
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License. 

This is a postprint version of the following published document:

Delgado-Gómez, D., Laria, J. C. & Ruiz-Hernández, D. 
(2019). Computerized adaptive test and decision trees: A 
unifying approach. Expert Systems with Applications, 
117, pp. 358–366. 

DOI: 10.1016/j.eswa.2018.09.052

© 2018 Elsevier Ltd.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.eswa.2018.09.052


Computerized adaptive test and decision trees: a1

unifying approach2
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Abstract6

In the last few years, several articles have proposed decision trees (DTs) as an
alternative to computerized adapted tests (CATs). These works have focused
on showing the differences between the two methods with the aim of identifying
the advantages of each of them and thus determining when it is preferable to use
one method or another. In this article, Tree-CAT, a new technique for building
CATs is presented. Unlike the existing work, Tree-CAT exploits the similarities
between CATs and DTs. This technique allows the creation of CATs that
minimise the mean square error in the estimation of the examinee’s ability level,
and controls the item’s exposure rate. The decision tree is sequentially built by
means of an innovative algorithmic procedure that selects the items associated
with each of the tree branches by solving a linear program. In addition, our
work presents further advantages over alternative item selection techniques with
exposure control, such as instant item selection or simultaneous administration
of the test to an unlimited number of participants. These advantages allow
accurate on-line CATs to be implemented even when the item selection method
is computationally costly.

Keywords: Decision trees, linear programming, computerized adaptive tests7

1. Introduction8

Computerized Adaptive Tests (CATs) are sophisticated tests capable of im-9

proving the accuracy of conventional tests while administering a much smaller10

number of items (Weiss, 2004). They are based on the Item Response Theory11

(IRT) that emerged as an alternative to the traditional pencil and paper tests12

with the goal of obtaining comparable estimates of the participants’ abilities13

when these are obtained with different test designed for measuring the same14

trait (van der Linden and Glas, 2000). These characteristics have lead to mul-15

tiple applications of CATs as clinical and academical assessments (Fliege et al.,16

2005; Tseng, 2016); or personnel recruitment (Chapman and Webster, 2003),17

among others.18

In a standard CAT, each examinee receives a tailored test whose integrating19

items are aimed at attaining the best fit to the participant’s actual level of20

the trait, avoiding the presentation of non-informative items to the examinee.21

With this aim, each of the items presented to the participant is selected from22

an item bank taking into consideration the responses to all previously presented23

items, as well as their characteristics (difficulty, discriminating capacity, etc.)24
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and those of the items that have not yet been presented. Because of this, one25

of the core components of a CAT is the item selection criterion.26

In this regard, the most widely used criterion is Fisher Maximum Informa-27

tion (Lord, 1980; Weiss, 1982). However, despite its widespread use, several28

weaknesses have been pointed out. These include item selection bias, large esti-29

mation errors at the beginning of the test, high item exposure rates, and content30

imbalance problems (Lu et al., 2012, among others). Various alternatives have31

been proposed as attempts for addressing these problems; e.g. the minimum32

Expected Posterior Variance (EPV) (van der Linden and Pashley, 2009), Maxi-33

mum Likelihood Weighted Information (MLWI) (Veerkamp and Berger, 1997),34

Kullback-Leibler information (KL) (Chang and Ying, 1996) or mutual informa-35

tion (MI) (Weissman, 2007). Notwithstanding these item selection techniques36

have solved many of the mentioned weaknesses, the computational cost of some37

of them limits their application in practice, in particular because of the need of38

numerical integration (Ueno and Songmuang, 2010).39

Another well known weakness of information-based item selection methods40

is the overexposure of items. This is a consequence of the fact that that only a41

few items from the test bank are maximally informative over the ability range42

(van der Linden and Veldkamp, 2007). Indeed, Veldkamp and Matteucci (2013)43

observed that only 12 out of a 499 items bank were maximum-informative to any44

skill level. Among the exposure control methods that have appeared in litera-45

ture (Georgiadou et al., 2007) we can mention the randomesque method (Kings-46

bury and Zara, 1989; Shin, 2017); the Sympson-Hetter procedure (Sympson and47

Hetter, 1985); the elegibility method (van der Linden, 2003); the shadow test48

(van der Linden and Veldkamp, 2005); the restricted procedure (Revuelta and49

Ponsoda, 1998); the adaptive tests method (Armstrong and Edmonds, 2004);50

and the progressive-restricted method (Revuelta and Ponsoda, 1998). Unfortu-51

nately the additional procedures introduced by these techniques add computa-52

tional time to the already heavy item-selection methods. Moreover some of the53

above mentioned techniques require the recalculation of some parameters every54

time a participant completes the test, preventing the simultaneous application55

of the test to more than one participant.56

In recent years, Decision Trees (DTs) have been proposed as an alternative57

to CATs. One of the main advantages of the DTs is that the complete test58

can be designed in advance (using a tree structure) and applied to the examinee59

without delay, avoiding the item selection step and the associated computational60

cost. In addition, some researchers have underlined some theoretical benefits of61

the DTs. Ueno and Songmuang (2010) developed a DT to predict the standard-62

ised total raw test score of the respondents. Their proposal has the advantages63

of not having to satisfy the local independence condition of traditional CATs,64

and being capable of obtaining accurate estimates of the standardised scores65

whilst using of a smaller number of items than CATs. Despite these benefits,66

there are two main drawbacks to this work. The most important one is that,67

when using total scores, the comparability property of the IRTs is lost. i.e.68

their approach suffers from the same problem that existed in the classical test69

theory. The second limitation is that, for the construction of the DT, a large70

amount of data must be available for guaranteeing that each of the subsequent71

subsets, created during the construction of the tree, has sufficient information72

about the distribution of the latent variable. Earlier, Yan et al. (2004) had pro-73
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posed a related method where nodes with similar scores are merged for keeping74

the number of nodes within reasonable limits. Notwithstanding this solves the75

second limitation, the most important problem, the lack of comparability be-76

tween tests, which hinders the use of DTs as an alternative to CATs, remains77

unresolved.78

From an applied point of view, healthcare has probably been the field where79

the most intense and fruitful debate has appeared regarding the use of CATs80

and DTs. For example, in clinical psychology and psychiatry, several papers81

have been published using CATs for diagnosing mental disorders. Among them,82

Gardner et al. (2004) developed a CAT to identify individuals with major depres-83

sive episodes based on the Beck Depression Inventory scale; Moore et al. (2018)84

developed a CAT to identify individuals with psychotic spectrum disorder. In85

a different medical area, Leung et al. (2016) pointed out the PROMIS CAT as86

an excellent instrument for predicting clinically significant fatigue, sleep distur-87

bance, and sleep impairment among patients who attended to a cancer research88

centre. Despite these good results, some researchers have argued that CATs89

are not suitable for diagnostic classification tasks. For example, Gibbons et al.90

(2016) argued that CATs are ideal for measuring severity but not for diagnosis91

screening, distinguishing between CATs and Computerized Adaptive Diagnosis92

(CADs). and developed a DT based CAD for detecting major depression dis-93

order. Recently, Delgado-Gomez et al. (2016) compared the performance of a94

DT and a CAT for identifying suicidal behaviour using the personality and life95

events scale (Blasco-Fontecilla et al., 2012). Their results showed that a DT re-96

quired fewer items than a CAT for obtaining a similar classification rate. Those97

works reinforce the idea that DTs, a supervised technique, are more suitable for98

diagnostic classification, while CATs, being unsupervised, are more suitable for99

quantifying severity.100

As the discussion above suggests, the existing literature has mainly focused101

on emphasising the differences between CATs and DTs. This article addresses102

the study of these two techniques from the opposite perspective: it seeks to103

identifying and exploiting their similarities. First, we show that a CAT can be104

represented by a tree structure. This allows pre-computing, storing and lately105

administering a CAT without incurring any item selection time, regardless of106

the item selection criterion used. Second, we prove that building a DT that107

minimises the mean square error (MSE) is equivalent to designing a CAT using108

the minimum EPV as item selection criterion. This result provides a better109

understanding to the EPV criterion and establishes a bridge between the DTs110

and the CATs, providing a new perspective to the aforementioned debate on111

the use of these techniques. Finally, we show that a CAT with exposure control112

can be seen as a forest of DTs. This allows the development of an optimization113

algorithm for the simultaneous construction of the trees that make up this forest.114

The above results together enable the construction of a CAT with minimum115

MSE and exposure control.116

The rest of the article is structured as follows. In Section 2, we show that117

an unconstrained CAT can be represented in a tree structure. In Section 3 we118

show that, using DTs, it is possible to construct an unconstrained CAT that119

minimises the MSE. In this section we also discuss some computational aspects120

of the proposed technique. Finally, it is proved that the constructed tree is121

equivalent to a CAT that uses minimum EPV as item selection technique. In122
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Section 4, we adapt the proposed technique for controlling the item exposure123

rate. With this aim, we first show that a CAT with controlled exposure rate124

can be seen as the simultaneous construction of several decision trees. Section125

5 shows the results of a study aimed at comparing our methodology with other126

methods for creating CATs with item exposure control using simulated data.127

Results of the application of the proposed technique on real data are discussed128

in Section 6. Finally, the article concludes in Section 7 with a discussion of the129

results obtained and their implications.130

2. Representing an Unconstrained CAT in a Tree Structure131

In this section we show that a CAT without exposure control can be repre-132

sented in a tree structure. This representation enables a fast selection (in the133

order of milliseconds) of the items presented to the examinee. It also facilitates134

the development of the models introduced in the following sections. The no-135

tation introduced herein will be used throughout the rest of the article and is136

summarised in the Appendix.137

Consider a test composed of I items that will be administered to J indi-138

viduals for assessing certain trait θ. For the sake of simplicity, and without139

loss of generality, we assume that all items have R possible answers. When the140

test is to be administered to participant j, the only information available is the141

distribution of θ in the population, given by the density function f(θ). Before142

any item has been administered, it is frequent to assume that the value of this143

trait for a particular examinee is given by the maximum of f(θ). This value is144

denoted by θ̂∅.145

The first item that is administered to this participant, ij1, is the one that146

reaches the maximum value of a pre-established item selection criteria (FMI,147

MEPV, KL, etc.) given θ̂∅. We note that, when item exposure control is not148

taken into account, the first item to be administered to all participants is the149

same, ij1, since θ̂∅ is identical for all participants. Once the examinee responds150

to this item, providing the answer r(ij1) ∈ {1, ..., R}, his trait is re-assessed to151

a new value θ̂
u
j
1

, where u
j
1 = r(ij1) indicates the first item given to examinee j152

and the answer provided.153

This newly estimated value of the trait, θ̂
u
j
1

, is then used to select the next154

item to be presented to the examinee, ij2. It is important noticing that all partic-155

ipants who provide the same answer to the first item will get the same estimate156

θ̂
u
j
1

, and will therefore be given the same second item. Once the examinee has157

answered to the new item, the estimated value of the trait is updated to θ̂
u
j
2

158

where u
j
2 = {r(ij1), r(i

j
2)}.159

This way, subsequent items are administered iteratively until a given crite-160

rion is reached. Briefly, when examinee j has responded to the first n items by161

obtaining the response pattern uj
n = {r(ij1), . . . , r(i

j
n)}, a new estimate of the162

trait, θ̂
u
j
n
, is calculated and the next item is selected based on this value. All163

those examinees who share the same response pattern uj
n to the first n items164

will be given the same item n + 1. Based on this discussion, a CAT can be165

represented in a tree structure as shown in figure 1.166
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Figure 1: Tree Representation of a CAT.

3. Building a CAT with Minimum MSE167

DTs are supervised methods built by minimising the square error in the es-168

timation of an explanatory variable (Rokach and Maimon, 2014). As mentioned169

above, the available research work using the DT methodology as an alternative170

for CATs, use either the total test’s score (Yan et al., 2004; Ueno and Song-171

muang, 2010) or an external criterion as dependent variable (Delgado-Gomez172

et al., 2016; Riley et al., 2011). In this section we present a methodology for173

building a DT that minimises the MSE in the trait’s estimation (instead of the174

test score used in the aforementioned works). The MSE in the estimation of the175

trait is the most frequently used criterion for building DTs and for assessing the176

accuracy of a CAT.177

In the design of this CAT, we start by building the root of the tree. Take178

an item i from the test battery. Let θ be the actual trait of a person, j, who179

answers this item; pi(r|θ), the probability that this person will give the answer180

r ∈ {1, ..., R}; and θ̂r, the value of the trait estimated for each of the possible181

answers. The MSE of this item for this person is182

Ei(θ|∅) =
R∑

k=1

(θ − θ̂
j

vk
1

)2pi(k|θ) (1)

where the empty set in the expectation emphasises the fact that no item has183

yet been administered; and vk1 = {r(i) = k}. The MSE that will be obtained if184

item i is administered to the population is, consequently, given by185

Ei =

∫
Ei(θ|∅)f(θ)d(θ) (2)
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The starting item, i1, which constitutes the root of the tree, will be the one for186

which the value Ei is minimal.187

Once the tree root has been defined, the R items corresponding to its children188

will be added as follows: if item i 6= i1 is administered after an examinee with189

real trait θ chose the r-th answer to item i1, the MSE of this person will be190

given by191

Ei(θ|u1) =
R∑

k=1

(θ − θ̂vk
2
)2pi(k|θ) (3)

where vk2 = {u1, r(i) = k} and θ̂vk
2
is the estimated trait considering pattern vk2 .192

Therefore, the MSE of the group that gave answer r to item i1 is given by193

Ei =

∫
Ei(θ|u1)f(θ|u1)dθ (4)

where194

f(θ|u1) =
p(u1|θ)f(θ)

p(u1)
=

p(r(i1)|θ)f(θ)∫
p(r(i1)|θ)dθ

(5)

In general, given an individual with trait θ and response pattern un =195

{r(i1), ..., r(in)}, the MSE obtained if unused item i is administered next can196

be written as197

Ei(θ|un) =
R∑

k=1

(θ − θ̂vk
n+1

)2pi(k|θ) (6)

where vkn+1 = {un, r(i) = k}. Then, the MSE of a group of participants that198

has followed pattern un becomes199

Ei =

∫
Ei(θ|un)f(θ|un)dθ (7)

where200

f(θ|un) =
p(un|θ)f(θ)

p(un)
=

∏n

j=1 p(r(ij)|θ)f(θ)∫ ∏n

j=1 p(r(ij)|θ)dθ
(8)

3.1. Computational Issues201

An important aspect that needs to be addressed is how to efficiently build the202

tree, as the number of nodes grows exponentially when the tree expands. Below203

we discuss three strategies aimed, the first two, at speeding-up the construction;204

and, the last one, at keeping the number of nodes within reasonable limits.205

Parallel programming. Nodes within the same level are constructed inde-206

pendently. Therefore, the items that constitute these nodes can be determined207

using parallel programming. For example, if a tree developed in a personal com-208

puter with four cores was programmed in parallel, the time required to build209

it would be reduced to 25 percent of the time required time in a single core.210

Currently, most universities and research centres have small clusters with a few211

thousand cores available, making the development of the proposed methodology212

easily attainable.213

Passing information from parent to child nodes. As seen in formula214

(8), to calculate the posterior probability of the ability level, it is necessary to215

calculate a product of n probabilities. However, given that n− 1 of them have216

6



already been calculated in the parent node, if this information is stored, only217

one multiplication is required for each child node and item pair.218

Merging branches. One way for limiting the growth in the number of219

nodes is joining together those branches that lead to similar estimates of ability220

level. As an example, if an accuracy of 0.001 is set –which is a quite sensible221

bound-, and assume that the ability takes values between -4 and 4, the maximum222

number of nodes in each of the tree’s levels will be only 8000, which is a more223

manageable number than the Rℓ nodes that may potentially appear at level ℓ.224

An alternative method, frequently used in DT design, for controlling the size225

of the tree is pruning some branches. In our case this will imply stopping the226

growth of the tree in nodes associated to improbable answer patterns. However,227

this may in practice give raise to situations where one of these nodes is actually228

visited, implying that an on-line selection of the remaining items in the CAT will229

need to be conducted. This would considerably increase the duration of the test230

if the item selection criteria used is among the most computationally expensive231

ones. For this reason we do not consider this practice a good alternative to232

branch merging.233

3.2. Equivalence of Minimum MSE and Minimum EPV234

In this section we establish an interesting result: building a DT minimis-235

ing the MSE is mathematically equivalent to building a CAT where the item236

selection criterion is the minimum EPV.237

As discussed around equations (6) to (8), the MSE can be written as238

MSE =

∫
p(θ|uj−1)

R∑
r=1

pi(r|θ)(θ − θ̂uj
)2dθ (9)

which becomes239

=

∫ R∑
r=1

p(θ|uj−1)pi(r|θ)(θ − θ̂uj
)2dθ (10)

and using Bayes theorem240

=

∫ R∑
r=1

p(uj−1|θ)p(θ)

p(uj−1)
pi(r|θ)(θ − θ̂uj

)2dθ (11)

using the local independence condition this equation can be simplified to241

=

∫ R∑
r=1

p(uj |θ)p(θ)

p(uj−1)
(θ − θ̂uj

)2dθ (12)

after multiplying and dividing by pi(r|uj−1) we get242

=

∫ R∑
r=1

p(uj |θ)p(θ)pi(r|uj−1)

p(uj−1)pi(r|uj−1)
(θ − θ̂uj

)2dθ (13)

which, after using conditional probability, becomes243
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=

∫ R∑
r=1

p(uj |θ)p(θ)pi(r|uj−1)

p(uj)
(θ − θ̂uj

)2dθ (14)

using Bayes agaoin, this expression can be further simplified to244

=

∫ R∑
r=1

p(θ|uj)pi(r|uj−1)(θ − θ̂uj
)2dθ (15)

finally, after reordering terms we get245

=
R∑

r=1

pi(r|uj−1)

∫
p(θ|uj)(θ − θ̂uj

)2dθ =
R∑

r=1

pi(r|uj−1)V ar(θ|uj) (16)

which is precisely the EPV criterion.246

Consequently, notwithstanding the works discussed in the introduction treat247

CATs and DTs as disjoint methods, in this section we have established the248

equivalence between them. In practical terms, this implies that building a CAT249

with minimal EPV is equivalent to constructing a DT minimising its standard250

MSE criterion. This result suggests that when the objective of the CAT is251

minimising the MSE, the most appropriate item selection criterion would be252

EPV.253

4. Tree-CAT: A CAT with Controlled Item Exposure Rate and Min-254

imum MSE255

In this section, we propose a method for building a CAT that minimises256

the MSE with controlled maximum exposure rate (proportion of the individuals257

taking the test that receive a particular item) by building several decision trees258

simultaneously.259

The underlying idea stems from the so-called randomesque method. At each260

level, this method randomly selects the next item among the K items with the261

best selection criteria values, given the current estimated ability θ̂. For each262

participant, randomesque starts selecting one of the K items attaining maximal263

values for the selection criteria at the initial trait θ̂0. Each of these items can264

be seen as constituting the root of one of K trees. From each root will stem265

R branches, corresponding to the R possible answers, each of them spanning266

K nodes. This process is repeated at each level, ℓ, of the tree. Therefore, the267

randomesque method can be visualised as a forest of K trees. This is represented268

as a DTs forest in Figure 2 for R = 2 and K = 3. In this figure white items269

represent the selected items and the black dots the corresponding trait estimates.270
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Figure 2: Representation of randomesque method as a DTs forest.

Although this method reduces the item’s exposure, it does not prevent an271

item from exceeding the maximum exposure rate. To address this problem, in272

the following lines we present the Tree-CAT method. This method builds on273

ramdomesque for generalising the method developed in the previous section.274

Tree-CAT imposes a probabilistic bound to the maximum rate of item exposure275

when creating the forest of trees.276

Tree-CAT starts by selecting the K initial nodes. Let E be the vector277

containing the items’ MSEs as computed by equation (2); D, a vector indicating278

the items’ availability; P , a vector containing the probability of each item to be279

administered as first item in the test; and rmax, the maximum item exposure280

rate. Initially, each of the elements in D is set equal to the maximal exposure281

rate. Given that 100% of the participants has to be assigned an item at the282

beginning of the test, the algorithm utilises a capacity variable c to represent283

the proportion of individuals that remain uncovered after each item is included.284

L is a very large number. The selection of the nodes and determination of their285

number, K, is conducted as indicated in Algorithm 1.286

The algorithm starts by selecting the item i with least MSE and associates287

to this item the minimal value among its current availability, Di, and the unas-288

signed capacity, c. This value, Pi, is then subtracted from both, the item’s289

availability and the capacity variable. For guaranteeing that this item will not290

be selected again, its value in vector E is replaced by a very large number L.291

This procedure is then repeated until c is equal to zero. The algorithm re-292

turns the set of K = |F| initial nodes, and the administration probabilities and293

updated availability vectors.294

Once the K roots have been chosen, the trees spanned by each root will295

grow jointly in an iteratively fashion. For the sake of clarity in the exposition,296

we start by describing the procedure generating the second level of the trees.297
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Algorithm 1 RootSpan

Require: E,D

1: c := 1
2: P := 0(I×1)

3: F := ∅
4: while c > 0 do

5: i := argmin{E}
6: Pi := min{c,Di}
7: c := c− Pi

8: Di := Di − Pi

9: F := F ∪ i

10: Ei := L
11: end while

Ensure: F , D, P

Let E be a matrix whose element Eij is the MSE incurred if item i was added
to branch j, where each j is given by a different root/answer combination,
i.e. j = R × (k − 1) + r for k = 1, . . . ,K; r = 1, . . . , R. Let C be a vector
containing the proportion of participants associated with branch j, where Cj =
Pk

∫
P (r|θ, ik)f(θ)dθ and

∑
j Cj = 1. Let D be the available capacity vector

returned by Algorithm 1. Then, the choice of the items associated with each of
the branches is done by means of the following linear program:

min
∑
i

∑
j

XijEij (17)

s.t.
∑
i

Xij ≤ Di

∑
j

Xij = Cj

This simple model minimises the MSE subject to the constraints that not298

item will exceed its availability; and that all participants must be given a sec-299

ond item during the test. Further levels of the trees are obtained by successive300

applications of this procedure, with system (17) solved over the matrix E ob-301

tained for the corresponding item/response combination (henceforth referred to302

as branch); the last update of vector D; and a newly obtained vector C where303

Cj = Pk

∫
P (r|θ, uk−1)f(θ)dθ.304

Unfortunately, the number of constraints grows exponentially on the number305

of levels, making the linear program computationally intractable. A computa-306

tionally efficient heuristic, illustrated in Algorithm 2, has been developed for307

addressing this problem.308

Algorithm 2 can be seen as a bi-dimensional extension of Algorithm 1. Work-309

ing with inherited vector D and matrices E and C as inputs, the Algorithm310

returns an array F of sets of items for all possible branches stemming from the311

previous level. It also returns a matrix P containing the relative probability for312

each item to be administered to an individual in a given branch, and a vector313

D with the updated items’ availability.314

It is important noticing that at any givel level ℓ of the tree, nodes may be315
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Algorithm 2 Growing the tree

Require: E,D, C
1: c := 1
2: P := (0)I×RK

3: F := {F1, . . . ,FRK}, Fh := ∅ ∀h = 1, . . . , RK

4: while c > 0 do

5: for j ≤ I do

6: if Dj == 0 then

7: Ej• := L
8: end if

9: end for

10: (i, j) := argmin{E}
11: Pij := min{Cj , Di}
12: Di := Di − Pij

13: c := c− Pij

14: Fj := Fj ∪ i

15: Ei,j := L
16: end while

Ensure: F , D, P

assigned more than one item. The reason for this is that the best item for a316

given node may not have the required capacity (i.e. Dj < Cj).317

5. Numerical Experiments: Simulated Data318

In this section we present the results of an experimental assessment of the319

performance of the Tree-CAT method. The experiment compares our method320

with three other available methods designed for controlling item exposure, namely,321

restrictive (disallows the use of items that exceed the maximum rate), item eligi-322

bility (restricts the likelihood of administering an item to a given exposure rate),323

and randomesque methods (randomly selects the next item from a subset of the324

most informative items). In order to achieve a fair comparison between the325

four methods, MEPV is used in all of them as the item selection criteria. This326

choice is due to the fact that, as shown in Section 3.2, this criterion minimises327

the MSE.328

5.1. Data and experimental set-up329

The experiment set-up is similar to the one used by other authors when330

comparing item exposure control techniques in CATs (Pastor et al., 2002). In331

detail, the item bank consists of 100 items with randomly generated parameters332

according to Samejima’s graded response model (Samejima, 2016). Each item’s333

discrimination parameter was generated following a log-normal distribution with334

zero mean and standard deviation equal to 0.1225. The difficulty parameters335

were generated following a standard normal distribution (Magis and Râıche,336

2011). The maximum exposure rate was set to 0.3 with test length equal 10.337

This length is considered to be enough for comparing the different methods338

and it is similar to the one appearing in recent works. For example, CATs339

developed by De Beurs et al. (2014); Stucky et al. (2014); and Hsueh et al.340
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(2016), for assessing different clinical conditions, used averages of 4, 5.3 and 6341

items, respectively. Regarding the randomesque method, the number of random342

alternatives available for each node at each level of the tree is set to six.343

The performance of the CATs was evaluated by means of the answers of344

500 randomly generated examinees (Magis et al., 2012). Given the random345

nature of the item selection of three of the used procedures (randomesque, item346

eligibility and ours), and to avoid path dependence in the results, the test was347

repeated 25 times for each examinee and means were taken. In order to improve348

the significance of the results, this scenario was repeated 10 times.349

5.2. Results350

Figure 3 shows the evolution of MSE attained by each of the techniques351

during the test execution. The large panel shows the entire execution, with352

the two small panels being zoomed-in versions of the performance over the353

first and last five items, respectively. The dot-dash yellow line represents the354

eligibility method; the dash green line, the restrictive method; the dotted line,355

the randomesque method; and the the solid blue line, the Tree-CAT method.356

An extra line, solid black, shows the theoretical expected MSE corresponding357

to the Tree-CAT method.358

Figure 3: Average MSEs for the Alternative Techniques
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The figure shows that the Tree-CAT method obtains more precise estimates359

than the eligibility and the restricted methods in terms of MSE. This graph360

also shows that the Tree-CAT attains a performance close to the theoretically361

expected one. Finally, the randomesque method shows a slightly better perfor-362

mance than the Tree-CAT from the seventh item administered on. This can363

be explained by looking at the overlap rate, which is a common measure of364

test security defined as the percentage of common items for any two randomly365

selected examinees (Barrada et al., 2007). In our experiment, the computed366
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overlap rates are 0.268 for restrictive; 0.275 for eligibility; 0.283 for Tree-Cat;367

whereas it reaches 0.538 for randomesque.368

Regarding the computation time, Table 1 shows the time needed to create369

the DT as well as the minimum time required by each of the methods to se-370

lect the 10 items for the 500 participants. It is important to note here that371

in both, item eligibility and restricted methods, participants receive the test372

sequentially. That is, in order to recalculate the parameters, the current par-373

ticipant must have finished the test before the next one receives it. In contrast,374

randomesque and Tree-CAT methods are able to administer the test simulta-375

neously. Moreover, whereas the tree alternative methods select the next item376

on-line, Tree-CAT generates the whole tree at once, which means that the time377

required for generating the next item is, indeed, zero. The experiment was con-378

ducted using 128 cores of a cluster with a Xeon 2630 processor and 32 GB of379

RAM.380

Table 1: Training and Execution Times

Method Training Time Test Time serial

Tree-CAT ≈ 7 days 0 secs

Randomesque 0 secs
≈ 16.8 hours
(120 secs×500)

Eligibility 0 secs
≈ 23.6 hours
(170 secs×500)

Restricted 0 secs
≈ 16.8 hours
(120 secs×500)

According to the table, the randomesque, restricted and eligibility methods381

take 2 minutes for selecting the items. In practical terms this means that the ex-382

aminee will need to wait 12 seconds in average before the next item is provided.383

These long execution times are explained, firstly, by the use of MEPV, which384

has a high computational cost. More economical item selection methods such385

as FMI could render better results in terms of computational times, at the cost386

of incurring the problems highlighted in the introduction to this paper. Sec-387

ondly, those long times can also be attributed to the use of the implementation388

catR (Magis and Râıche, 2011), which does not use any of the two speeding-up389

strategies described in Section 3.1. It should be said that, even if those strate-390

gies were implemented, the eligibility and restrictive method still suffer from the391

sequential application burden, which imposes a serious penalty in the execution392

time (23.6 and 16.8 hours for 500 administrations of the test).393

It is also important to mention that the cost in computational time incurred394

by the three alternative methods discussed in this section is paid every time the395

test is conducted. With the Tree-CAT method, in contrast, once the trees are396

built and all the alternative sequences stored, the time between the answer and397

the selection of the next item is –to all practical extent- zero, regardless the398

number of participants. This feature enables the simultaneous on-line applica-399

tion of the test to an unlimited number of participants, something that is not400

possible with the other methods. Hypothetically, this could be attained with401

randomesque, but in this case the simultaneous application of the test to a large402

number of people will require the availability of a server with as many nodes as403

participants.404
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6. Numerical Experiments: Real Data405

This section evaluates the proposed methodology using actual data. These406

data have been obtained from a previous study (Rubio et al., 2007), in which a407

psychometric scale for measuring emotional adjustment was developed. Before408

presenting the experimental results, in the following section we describe both409

the data set and the design of the experiment.410

6.1. Data and experimental set-up411

The data in this study contain the answers provided by 792 psychology stu-412

dents to the 28 items of the Emotional Adjustment Bank (Rubio et al., 2007).413

For our experiments, it was considered that the item responses have three levels414

(”disagree”, ”neutral” and ”agree”). For testing the unidimensionality of the415

scale, a factor analysis in conjunction with a parallel analysis (Hayton et al.,416

2004) showed that only one factor is retained. This confirms the unidimension-417

ality and justifies the use of a graded response model.418

In order to compare the performance of the Tree-CAT method against the419

chosen exposure control methods (Restrictive, Eligibility, Randomesque) under420

conditions similar to the real ones, the hold-out validation method was used.421

Specifically, the data set was randomly divided into two disjoint subsets of equal422

size: the training set and the test set. The training set was used to estimate423

the different items’ parameters and to build the DT for the Tree-CAT method,424

whereas, the test set was used for the comparisons. It was assumed that the425

traits θ of the participants were those obtained when the 28 items of the bank426

were administered to them. The test length was set to 7 items. The remaining427

parameters that define the experiment have been set to the same values as428

those of the simulation study in Section 5. Namely, the MEPV was chosen429

as item selection criterion; the maximum exposure rate was fixed at 0.3; and430

the number of random alternatives for the Randomesque method was set to431

6. As before, in order to avoid path dependence, the test was repeated 25432

times for each examinee, and means were taken for the Tree-CAT, Elegibility433

and Randomesque methods. In addition, to achieve more reliable results, this434

scenario was simulated 10 times.435

6.2. Results436

Figure 4 shows the MSE obtained by the different techniques as a func-437

tion of the number of items administered to the subjects. It can be noticed438

that, except for the Randomesque method in the last levels, Tree-CAT is the439

one achieving the best performance (based on the MSE). As explained in the440

discussion to our simulated experiments, the reason why Randomesque outper-441

forms the other three methods at the last levels of the test is that it exceeds the442

maximum exposure rate. The overlap rates of Tree-CAT, Restrictive, Eligibility443

and Randomesque methods are 0.28, 0.28, 0.29 and 0.58, respectively.444

Table 2 depicts the computational time used to construct the decision tree445

for the Tree-CAT method, and the time needed to select the next item for each446

of the four techniques. These numbers are similar to those obtained in Table447

1 of the previous experiment on a smaller scale, as the item bank used in this448

study is 28% the size of the previous one, and the length of the test is 7 items449

instead of 10.450

14



Figure 4: Average MSEs for the Alternative Techniques
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Table 2: Training and Execution Times

Method Training Time Test Time serial

Tree-CAT ≈ 36 min. 0 secs

Randomesque 0 secs
≈ 103 min.

(15.6 secs×396)

Eligibility 0 secs
≈ 117 min.

(17.7 secs×396)

Restricted 0 secs
≈ 103 min.

(15.6 secs×396)

7. Conclusion451

In this article, we present a new method for building CATs, referred to as452

Tree-CAT, based on the DTs methodology. The proposed method creates and453

stores a representation of the CAT in a tree structure that allows items to be454

selected in milliseconds. This property is especially valuable when the chosen455

item selection method involves the calculation of integrals (e.g. when a CAT456

uses minimal EPV for item selection). In this regard, it is demonstrated that457

building a CAT that minimises the EPV is equivalent to building a DT that458

minimises the MSE.459

In the article we also show that creating a CAT with item exposure controls460

can be understood as the simultaneous construction of several trees, and propose461

an algorithm for performing this task. This algorithm allows the use of different462

strategies that accelerate its construction. First, it is possible to use parallel463

programming to calculate the MSE matrix required by the algorithm. Second,464

the calculation of MSEs can be simplified using information obtained at the465

previous level nodes. Finally, it seems possible to merge branches that produce466

similar estimates of the trait level, allowing the tree to be kept within reasonable467

dimensions. In this article we have conducted experiments taking advantage of468

the first two strategies.469
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Tree-CAT presents several advantages with respect to other existing meth-470

ods. Firstly, the results obtained experimentally show that Tree-CAT is the471

method with the lowest MSE among those with the lowest overlap rate. An-472

other advantage is that it can potentially be administered simultaneously to an473

unlimited number of participants. In contrast to existing methods, which calcu-474

late in real time each of the items to be presented based on previous answers, the475

Tree-CAT selects the next item to be presented from a previously stored struc-476

ture. This allows, for practical purposes, to eliminate the time required for item477

selection. This is especially useful when item selection criteria are computa-478

tionally expensive. These two properties, namely, simultaneous application and479

zero time in the selection of items, make Tree-CAT an ideal candidate for the480

simultaneous administration of on-line tests to a large number of participants.481

One weakness of the method is the need of a small computer cluster for build-482

ing the tree within reasonable time. For example, in the experiment developed483

in this article, 128 nodes of a cluster were used. However, the availability of a484

larger cluster could reduce the construction time of the tree from one week –as485

in our case- to a few hours. The importance of this limitation is further reduced486

by the fact that, once the tree has been built, the test can be administered from487

any personal computer.488

Regarding this limitation, an appealing future research line consists of find-489

ing a mechanism for optimally merging the branches of the trees in order to limit490

the size of the trees. Additional research could also be developed for address-491

ing issues like content balance, variable test length, or multidimensional-trait492

assessment.493

We conclude the article by stating our conviction, supported by the exper-494

imental and analytical results obtained, that the DTs approach for building495

CATs is a promising research line that opens up several lines of research and496

combines the knowledge of the areas of Psychology, Statistics, Operational Re-497

search and Computer Science.498
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Appendix A. Notation642

Section 2643

J : set of participants;644

I: item bank;645

ijn: n–th item i ∈ I to be administered to participant j ∈ J ;646

R: number of possible answers to an item;647

r(ijn): answer of individual j ∈ J to item ijn, i = 1, . . . , R.648

θ: real-valued random variable describing a trait;649

f : R → R
+ density function of θ;650

θ̂∅: argmaxθ∈R
f(θ);651

uj
n: sequence of items and responses of individual j, with uj

n = {r(ijk)}k=0,...,n652

and u
j
0 = ∅;653

θ̂
u
j
n
: estimated θ given pattern uj

n;654

Section 3655

pi(un): probability of observing sequence un in a participant;656

pi(r|θ): probability that a participant with trait θ will answer r ∈ {1 . . . R} to657

item i ∈ I;658

p(un|θ): probability that a participant with trait θ will show response sequence659

un up to the n-th item shown;660

p(θ|un): posterior probability of trait θ given a response sequence un;661

vkn: sequence of items and responses if an individual with sequence un−1 chooses662

answer k ∈ {1, 2 . . . R} to the n–th item.663

θ̂
v
j
n
: estimated θ given pattern vjn.664

Section 4665

Xij: capacity of item i assigned to branch j;666

Eij: MSE incurred if item i is added to branch j;667

Di: capacity availability vector for item i;668

Cj: proportion of participants associated to branch j.669
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