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erative electron radiation therapy (IOERT)
s irradiation of an unresected tumour or a post-
n tumour bed. The dose distribution is calculated
preoperative computed tomography (CT) study

d using a CT simulator. However, differences
n the actual IOERT field and that calculated from
operative study arise as a result of patient position,
l access, tumour resection and the IOERT set-up.
erative CT imaging may then enable a more
te estimation of dose distribution. In this study, we
ed three kilovoltage (kV) CT scanners with the abil-
quire intraoperative images. Our findings indicate
rrent IOERT plans may be improved using data
n actual anatomical conditions during radiation.
tems studied were two portable systems (“O-arm”,

Beurteilung der intraoperativen
3D-Bildgebungsalternativen für
IOERT-Dosisabschätzung

Zusammenfassung

Die Intraoperative Elektronenstrahlentherapie (IOERT)
beinhaltet die Bestrahlung eines inoperablen Tumors oder
eines Tumorbetts nach der Resektion. Die Dosisverteilung
wird aus einer präoperativen Computertomographie
(CT)-Studie berechnet, für die ein CT-Simulator ver-
wendet wurde. Resultierend aus der Patientenposi-
tion, dem chirurgischen Zugang, der Tumorresektion
und dem IOERT-Aufbau tritt jedoch eine Abwei-
chung zwischen dem tatsächlichen IOERT-Feld und
dem aus der präoperativen Aufnahme berechneten
-beam CT [CBCT] system, and “BodyTom”, a
ce CT [MSCT] system) and one CBCT integrated in

Feld auf. Die Intraoperative CT-Bildgebung kann unter
diesen Umständen eine genauere Einschätzung der
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ntional linear accelerator (LINAC) (“TrueBeam”).
am and BodyTom showed good results, as the
pass rates of their dose distributions compared

gold standard (dose distributions calculated from
acquired with a CT simulator) were above 97%
cases. The O-arm yielded a lower percentage of

fulfilling gamma criteria owing to its reduced field
(which left it prone to truncation artefacts). Our

show that the images acquired using a portable CT
a LINAC with on-board kV CBCT could be used
ate the dose of IOERT and improve the possibility
ate and register the treatment administered to the

.

rds: IOERT, radiotherapy, intraoperative
, dose distribution

Dosisverteilung ermöglichen. In dieser Studie haben wir
drei Kilovolt (kV)-Computertomographgeräte bewertet,
die intraoperative Bilder erstellen können. Unsere
Ergebnisse weisen darauf hin, dass aktuelle IOERT-
Behandlungspläne mittels Daten verbessert werden
können, die auf tatsächlichen anatomischen Gegeben-
heiten während der Bestrahlung basieren. Es wurden
zwei tragbare Systeme (,,O-Arm“, ein cone-beam-CT
[CBCT]-System und ,,BodyTom“, ein Mehrschicht-CT
[MSCT]-System) und ein in einen konventionellen
Linearbeschleuniger integriertes CBCT-System (LINAC)
namens ,,TrueBeam“ untersucht. TrueBeam und Body-
Tom zeigten gute Ergebnisse, da die Gamma-Akzeptanzrate
der Dosisverteilungen im Vergleich zum Goldstandard
(Berechnung der Dosisverteilungen anhand von mit einem
CT-Simulator aufgenommenen Bildern) in den meisten
Fällen über 97% lag. Der O-Arm ergab einen niedrigeren
Prozentsatz an Voxel, die die Gamma-Kriterien erfüllen.
Dies liegt an seinem verminderten Sichtfeld, das seine
Anfälligkeit für Truncation-Artefakte erhöht. Unsere
Ergebnisse belegen die Verwendbarkeit von Bildern zur
Einschätzung der IOERT-Dosis, die mit Hilfe eines trag-
baren CT oder sogar eines LINAC mit On-Board-kV-CBCT
erstellt wurden. Hierdurch können die Behandlungsdosen
der Patienten besser bewertet und erfasst werden.

Schlüsselwörter: IOERT, Strahlentherapie,
Intraoperative Bildgebung, Dosisverteilung

duction

perative electron radiation therapy (IOERT) involves
n of an unresected tumour or a post-resection tumour
a single-fraction, high-dose electron beam that is
by means of an applicator docked to a linear accel-

INAC) [1]. The displacement of non-involved organs
se of shielding discs enable the dose administered to
t volume to be increased while diminishing the risk
ting healthy tissue.
ifi treatment planning system (TPS) was designed
T procedures [2–4]. The dose distribution is calcu-

m a preoperative computed tomography (CT) study
the position and orientation of the electron beam

r is simulated virtually. This preoperative study is
with a CT simulator. Surgical access, tumour resec-

an displacement, bolus materials and shielding discs
be incorporated in the simulation. The dose distribu-
timated by means of a pencil beam algorithm [5] or

preoperative CT image of the patient in a position resembling
the one used in the surgical procedure could reduce these
differences, a better approach would be to use intraoperative
CT imaging [7]. Relevant recent studies include that of
[8], who proposed 2D portal imaging to ensure alignment
between the applicator and the shielding disc in breast cancer
IOERT. In [9], the authors conducted a preliminary phantom
study to evaluate the feasibility of using a C-arm with
3D imaging capability (ARCADIS® Orbic 3D, Siemens,
Germany) to acquire images during IOERT, concluding that
C-arm image quality was a major limitation. In [10], the
authors presented the firs two clinical cases (Ewing sarcoma
and undifferentiated sarcoma) in which intraoperative images
were acquired using a CT simulator during IOERT. The
patient was transferred from the operating room to the CT
simulator room for acquiring an intraoperative CT image
before the radiotherapy delivery in the treatment room. The
3D dose distribution of the actual treatment administered
to the patient was calculated from the intraoperative CT
arlo algorithm [6] specificall adapted to this setting.
t position, surgical access, tumour resection and
treatment set-up in the actual IOERT fiel can
m those simulated in the TPS. Although acquiring a

image o
superimp
position
also estim
f the whole setting (patient and applicator) after
osing the TPS virtual applicator on its actual
displayed in the CT image. Moreover, the dose was

ated from their preoperative image after removing
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ur and its surrounding area as expected during the
and then aligning to the intraoperative CT image
formable registration. Despite that preprocessing,
re still differences between the dose distributions

d with those preoperative images and those obtained
intraoperative images (average difference of 5%).

the authors pointed out that surface irregularities,
d with a phantom, can significantl influenc the
ose distribution. Nowadays, IOERT is not entirely

rised since no intraoperative images of the actual
during the treatment are routinely acquired. This

ion would be useful not only for intraoperative
but also for registering and evaluating the treatment

ered to the patient. Following the approach of
intraoperative images with CT simulators [10] has

ation of the additional risks involved in transferring
nt to the CT simulator room, and this setup may
stifie if a dedicated mobile electron accelerator is
in the operating room.
rnal beam radiation therapy (EBRT), imaging is cur-
ed for identifying differences in patient positioning
position prior to treatment delivery (image-guided

rrection). Many modern LINACs include integrated
m CTs (CBCTs) that enable acquisition of 3D images
patient in the treatment position that are then regis-

compared with the planning CT. Moreover, these
an also be used to adapt the treatment plan depend-
natomical changes (weight loss, tumour regression
lacement) during the radiotherapy course [12]. Sev-
les have focused on the feasibility of using CBCT
or dose calculation in EBRT and show that CBCT
annot be used directly for dose estimation because
lity is lower than that of CT simulator images. For
dose calculations for treatment field that have a
e and different geometry than the phantom used in
ation procedure for converting CT values into density
n dose errors larger than 5% [13]. Several approaches
n proposed in order to overcome this problem, includ-
ping CT values from planning CT to CBCT after
nment [14], treatment field-specif look-up tables
ert CT values to density [13], a density override

based on segmenting water, air and bone [15], and
g the scatter distributions from the firs CBCT scan
for patient setup and applying scatter correction on
nt CBCT scans acquired throughout the radiotherapy
6].

r knowledge, no studies have evaluated the use of
ge (kV) CT technologies other than CT simulators,
case of CBCT devices or even portable multislice

CT) scanners, to acquire intraoperative images for
g IOERT dose distribution with the actual conditions.

2 M

In t
ated i
poten
ity for
comp
in a c
acqui
repres
also i
distrib
standa

2.1 C

The
ated i
MN, U
USA)
Corpo

Oth
ity in
Pulse
3D (Z
devic
of vie

The

• O-a
FOV
inco
Pax
tor
0.19
ter)
and
a g
are
mai

• Tru
CB
mat
scin
for
with
sou
use
dur

• Bod
an
udy, we evaluate the feasibility and potential of using
aging systems other than CT simulators that can be

d in the IOERT workfl w to calculate radiation doses
urately.

10 mm
in hel
perform
85 cm
s. 27 (2017) 218–231

rials and methods

section, we describe the CT imaging systems evalu-
e study and the methodology followed to assess their
. The devices were selected based on their suitabil-
aging during IOERT. The three CT scanners chosen
d two portable systems and one device integrated
entional LINAC. Two commercial phantoms were
using the systems under evaluation to simulate two

tative IOERT treatments. The same phantoms were
ged in a conventional CT simulator, and the dose
ons calculated from these studies formed the gold
s for our comparisons.

imaging systems evaluated

ree scanners with a kV CT imaging facility evalu-
is study were O-arm® Surgical Imaging (Medtronic,

A), TrueBeamTM STx (Varian Medical Systems, CA,
d BodyTom® Portable CT Scanner (NeuroLogica
ion, MA, USA) (Fig. 1).
commercial C-arms that provide 3D imaging capabil-
de ARCADIS® Orbic 3D (Siemens, Germany), BV
Philips, The Netherlands) and Ziehm Vision FD Vario
m Imaging Inc., FL, USA). However, none of these
as selected for this study owing to their reduced fiel

FOV).
stems studied are described briefl below:

is a portable kV cone-beam scanner with a large
nd a sliding gantry that enables lateral access. It

orates a 30 cm × 40 cm fla panel (Varian model
n 4030 CB, amorphous silicon digital X-ray detec-

th a 1536 × 2048 pixel matrix and pixel pitch of
m). The reconstructed FOV size is 20 cm (diame-

15 cm (height), with a matrix size of 512 × 512 × 192
xel size of 0.415 × 0.415 × 0.832 mm. O-arm has

ry opening of 96.5 cm and its physical dimensions
9 × 81.3 × 202.2 cm (length × width × height). It is
used in spinal and orthopaedic surgeries.

eam combines the features of a LINAC and a kV
. The on-board kV imager has a fla panel with a pixel
of 2048 × 1536 and an anti-scatter grid on top of the
ator layer. The 3D image FOV is 46 × 46 × 16 cm
f-fan mode and 25 × 25 × 17 cm for full-fan mode,
slice thickness ranging from 1 mm to 10 mm. The

-detector distance is 150 cm. Its imaging tools are
o verify the patient’s position and tumour motion
treatment.
om is a portable MSCT scanner (32 slices) with
V of 60 cm (slice thickness from 1.25 mm to

, image matrix 512 × 512). This CT device works
ical or axial mode and moves along the bed to

acquisitions. BodyTom has a gantry opening of
and physical dimensions of 256.5 × 104 × 205.7 cm
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Fig. 1. CT scanners: (a) O-arm, (b) TrueBeam,

× width × height). The device is optimised for use
al surgery, tumour removal and interventional radi-

ree devices fulfi the requirements for planning of
apy using scanners with wide apertures (at least
7]). Of the three, BodyTom has the smallest gantry
Wide apertures are essential in IOERT, since abdom-
ical retractors or patient position (e.g. lithotomy
can prevent the patient from entering the gantry

devices could be a good solution for intraoperative
in IOERT procedures with different workfl ws. O-
BodyTom could be moved into the operating room in
cquire the actual image before irradiating the patient
example, a mobile electron accelerator also located
e operating room. TrueBeam, on the other hand,

the su
avoid
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The
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tor (T
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image
ments
the Sp
result
[HU],
[CT n
ntraoperative images to be obtained before radiation
red with its conventional LINAC. Using the True-
proach, it would be necessary to transfer the patient
operating room to the LINAC room or alternatively

lution] 3
the spati
result (1
specifica
BodyTom, (d) CT simulator.

ry could be performed in the LINAC facility, thus
transportation.

simulator

eference dose distributions were calculated from
cquired on an AquilionTM Large Bore CT simula-
iba, Japan). This multi-slice helical CT (16 slices)
cm FOV and a 90-cm gantry opening. This device is
n the Department of Radiation Oncology at Hospi-
ral Universitario Marañón (Madrid, Spain) and its
re used for planning external radiotherapy treat-
his CT simulator fulfille the image quality tests of
ish Society of Medical Physics (http://www.sefm.es;
noise 0.4%, fiel uniformity 3.8 Hounsfiel units
T number for air −980 HU and for water 3.8 HU
ber accuracy], contrast resolution [low contrast reso-

.5% @ 2.5 mm and absence of artefacts) excepting
al resolution (high contrast resolution) test whose
mm) was slightly higher than the manufacturer
tio (0.6 mm). The spatial integrity [18] was

http://www.sefm.es;/
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0.1 mm in the transaxial plane and 0.3 mm along
axis.

ntoms

hantoms were used in this study: the model 062 elec-
sity phantom and the model 057 triple modality 3D
al phantom, both from CIRS Inc. (VA, USA) (Fig. 2).
odel 062 phantom enables conversion from CT num-
hysical density to calibrate each scanner, since this
hip varies between scanners [19]. Conversion factors
orporated into the IOERT TPS to take account of tis-
ogeneity in dose calculation. The phantom consists
sted discs (a head insert and a body disc) made from
ater® (dimensions 33 × 27 × 5 cm) and several plugs
ons: 30 mm diameter × 50 mm length) of eight differ-
e equivalent epoxy resins (lung inhale, lung exhale,
breast 50% gland/50% adipose, muscle, liver, tra-
one 200 mg/cc hydroxyapatite [HA] and dense bone
c HA). A vial plug fille with sterilised water was
the centre of the phantom.
odel 057 phantom makes it possible to simulate a

the el
disc, o
phant
HA) e
eter ×
of bon

The
mater
usuall
ences
an 18
an in-
[21] w
scann
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B100
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close
ric ca
ult abdomen approximately from thoracic vertebrae
o lumbar vertebrae L2/L3 and includes the liver, part
idneys, part of the lung surrounding the liver, portal

of the m
material
number,
s. 27 (2017) 218–231

a cava, abdominal aorta, spine and six ribs. This phan-
used to simulate two IOERT cases in order to compare
ributions calculated from images acquired with the
valuated and the CT simulator (gold standard). The
housing is made from acrylonitrile butadiene styrene

nd the rest of the phantom from proprietary gels. Its
ns are 28 × 20 × 12.5 cm.

acquisitions

on density and abdominal phantoms were scanned
system. All CT acquisition parameters except matrix

e set to the same values for both phantoms in each
Since the acquisition protocols offered a limited

of parameter combinations for each scanner, those
were as similar as possible between scanners tak-
account this restriction (Table 1). Tube voltage was
according to typical CT protocols for radiotherapy
.

version of the CT number to physical density

on density phantom images were used to calibrate
ersion from CT numbers to physical density in each
ylindrical regions of interest (ROIs) of 20 mm diam-
mm length were contoured centred on each plug, on

ron density head insert, on the electron density body
he vial plug fille with sterilised water and outside the
(air). The ROI selected in the dense bone (800 mg/cc

ivalent electron density plug was smaller (6 mm diam-
mm length) because the insert contains a 10-mm core
quivalent surrounded by water-equivalent material.
ectron density phantom is made of tissue-equivalent

that represent the densities of tissues but do not
eplicate their chemical composition. These differ-
d to large dose deviations (e.g. more than 30% for

eV electron beam [20]). To overcome this limitation,
se implementation of the stoichiometric calibration
applied to obtain the CT numbers specifi for each
f seven PENELOPE materials (dry air, lung, adipose

riated muscle, muscle-equivalent liquid with sucrose,
d cortical bone) with known chemical composition
ical density. PENELOPE software is used to perform
arlo simulation of coupled electron-photon transport
ectron and positron interactions [22]. The chemical
tion of these PENELOPE materials closely follows
national Committee for Radiological Units (ICRU)
ternational Commission on Radiological Protection
tandard chemical composition for biological tissues.
a tissue substitute that has a chemical composition
that of soft bone. The firs step of the stoichiomet-
odel that would fi the attenuation coefficien of a
relative to water. This model depends on the atomic
the atomic weight, the percentage by weight of the
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Table 1
CT acquisition parameters.

Voltage (kV) Exposure (mAs) Matrix size Voxel size (mm)

CT simulator 120 300 512 × 512 × 141a

512 × 512 × 251b
0.625 × 0.625 × 1

O-arm 120 298 512 × 512 × 192 0.415 × 0.415 × 0.832
TrueBeam (half-fan mode) 125 262 512 × 512 × 81 0.908 × 0.908 × 1.988
BodyTom (helical, soft tissue filter 120 295 512 × 512 × 136a

b
1.164 × 1.164 × 1.250

a Electro
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chemical elements that form that material and the
density. Those constants, which are related to the
tions of photoelectric absorption, coherent scattering
h) and incoherent scattering (Compton), were com-

a constrained least square fi of the CT numbers
(i.e. the mean value for each ROI of the electron den-

tom) to the aforementioned model, since CT numbers
d to attenuation coefficient relative to water. This
n assumes that CT numbers are in HU so that X-ray
on of distilled water is define as 0 HU and attenua-
r as −1000 HU at standard pressure and temperature.

ical composition and physical density of the mate-
e electron density phantom were provided by CIRS

e those constants were estimated, the CT number of
ELOPE material was calculated by applying the fit
l. The CT numbers of those seven tissues and their
density (calibration curve) were then entered into the
PS.
case of the O-arm scanner, two modification to

edure were necessary to convert the CT number to
density. First, electron density phantom CT image

ere linearly transformed, since the CT numbers for air
lled water were different from −1000 HU and 0 HU,
ely. Second, as the FOV acquired by the O-arm cov-
the electron density head insert, eleven ROIs were
that image instead of the twenty ROIs segmented on

es from the other scanners. These adjustments were
y to perform the stoichiometric calibration.
l profile were drawn on the electron density phan-

ges after rigid alignment of the studies from all the
(manual registration using the CT simulator image
ence) in order to evaluate the variations in CT num-

in each plug between the CT simulator and each of
evices under evaluation.

e distribution evaluation

OERT cases were simulated on the images from the
al phantom using the TPS radiance (GMV, Madrid,

functi
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4]: a pancreatic tumour and a soft-tissue sarcoma
pinal muscle. Abdominal images were resampled
m isotropic voxel size and then aligned (automatic
istration with normalised mutual information as cost

as the re
dose diff
ues grea
radiation
512 × 512 × 128

) using the CT simulator image as a reference. This
e enabled us to place the IOERT applicator in the
ition for all of the scanners. Dose distributions were
d using the Monte Carlo algorithm (error tolerance
and doses were not scaled to a normalised value. The
am algorithm was not used in this study, as it is subject
ions with small irradiated volumes owing to the semi-
ayer approximation and does not model backscatter
(e.g. that produced by shielding discs) [23].

case of the pancreatic tumour, the pancreas and liver
mented and the CT numbers of the voxels inside
sks were set to air in order to simulate tumour resec-
liver displacement, respectively. Surgical access was
lated in the TPS. Tumour bed (clinical target volume
nd organs at risk (spinal cord, left kidney, aorta, and
a) were also contoured. The IOERT parameters were
r diameter 50 mm, bevel angle 0◦, energy 6 MeV and

bed dose of 15 Gy at a 90% isodose (Fig. 3(a)).
case of the paraspinal muscle sarcoma, the proce-
owed was similar, namely, surgical access, tumour
and segmentation of the CTV and organs at risk

ord and right kidney). To protect the right kidney,
lding discs were placed virtually between the CTV
ight kidney. A brass disc (thickness 3 mm, diameter
hysical density 8.6 g/cc) was placed close to the right
nd a Tefal disc (thickness 3 mm, diameter 60 mm,
density 2.2 g/cc) was positioned above the brass disc
rds the CTV to reduce backscattering radiation from
disc. The IOERT parameters were applicator diam-
m, bevel angle 15◦, energy 6 MeV and a prescribed
2.5 Gy at a 90% isodose (Fig. 3(b)).
istributions calculated from images obtained with the
nder evaluation were compared with the gold stan-
simulator) in terms of the gamma index [24]. This
ent is the mainstay of dose distribution compar-
edical physics and combines dose differences with

nce-to-agreement concept (DTA, distance between a
m the gold standard dose distribution and the nearest
the evaluated dose distribution with the same dose

ference data point). An acceptance criterion of 3%
erence and a 3-mm DTA (3%/3 mm) for dose val-
ter than 10% is widely used in intensity-modulated
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Fig. 5. Electron density phantom profile for each CT scanner: (a) Lung inhale – Plastic Water – Lung exhale, (b) Trabecular bone 200 mg/cc
– Plastic Water – Dense bone 800 mg/cc, (c) Air – Breast 50% gland/50% adipose – Air. Values shown for O-arm profile are not corrected.
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Table 4
CT numbers of the seven PENELOPE materials obtained in the stoichiometric calibration and CT numbers of several ROIs drawn in the
abdominal phantom for each scanner.

CT Simulator O-arm (corrected values) TrueBeam BodyTom

PENELOPE materials

Dry air −998.9 −998.9 −998.9 −998.9
Lung −701.7 −702.3 −701.6 −701.4
Adipose tissue −131.4 −72.3 −81.7 −102.2
Striated muscle 32.4 32.8 34.6 34.5
Muscle-equivalent liquid with sucrose 85.4 98.8 96.2 91.5
B100 759.7 380.9 550.4 683.9
Cortical bone 1526.2 741.5 1055.2 1331.0

Abdominal phantom

Soft tissue 43.6 376.0 66.5 43.7
Liver 98.3
Rib 495.6
Vertebra 516.7
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sa for their support with data acquisition. We are also
o the Department of Radiation Oncology at Hospital
tario Ramón y Cajal for providing the electron density
, CIRS company for supplying the chemical compo-
the phantom, Cristina González and Ramón Polo

ding image quality performance of the CT simulator,
dia de Molina and Alejandro Sisniega for technical
e with CT artefacts. We would also like to express our
ratitude to the late Professor Juan Antonio Santos-
for his practical and insightful suggestions regarding

of improving IOERT procedures.

nces

FA, Meirino RM, Orecchia R. Intraoperative radiation ther-
First part: Rationale and techniques. Crit Rev Oncol Hematol

59(2):106–15.
FA, Sole CV, González ME, Tangco ED, López-Tarjuelo

ubychine I, et al. Research opportunities in intraoperative
ion therapy: the next decade 2013–2023. Clin Transl Oncol
15(9):683–90.

u J, Santos Miranda JA, Calvo FA, Bouché A, Morillo V, González-
egundo C, et al. An innovative tool for intraoperative electron
radiotherapy simulation and planning: description and initial

ation by radiation oncologists. Int J Radiat Oncol Biol Phys
83(2):e287–95.



. 2

[4] Valdi
Guerr
intra-

[5] Santo
exper
radiat

[6] Guerr
Joaqu
the in
ning
2014;

[7] Garcí
M, Pa
system
Biol 2

[8] Hann
Piato
breas
suite:
2014;

[9] Roed
Postp
electr
3D-im

[10] Pasca
divies
sarco
Onco

[11] Costa
distrib
2015;

[12] Sriniv
moun
radiat

[13] Richt
et al.
calcu

[14] van Z
using
Onco

[15] Fotin
C, G
parati
2012;

[16] Zhu L
radiat

[17] Lecch
conce
2008;

[18] Mutic
assura
tomog
comm

[19] Const
bratio
1992;

[20] Verha
Carlo

[21] Schne
CT

mul
9–7
lva
stem
oce
alam
A,
trao
ous

ow D
alu

zzel
iha
d d
ys

oba
ty s

do
–9.

e V
mog
sys
09;
rob
: R
T. B
ah P
vels
10;

live
.

mp
13;

atto
e ef

do
iol 2
hn B
cur
mb

lstrø
pac

ng
14;
ju P
om
rsa
flue
ents
ong

kV
rsio
ed
kem

rm s
con
V. García-Vázquez et al. / Z. Med. Phys

vieso-Casique MF, Rodríguez R, Rodríguez-Bescós S, Lardíes D,
a P, Ledesma MJ, et al. RADIANCE—a planning software for
operative radiation therapy. Transl Cancer Res 2015;4(2):196–209.
s JA, Pascau J, Lardies MD, Desco M, Calvo F. Initial clinical
ience of pencil beam dose modelling for intraoperative electron
ion therapy (IOERT). Radiother Oncol 2011;99(Supl. 1):S246.
a P, Udías José M, Herranz E, Santos-Miranda Juan A, Herraiz
ín L, Valdivieso Manlio F, et al. Feasibility assessment of
teractive use of a Monte Carlo algorithm in treatment plan-
for intraoperative electron radiation therapy. Phys Med Biol
59(23):7159–79.
a-Vázquez V, Marinetto E, Santos-Miranda JA, Calvo FA, Desco
scau J. Feasibility of integrating a multi-camera optical tracking

in intra-operative electron radiation therapy scenarios. Phys Med
013;58(24):8769–82.

a SA, de Barros ACSD, de Andrade FEM, Bevilacqua JLB,
JRM, Pelosi EL, et al. Intraoperative radiation therapy in early

t cancer using a linear accelerator outside of the operative
an “image-guided” approach. Int J Radiat Oncol Biol Phys

89(5):1015–23.
er F, Schramm O, Timke C, Habl G, Tanner MC, Huber PE, et al.
lanning of a three-dimensional dose distribution for intraoperative
on radiation therapy (IOERT) using intraoperative C-arm based
aging – a phantom study. Int J CARS 2010;5(Suppl. 1):S71–2.

u J, Santos-Miranda J, González San-Segundo C, Illana C, Val-
o M, García-Vazquez V, et al. Intraoperative imaging in IOERT

ma treatment: initial experience in two clinical cases. Int J Radiat
l Biol Phys 2011;81(2):S90.
F, Sarmento S, Sousa O. Assessment of clinically relevant dose
utions in pelvic IOERT using Gafchromic EBT3 films Phys Med

31(7):692–701.
asan K, Mohammadi M, Shepherd J. Applications of linac-
ted kilovoltage cone-beam computed tomography in modern
ion therapy: a review. Pol J Radiol 2014;79:181–93.
er A, Hu Q, Steglich D, Baier K, Wilbert J, Guckenberger M,
Investigation of the usability of conebeam CT data sets for dose
lation. Radiat Oncol 2008;3:42.
ijtvetd M, Dirkx M, Heijmen B. Correction of conebeam CT values
a planning CT for derivation of the “dose of the day”. Radiother

l 2007;85(2):195–200.
a I, Hopfgartner J, Stock M, Steininger T, Luetgendorf-Caucig
eorg D. Feasibility of CBCT-based dose calculation: com-
ve analysis of HU adjustment techniques. Radiother Oncol
104(2):249–56.
, Xie Y, Wang J, Xing L. Scatter correction for cone-beam CT in
ion therapy. Med Phys 2009;36(6):2258–68.
i M, Fossati P, Elisei F, Orecchia R, Lucignani G. Current
pts on imaging in radiotherapy. Eur J Nucl Med Mol Imag
35(4):821–37.
S, Palta JR, Butker EK, Das IJ, Huq MS, Loo LND, et al. Quality
nce for computed-tomography simulators and the computed-
raphy-simulation process: report of the AAPM radiation therapy
ittee task group no. 66. Med Phys 2003;30(10):2762–92.
antinou C, Harrington JC, Dewerd LA. An electron-density cali-
n phantom for CT-based treatment planning computers. Med Phys
19(2):325–7.

si
45

[22] Sa
sy
Pr

[23] C
M
in
ne

[24] L
ev

[25] E
M
an
Ph

[26] N
si
on
80

[27] D
to
a
20

[28] St
In
C

[29] M
le
20

[30] O
SM
co
20

[31] H
th
on
B

[32] A
ac
nu

[33] E
im
ni
20

[34] Ja
St

[35] Pa
In
m

[36] R
on
ve
M

[37] Ta
te
in
egen F, Devic S. Sensitivity study for CT image use in Monte
treatment planning. Phys Med Biol 2005;50(5):937–46.
ider W, Bortfeld T, Schlegel W. Correlation between

numbers and tissue parameters needed for Monte Carlo

treatm
[38] Yadav

and s
Radio

Available online at www.science

ScienceDirec
7 (2017) 218–231 231

ations of clinical dose distributions. Phys Med Biol 2000;45(2):
8.

t F, Fernandez-Varea JM, Acosta E, Sempau J. PENELOPE, a code
for Monte Carlo simulation of electron and photon transport. In:

edings of a workshop/training course, OECD/NEA. 2011.
a Santiago JA, Garcia-Romero A, Lardiés Fleta D, Infante Utrilla

Lopez Tarjuelo J, Ferrer Albiach C, et al. Pencil beam for electron
perative radiotherapy. Results of dose calculations in heteroge-
media. Radiother Oncol 2011;99(Suppl. 1):S13.
A, Harms WB, Mutic S, Purdy JA. A technique for the quantitative

ation of dose distributions. Med Phys 1998;25(5):656–61.
l GA, Burmeister JW, Dogan N, LoSasso TJ, Mechalakos JG,
ilidis D, et al. IMRT commissioning: multiple institution planning
osimetry comparisons, a report from AAPM Task Group 119. Med
2009;36(11):5359–73.
h A, Moftah B, Tomic N, Devic S. Influenc of electron den-
patial distribution and X-ray beam quality during CT simulation
se calculation accuracy. J Appl Clin Med Phys 2011;12(3):

os W, Casselman J, Swennen GRJ. Cone-beam computerized
raphy (CBCT) imaging of the oral and maxillofacial region:

tematic review of the literature. Int J Oral Maxillofac Surg
38(6):609–25.
el N, Meissner O, Boese J, Brunner T, Heigl B, Hoheisel M, et al.
eiser MF, Becker CR, Nikolaou K, Glazer G, editors. Multislice
erlin/Heidelberg: Springer; 2009. p. 33–51.
, Reeves TE, McDavid WD. Deriving hounsfiel units using grey
in cone beam computed tomography. Dentomaxillofac Radiol

39(6):323–35.
ira ML, Tosoni GM, Lindsey DH, Mendoza K, Tetradis S, Mallya
Influenc of anatomical location on CT numbers in cone beam
uted tomography. Oral Surg Oral Med Oral Pathol Oral Radiol
115(4):558–64.
n J, McCurdy B, Greer PB. Cone beam computerized tomography:
fect of calibration of the hounsfiel unit number to electron density
se calculation accuracy for adaptive radiation therapy. Phys Med
009;54(15):N329–46.
S, Wu H-G, Yoo SH, Park JM. Improvement of dose calculation

acy on kV CBCT images with corrected electron density to CT
er curve. J Radiat Prot Res 2015;40(1):17–24.
m UV, Olsen SRK, Muren LP, Petersen JBB, Grau C. The
t of CBCT reconstruction and calibration for radiotherapy plan-
in the head and neck region – a phantom study. Acta Oncol
53(8):1114–24.
P, Jain M, Singh A, Gupta A. Artefacts in cone beam CT. Open J

atol 2013;3:292–7.
A, Ibrahim N, Hassan B, Motroni A, van der Stelt P, Wismeijer D.
nc of cone beam CT scanning parameters on grey value measure-
at an implant site. Dentomaxillofac Radiol 2013;42(3):79884780.
Y, Smilowitz J, Tewatia D, Tome WA, Paliwal B. Dose calculation
cone beam CT images: an investigation of the HU-density con-

n stability and dose accuracy using the site-specifi calibration.
Dosim 2010;35(3):195–207.

ura A, Tanabe S, Tokai M, Ueda S, Noto K, Isomura N, et al. Long-
tability of the Hounsfiel unit to electron density calibration curve
e-beam computed tomography images for adaptive radiotherapy

ent planning. J Radiother Pract 2015;14(4):410–7.
P, Ramasubramanian V, Paliwal BR. Feasibility study on effect

tability of adaptive radiotherapy on kilovoltage cone beam CT.
l Oncol 2011;45(3):220–6.

direct.com

t

http://www.sciencedirect.com/science/journal/09393889

	Assessment of intraoperative 3D imaging alternatives for IOERT dose estimation
	1 Introduction
	2 Materials and methods
	2.1 CT imaging systems evaluated
	2.2 CT simulator
	2.3 Phantoms
	2.4 CT acquisitions
	2.5 Conversion of the CT number to physical density
	2.6 Dose distribution evaluation

	3 Results
	4 Discussion
	5 Conclusions
	Disclosure
	Acknowledgements
	References


