given K∗ and δ. On one hand,126

increasing the number of branches per level K∗ results into a higher accuracy127

of estimates and a greater computational cost. On the other hand, a high128

value of δ allows that only those branches with very similar distributions are129

merged, resulting in a lower number of merged branches, and therefore, into130

higher accuracy of estimates and a greater computational cost. The sequential131

application of the criteria given by (9) and (11) is due to the fact that the former132

is less computationally expensive and reduces the number of evaluations in (11).133

Therefore, two branches are merged if the criteria given by (8) and (9) or (9)134

and (11) are met. The merged branch will come from two different nodes and135

the density function fks,kt
u,v will be a mixture of the density functions of the two136

merged branches. Being Dks
u = αsPs(θ, ks) the probability that the examinee137

will take the branch associated with the response ks to the item s assigned to138

the node u, the mixture density function is given by:139

fks,kt
u,v =

Dks
u

Dks
u +Dkt

v

fks
u (θ) +

Dkt
v

Dks
u +Dkt

v

fkt
v (θ). (12)

In this case, the probability Dks,kt
u,v of taking this merged branch is Dks,kt

u,v =140

Dks
u + Dkt

v . Moreover, being Aks
u the set of items answered by the examinees141

who gave the response ks in the node u, for the merged branch we have Aks,kt
u,v =142

Aks
u ∪Akt

v .143

After evaluating the merger of each possible pair of branches (including144

already merged branches) and carrying out the corresponding ones, the first145

level m = 1 is built. Finally, the capacity of each item i that will be employed146

in the construction of the level m = 2 is calculated. This item capacity, c2i ,147

represents the updated exposure rate of item i: c2i = ri − αi, i = 1, . . . , N148

2.3 Building the m-th level149

Assume that the test has been built up to the level m− 1. Ideally, the Merged150

Tree-CAT method will associate a single node at the end of each branch of151

the nodes belonging to level m − 1. However, due to the exposure control152
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constraints, it may be the case that several nodes are associated at the end of153

the same branch.154

To build level m, the Merged Tree-CAT method initially assumes that there155

is a single node n at the end of each branch, and firstly calculates the fitness156

index Gn
i of assigning the item i to that node:157

Gn
i =


∫∞
−∞

(∑Ki

ki=1

(
θ − θ̂ki

n

)2
Pi(θ, ki)

)
fks
u (θ)dθ, if i /∈ Aks

u

∞, if i ∈ Aks
u

, (13)

where fks
u and Aks

u are the density function and the set of items previously used,158

which are linked to the branch ending in the node n. Please note that under the159

above definition it is impossible to administer the same item more than once to160

the same examinee.161

Once that the fitness indexes Gn
i have been calculated for each item i =162

1, . . . , N and node n = 1, . . . , Zm, the Merged Tree-CAT method calculates163

the probability αn
i that an examinee arrives at node n and receives the item i,164

solving the following optimization problem:165

min
N∑
i=1

Zm∑
n=1

αn
i G

n
i (14)

s.t.

N∑
i=1

αn
i = Dks

u n = 1, . . . , Zm (15)

Zm∑
n=1

αn
i ≤ cmi i = 1, . . . , N (16)

αn
i ≥ 0 i = 1, . . . , N, n = 1, . . . , Zm (17)

where cmi is the updated capacity of the item i after the creation of the level166

m− 1.167

For a node n, each item i that satisfies αn
i > 0 is assigned to that node. In168

the case of multiple items i1, . . . , iW such as αn
i1 , . . . , α

n
iW > 0, several nodes are169

associated at the end of the corresponding branch. Concisely, each one of these170

nodes will have an item ij associated that will be accessed with a probability171

αn
ij/
∑W

w=1 α
n
iw .172

As before, once the items have been assigned to the nodes n = 1, . . . , Zm of173

level m, the posterior density functions fki
n of the latent level are calculated:174

fki
n (θ) = fks

u (θ|ki) =
Pi(θ, ki)f

ks
u (θ)∫∞

−∞ Pi(θ, ki)f
ks
u (θ)dθ

. (18)

Following, the Merged Tree-CAT method evaluates the possible merger be-175

tween each pair of branches of the nodes of the current level according to a176
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combined criterion of similarity of distributions and estimates as seen in the177

previous section (equations (8)-(11)). Finally, the capacities cm+1
i , the proba-178

bilities of accessing each branch and the sets of selected items are updated.179

3 Experimental results180

In this section, the results of three experiments comparing the performance of181

the proposed Merged Tree-CAT with respect to the original Tree-CAT method182

are presented1. The first two experiments recreate those conducted by Delgado-183

Gómez et al. (2019). In addition, these experiments include three other widely184

used techniques developed for building exposure-controlled CATs: The Re-185

stricted method which forbids the administration of items that have exceeded186

their exposure rate (Revuelta and Ponsoda, 1998), the Eligibility method which187

restricts the probability of administering an item to a given exposure rate188

(van der Linden, 2003) and the Randomesque method which randomly chooses189

the next item to administer among the X items with higher fitness index (Kings-190

bury and Zara, 1989). On the other hand, the last experiment shows a direct191

comparison between the Merged Tree-CAT and the Tree-CAT method.192

The item selection criteria taken in the five methods is the MEPV (2). This193

criterion was selected because of its high computational cost and because it is194

equivalent to minimizing the mean squared error (Delgado-Gómez et al., 2019).195

In the Randomesque method, the size of the group of items with the highest196

fitness index was fixed at X = 6. Lastly, in the Merged Tree-CAT method, the197

following parameters have been taken for both experiments: θ ∼ N(0, 1),K∗ =198

200, p = 0.9, δ = 0.98.199

3.1 Experiment 1: Simulated data200

In this first experiment, an item bank composed of 100 items with three answers201

each was used. The items’ parameters were generated according to the Same-202

jima’s graded response model (Samejima, 1969): The discrimination parameter203

was set to a log normal distribution with mean 0 and standard deviation 0.1225,204

and the difficulty parameters were generated according to a standard normal205

distribution (Magis and Râıche, 2011). Each item’s exposition rate was set at206

ri = 0.3 and the number of items to administer to each participant was set at207

M = 10.208

To compare the abovementioned methods, the latent levels θ of a group209

of 500 examinees were generated, according to a standard normal distribu-210

tion, where their responses to each item of the bank were simulated (Magis211

et al., 2012). Given that the Merged Tree-CAT, Tree-CAT, Eligibility and Ran-212

domesque methods have a random component in the administration of the test,213

this is repeated 25 times per examinee. Finally, this process is repeated 10214

times to eliminate the dependence of the results with respect to the simulated215

1The Merged Tree-CAT method is included in the cat.dt package created with the software
R available in the CRAN repository or by contacting the corresponding author.
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responses and parameters. The left panel in Figure 2 shows the mean squared216

error (MSE) of the estimates obtained by each method during the administra-217

tion of the test. The panels on the right show this same image split into the218

first and last five items so that the MSE of each method is better appreciated.219

Figure 2: Average MSEs for the Alternative Techniques for Simulated Data

Method Merged Tree−CAT Tree−CAT Rest. Elig. RandQ.
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It can be observed that at the end of the test, the proposed Merged Tree-220

CAT method obtains estimates that are as accurate as those of the Eligibility221

method and more precise than those of the Restricted method. However, those222

estimates are slightly less accurate than those of the Tree-CAT method, which223

does not limit tree growth. Finally, the Randomesque method shows the most224

accurate results. This is because this method does not satisfy the established225

exposure control; its overlap rate defined as the proportion of common items226

shared by two random examinees (Barrada et al., 2007) is 0.538, whereas for227

the Merged Tree-CAT, Tree-CAT, Restricted and Eligibility are 0.260, 0.283,228

0.268 and 0.275 respectively.229

Table 1 shows the average time used to construct the test by the various230

methods. The Merged Tree-CAT and Tree-CAT methods build the test be-231

fore it is administered (0 s building time during administration) whereas the232

Restricted, Eligibility and Randomesque methods construct the test during its233

administration (0 s building time before administration).234

This table shows that the Merged Tree-CAT method is the fastest of all235

the evaluated methods. Please note the difference with the Tree-CAT method:236

while the Tree-CAT method needed seven days of computation using 128 cores237

of a cluster with a Xeon 2630 processor and 32 GB of RAM, the Merged Tree-238

CAT method required only 40 seconds to create the test on a standard personal239
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Table 1: Test Building Times for Simulated Data
Method Before administration During administration

Merged Tree-CAT ≈ 40 s 0 s

Tree-CAT ≈ 7 days 0 s

Randomesque 0 s
≈ 16.8 h

(120 s×500)

Eligibility 0 s
≈ 23.6 h

(170 s×500)

Restricted 0 s
≈ 16.8 h

(120 s×500)

computer. With respect to the remaining methods, each examinee waits 12240

seconds on average to receive the next item when using the Restricted and Ran-241

domesque techniques, and 17 seconds when using the Eligibility technique. In242

contrast, the Merged Tree-CAT method administers the next item immediately243

after an examinee answers the current item.244

3.2 Experiment 2: Real data245

In this second experiment, the bank used was the Emotional Adjustment Bank246

(Rubio et al., 2007), containing 28 items. In total, the answers were obtained247

from 792 participants, considering three categories for each item: ”agree”, ”neu-248

tral” and ”disagree”. The answers provided by the participants were randomly249

divided into a training and a test set of equal size. The responses from the250

training set were used to calibrate the parameters of the items and construct251

the corresponding CATs with each method. On the other hand, the answers252

from the test set were used to obtain estimates of latent levels using the CATs253

created by the different methods. These estimates were compared with the es-254

timates of the latent levels that were obtained after administering the 28 items255

to each participant. Similarly to the experiment with simulated data, the item256

selection criterion was the MEPV. Moreover, the items’ exposition rate was set257

at ri = 0.3 and the number of items to be administered was seven. Finally, the258

administration of the test to each participant for the Merged Tree-CAT, Tree-259

CAT, Eligibility and Randomesque methods was repeated 25 times, performing260

this process 10 times.261

Figure 3 shows the MSE of the estimates obtained by each method during262

the administration of the test. It can be seen that the Merged Tree-CAT method263

obtains estimates as accurate as those from the Tree-CAT method, improving264

the Restricted and Eligibility methods. Only the Randomesque method obtains265

a smaller error, because as in the previous case, it exceeds the overlap rate: 0.58266

versus 0.29, 0.28, 0.28 and 0.29 from Merged Tree-CAT, Tree-CAT, Restricted267

and Eligibility, respectively.268
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Figure 3: Average MSEs for the Alternative Techniques for Real Data
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Regarding the average computation time, results are shown in Table 2. Com-269

putation times have been considerably reduced with respect to the previous270

experiment due to the fact that both the number of items in the item bank271

and the number of administered items are lower. Again, the proposed Merged272

Tree-CAT method is the fastest of all those analyzed.273

Table 2: Test Building Times for Real Data
Method Before administration During administration

Merged Tree-CAT ≈ 5 s 0 s

Tree-CAT ≈ 36 min 0 s

Randomesque 0 s
≈ 103 min

(15.6 s×396)

Eligibility 0 s
≈ 117 min

(17.7 s×396)

Restricted 0 s
≈ 103 min

(15.6 s×396)

3.3 Experiment 3: Sensitivity Analysis274

In this last experiment, a sensitivity analysis was performed in order to275

compare the performance of the Merged Tree-CAT method with respect to the276

original Tree-CAT method. In order to do so, several simulation scenarios are277

set according to the number N of items of the item bank, the exposure rate ri278

and the merger parameters K∗ and δ. These last two parameters differentiate279

12



the Tree-CAT method from the Merged Tree-CAT method, since the first is a280

particular case of the latter for K∗ = ∞ and δ = 1. Concretely, the values281

N ∈ {100, 200, 500}, ri ∈ {0.3, 0.6, 0.9}, K∗ ∈ {25, 50, 100, 250, 500, 1000} and282

δ ∈ {0, 0.5, 0.98} have been used.283

For each scenario, the items’ parameters and the latent levels θ of the exami-284

nees were simulated exactly as in Experiment 1 (see section 3.1). In this concrete285

case, the answers from 10000 examinees were generated in order to increase the286

accuracy of the results. In addition, the test administration was repeated 25287

times per examinee, where this whole process was repeated 10 times. Finally,288

the number of items to administer to each participant was set at M = 7.289

Table 3 shows the MSE of the final estimations obtained by both methods290

in each scenario. It can be observed that the Tree-CAT method obtains the291

smallest error in all scenarios. This is because the Merged Tree-CAT method292

limits the number of branches per level. However, it can also be noticed that293

the difference between both methods is minimal or even non-existent, depend-294

ing primarily on the used K∗ value: As the maximum number K∗ of branches295

per level increases, the difference between both methods decreases. For in-296

stance, this difference is null when K∗ = 1000 and there is enough variety in297

the item bank (N = 500). On table 3, it can also be appreciated that K∗ is298

the decisive parameter to improve the performance of the Merged Tree-CAT299

method. Although the increase in the δ parameter tends to reduce the error,300

the improvement is small.301
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Table 3: Sensibility analysis results

ri = 0.3

Method
N. of items in bank

100 200 500

Tree CAT 0.297 0.275 0.259

Merged Tree CAT

K∗ = 25, δ = 0 0.308 0.285 0.269

K∗ = 25, δ = 0.5 0.308 0.285 0.269

K∗ = 25, δ = 0.98 0.308 0.284 0.268

K∗ = 50, δ = 0 0.302 0.279 0.263

K∗ = 50, δ = 0.5 0.303 0.279 0.264

K∗ = 50, δ = 0.98 0.302 0.279 0.263

K∗ = 100, δ = 0 0.301 0.278 0.261

K∗ = 100, δ = 0.5 0.301 0.278 0.261

K∗ = 100, δ = 0.98 0.300 0.278 0.261

K∗ = 250, δ = 0 0.300 0.277 0.261

K∗ = 250, δ = 0.5 0.300 0.277 0.261

K∗ = 250, δ = 0.98 0.300 0.277 0.261

K∗ = 500, δ = 0 0.300 0.276 0.260

K∗ = 500, δ = 0.5 0.300 0.276 0.261

K∗ = 500, δ = 0.98 0.299 0.276 0.260

K∗ = 1000, δ = 0 0.299 0.276 0.260

K∗ = 1000, δ = 0.5 0.299 0.276 0.260

K∗ = 1000, δ = 0.98 0.299 0.277 0.259
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ri = 0.6

Method
N. of items in bank

100 200 500

Tree CAT 0.285 0.262 0.250

Merged Tree CAT

K∗ = 25, δ = 0 0.296 0.273 0.261

K∗ = 25, δ = 0.5 0.295 0.273 0.261

K∗ = 25, δ = 0.98 0.294 0.273 0.258

K∗ = 50, δ = 0 0.291 0.269 0.255

K∗ = 50, δ = 0.5 0.291 0.269 0.255

K∗ = 50, δ = 0.98 0.291 0.268 0.253

K∗ = 100, δ = 0 0.289 0.266 0.253

K∗ = 100, δ = 0.5 0.290 0.266 0.253

K∗ = 100, δ = 0.98 0.288 0.266 0.253

K∗ = 250, δ = 0 0.288 0.264 0.251

K∗ = 250, δ = 0.5 0.288 0.264 0.251

K∗ = 250, δ = 0.98 0.287 0.264 0.251

K∗ = 500, δ = 0 0.287 0.264 0.251

K∗ = 500, δ = 0.5 0.286 0.264 0.251

K∗ = 500, δ = 0.98 0.286 0.264 0.250

K∗ = 1000, δ = 0 0.286 0.263 0.251

K∗ = 1000, δ = 0.5 0.286 0.264 0.251

K∗ = 1000, δ = 0.98 0.286 0.263 0.250
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ri = 0.9

Method
N. of items in bank

100 200 500

Tree CAT 0.278 0.258 0.247

Merged Tree CAT

K∗ = 25, δ = 0 0.294 0.271 0.257

K∗ = 25, δ = 0.5 0.294 0.271 0.257

K∗ = 25, δ = 0.98 0.291 0.270 0.257

K∗ = 50, δ = 0 0.288 0.266 0.253

K∗ = 50, δ = 0.5 0.288 0.266 0.253

K∗ = 50, δ = 0.98 0.286 0.265 0.252

K∗ = 100, δ = 0 0.287 0.264 0.250

K∗ = 100, δ = 0.5 0.287 0.264 0.250

K∗ = 100, δ = 0.98 0.285 0.264 0.250

K∗ = 250, δ = 0 0.282 0.263 0.250

K∗ = 250, δ = 0.5 0.282 0.263 0.250

K∗ = 250, δ = 0.98 0.283 0.261 0.248

K∗ = 500, δ = 0 0.281 0.261 0.248

K∗ = 500, δ = 0.5 0.281 0.261 0.248

K∗ = 500, δ = 0.98 0.281 0.259 0.248

K∗ = 1000, δ = 0 0.281 0.261 0.248

K∗ = 1000, δ = 0.5 0.281 0.261 0.248

K∗ = 1000, δ = 0.98 0.280 0.259 0.247
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4 Conclusions302

In this article, we have presented the Merged Tree-CAT method for building303

CATs using a DT structure. Like the original Tree-CAT method, this method304

creates the test before it is administered, instantly supplying the items to the305

participants. The main difference between the Merged Tree-CAT and the Tree-306

CAT method is that the former constrains the growth of the tree by merging307

those branches whose estimates and distributions of the latent level are similar.308

The objective of these unions is to fast build tests that require little memory309

space without losing precision in the estimates.310

The Merged Tree-CAT has two fundamental advantages over the Tree-CAT311

method. First of all, Merged Tree-CAT can build and administer the test on a312

standard computer. This is an important difference with respect to the Tree-313

CAT method since, although the built test can be administered on a personal314

computer, it requires a cluster for its construction. Secondly, Merged Tree-CAT315

performs the construction of the CAT in seconds, while Tree-CAT may take from316

several minutes up to months, depending on the length of the test and the size317

of the item bank. This calculation speed also surpasses that of other alternative318

CAT building techniques, with the advantage that the Merged Tree-CAT does319

not incur calculation time during test administration.320

The speed of the Merged Tree-CAT method does not imply any significant321

loss of accuracy. The errors obtained by this method are practically the same322

as those obtained by the Tree-CAT method. In addition, with respect to the323

other alternative techniques, the Merged Tree-CAT method achieves maximum324

precision by controlling the overlap rate.325

In conclusion, the Merged Tree-CAT method significantly improves the Tree-326

CAT method, enabling to quickly build CATs on any personal computer. There-327

fore, this proposed method is an ideal tool for the building of tests that must328

be administered simultaneously to a large number of participants.329
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