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Non-linear dynamics and self-similarity in the rupture of

ultra-thin viscoelastic liquid coatings

A. Martínez-Calvo,a D. Moreno-Boza,a and A. Sevillaa

The in�uence of viscoelasticity on the dewetting of ultrathin polymer �lms is unraveled by means of

theory and numerical simulations in the inertialess limit. Three viscoelastic models are employed to

analyse the dynamics of the �lm, namely the Oldroyd-B, Giesekus, and FENE-P models. We revisit

the linear stability analysis (LSA) �rst derived by [Tomar et al., Eur. Phys. J. E., 20, 185�200, 2006]

for a Je�reys �lm to conclude that all three models formally share the same dispersion relation. For

times close to the rupture singularity, the self-similar regime recently discovered by [Moreno-Boza et

al., Phys. Rev. Fluids, 5, 014002, 2020], where the dimensionless minimum �lm thickness scales with

the dimensionless time until rupture as hmin = 0.665τ1/3, is asymptotically established independently

of the rheological model. The spatial structure of the �ow is characterised by a Newtonian core and

a thin viscoelastic boundary layer at the free surface, where polymeric stresses become singular as

τ → 0. The Deborah number and the solvent-to-total viscosity ratio a�ect the rupture time but not

the length scale of the resulting dewetting pattern and asymptotic �ow structure close to rupture,

which is thus shown to be universal. Our three-dimensional simulations lead us to conclude that

bulk viscoelasticity alone does not explain the experimental observations of dewetting of polymeric

�lms near the glass transition.

1

1 Introduction2

Thin liquid films can be found in a sheer number of technologi-3

cal applications, nature, and everyday phenomena. For instance,4

they play important roles in geological flows1–3, medicine, or5

mammals physiology, where biofluids are present, as it is the case6

of surfactant-laden films covering the alveoli4–10, or tear-film dy-7

namics11–15. They are also involved in a myriad of engineering8

processes and applications, namely in coatings16,17, patternings,9

or plasmonic devices18–20, where films of micrometric or even10

nanometric thickness, usually referred to as ultra-thin films, are11

required. In particular, in many relevant configurations these thin12

films exhibit viscoelastic rheological behaviour, as is the case of13

tear films11–15, or in polymeric solutions close to the glass transi-14

tion21.15

In contrast with their Newtonian counterpart22–27 and despite16

their practical relevance, the theory of unstable viscoelastic thin17

films remains largely unexplored. There are a few studies deal-18

ing with the development of the nascent vdW-triggered instability19

and its linear stability analysis (LSA). The seminal work28 de-20

rives for the first time the dispersion relation of a Jeffreys-type21

film using the full equations of motion, including inertial effects.22

In particular, their analysis for zero inertial effects shows that in23
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the limit of a polymeric melt, the growth rate experiences a sin-24

gularity controlled by a critical Weissenberg number (the prod-25

uct of Capillary and Deborah numbers), upon which it blows up26

over a narrow band of wavelengths. This non-physical singular-27

ity reminds of a solid-like infinitely fast response to forcing, and28

is shown in28 to be only overcome by including finite inertia of29

the liquid. In addition, electro-hydrodynamical effects are con-30

sidered in the earlier work29, which also encountered the afore-31

mentioned singularity.32

By way of contrast, the lubrication approximation of the equa-33

tions of motion incorporating viscoelastic models has been ex-34

tensively used30–34. Alternatively, one aspect of the viscoelastic35

dewetting flow that has received considerable attention is the re-36

traction dynamics of the liquid rims formed during the late stages37

of the film evolution35–37. However, the spatial structure of the38

thinning flow during the first stages of the spinodal dewetting39

process prior to the formation of the precursor film and liquid rim40

structures, most notably the associated rupture times and charac-41

teristic wavelengths, the possible existence of self-similar regimes42

appearing near the rupture singularity, and the performance of43

three-dimensional simulations, are all of them aspects that have44

not been studied as extensively as far as we know. Furthermore,45

the dewetting patterns observed in refs.21,36,38 of polymeric films46

heated close to the glass transition are not yet fully understood.47

Here, we aim to address some of these questions by studying, for48

the first time, the linear stability derived from the complete Stokes49
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Fig. 1 Schematic of the �ow con�guration including the main parameters governing the problem and the coordinate system.

equations coupled with three viscoelastic constitutive equations,50

namely the Oldroyd-B, Giesekus, and FENE-P models. We then51

unveil the near-rupture dynamics, focusing on the existence of52

self-similarity and on the spatial structure of the dewetting flow53

using these three viscoelastic models. Finally, we perform three-54

dimensional direct numerical simulations to ask the following55

key question: Are the dewetting morphologies observed in glassy56

films a consequence of the viscoelastic rheology?57

The paper is organised as follows. In §2 we present the math-58

ematical models used to describe the dewetting flow of a vis-59

coelastic ultra-thin films. In §3 we provide a linear stability60

analysis of the complete Stokes equations coupled with the dif-61

ferent rheological models, and then we perform an comprehen-62

sive study comparing the latter results with previous ones ob-63

tained with the lubrication approximation. In §4 we carry out64

two-dimensional numerical simulations of the viscoelastic Stokes65

equations to unravel the asymptotic self-similar regimes during66

film thinning for different Deborah numbers and solvent-to-total67

viscosity ratios. We then focus on the viscoelastic self-similar68

problem in §?? to explain the observations made in §4. In §569

we provide three-dimensional direct numerical simulations of the70

complete viscoelastic Stokes equations to compare the dewetting71

patterns both with experiments and with their Newtonian coun-72

terpart. Concluding remarks are finally presented in §6.73

2 Mathematical description74

We consider the incompressible flow of a non-Newtonian thin liq-
uid film initially resting on a solid substrate and immersed in a
passive fluid ambient. It is well known that, in the non-wetting
case, the van der Waals (vdW) intermolecular interactions be-
tween the film and the substrate induce the instability of the flat
film solution when its initial height ho is below approximately
100 nm. Indeed, the vdW forces exceed the stabilizing surface
tension force for perturbations of sufficiently large wavelength,
finally leading to film rupture39,40. Let γ denote the constant sur-
face tension coefficient, µs the solvent viscosity, and µp the poly-
meric contribution to the viscosity, such that µt = µs + µp is the
total effective viscosity and β = µs/µt the solvent-to-total viscos-
ity ratio. Note that 0 ≤ β ≤ 1, where the limits β → 0 and β → 1
correspond to the cases of a polymer melt and a Newtonian film,

respectively. By selecting

`c = ho, vc =
A

6πµth2
o
, tc =

6πµth3
o

A
, pc = σc = φc =

A
6πh3

o
,

(1)
as the relevant scales of length, velocity, time, pressure,
stresses, and intermolecular potential, respectively, where A is
the Hamaker constant41, the dimensionless augmented42 Stokes
equations of motion read

∇∇∇ ···uuu = 0, and 000 = ∇∇∇ ··· (−φ I +T +σσσ), xxx ∈ V , (2)

where V is the fluid domain, uuu is the velocity field, φ = h−3 is75

the intermolecular potential derived for the particular case of the76

vdW force between two parallel surfaces, T = −pI + 2βE is the77

stress tensor of the fluid, E = 1/2
(
∇∇∇uuu+∇∇∇uuuT) is the rate-of-strain78

tensor, and σσσ is the symmetric polymeric stress tensor.79

Historically, many constitutive equations have been used to de-
termine the polymeric stress tensor (see refs.43–46 for exhaustive
reviews). One of the simplest and most commonly used mod-
els for dilute polymer solutions is the Oldroyd-B fluid, which can
be derived from kinetic theory considering the polymer chains
as non-interacting Hookean dumbbells. Here we only consider a
single relaxation time of the chains, λ , in contrast with refs.47–49,
which introduced a discrete spectrum of relaxation times. How-
ever, as discussed by ref.50, the assumption of a single relax-
ation time is a reasonable simplification, since the chains with the
largest relaxation time eventually dominate the rate of stretching.
The relaxation time λ immediately defines a Deborah number,
De = λ/tc = Aλ/(6πµth3

o), as the ratio between λ and the relevant
characteristic time scale tc defined in eqn. (1). On selecting the
scales (1), the dimensionless evolution equation for σσσ following
the Oldroyd-B model reads

De
O
σσσ +σσσ = 2(1−β )E , xxx ∈ V , (3)

where
O
σσσ = ∂tσσσ + uuu ··· ∇∇∇σσσ − (∇∇∇uuu)T ··· σσσ − σσσ ··· (∇∇∇uuu) is the upper-80

convected time derivative, defined for a tensor field. Equation (3)81

is a particular case of the general 8-constant model derived by Ol-82

droyd51. Note that in the limit β → 0 the solvent viscosity is small83

compared with the polymer viscosity, and eqn (3) reduces to the84

so-called upper-convected Maxwell model51. The linearisation of85

the upper-convected Maxwell and Oldroyd-B models yields the86

Maxwell’s52 and Jeffrey’s53 viscoelastic models, respectively. In87

contrast, the limit β → 1 leads to the Stokes equations for a New-88
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tonian liquid as a particular case.89

The Oldroyd-B model assumes that the dumbbells are infinitely
stretchable, an approximation that may fail close to rupture as
happens in the case of axisymmetric liquid threads47,50,54. In-
deed, the finite extensibility of the polymer chains might affect
the dewetting dynamics. More realistic models, that take into ac-
count such finite extensibility effects, are the FENE-P model55,
which stands for finitely-extensible-nonlinear-elastic and P for the
Peterlin’s closure idea56, and the Giesekus model, first derived in
ref.57. The polymeric constitutive equation in the FENE-P frame-
work reads

De
O
σσσ +

[
1

1−3/L2 +
De

(1−β )L2 tr(σσσ)

]
σσσ =

2(1−β )

1−3/L2 E , xxx ∈ V , (4)

where the dimensionless parameter L2, usually known as the ex-
tensibility parameter, denotes the ratio between the maximum
length and the equilibrium length of the dumbbells, which is in
turn a function of the spring constant, the Boltzmann constant,
and the temperature. In the infinitely extensible limit, L→∞, the
Oldroyd-B model (3) is recovered. Finally, the third model consid-
ered in the present work is the Giesekus model, whose associated
constitutive equation reads

De
O
σσσ +σσσ +

Deα

1−β
(σσσ ···σσσ) = 2(1−β )E , xxx ∈ V , (5)

where α is a dimensionless parameter that accounts for the90

anisotropy of the drag coefficient of the polymer chains within the91

fluid. In the limit α → 0, it reduces to the Oldroyd-B model (3).92

At the free surface, xxx∈ ∂V , we impose the kinematic condition,
which precludes interfacial mass transfer, and the surface stress
balance,

nnn ··· (∂txxxs−uuu) = 0, (6a)

(T +σσσ) ···nnn+Ca−1nnn(∇∇∇ ···nnn) = 000, (6b)

respectively, where Ca = A/(6πγh2
o) is the Capillary number,93

which can be expressed in terms of the molecular length58, a =94

[A/(6πγ)]1/2, as Ca = (ho/a)−2. Here xxxs is the parametrisation95

of the free surface, and nnn its unit normal vector. At the solid sub-96

strate, the no-slip and no-penetration boundary conditions, uuu = 000,97

are fulfilled.98

3 Linear stability analysis99

To analyse the effect of viscoelasticity on the initial growth of100

perturbations, we perform a linear stability analysis of the wdW-101

unstable viscoelastic film considering, for the first time, the com-102

plete equations of the different rheological models. The results103

will then be compared with those obtained from the lubrication104

theory developed in refs.30,32.105

3.1 Stokes equations106

The dispersion relation is derived by introducing the normal-
mode decomposition

(uuu, p,h,σσσ) = (000,0,1,000)+ ε(ûuu, p̂, ĥ, σ̂σσ)eωt+ikx +O(ε2), (7)

into eqns (2), (6a), (6b), and either (3), or (4), or (5), and retain-
ing terms up to O(ε), where ε� 1 is the relative amplitude of the
perturbation, ω is the growth rate, which should be understood
as a real quantity28, and k is the wavenumber. The dispersion
relation is therefore given by

(1+Deω)(Ca−1k2−3)(sinh(2k)−2k)+

2ω k (1+β Deω)[cosh(2k)+2k2 +1] = 0. (8)

Its explicit solution for the temporal growth rate ω(k) is provided107

in appendix A. Ref.28 studied the linear stability of a viscoelastic108

vdW-unstable film described by the linear Jeffrey’s model, which109

should yield the same dispersion relation as (8), but perhaps due110

to errors or typos in their derivation these authors obtained a111

dispersion relation with missing terms.112

It is important to emphasise that the Giesekus model yields ex-113

actly the same dispersion relation, since the term proportional to114

α is non-linear and the base-flow velocity is zero. In the case of115

the FENE-P constitutive equation, the functional form of the dis-116

persion relation is also the same, but the Deborah number has to117

be redefined as De→ De(1− 3/L2). Notice also that in the limits118

De→ 0 or β → 1, eqn (8) yields the growth rate corresponding to119

a Newtonian film, namely ω = (3−Ca−1k2)[sinh(2k)−2k]/[2k(1+120

2k2 + cosh(2k))], deduced for instance in refs.27,59.121

Figure 2 shows the amplification curves ω(k) obtained from
eqn (27), for β = (0,0.1,0.5,0.9) in panels 2(a–d), respectively,
for different values of De indicated in the legends. The filled cir-
cles are the growth rates extracted from the two-dimensional nu-
merical simulations by imposing the corresponding wavenumber
and streamwise periodicity conditions (more details are provided
in § 4), displaying excellent agreement. The most remarkable fea-
ture of fig. 2 is the fact that the most amplified wavenumber, km,
is independent of the rheological parameters and depends only
on Ca, which can be readily explained by noticing that the vis-
coelastic parameters β and De only appear in the coefficients of
ω and ω2 in (8), as already noted in28,34 in their analyses. In-
deed, one can find an implicit equation for km upon maximizing
the solution given in Appendix A, eqn (27), with respect to k.
This in fact yields a product of two separate functions of km, one
of which only vanishes for km = 0. The non-trivial factor yields
the transcendental equation

0 = 6Cakm

(
4k2

m +1
)
+2k3

m+

2km

[
Ca
(

6k2
m +3

)
+ k2

m(1−2k2
m)
]

cosh(2km)−(
3Ca+ k2

m

)[
2k2

m + cosh(2km)+1
]

sinh(2km), (9)

which indeed shows that km depends exclusively on Ca, as sug-
gested by the results of Figs. 2(a–d). Consequently, the character-
istic length of the dewetting patterns should not be affected by the
viscoelasticity of the film. Although eqn (9) has no closed-form
solution for km, a small-Ca expansion provides

km =

√
3Ca

2

[
1− 27

40
Ca+

36873
22400

Ca2 +O(Ca3)

]
, (10)
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Fig. 2 Ampli�cation curves ω(k) for Ca = 0.1 (ho/a = 3.16) and (a) β = 0, (b) 0.1 and (c) 0.5 and (d) 0.9, and di�erent values of De indicated in

the legends. The symbols indicate the results extracted from the two-dimensional numerical simulations of Stokes equations (22a) coupled with the

Oldroyd-B model (3). Panels (e) and ( f ) show the maximum growth rate, ωm, obtained numerically from the exact dispersion relation (8) (solid lines),

and the analytical solution (19) obtained from the lubrication approximation (dashed lines), taking Ca = 0.01 (ho/a = 10) and Ca = 0.1 (ho/a = 3.16)
in (e) and ( f ), respectively.

which, to leading order, effectively recovers the well-known re-
sult from lubrication theory km/kc = 1/

√
2, where kc =

√
3Ca is the

cut-off wavenumber39. Also from the linear analysis we can ob-
tain the fastest growth rate of perturbations corresponding with
the most amplified wavenumber, ωm, and thus an estimation of
the rupture time, tR ∼ ln(ε−1)/ωm (see for instance ref.22). Fig. 3
shows a comparison between the rupture times obtained from the
numerical integration of (2) and those stemming from the linear
prediction, namely, tR ∼ ln(ε−1)/ωm. In an effort to give an an-
alytical prediction for tR, we first derive the small-k expansion
from (27)

ω = k2 +

[
De(1−β )− 1

3Ca
− 9

5

]
k4+

[
3[7(β −1)De(10βDe−5De+18)+115]

105
+

70(β −1)De+63
105Ca

]
k6 +O(k8) (11)

which enables us to obtain an estimate of the rupture time, tR,
by substituting the expression for km in eqn (10) into the above
equation

tR
ln(ε−1)

=
4

3Ca
+

18
5
− 3Ca

700
{2899+

140(β −1)De [27+5De(5β −3)]}+O(Ca2). (12)

From the expression above we can infer that the rupture time tR122

and, in consequence, the maximum growth rate ωm, are slightly123

affected by the viscoelastic effects if the capillary number Ca is124

small or, in other words, if the initial film height is much larger125

than the molecular length scale, ho/a� 1, as clearly observed in126

Figs. 2(e) and ( f ). Indeed, eqn (12) reveals that De and β appear127

in terms which are O(Ca) and higher in the Ca-expansion.128

It proves useful to provide the expression of the rupture time
scaled with the characteristic time tc = µta/γ, which makes use of
the molecular length scale a instead of the initial film thickness
ho. In particular, we note here that the use of a as substitution for
ho in the characteristic scales is useful to analyse the non-linear
dynamics of the flow near rupture, studied in §4. Expressing t̄R
rescaled with tc as a function of ho/a instead of Ca yields 27,58,60,

t̄R
ln(ε−1)

=
4
3

(
ho

a

)5
+

18
5

(
ho

a

)3
− 3

700
ho

a
{2899+

140(β −1)De [27+5De(5β −3)]}+O

[(
ho

a

)−1
]
. (13)

It is also interesting to note that the dispersion relation (8) is
exactly the same as the one obtained from linear viscoelastic mod-
els, namely the Jeffreys’s28 and Maxwell’s models, when taking
the limit of a polymer melt, β → 0, and arbitrary De, which reads

ω =
(3− k2Ca−1)[sinh(2k)−2k]

De(3− k2Ca−1)[2k− sinh(2k)]+2k[cosh(2k)+2k2 +1]
. (14)

Note that the maximum growth rate ωm becomes singular in this129

limit when De' De∗ ≡ 4/(3Ca)+18/5−1797Ca/700 as provided130
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by substituting k = km '
√

3Ca/2(1−27Ca/40) in eqn (14). The131

appearance of such critical value of De and the subsequent singu-132

larity in the temporal growth rate has been previously discussed133

in28,29,34, where a solid-like behaviour is accompanied by an al-134

most instantaneous response to an applied forcing. Liquid inertia135

is seen to be a regularization mechanism, as demonstrated in28.136

Fig. 2(a) shows the temporally unstable branch for increasing val-137

ues of De, where a peak at k = km is seen to develop as De→ De∗.138

In figs. 2 (e) and ( f ) this singularity is displayed for the maximum139

growth rate ωm, which diverges as (De−De∗)−1 for β = 0. In this140

limiting case, the dynamics is completely dictated by the polymer141

melt, which behaves as a viscoelastic solid. Nevertheless, the limit142

of eqn (14) when De→ ∞ yields ω → 0, since the polymer chains143

never relax due to the fact that λ � tc.144

In the limit De→ ∞ and arbitrary β , the dispersion relation (8)
reduces to

ω =
(k2Ca−1−3)[2k− sinh(2k)]

2βk[cosh(2k)+2k2 +1]
, (15)

and ω ∼ β−1. Here, since λ � tc, the polymer chains neither145

relax nor do they contribute to the viscosity of the suspension146

(see eqn 3). Hence, the appropriate time scale only involves the147

viscosity of the solvent µs, and the growth rate should be rescaled148

as ω → βω, which yields a parameter-free amplification curve149

with the same functional form as that of a Newtonian film.150

3.2 The lubrication approximation151

Under the lubrication approximation of the Jeffrey’s model, the
equivalent expressions of eqns (8) and (15) were first obtained
by Safran and Klein30, and refined later on by Blossey et al.32

considering also wall slippage. Neglecting slippage, the disper-
sion relation obtained from the lubrication model reads

ω (1+Deβω)− (1+Deω)(3−Ca−1k2)k2/3 = 0. (16)

This lubrication dispersion relation can be also derived from
eqn (8) by expanding in powers of k, resulting in an identical
expression except for the order O(k4) term, −9/5. From eqn (16)
we can take the limit De→ ∞,

ω =
k2(3−Ca−1k2)

3β
, (17)

to be compared with its Stokes counterpart (15). Note that, in
ref.32, our parameter β is equivalent to the ratio between their
λ2 and λ1 time scales, which are the relaxation times associated
to the viscous rate-of-strain of the solvent and to the polymeric
stress, respectively. In addition, the limit β → 0 of a polymer
melt, under the lubrication approximation, reads

ω =
k2(3−Ca−1k2)

Dek2(Ca−1k2−3)+3
, (18)

to be compared with the corresponding Stokes result (14).152

From the lubrication dispersion relations (16)–(18) we can ob-
tain the most amplified wavenumber, which is independent of De
and β as anticipated from the full Stokes equations in eqns (9),

Journal Name, [year], [vol.],1�13 | 5
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Fig. 4 Minimum �lm thickness as a function of the rescaled time to rupture, τ/β for di�erent values of the Deborah number, De, indicated in the

legend, and β = 0.1 in (a,c,e), and β = 0.5 in (b,d, f ), and the three di�erent viscoelastic models, namely Oldroyd-B in (a,b), Giesekus in (c,d), and
FENE-P in (e, f ). The lower insets show the corresponding instantaneous exponents n = dlog10 hmin/dlog10(τ/β ) as a function of τ/β . The upper inset

in (b) illustrates the consistent τ−1-, τ−2/3-, and τ−1/2-behaviours of the polymeric stress σ11, vertical velocity |v|, and transversal increments ∆T v,
respectively, evaluated at x = 0, y = hmin(t) for De = 10.
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Fig. 5 Snapshots of the evolution of a viscoelastic thin liquid �lm with Ca = 0.01 (or ho/a = 10), where the color plot shows the scalar quantity σσσ ::: E ,
with β = 0.1 and De = 10 in (a�d), and β = 10−3 and De = 104 in (e�h). Here, lengths, time t and σσσ ::: E have been scaled with (1).

km =
√

3Ca/2. The corresponding maximum growth rates read

ωm =
3CaDe−4+

√
(4−3CaDe)2 +48CaDeβ

8Deβ
, (19a)

ωm =
3Ca
4β

, (19b)

ωm =
3

4Ca−1−3De
, (19c)

as obtained from eqs (16)–(18), respectively. Interestingly, from153

the polymer melt limit in eqn (19c) it is possible to estimate the154

value of De for which the maximum growth rate diverges, as155

shown in Figs. 2(a), (e), and ( f ), yielding De' 4/(3Ca).156

4 Nonlinear and near-rupture dynamics157

4.1 Numerical simulations158

To elucidate the nonlinear and near-rupture dynamics of the vis-
coelastic thin film, we have performed numerical simulations
of the complete Stokes equations (2), coupled with either the
Oldroyd-B (3), Giesekus (5), or FENE-P (4) models for the poly-
meric stress tensor. Taking into account the fact that the local flow
close to the rupture singularity loses memory of the initial con-
ditions, it proves convenient to change the characteristic length
scale to non-dimensionalise the mathematical model, substitut-
ing ho by a,

`c = a =

√
A

6πγ
, tc =

µta
γ

, vc =
γ

µt
, pc = σc = φc =

A
6πa3

(20)

We consider first a planar two-dimensional film starting from
rest and whose free surface is slightly perturbed by a harmonic
disturbance at t = 0, namely

uuu(xxx,0) = 000, h(x,0) = ho/a(1− ε coskx) with k < kc, (21)

for 0 ≤ x ≤ π/k, thus triggering the vdW-induced instability.159

The numerical method was adapted from the one employed in160

refs.27,60, where the reader can find a detailed technical explana-161

tion. The scales used to study the near-rupture dynamics are the162

molecular scales (20), unless otherwise specified.163

Fig. 4 shows the minimum thickness of the film, hmin = h(x,0),164

and the instantaneous exponent n = dlog10 hmin/dlog10(τ/β ) in165

the insets, as functions of the rescaled time to rupture, τ/β =166

(tR − t)/β . In particular, Figs. 4(a,b) show the results obtained167

from the Oldroyd-B model, Figs. 4(c,d) those from the Giesekus168

model, and Figs. 4(e, f ) those from the FENE-P model. These169

figures evidence that, independently of the viscoelastic consti-170

tutive equation and for any value of β , De, L2 and α, the ul-171

timate self-similar regime that is established as τ → 0 is that172

of a Newtonian liquid film, recently discovered in ref.27, and173

where hmin = 0.665τ̄1/3, where τ̄ = τ/β is the time to rupture174

non-dimensionalised with the viscosity of the Newtonian liquid.175

Hence, the fact that τ/β is the appropriate time that makes all the176

interface evolutions collapse close to rupture means that only the177

solvent plays a role close to the singularity. More importantly, to178

elucidate how the polymeric stresses affect the transient regime179

and the spatial structure of the flow as the singularity is ap-180

proached, Fig. 5 shows the evolutions of two different viscoelas-181

tic films with Ca = 0.01 (or ho/a = 10), where the coloured con-182

tours display the scalar quantity σσσ :::E , which indicates the regions183

where the polymer chains are more or less elongated61. The val-184

ues of the parameters are β = 0.1, De = 10 in Figs. 4(a–d), and185

β = 10−3, De = 104 in Figs. 4(e–h). Note also that a precursor film186

of dimensionless height hprec = 0.1 has been incorporated in these187

simulations (see eqn (25) below). Close enough to the rupture188

singularity, typically for hmin . 0.1, the flow is organised in a two-189

region structure, composed of a Newtonian core and a viscoelas-190

tic boundary layer at the interface, where the polymeric stresses191

are confined and become singular as rupture is approached. The192

confinement of the polymeric stresses within a very thin layer ex-193

plains their negligible influence in the global dynamics of the film194

when τ � 1, and also the fact that the asymptotic flow structure195

is unaffected by the viscoelastic rheology of the film, which coin-196

cides with the universal solution for Newtonian liquids described197

in detail in ref.27.198
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Fig. 6 (a) Evolution of the viscoelastic boundary layer thick-

ness δ (τ) ∝ τ1/2, shown to follow a faster thinning than that

of the minimum �lm thickness hmin(τ) ∝ τ1/3, and lateral length

scale xδ ∝ τ1/3. (b) Axial evolution of the re-scaled poly-

meric stress σ11|x=0 at times τ = (10.96,1.633,0.343,0.087,0.024,0.007,
0.0021,0.0006,0.00019,0.000062,0.000019). The 10%-criterion to retrieve

δ is also illustrated by means of the points A and B for which 0.1σmax ≤
σ11 ≤ σmax, with σmax(τ) the instantaneous maximum of the polymeric

stress. A similar strategy is used to compute xδ , but evaluating σ11 in

the free surface instead. Computations are for an Oldroyd-B �lm with

ho/a = 10, β = 0.5, De = 10.

4.2 Near-rupture flow and viscoelastic boundary layer199

The results of section 4.1 will now be explained by means of a200

careful analysis of the simulation results for τ � 1. The projec-201

tion of the momentum equation (2) in the x-direction can be es-202

timated at the scale of the film, y ∼ hmin, to yield the balance203

−∂xφ ∼ ∂ 2
xxu⇒ h−4

min ∼ uc/x2
c ∼ (hminτ)−1, leading to the asymp-204

totic rupture law hmin ∼ τ1/3 deduced in27, and confirmed in205

the viscoelastic flow under study by the results of Fig. 4. The206

x-momentum equation can also be used to estimate the character-207

istic polymeric stresses, σc(τ). Indeed, −∂xφ ∼ ∂xσ11 ⇒ σc ∼ φc,208

where φc∼ h−3
min is the characteristic van der Waals potential, lead-209

ing to σc ∼ τ−1, in agreement with the inset of Fig. 4(b). The210

thickness and length of the viscoelastic boundary layer, respec-211

tively given by δ (τ) and xδ (τ) (see Figs. 8 and 9), were obtained212

from the evaluation of the spatial distribution of the polymeric213

stresses for decreasing vales of τ. Figure 6(b) shows the distribu-214

tion of the rescaled polymeric stress (τ/β )σ11 as a function of the215

rescaled transverse coordinate, (β/τ)1/3y, and evaluated at the216

symmetry plane, x = 0.217

∼	x
	ta
n	3
7
o

x/(τ/β)1/3

y/(τ/β)1/3

τ	=	0.1
τ	=	0.01
τ	=	10-3

τ	=	10-4
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Fig. 7 Self-similar collapse of the �lm shapes (main panel) and velocities

(upper inset) for a Giesekus �lm with ho/a = 10,β = 0.5,De = 10,α =

0.1 (solid lines). As τ → 0, collapse is achieved towards the self-similar

solution η = f (ξ ), with f (0) ' 0.665, and U and V , obtained by the

integration of (22a)�(24c), previously reported in27 (dashed line). A

small vertical o�set has been added to the function f (ξ ) to make it

distinguishable from the numerical pro�les.

4.3 The leading-order self-similar solution218

In view of the results of Fig. 4, one may anticipate the appear-
ance of a self-similar regime in which hmin follows the asymp-
totic thinning law first reported in our previous work27, namely
hmin ∝ τ1/3, whereas the maximum velocity should scale as u ∝

τ−2/3. Moreover, this law is expected to be achieved for arbitrary
values of De and β > 0, according to the non-linear simulations.
The self-similar exponents numerically obtained resemble those
obtained in ref.27, in which the Stokes equations exhibit a simi-
larity solution of the first kind with a wedge-shaped free surface
and an associated opening angle of 37◦ off the solid substrate. In
what follows, we shall demonstrate that viscoelastic film thinning
is dictated by the same asymptotic law as that of a Newtonian liq-
uid. The leading-order description of the fluid flow is the same as
that given in ref.27 whereas the viscoelastic stress tensor is seen to
obey a homogeneous problem whose solution, at leading order in
powers of τ, is the trivial one σσσ → 0 as τ → 0. Indeed, by letting
x = (τ/β )1/3ξ , y= (τ/β )1/3η , u= (τ/β )−2/3βU , v= (τ/β )−2/3βV ,
p = (τ/β )−1P, h = (τ/β )1/3 f (ξ ) and σi j = (τ/β )−1Σi j, with i (or
j) = (1,2), one finds the consistent leading-order elliptic system
of partial differential equations

Uξ +Vη = 0, (22a)

Uξ ξ +Uηη +Σ11,ξ +Σ12,η = Pξ −
3 fξ
f 4 , (22b)

Vξ ξ +Vηη +Σ12,ξ +Σ22,η = Pη , (22c)
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Fig. 8 Re-scaled temporal evolutions showing the self-similar collapse of the �lm shapes of an Oldroyd-B �lm with ho/a = 10,β = 0.5,De = 10. The
colour plots and contours show the self-similar viscoelastic stress Σ11 = τσ11, which is con�ned to a boundary layer at the free surface as τ→ 0, as the
remaining components of the viscoelastic stress tensor.

stemming from eqn (2), to be integrated in −∞ < ξ < ∞ and
0 < η < f (ξ ), where f (ξ ) is to be obtained as part of the solu-
tion. Eqns (22a)–(22c), need to be integrated with the boundary
conditions (6), which in self-similar variables read

(1+ f 2
ξ
)P− f 2

ξ

(
Σ11−2Uξ

)
−2
(
Σ22 +2Vη

)
+

2 fξ
(

Σ12 +Uη +Vξ

)
= 0, (23a)

fξ
[
Σ22−Σ11 +2

(
Vη −Uξ

)]
+

(1− f 2
ξ
)
(

Σ12 +Uη +Vξ

)
= 0, (23b)

f +3V − (ξ +3U) fξ = 0, (23c)

along the free surface η = f (ξ ), U = V = 0 at the substrate wall
η = 0, and U = 0 at the symmetry axis ξ = 0. The remaining
boundary conditions at the numerical infinity ξ � 1 are handled
as in ref.27. Note that capillarity forces are subdominant, and
the leading-order balance is established between viscous and vdW
forces. In addition, it is important to emphasise that eqns (22a)–
(23c) are independent of the viscoelastic model. For instance, the

Oldroyd-B model yields the system of equations

(ξ +3U)Σ11,ξ +(η +3V )Σ11,η +(3−6Uξ )Σ11−6Uη Σ12 = 0,
(24a)

(ξ +3U)Σ12,ξ +(η +3V )Σ12,η −3(Vξ Σ11−Σ12 +Uη Σ22) = 0,
(24b)

(ξ +3U)Σ22,ξ +(η +3V )Σ22,η +(3−6Vη )Σ22−6Vξ Σ12 = 0,
(24c)

at O(τ−2), which completes the self-similar description. The219

system formed by eqns (24a)–(24c) constitutes a homogeneous220

linear system for the components of the leading-order polymer221

stress tensor Σi j, independent of De and β . Note that the triv-222

ial solution Σi j = 0 yields the solution given in ref.27 for the223

flow field, providing a free surface whose far-field shape is linear,224

i.e., f = (ξ − ξo) tanθo, for some ξo, compatible with eqn (23c)225

for ξ � 1 and vanishing velocities. The numerical solution of226

eqns (22a)–(24c) (see ref.27 for details on the numerical method)227

confirms that this angle is indeed θo ∼ 37◦, with accompanying228

vanishing polymeric stresses. The self-similar collapse is illus-229

trated in Fig. 7 for a Giesekus film with no precursor. The study of230

the rheological boundary layer sitting on the free surface η = f (ξ )231

appearing at the following order would constitute a formidable232

mathematical task, intrinsic to each viscoelastic model, and not233

to be pursued in this paper.234

5 Three-dimensional numerical simulations235

The experimental patterns shown in refs.21,36,38 are thus far un-
explained. To elucidate if these patterns arising in polymeric films
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heated close to the glass transition are due to a viscoelastic be-
haviour, we perform three-dimensional direct numerical simula-
tions of the Oldroyd-B model with the addition of a short-range
potential such that the intermolecular potential may be replaced
by

φ = h−3−h6
prech−9 (25)

(see for instance ref.26) in eqns (2), where hprec is the dimension-
less thickness of the precursor film. As for the three-dimensional
initial condition, we impose a randomly corrugated surface and
zero velocity,

h(xxx||,0) = 1+ ∑
|i|≤M

∑
| j|≤N

Ai j cos
(

kkki j ··· xxx||+U
)
, uuu(xxx,0) = 000, (26)

where xxx|| is the in-plane position vector, Ai j = ε(i2 +236

j2)−ν/2N (i, j), N being a Gaussian distribution, ν the spectral237

exponent, kkki j = 2π/xmax(ieeex + jeeey), with xmax the size of the com-238

putational domain in the x and y directions, and U (i, j) the uni-239

form distribution.240

Fig. 9 shows snapshots of the time evolution of a three-241

dimensional Newtonian thin liquid film in the upper row, and the242

corresponding non-Newtonian film modeled with the Oldroyd-B243

constitutive equation in the bottom row. In particular, in both244

simulations the initial height of the film is ho/a = 5, the per-245

turbation amplitude is ε = 0.05, and the precursor height is set246

to hprec = 0.35. The remaining dimensionless parameters of the247

Oldroyd-B film are De = 10, and β = 0.1, which might be similar248

to those reported in ref.21.249

The main quantitative differences between the Newtonian and250

the viscoelastic film are the characteristic dewetting time, which251

is given by the linear stability analysis developed in §3 (see252

Fig. 3), and the height of the drops and rims, which are higher253

in the Newtonian case. However, the dewetting pattern is quali-254

tatively similar in both scenarios, thus the morphology shown by255

refs.21,36,38 cannot be a direct consequence of the viscoelastic be-256

haviour of the film. Indeed, Fig. 6 shows the time evolution of the257

component σzz for the viscoelastic film displayed in Fig. 10(a-e),258

evidencing that the polymeric stresses remain confined to regions259

close to the rim, as anticipated by Fig. 5. Therefore, other ef-260

fects must be taken into account to explain such patterns, namely261

the residual stresses, the slippage of the film which can be large262

in glassy films62? ,63, or the viscoplastic nature of the material.263

Aside from the patterns observed by ref.21, the advanced post-264

processing techniques used by ref.26 could be potentially used265

here to infer and characterize the viscoelastic properties of the266

film from the 3D patterns, namely the relaxation time of the poly-267

mer chains or the nonlinear material parameters introduced in268

the Giesekus and FENE-P models. However, this task is out of the269

scope of the present work.270

6 Conclusions and future prospects271

Despite the relevance of ultra-thin viscoelastic and glassy coat-272

ings, some fundamental questions about their dynamics have re-273

mained overlooked. By considering three viscoelastic models, i.e.,274

the Oldroyd-B, Giesekus, and FENE-P models, we have shed light275

on some aspects of their linear and near-rupture dynamics. In276

particular, analytical estimations of the rupture times and associ-277

ated wavelengths of the dewetting patterns are given by means278

of linear theory in terms of the relevant dimensionless governing279

parameters. In particular, it is found that such wavelength is in-280

dependent from the values of the solvent-to-total viscosity ratio281

and Deborah numbers, therefore being an exclusive function of282

the Capillary number regardless the rheological model employed.283

Additionally, by means of two-dimensional numerical simulations284

of the Stokes equations coupled with non-linear viscoelastic mod-285

els, we have shown that for times close to the singularity, the286

Newtonian self-similar regime obtained in our previous work27 is287

always achieved. This phenomenon occurs independently of the288

rheological behaviour of the planar film, the consequence being289

that the viscoelastic stresses remain confined in a boundary layer290

placed at the free surface, and whose thickness becomes smaller291

as breakup is approached. Moreover, we have also performed292

three-dimensional numerical simulations of a planar viscoelastic293

film with random initial conditions, to determine if the dewetting294

patterns are substantially different from their Newtonian counter-295

part. However, the final morphologies found in both cases film are296
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qualitatively similar, which means that the viscoelastic rheology is297

not the cause of the dewetting patterns reported in refs.21,36,38.298

Here we suggest that such morphologies might be a consequence299

of the residual and thermal stresses, a manifestation of viscoplas-300

tic behaviour, or a strong slippage of these rheologically complex301

films. Although these effects are out of the scope of the present302

work, their study constitutes an exciting direction for future con-303

tributions.304

A The analytical expression for the growth305

rate306

The closed-form solution to the dispersion relation (8) for the
growth rate is available as follows:

ω =
1

4β CaDek
(
1+2k2 + cosh2k

) {8β CaDek
(

3Ca− k2
)
×

[sinh(2k)−2k]
[
1+2k2 + cosh(2k)

]
+

[
2k
(

3CaDe+2Cak2 +Ca−Dek2
)
+

De
(

k2−3Ca
)

sinh2k+2Cak cosh2k
]2
}1/2

−6CaDek+3CaDesinh(2k)−4Cak3−

2Cak[1+ cosh(2k)]+2Dek3−Dek2 sinh(2k). (27)

which is provided here for the first time (to the best of our knowl-307

edge). The second root of (8) is always negative for all k. Note308

that in refs.28,29 only the dispersion relation (8) is given.309
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