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Abstract: Formal Concept Analysis (FCA) is a well-known supervised boolean data-mining tech-
nique rooted in Lattice and Order Theory, that has several extensions to, e.g., fuzzy and idempotent
semirings. At the heart of FCA lies a Galois connection between two powersets. In this paper we
extend the FCA formalism to include all four Galois connections between four different semivectors
spaces over idempotent semifields, at the same time. The result is K-four-fold Formal Concept
Analysis (K-4FCA ) where K is the idempotent semifield biasing the analysis. Since complete
idempotent semifields come in dually-ordered pairs—e.g., the complete max-plus and min-plus
semirings—the basic construction shows dual-order-, row–column- and Galois-connection-induced
dualities that appear simultaneously a number of times to provide the full spectrum of variability.
Our results lead to a fundamental theorem of K-four-fold Formal Concept Analysis that properly
defines quadrilattices as 4-tuples of (order-dually) isomorphic lattices of vectors and discuss its
relevance vis-à-vis previous formal conceptual analyses and some affordances of their results.

Keywords: formal concept analysis; extended formal concept analysis; complete idempotent semi-
fields; schedule algebra; max-plus algebra; tropical algebra

1. Introduction

This paper tries to show how Linear Algebra over idempotent semifields in general—
and Galois connections in particular—contributes to the program of Lattice Computing
(LC) [1] and its attempt to provide “an evolving collection of tools and methodologies
that process lattice-ordered data”, as a means of establishing an information processing
paradigm belonging to the wider field of Computational Intelligence [2], with an explicit
aim at modelling Cyber–Physical Systems [3].

Recall that an idempotent semifield is an idempotent semiring—therefore with a natu-
ral order associated to it—with a multiplicative group structure where the unit element is
not the maximum ([4], Section 2 and references therein). This is an algebra that resembles
a standard field but whose additive structure is idempotent and so it has no additive
inverse, and for that same reason exhibits strong order-related properties [5].

In fact, a complete idempotent semifield is already a complete lattice. A companion
paper [6] and the present one are examples of how to “compute in lattices”, in the sense
that they are analogs of operations and computations in standard algebras, e.g., fields, but
mingle in those the requirements and the affordances of using a complete lattice as a basic
algebra.

At the same time—as this paper will show—Linear Algebra constructs over fields
produce analogues over idempotent semifields that give rise to (complete) lattices, so we
almost always end up “computing with lattices”.

This idea is strengthened by the fact that the ternary semiring in Example 1 that
subsumes the boolean semiring is embedded in every complete idempotent semifield,
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enabling a direct generalization of boolean constructions from Discrete Algebra—sets,
graphs, formal power series, etc.

Example 1. The smallest complete idempotent semifield is the boolean semiring 22. The next
smallest is 33 = 〈{⊥, e,>},

�
⊕,

�
⊗, ·−1,⊥, e〉 with carrying set {⊥, e,>}, order ⊥ < e < > and

operations:

�
⊕ ⊥ e >

⊥ ⊥ e >
e e e >
> > > >

�
⊗ ⊥ e >

⊥ ⊥ ⊥ ⊥
e ⊥ e >
> ⊥ > >

x x−1

⊥ >
e e
> ⊥

(1)

where⊥ is the zero element and e the unit. The semifield of Booleans 22 can be embedded in this semi-

ring restricting the domain of the operations to {⊥,>}. It dual 33−1 = 〈{⊥, e,>},
�
⊕,
�
⊗, ·−1,>, e〉

is the semifield over the same carrying set, with the same inversion, dual order ⊥ <d e <d >, and
operations:

�
⊕ ⊥ e >
⊥ ⊥ ⊥ ⊥
e ⊥ e e
> ⊥ e >

�
⊗ ⊥ e >
⊥ ⊥ ⊥ >
e ⊥ e >
> > > >

(2)

The dotted notation was introduced by Moreau [7]. In general, it can be conceived as a

mnemonic to remember where the multiplication “point towards”⊥
�
⊗> = ⊥ and⊥

�
⊗> = >.

Notice that the usual positive semifields—the positive reals, the tropical semifield
and the max-plus algebra—are incomplete—barring the Boolean semifield 22—lacking
an inverse for the bottom element in the order. To complete an idempotent semifield K
we endow it with this maximum or top, >, and declare this the inverse of the bottom
> = ⊥−1. Actually, the top completion provides not one but a pair of dually-ordered
semifields (K,K) with the inversion in the multiplicative group acting as the duality
inducing operator. This entails that expressions will have two (differently completed)
multiplications, additions, etc., causing a notational problem that has not yet been agreed
upon in the community (see the Appendix A in [6]). We adopt in this paper the dotted
notation used in Examples 1 and 2, with the convention that any undotted notation refers
to incomplete semifields.

Example 2 (The minimax algebra). One of the best known examples of dual pairs of completed
semifields is (Rmax,+,Rmin,+), the minimax algebra [8]. This is composed of:

• The direct semifield Rmax,+, the completed max-plus algebra [9]—also morphological alge-
bra [10], lattice algebra [11], or polar semifield—

Rmax,+ = 〈R∪ {−∞, ∞}, max,
�
+,−·,−∞, 0, ∞〉

• Its dual semifield is Rmin,+, the (completed) min-plus algebra, or tropical semiring.

Rmin,+ = 〈R∪ {−∞, ∞}, min,
�
+,−·, ∞, 0,−∞〉

In minimax algebra, the notation solves problems like−∞
�
+∞ = −∞ and−∞

�
+∞ = ∞.

This, as well, has historical reasons that have led some researchers to postulate Linear
Algebra over the max-plus semifield as the “algebra of combinatorics” [12].
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1.1. Galois Connections between Idempotent Semimodules and Formal Concept Analysis

Idempotent semimodules—also known as idempotent spaces [13]—are the products of
idempotent semifields analogously to vector spaces over the fields R and C [6] (§ 2.1). When
K is an idempotent semifield, Cohen and collaborators [14] (Theorem 42, adapted) proved
that a matrix R ∈ Kg×m defines a Galois connection between the complete idempotent
semimodules Kg and Km mediated by the scalar product 〈· | R | ·〉 : Kg ×Km → K, with
(x, y) 7→ 〈x | R | y〉 = x~ ⊗ R⊗ y−1, where the matrix–vector operations arise naturally
from those of the semifield, (·)−1 is the entry-wise inversion and x~ = (x−1)

T. The dual
adjuncts or polars of the connection are:

x↑R,ϕ = ∨{y ∈ Km | 〈x | R | y〉 ≤ ϕ} y↓R,ϕ = ∨{x ∈ Kg | x~ ⊗ R⊗ y−1 ≤ ϕ} (3)

where ϕ is any invertible, e.g., non-null element of the semifield, and the joins are taken
with respect to the natural order in the semifield. Note that this construction evidences the
existence of many lattices relevant to a linear form over idempotent spaces: the ambient
spaces, the images, etc.

In prior works [15–17], we studied the applicability of such results to provide a
generalization of Formal Concept Analysis (FCA) for matrices with real entries. FCA is
an attempt at re-structuring lattice theory with the explicit aim of “. . . promoting better
communication between lattice theorists and potential users of lattice theory” [18]. Its
canonical exposition is [19], but more succinctly its essence can be captured in a single,
extensive theorem:

Theorem 1 (Fundamental theorem of FCA). Let G be a set of formal objects, M a set of formal
attributes and (G, M, I) be a formal context with I ∈ 22g×m. Then:
1. The context analysis phase.

(a) The polar operators ·↑ : 22G → 22M and ·↓ : 22M → 22G .

A↑ = {m ∈ M | ∀g ∈ A, gIm} B↓ = {g ∈ G | ∀m ∈ B, gIm}

form a Galois connection (·↑, ·↓) : 22G ↼⇀ 22G whose formal concepts are the pairs
(A, B) of closed elements such that A↑ = B ⇔ A = B↓ whence the set of formal
concepts is

B(G, M, I) = {(A, B) ∈ 22G × 22M | A↑ = B⇔ A = B↓}.

(b) Formal concepts are partially ordered with the hierarchical order

(A1, B1) ≤ (A2, B2)⇔ A1 ⊆ A2 ⇔ B1 ⊇ B2 .

and the set of formal concepts with this order 〈B(G, M, I),≤〉 is a complete lattice
B(G, M, I) called the concept lattice of (G, M, I).

(c) In B(G, M, I) infima and suprema are given by:

∧
t∈T

(At, Bt) =

⋂
t∈T

At,

(⋂
t∈T

At

)↑ ∨
t∈T

(At, Bt) =

(⋂
t∈T

Bt

)↓
,
⋂
t∈T

Bt

 (4)

(d) The basic functions γ : G → V and µ : M→ V

g 7→ γ(g) = ({g}↑↓, {g}↑) m 7→ µ(m) = ({m}↓, {m}↓↑)

are mappings such that γ(G) is supremum-dense in B(G, M, I) , µ(M) is infimum-
dense in B(G, M, I).

2. The context synthesis phase.
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(a) A complete lattice L = 〈L,≤〉 is isomorphic to (read “can be built as”) the concept
lattice B(G, M, I) if and only if there are mappings γ : G → L and µ : M→ L such
that

• γ(G) is supremum-dense in L , µ(M) is infimum-dense in L, and
• gIm is equivalent to γ(g) ≤ µ(m) for all g ∈ G and all m ∈ M.

(b) In particular, consider the doubling context of L, K(L) = (L, L,≤), and the standard
context of L, S(L) = (J(L), M(L),≤) where J(L) and M(L) are the sets of join-
and meet-irreducibles, respectively, of L, then

B(K(L)) ∼= L ∼= B(S(L)) .

Proof. See [19] [Ch. 1], or the slow buildup of results in [20] [Ch. 7].

Note that FCA can both be understood as a data analysis technique for Boolean
tables—the analysis phase—and as a synthesis technique for a Boolean matrix that “re-
spects” the order of some lattice—the synthesis phase. Almost 40 years of develoments
has uncovered a treasure trove of results that span applied mathematics [19], computer
and data science [21,22] (See also the proceedings of the conference series ICFCA, Inter-
national Conference on Formal Concept Analysisis, and CLA, Concept Lattices and their
Applications).

For the LC programme, the crucial synthesis half of the theorem asserts that concept
lattices have universal representation capabilities for complete lattices. Otherwise said, any
instantiation of the LC paradigm for discrete or boolean data is subject to being operated
and interpreted using the results of FCA. In particular, every encoding of information into
a lattice can equivalently be represented by a formal context, and vice-versa.

Importantly, in [23] [§ 3.8] it was proven that construction (3) obtains the Galois
Connection at the heart of FCA when the complete idempotent semifield is 33, ϕ = e, and
the entries in the matrix are restricted to {⊥,>}. This was built on results from [17] that
defined precisely an extension to FCA using idempotent-semifield valued formal contexts,
to be explained next.

1.2. K-Formal Concept Analysis as Linear Algebra over Idempotent Semifields

When K is a complete idempotent semifield, an analogue to FCA for matrices with
entries in a semifield K-Formal Concept Analysis (K-FCA) was proposed and developed
in [15,16]. This line of work culminated in the realization and proof that although the moti-
vating notions for the generalization were order-theoretic, its operation could be entirely
algebraic if done with completed idempotent semifields [24,25]. These developments were
extensively based in previous work in the (completed and incomplete) tropical and sched-
ule algebras [8,9,13,14,26–29]. It was instantiated with the minimax algebra and applied
to, for example, the analysis of genomic [30], and positive data [31], or even Exploratory
Data Analysis [32]. Note that a similar approach to extending FCA had previously been
developed for matrices with entries in a fuzzy-semiring, today grouped under the name
FCA in a fuzzy setting [33–35], but fuzzy semirings are not idempotent semifields, except
for 22 itself.

The next proposition, coming from [14] for finite values of the threshold parameter ϕ,
was extended to deal with the non-finite cases in [25], and to include the notion of bikernel:

Proposition 1 (Galois connections between complete idempotent semimodules). Let K be
a complete idempotent semifield and R ∈ Kg×m a matrix with values in its carrier set. Consider
the vector spaces X = Kg and Y = Km, and an element ϕ ∈ K. Then the bracket 〈x | R | y〉OI

K =
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x~
�
⊗ R

�
⊗ y−1 induces a Galois connection (·↑R,ϕ, ·↓R,ϕ) : X ↼⇀Y between the spaces through

the poles

x↑R,ϕ = RT
�
⊗ x−1 �⊗ ϕ−1 y↓R,ϕ = R

�
⊗ y−1 �⊗ ϕ−1 (5)

whose composition generate closure operators:

πR,ϕ(x) = R
�
⊗(R~

�
⊗ x

�
⊗ ϕ)

�
⊗ ϕ−1 πRT ,ϕ(y) = RT

�
⊗(R−1

�
⊗ y

�
⊗ ϕ)

�
⊗ ϕ−1 (6)

which define two bijective sets, Bϕ
G and B

ϕ
M over which the polars are dual order bijections and the

closures are identities, respectively.

B
ϕ
G = (Y)↓R,ϕ = πR,ϕ(X) B

ϕ
M = (X)↑R = πRT ,ϕ(Y) (7)

The following observations can readily be made:

• This proposition only provides the Galois connection for K-FCA equivalent to the
analysis part of Theorem 1. The synthesis part is only partially supported by the
above-mentioned procedure of embedding FCA into K-FCA by means of restricting
the entries of the matrix to only the extreme values. We would like a more general
result than this.

• In [24] it was proven that K-FCA is best-understood in terms of the linear algebra
of the semivector spaces over K—or semimodules—that are the isomorphic sets of
(7). The proof of the proposition uses both algebra over K and K, so it is actually a
mixture of algebras that does the trick of reducing FCA to linear algebra.

• For concrete algebras, we typically consider that the below-dotted reference is for
semifields whose order aligns with the usual order in 〈R,≤〉, if available, and this
is the one we call K. Changing this semifield to its order-dual K is what we call
changing the bias of the analysis, and this procedure should obtain a K-FCA.

The next subsection presents a further consideration.

1.3. The 4-Fold Connection

It is very well known that any matrix R ∈ 22g×m defines actually four types of connec-
tions [36–38] (see Appendix A). Note that the other three connections are not considered
to be standard FCA, and indeed are used for many other applications where adjunctions
are the focus, such as rough set analysis [37] and knowledge graphs [39,40], or dual Galois
connections, such as the analysis of independence in terms of antichains [41].

With this parallel in mind, in research that even pre-dates the inception of FCA,
Cuninghame–Green investigated the four semimodules associated to a matrix with entries
in the minimax algebra and found a number of results that parallel the standard ones [8].
This was used to extend FCA for matrices in a complete idempotent semifield, in these
four directions under the name Extended K-Formal Concept Analysis [17,24,42]. Since the
applications of the other three connections that are not strictly a Galois connection seem to
be increasing in number, we believe it is time to reify their construction, and we call this
result the K-four-fold Formal Concept Analysis (K-4FCA ) (Section 3 and [23]) . This work
is an extension and completion of that.

Furthermore, if we consider that the matrix R takes value in the carrier set K of a
complete semimoduleK, since inversion is an involution over this set, we may also consider
that the manipulation of the matrix is done in the dual complete semifield K, whence the
same constructions that obtained K-4FCA allows us to obtain K-four-fold Formal Concept
Analysis (K-4FCA ), that is to say, four more connections that are dual to the previous in a
very specific meaning of the word. This paper also explores this possibility and what it
entails.
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Note that this paper has a sibling paper that discusses the Fundamental Theorem
of Linear Algebra over idempotent semifields and its relation to an idempotent Singular
Value Decomposition and matrix reconstruction [6], but in this paper we restrict ourselves
to the issues that are pertinent to all flavours of K-FCA and their duals K-FCA.

1.4. Reading Guide

This paper is an updated and completed version of [23] including material from [43].
We investigate in it:

(1) the four-fold Galois connections related to an idempotent semifield-valued matrix;
(2) what are the implications of a change of bias, that is, using K for the analysis;
(3) the relation to LC, in general, and to Formal Concept Analysis, in particular, and
(4) the relationship of these techniques with other types of FCA.

For that purpose, we refer the reader to [6] (Section 2.1) for an introduction to linear
algebra over idempotent semifields and their vector spaces. We take a brief look at their
homomorphisms (Section 2.1) and then we present our results in Section 3. We start by
presenting four-fold connections in detail (Section 3.1) going over their adjuncts as spe-
cialized types of homomorphisms (Sections 3.1.2–3.1.4), bikernels (Section 3.1.1), dualities
(Section 3.1.5), leading into our presentation of K-four-fold Formal Concept Analysis in
Section 3.2. This evolves from the framing of the construction (Section 3.2.1) through the
definition of quadrilattices and quadriconcepts (Section 3.2.2) and a Fundamental Theorem
for K-four-fold Formal Concept Analysis closely following that of FCA (Section 3.2.3).
Given the relevance of duality in our framework introduced by the use pairs of dual
completed idempotent semifields, we are led to discuss such issues as dualities (Section
3.2.4) reduction and reconstruction of contexts (Section 3.2.5) in an effort to understand the
basics and interpretation of K-4FCA . A brief discussion (Section 4) in the context of LC
closes the paper.

2. Linear Algebra over Complete Idempotent and Positive Semifields

An introduction to the linear algebra over complete idempotent semifields is already
available in [6] (Section 2.1). Recall that a semimodule over a semiring K is the generaliza-
tion of a module over a ring [6] (Section 2.1). In this section, we only clarify the universal
algebra foundations of the subsemimodules induced by a homomorphism between com-
plete semimodules.

2.1. Homomorphims of Complete K-semimodules

Let K be a complete idempotent semifield. A map F : X → Y from a K-semimodule
X to a K-semimodule Y is linear or a homomorphism of K-semimodules, F ∈ Hom(X ,Y),
if it is additive and homogeneous

F(x1 ⊕ x2) = F(x1)⊕ F(x2) x1, x2 ∈ X
F(λ� x) = λ� F(x) λ ∈ K, x ∈ X

so that F(εX ) = εY . The following notions may be defined with a set-theoretic flavour and
the details supplied with universal-algebraic consideration:

Definition 1 (bikernel of a mapping [27]). Let F : X → Y be a mapping. Then:

• The bikernel of F, KER(F) is the equivalence:

KER(F) = {(x1, x2) ∈ X2 | F(x1) = F(x2)} (8)

with blocks [x]KER(F) = F−1(F(x)) so that KER(F) = {F−1(F(x)) | x ∈ X}.
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• Its orthogonal (set) is

KER(F)> = {y ∈ Y | y = F(x1) = F(x2), (x1, x2) ∈ KER(F)} = IM(F) (9)

Note that:

• In this paper we use kernel to refer to monotone, contractive idempotent endomor-
phisms of ordered sets in Appendix A. This justifies the new name of “bikernel”.

• The equivalence classes have no uniform cardinality. Some may be unitary while
others have infinite elements.

• The notion of “orthogonality” does not add anything special to the concept of “image”
in this set-theoretic context, but it will for algebras.

We can relate these notions with the adequate instance of the First Isomorphism
Theorem from Universal Algebra [44] (Chapter II).

Theorem 2. Let K be a complete idempotent semifield and let F : X → Y be a homomorphism of
K-semimodules. Then:

• IM(F) is a K-subsemimodule of Y ,
• KER(F) is a congruence on X , that is, an equivalence on X that is also a K-semimodule of

X 2, and
• IM(F) is isomorphic to X/KER(F).

If {ui}i∈I is a basis for (free) X , there is a unique homomorphism F : X → Y for
a family {yj}j∈J of elements in a semimodule Y such that F(ui) = yj [45]. In such case,
the homomorphism F : Kg → Km can be written as F(x) = A⊗ x, where A ∈ Km×g is
a matrix. This is the basic representation of homomorphisms for the rest of this paper.

3. K-Four-Fold Formal Concept Analysis

In this section we first introduce the order theory-motivated concept of the four-fold
connection, and then we cast K-four-fold Formal Concept Analysis (K-4FCA ) into it.
Some results from [15–17,23–25,42] are here summarized with new results woven into the
exposition along with some proofs of results that were left implicit.

3.1. The Four-Fold Galois Connection over Complete Idempotent K-Semimodules

Galois connections are generally ubiquitous in order theory and crucial in FCA (see
Appendix A). In idempotent semifields, they generalize the concept of linear transforma-
tions between spaces and their inverses to a certain extent, since given a matrix R ∈ Kg×m

there are four possible types of Galois connections between the spaces associated to the
matrix due to scalar products in the semifield K. The basic construction was introduced
in Proposition 1, as a Galois connection, without a proof. We re-state it now along with
the other three connections to show a number of issues that emerge time and again when
dealing with Galois connections in idempotent semifields.

Theorem 3 (K-four-fold Galois connection). Let K be a complete idempotent semifield, and
consider the vector spaces X = Kg and Y = Km, a matrix R ∈ Kg×m and a scalar ϕ ∈ K. Then:

1. The bracket 〈x | R | y〉OI
K = x~

�
⊗ R

�
⊗ y−1 induces a Galois connection (·↑R,ϕ, ·↓R,ϕ) : X ↼⇀Y

between the spaces through the polar maps: Equation (5), whose composition generate closure
operators: Equation (6), which define two bijective sets, the system of ϕ-extents Bϕ

X and the
system of ϕ-intents Bϕ

Y over which the polars are dual order bijections and the closures are
identities, respectively. Equation (7).
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2. The bracket 〈x | R | y〉IO
K = xT

�
⊗ R

�
⊗ y induces a co-Galois connection (·↑R−1,ϕ, ·↓R−1,ϕ) :

X ⇁↽Y between the scaled spaces through the co-polar maps:

x↑R−1,ϕ = R~
�
⊗ x−1

�
⊗ ϕ y↓R−1,ϕ = R−1

�
⊗ y−1

�
⊗ ϕ (10)

whose composition generate interior operators or kernels:

κR−1,ϕ(x) = R−1
�
⊗(RT

�
⊗ x

�
⊗ ϕ−1)

�
⊗ ϕ κR~,ϕ(y) = R~

�
⊗(R

�
⊗ y

�
⊗ ϕ−1)

�
⊗ ϕ (11)

which define two bijective sets the system of ϕ-neighbourhoods of objects or ϕ-co-extents Nϕ
X

and ϕ-neighbourhoods of attributes or ϕ-co-intents Nϕ
GM over which the co-polar maps are

dual-order bijections and the kernels the identities, respectively.

N
ϕ
X = (Y)↓R−1,ϕ = κR−1,ϕ(X) N

ϕ
M = (X)↑R−1,ϕ = κR~,ϕ(Y) (12)

3. The bracket 〈x | R | y〉OO
K = x~

�
⊗ R

�
⊗ y induces a left adjunction ((·)∃R,ϕ, (·)∀R,ϕ) : X �Y

between the scaled spaces through the left adjunct pair of maps:

x∃R,ϕ = R~
�
⊗ x

�
⊗ ϕ y∀R,ϕ = R

�
⊗ y

�
⊗ ϕ−1 (13)

whose compositions are the closure of extents and kernel of co-intents:

πR,ϕ(x) = (x∃R,ϕ)
∀
R,ϕ

κR~,ϕ(y) = (y∀R,ϕ)
∃
R,ϕ

(14)

which define an order bijection between the system of ϕ-extents Bϕ
X and ϕ-co-intents Nϕ

Y over
which the closure of extents and kernel of co-intents are identities.

B
ϕ
X = (Y)∀R,ϕ = πR,ϕ(X) N

ϕ
Y = (X)∃R,ϕ = κR~,ϕ(Y) (15)

4. The bracket 〈x | R | y〉II
K = xT

�
⊗ R

�
⊗ y−1 induces an adjunction on the right ((·)∀RT ,ϕ, (·∃RT ,ϕ)) :

X 
Y between the scaled spaces through the pair of adjunct maps:

x∀RT ,ϕ = RT
�
⊗ x

�
⊗ ϕ−1 y∃RT ,ϕ = R−1

�
⊗ y

�
⊗ ϕ (16)

whose compositions are the kernel of co-extents and the closure of extents:

κR−1,ϕ(x) = (x∀RT ,ϕ)
∃
RT ,ϕ

πRT ,ϕ(y) = (ϕ∃RT y)
∀
RT ,ϕ (17)

which define another bijection between the system of ϕ-co-extents Nϕ
X and ϕ-intents Bϕ

Y over
which the kernel of co-extents and the closure of intents are identities,

N
ϕ
X = (Y)∃RT ,ϕ = κR−1,ϕ(X) B

ϕ
Y = (X)∀RT ,ϕ = πRT ,ϕ(Y) (18)

Proof. Statement 1 is included in Proposition 1, so we first prove that. By definition,
x↑R,ϕ = ∨{y ∈ Y | 〈x | R | y〉OI

K ≥ ϕ}. We solve for y in the inequality:

〈x | R | y〉OI
K = x~

�
⊗ R

�
⊗ y−1 ≥ ϕ ⇐⇒ y−1 ≥

(
x~

�
⊗ R

) �
\ ϕ = R~

�
⊗ x

�
⊗ ϕ

whence, inverting, y ≤ RT
�
⊗ x−1 �⊗ ϕ−1 . By Lemma 2 in [6] (§ 2.1.5), the right-hand side

term is known to be the greatest solution to the equation R−1
�
⊗ y = x−1 �⊗ ϕ−1, whence it
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is also the looked-for join. Row-column dually on y↓R,ϕ = ∨{x ∈ X | 〈x | R | y〉OI
K ≥ ϕ},

the rest of (5) follows.

Clearly, x↑R = RT
�
⊗ x−1 �⊗ ϕ−1 ≥Y y ⇐⇒ x ≤X R

�
⊗ y−1 �⊗ ϕ−1 = y↓R where the

double implication was obtained by residuating the original inequality and inverting
afterwards. This proves that the dual adjuncts form a Galois connection: by the results in
Appendix A, (6) and (7) follow.

The proof of statement 2 is order-dual to that of statement 1. While those of 3 and 4,
also mutually order-dual, follow by just inverting one of the orders, either that for X or
that for Y .

Note that the manner in which this proof proceeds will apply to many other proofs:
one of the basic cases is proven, then another one follows by order-duality, then the other
two, also mutually order-dual, follow by inverting one of the spaces in the first two cases.
We will refer to this proof schema as four-fold GC-duality.

This four-fold connection can be seen as the diagram in Figure 1.

Galois connection

Right
ad-

junc-
tion

Left
ad-

junc-
tion

Co-Galois connection

X ≡ (K)g Y ≡ (K)m

(Y)−1 ≡ (K)m X−1 ≡ (K)g

B
ϕ
X B

ϕ
Y

N
ϕ
Y N

ϕ
X

(·)↑R,ϕ

πR,ϕ(·)

(·
)∃ R

,ϕ

(·)↓R,ϕ πRT ,ϕ(·)

(·
)∃ R

T
,ϕ

(·) ∀R
,ϕ

(·)↓
R−1,ϕ

κR−1,ϕ(·)

(·) ∀R
T

,ϕ

(·)↑
R−1,ϕ

κR~ ,ϕ(·)

(·)↑R,ϕ

↪→X

(·) ∃R
,ϕ

(·)↓R,ϕ
(·
)∃ R

T
,ϕ

↪→Y

(·
)∀ R

,ϕ

(·)↓
R−1,ϕ

↪→Y−1

(·) ∀R
T

,ϕ

(·)↑
R−1,ϕ

↪→X−1

Figure 1. A domain diagram of the four-fold connection between the spaces implicit in a K-valued
matrix R ∈ Kg×m (adapted from [43]). Each of the labels stands in the quadrant where that kind of
generalized Galois connection is realized in the diagram. Some maps, like the polar (·)↑R,ϕ : X → B

ϕ
Y

and its dual polar are missing for clarity.

This picture is a grand summary but provides very little detail about the structure
inside the ranges of the adjoints, dual adjoints, closure and kernel functions, and the
bikernels which we investigate in the following sections.

3.1.1. The Bikernels of the Four-fold Connection

In FCA, the quotient sets of the polars are important because they determine a fun-
damental limitation of the formal context: sets of objects (or attributes) beween which
it cannot distinguish. They are used mainly for reducing the context and the concept
lattice ([19], notes to Chapter 1). Note that:
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• In the semifield setting, the bikernels of K-homomorphisms are already congruences
of K-semimodules. Therefore, the route provided by Definition 2 of [6] (§ 2.1.4) is
clearly the way to define such congruences for adjunctions: from (13) we can see that
one adjunct is a K-homomorphism while the other is a K-homomorphism. These
adjuncts already appear in [46] (Remark 3) in explicit matrix form, without the scaling.
The row-column dual approach leads to the right adjunction of (16). This entails that
in the context of the 4-fold GC we will have, in general, both types of congruence, so
from now on we distinguish them as K-congruences and K-congruences.

• However, for other types of Galois connections, the situation is not so clear. This
approach would have to be researched anew for the Galois and co-Galois connection
from (5) and (10), since these are join- and meet-inverting, respectively, hence neither
K- nor K-homomorphisms. In particular, although bikernels of these other types of
adjuncts are equivalence relations, their relation to their ambient semimodule seems
more convoluted.

In our approach, we prefer to concentrate on bikernels for closure and kernel operators
and this treatment has to be extended using Definition 1 rather than that of [6] (§ 2.1.6).

Definition 2. Let R ∈ Kg×m. For the four-fold connection in Theorem 3 the bikernels induced by
the closure operators are the equivalence relations:

KER
(
πR,ϕ(·)

)
= {(x1, x2) ∈ X 2 | πR,ϕ(x1) = πR,ϕ(x2)} (19)

KER
(

πRT ,ϕ(·)
)
= {(y1, y2) ∈ Y2 | πRT ,ϕ(y1) = πRT ,ϕ(y2)}

and those of the kernel operators are:

KER
(

κR−1,ϕ(·)
)
= {(x1, x2) ∈ X 2 | κR−1,ϕ(x1) = κR−1,ϕ(x2)} (20)

KER
(

κR~,ϕ(·)
)
= {(y1, y2) ∈ Y2 | κR~,ϕ(y1) = κR~,ϕ(y2)}

Since dealing with the normalized spaces and the pivot ϕ is cumbersome, from now
on we exclude them from the notation as mentioned beforehand.

Although the bikernels are the quotient sets of the closure and kernel operators
in Theorem 3, the next lemma shows that they coincide with the bikernels induced by
the adjuncts.

Lemma 1. In the conditions of Theorem 3, the bikernels of the adjuncts coincide with those of
Definition 2.

KER(πR(·)) = KER
(
(·)↑R

)
= KER

(
(·)∃R

)
(21)

KER(πRT (·)) = KER
(
(·)↓R

)
= KER

(
(·)∃RT

)
KER(κR~(·)) = KER

(
(·)↓R−1

)
= KER

(
(·)∀R,

)
KER(κR−1(·)) = KER

(
(·)↑R−1

)
= KER

(
(·)∀RT

)
.

Proof. For the first equation of (21) we have to prove (x1, x2) ∈ KER(πR(·))⇔ (x1, x2) ∈
KER

(
(·)↑R

)
, with bikernels of the polars

KER
(
(·)↑R

)
= {(x1, x2) ∈ X | x1

↑
R = x2

↑
R} KER

(
(·)↓R

)
= {(y1, y2) ∈ Y | y1

↓
R = y2

↓
R}.

For (x1, x2) ∈ KER(πR(·)), call (x1
↑
R)
↓
R = (x2

↑
R)
↓
R = a. Then, applying again the polars

((x1
↑
R)
↓
R)
↑

R = ((x2
↑
R)
↓
R)
↑

R = a↑R = b. Considering that (·)↑R and ()̇
↓
R are mutually inverses
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on B
ϕ
X and B

ϕ
Y , we have x1

↑
R = x2

↑
R = b, which proves the forward inclusion. Likewise,

for (x1, x2) ∈ KER
(
(·)↑R

)
call x1

↑
R = x2

↑
R = b, whence (x1

↑
R)
↓
R = (x2

↑
R)
↓
R = b↓R = a, the

backwards inclusion.
We next prove KER(κR~(·)) = KER

(
(·)↓R−1

)
. If (y1, y2) ∈ KER

(
(·)∀R

)
then (y1)

∀
R =

(y2)
∀
R = a whence ((y1)

∀
R)
∃
R = ((y2)

∀
R)
∃
R = a∃R = d whence (y1, y2) ∈ KER(κR~(·)). On the

other hand, if (y1, y2) ∈ KER(κR~(·)) then ((y1)
∀
R)
∃
R = ((y2)

∀
R)
∃
R = d whence (y1

∀
R)
∃
R

∀
R =

(y2
∀
R)
∃
R

∀
R = d∀R = a, so (y1)

∀
R = (y2)

∀
R = a—by the properties of the left adjunction and the

fact that a = d∀R ⇐⇒ a∃R = d—whence (y1, y2) ∈ KER
(
(·)∀R

)
. Four-fold GC-dually.

Actually this allows us to characterize the bikernels and their isomorphic images by
means of the first theorem on isomorphisms on K-semimodules, Theorem 2.

Corollary 1. In the conditions of Theorem 3,

1. KER(πR(·)) is a K-congruence on X isomorphic to IM
(
(·)∃R

)
∼= N

ϕ
Y, a K-subsemimodule

of Y .
2. KER(κR~(·)) is a K-congruence on Y isomorphic to IM

(
(·)∀R

)
∼= B

ϕ
X , a K-subsemimodule

of X .
3. KER(πRT (·)) is a K-congruence on Y isomorphic to IM

(
(·)∃RT

)
∼= N

ϕ
X , a K-subsemimodule

of X .
4. KER(κR−1(·)) is aK-congruence onX isomorphic to IM

(
(·)∀RT

)
∼= B

ϕ
Y, aK-subsemimodule

of Y .

Proof. For 1, consider the left adjunction ((·)∃R, (·)∀R : X �Y . Since (·)∃R is a

K-homomorphism, by isomorphism Theorem 2, we have that KER
(
(·)↑R

)
= KER(πR(·)) is

a K-congruence isomorphic to IM
(
(·)∃R

)
∼= N

ϕ
Y. The second statement follows from the K-

homomorphism (·)∀R. The other two statements from considering the right adjunction.

Note that the isomorphism is set up by means of the definitions of the congru-
ence classes:

π−1
R (a) = {x ∈ X | πR(x) = a} π−1

RT (b) = {y ∈ Y | πRT (y) = b} (22)

κ−1
R~(d) = {y ∈ Y | κR~(y) = d} κ−1

R−1(c) = {x ∈ X | κR−1(x) = c}

which suggests, when possible, to name the classes of equivalence after their canonical-
element, that is, [x]KER(πR(·)) = π−1

R (a) where a = πR(x), and analogously for intents,
co-extents and co-intents. The order structure of the set e.g., Bϕ

X with respect to that of K is
important, hence we introduce the notation, e.g. Bϕ

X (resp. Bϕ
X) to indicate that the set is

aligned in its joins with K (resp. K).

Corollary 2. In the conditions of Theorem 3,

KER(πR(·)) = {π−1
R (a) | a ∈ B

ϕ
X} KER(πRT (·)) = {π−1

RT (b) | b ∈ B
ϕ
Y} (23)

KER(κR~(·)) = {κ−1
R~(d) | d ∈ N

ϕ
Y} KER(κR−1(·)) = {κ−1

R−1(c) | c ∈ N
ϕ
X}

Proof. Each class D ∈ KER(κR~(·)) maps onto a co-intent d ∈ N
ϕ
Y. In the opposite direction,

for each open element d that class is D ≡ κ−1
R~(d), which is not void, since d itself belongs

to it. Four-fold-GC dually.
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Note that we also have π−1
R (a) = ((·)∀R)−1(d) = ((·)↓R)−1(b) and analogously for the other

closure and the interior operators, but the notation with the adjuncts is certainly more
cumbersome.

The congruence classes inherit the structure of the semimodule in question:

Corollary 3. In the conditions of Theorem 3,

1. The congruence classes of KER(πR(·)) are join-subsemilattices of X .
2. The congruence classes of KER(πRT (·)) are join-subsemilattices of Y .
3. The congruence classes of KER(κR−1(·)) are meet-subsemilattices of X .
4. The congruence classes of KER(κR~(·)) are meet-subsemilattices of Y .

Proof. We prove the statement for KER(πR(·)). Let x2, x1 ∈ π−1
R (a) with a↑R = b ⇐⇒

b↓R = a. Recall that
�
⊕ is the join in X and (·)↑R transforms joins into meets, whence:

(x1 ∨ x2)
↑
R = (x1

�
⊕ x2)

↑
R
= x1

↑
R
�
⊕ x2

↑
R = b

�
⊕ b = b, whence πR((x1

�
⊕ x2)) = b↓R = a so that

x1
�
⊕ x2 ∈ π−1

R (a). Four-fold-GC dually.

Since the closures and kernels are endofunctions, the following lemma is not surprising.

Lemma 2. In the conditions of Theorem 3,

1. Every class in KER(πR(·)) intersects the system of extents Bϕ
X at a single point.

2. Every class in KER(πRT (·)) intersects the system of intents Bϕ
Y at a single point.

3. Every class in KER(κR−1(·)) intersects the system of co-extents Nϕ
X at a single point.

4. Every class in KER(κR~(·)) intersects the system of co-intents Nϕ
Y at a single point.

Proof. For claim 1, see [25] [propo 3.23]. We next prove claim 4, to review the procedure.
Let κR~(y) = d, whence d ∈ [y]KER(κR~ (·))

. Call d∀R = a, where a is the extent bijectively

related to co-intent d by the left adjunction. Since a∃R = d, this also means that d ∈ N
ϕ
Y .

However, if we suppose that there is a different d′ ∈ [y]KER(κR~ (·))
∩N

ϕ
Y, then we will have

d′∀R = a and therefore (d′∀R)
∃
R = a∃R = d, so d′ is not open whence d′ 6∈ N

ϕ
Y, a contradiction.

Four-fold GC-dually.

Perhaps more importantly, the intersections have canonical status.

Corollary 4. In the conditions of Theorem 3,

1. Every extent a ∈ BX is the maximum of its congruence class a = ǎ = ∨π−1
R (a).

2. Every intent b ∈ BY is the maximum of its congruence class b = b̌ = ∨π−1
RT (b).

3. Every co-extent c ∈ NX is the minimum of its congruence class c = ĉ = ∧κ−1
R−1(c).

4. Every co-intent d ∈ NY is the minimum of its congruence class d = b̂ = ∧κ−1
R~(b).

Proof. As proven in the previous lemma, a ∈ π−1
R (a). Since a is the closure of the elements

in the class, ∀x ∈ π−1
R (a), a ≥ x whence a = x̌ = ∨π−1

R (a) as defined in (30) of [6] (§ 2.1.6).
Four-fold GC-dually.

3.1.2. Extremal Exploration in the Four-Fold Connection

The next Proposition extends a number of results from [25] [Sec. 3.7]. It deals with
specific values of the ϕ parameter.

Proposition 2. In the conditions of Theorem 3,
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1. If ϕ = ⊥, then B⊥X
∼= N

⊥
X
∼= B⊥Y

∼= N
⊥
Y
∼= 11 and

KER(πR,⊥(·)) = {X } KER(πRT ,⊥(·)) = {Y} (24)

KER
(
κR~,⊥(·)

)
= {Y−1} KER

(
κR−1,⊥(·)

)
= {X−1}

with

∀x ∈ X , πR,⊥(x) = >g, κR−1,⊥(x) = ⊥g ∀y ∈ Y , πRT ,⊥(y) = >m, κR~,⊥(y) = ⊥m

(25)

2. If ϕ 6= ⊥, then:

{>g, R
�
⊗⊥m} ⊆ B

ϕ
X {RT

�
⊗⊥g,>m} ⊆ B

ϕ
Y (26)

{R~
�
⊗>g,⊥m} ⊆ N

ϕ
Y {⊥g, R−1

�
⊗>m} ⊆ N

ϕ
X

with

∀x ∈
�
N
(

R~
)
, πR,ϕ(x) = R

�
⊗⊥m ∀y ∈

�
N
(

R−1
)

, πRT ,ϕ(y) = RT
�
⊗⊥g (27)

∀y ∈
�
N (R), κR~,ϕ(y) = R~

�
⊗>g ∀x ∈

�
N
(

RT
)
, κR−1,ϕ(x) = R−1

�
⊗>m

3. Furthermore, if ϕ = >, then B>X
∼= B>Y

∼= N
>
X
∼= N

>
Y
∼= 22 with:

KER
(
πR,ϕ(·)

)
= {

�
N
(

R~
)
,X \

�
N
(

R~
)
} KER

(
πRT ,ϕ(·)

)
= {

�
N
(

R−1
)

,Y \
�
N
(

R−1
)
}

KER
(
πR,ϕ(·)

)
= {

�
N
(

R~
)
,X \

�
N
(

R~
)
} KER

(
πRT ,ϕ(·)

)
= {

�
N
(

R−1
)

,Y \
�
N
(

R−1
)
} (28)

Proof. For case 1 first recall the polars of (5). Then, regardless of what vectors x ∈ X or
y ∈ Y we introduce, Equation (25) follows by putting ϕ = ⊥ in them. Since all of the
space X maps to a single ⊥-intent x↑R,⊥ = >m, then the bikernel has precisely the one
class defined by that element, and GC-dually for ⊥-extents, which proves (24). Two obtain
the statements regarding N

⊥
X and N

⊥
Y , KER

(
κR−1,⊥(·)

)
and KER

(
κR~,⊥(·)

)
we operate,

four-fold dually, with the co-Galois connection of (11).
The case where ϕ 6= ⊥ highlights the importance of the null space, for if x ∈ X is

such that RT
�
⊗ x−1 = >m, equivalently R~

�
⊗ x = ⊥m ⇐⇒ x ∈

�
N (R~), then we have

that x↑R,ϕ = RT
�
⊗ x−1 �⊗ ϕ−1 = >m, and GC-dually if y ∈

�
N
(

R−1) then y↓R,ϕ = >g. This
proves also the fact that the nullspace

�
N (R~) is one of the classes of the bikernel of πR,ϕ(·),

and GC-dually for the nullspace
�
N
(

R−1), that is (27). Now, consider that if x = >g, then

x↑R,ϕ = RT
�
⊗⊥g, for ϕ 6= ⊥. Furthermore, (>g↑

R,ϕ)
↓
R,ϕ

= R
�
⊗(R~

�
⊗>g) = >g, where the

last step follows because the composition of the polars is a closure. Again, the rest of the
statements follow four-fold dually from (11).

Finally, for case 3 note that the inner product defining intents and extents reads

x~
�
⊗ R

�
⊗ y−1 = >, which is a matrix equation in K. Since this is an entire, zero-sum-free

semifield, see [6] (§ 2.1.1), the only solutions are: for non-null y ∈ Y x~
�
⊗ R = > ⇐⇒

RT
�
⊗ x−1 = >—which entails that x ∈

�
N (R~)—and for non-null x ∈ X the solutions are

R
�
⊗ y−1 = > ⇐⇒ y ∈

�
N
(

R−1). Since this is the specific sub-case of 2 where ϕ = >, we

know that precisely for x ∈
�
N (R~), x↑R,> = >m, and GC-dually for y ∈

�
N
(

R−1), y↓R,> =

>g. Since >m 6∈
�
N
(

R−1) and >g 6∈
�
N (R~), we conclude B>Y has exactly two elements
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B>Y = {RT
�
⊗⊥g,>m} and GC-dually B>X = {R

�
⊗⊥m,>g}. The structure of the bikernels

is clear: since we have two intents and because (πR,>(·))−1(>m) =
�
N (R~), we must have

(πR,>(·))−1(RT
�
⊗⊥g) = X \

�
N (R~), and GC-dually for the bikernel of Y . The rest of the

statement follows by using the co-Galois connection of (11).

In proving Proposition 2, we obtained some easy corollaries:

Corollary 5. In the conditions of Theorem 3,

1. If ϕ = ⊥ then

B⊥X = {>g} B⊥Y = {>m} N
⊥
Y = {⊥m} N

⊥
X = {⊥g}

2. If ϕ = > then

B⊥X = {R
�
⊗⊥m,>g} B⊥Y = {RT

�
⊗⊥g,>m} N

⊥
Y = {R~

�
⊗>g,⊥m} N

⊥
X = {R~

�
⊗>m,⊥g}

3. If R = >g×m is totally saturated, then B
ϕ
X = {>g}, Bϕ

Y = {>m}, Nϕ
X = {⊥g}, Nϕ

Y =
{⊥m}.

4. When ϕ 6= ⊥, if R ∈ Kg×m has no saturated rows,

{⊥g,>g} ⊆ B
ϕ
X {⊥g,>g} ⊆ N

ϕ
X

and if R ∈ Kg×m has no saturated columns,

{⊥m,>m} ⊆ B
ϕ
Y {⊥m,>m} ⊆ N

ϕ
Y

5. When ϕ 6= ⊥ the nullspaces are blocks of the bikernels:

�
N
(

R~
)
= π−1

R (R
�
⊗⊥m) ∈ KER(πR(·)) �

N
(

R−1
)
= π−1

RT (RT
�
⊗⊥g) ∈ KER(πRT (·))

�
N (R) = κ−1

R−1(R~
�
⊗>g) ∈ KER(κR~(·))

�
N
(

RT
)
= κ−1

R~(R−1
�
⊗>m) ∈ KER(κR−1(·))

Proof. Statements 1 and 2 were obtained in the previous demonstration. For 3, if R =

>g×m, then ∀ϕ, ∀x, x↓R,ϕ = R
�
⊗ x−1 = >m. Four-fold GC-dually for the rest of the sets

of extents, co-extents and co-intents. Statement 4 follows from (26) and the fact that if

R has no full rows, then R
�
⊗⊥m = ⊥g, and four-fold GC-dually for the rest of results.

Finally, statement 5 is a consequence of the previous lemmas and (27) in Proposition 2.
It shows that the nullspaces are the classes related to top and bottom elements in the set of
fixpoints.

Note that for extremal ϕ ∈ {⊥,>}, the description of the closure and interior systems
and the bikernels is completed by Proposition 2 and Corollary 5.

3.1.3. Invertible ϕ-Exploration in the Four-Fold Connection

We next introduce the most typical case of the four-fold connection with invertible ϕ.

Theorem 4 (K-four-fold connection, invertible ϕ). Let K be a complete idempotent semifield,
and consider the vector spaces X = Kg and Y = Km, a matrix R ∈ Kg×m, an invertible element
ϕ = γ⊗ µ ∈ K and the scaled spaces

X̃ γ = Kg
�
⊗ γ Ỹµ = Km

�
⊗ µ (29)

(Ỹµ)−1 = Km �
⊗ µ−1 = (̃Km)

(µ−1)
(X̃ γ)−1 = Kg �⊗ γ−1 = (̃Kg)

(γ−1)
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Then

1. The bracket 〈x | R | y〉OI
K = x~

�
⊗ R

�
⊗ y−1 induces a Galois connection (·↑R, ·↓R) : X̃ γ ↼⇀ Ỹµ

between the scaled spaces through the polar maps:

x↑R = RT
�
⊗ x−1 y↓R = R

�
⊗ y−1 (30)

whose composition generate closure operators:

πR(x) = (x↑R)
↓
R = R

�
⊗(R~

�
⊗ x) πRT (y) = (y↓R)

↑
R = RT

�
⊗(R−1

�
⊗ y) (31)

which define two bijective sets, the system of ϕ-extents Bγ
X and the system of ϕ-intents Bµ

Y
over which the polars are dual order bijections and the closures are identities, respectively.

B
γ
X = (Ỹµ)

↓
R = πR(X̃γ) B

µ
Y = (X̃γ)

↑
R = πRT (Ỹµ) (32)

2. The bracket 〈x | R | y〉IO
K = xT

�
⊗ R

�
⊗ y induces a co-Galois connection (·↑R−1 , ·↓R−1) :

(X̃ γ)−1 ⇁↽(Ỹµ)−1 between the scaled spaces through the co-polar maps:

x↑R−1 = R~
�
⊗ x−1 y↓R−1 = R−1

�
⊗ y−1 (33)

whose composition generate interior operators or kernels:

κR−1(x) = (x↑R−1)
↓
R−1 = R−1

�
⊗(RT

�
⊗ x) κR~(y) = (y↓R−1)

↑
R−1 = R~

�
⊗(R

�
⊗ y) (34)

which define two bijective sets; the system of ϕ-neighbourhoods of objects or ϕ-co-extents Nγ
X

and ϕ-neighbourhoods of attributes or ϕ-co-intents N
µ
Y over which the co-polar maps are

dual-order bijections and the kernels the identities, respectively.

N
γ
X = ((Ỹµ)−1)

↓
R−1 = κR−1((X̃ γ)−1) N

µ
Y = ((X̃ γ)−1)

↑
R−1 = κR~((Ỹµ)−1) (35)

3. The bracket 〈x | R | y〉OO
K = x~

�
⊗ R

�
⊗ y induces a left adjunction (·∃R, ·∀R) : X̃ γ�(Ỹµ)−1

between the scaled spaces through the left adjunct pair of maps:

x∃R = R~
�
⊗ x y∀R = R

�
⊗ y (36)

whose compositions are the closure of extents and kernel of co-intents:

πR(x) = (x∃R)
∀
R κR~(y) = (y∀R)

∃
R (37)

which define an order bijection between the system of ϕ-extents Bγ
X and ϕ-co-intents Nµ

Y over
which the closure of extents and kernel of co-intents are identities.

B
γ
X = ((Ỹµ)−1)

∀
R = πR(X̃γ) N

µ
Y = (X̃γ)

∃
R = κR~((Ỹµ)−1) (38)

4. The bracket 〈x | R | y〉II
K = xT

�
⊗ R

�
⊗ y−1 induces an adjunction on the right (·∀RT , ·∃RT ) :

(X̃ γ)−1
 Ỹµ between the scaled spaces through the pair of adjunct maps:

x∀RT = RT
�
⊗ x y∃RT = R−1

�
⊗ y (39)
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whose compositions are the kernel of co-extents and the closure of extents:

κR−1(x) = (x∀RT )
∃
RT πRT (y) = (y∃RT )

∀
RT (40)

which define another bijection between the system of ϕ-co-extents Nγ
X and ϕ-intents Bµ

Y over
which the kernel of co-extents and the closure of intents are identities,

N
γ
X = (Ỹµ)

∃
RT = κR−1((X̃ γ)−1) B

µ
Y = ((X̃ γ)−1)

∀
RT = πRT (Ỹµ) (41)

Proof. Note that since γ and µ are invertible, then the dotting (for these scalars) can

be ignored. So given a finite ϕ = γ ⊗ µ, since γ ⊗ µ = γ
�
⊗ µ = γ

�
⊗ µ, the inequality

〈x | R | y〉OI
K ≥ ϕ may be rewritten using residuation as:

x~
�
⊗ R

�
⊗ y−1 ≥ γ

�
⊗ µ⇔ γ

�
\(x~

�
⊗ R

�
⊗ y−1)

�
/ µ ≥ e⇔ (γ−1 ⊗ x~)

�
⊗ R

�
⊗(y−1 ⊗ µ) ≥ e

⇔ (x⊗ γ)~
�
⊗ R

�
⊗(y⊗ µ)−1 ≥ e⇔ (x̃γ)~

�
⊗ R

�
⊗(ỹµ)−1 ≥ e

the products by a scalar x
�
⊗ γ = x̃γ and y

�
⊗ µ = ỹµ have the interpretation of (finite)

scalings in the original spaces. Similarly, for the co-Galois connection-inducing bracket
〈x | R | y〉IO

K ≥ ϕ we rewrite

xT
�
⊗ R

�
⊗ y ≥ γ

�
⊗ µ ⇐⇒ γ

�
\(xT

�
⊗ R

�
⊗ y)

�
/ µ ≥ e ⇐⇒ γ−1 �⊗ xT

�
⊗ R

�
⊗ y

�
⊗ µ−1 ≥ e

⇐⇒ (x
�
⊗ γ−1)

T �
⊗ R

�
⊗(y

�
⊗ µ−1) ≥ e

this shows that the scaling in this case is (Ỹµ)−1 = Km �
⊗ µ−1 and (X̃ γ)−1 = Kg �⊗ γ−1.

Rewriting the bracket inequalities for left and right adjunctions lead to the same scalings.
Therefore, we are in the situation of Theorem 3, over the scaled spaces X̃ γ and Ỹµ

with invertible ϕ = e. Recall that e is the unit element, whence all the results follow from
there.

Note that the precise notation with generic ϕ and the scaled spaces is cumbersome.
We will use it only sparingly, mainly when scaled and non-scaled magnitudes appear in
the same equation.

This four-fold connection can be seen as the diagram in Figure 2.
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X̃ γ

(Ỹµ)−1

(X̃ γ)−1

Ỹµ

B
γ
X

B
µ
Y

N
γ
X

N
µ
Y

�
N
(

R~
)

�
N
(

R−1)

�
N (RT)

�
N (R)

>g

R
�
⊗⊥m

⊥g

R

R
�
⊗ R~

⊥m

RT
�
⊗⊥g

>m

RT

RT
�
⊗ R−1

>g

R−1
�
⊗>m

⊥g

R−1
�
⊗ RT

R−1

>m

R~
�
⊗>g

⊥m

R~
�
⊗ R

R~

Galois connection
x↑R = RT

�
⊗ x−1

y↓R = R
�
⊗ y−1

Left adjunction
x∃R = R~

�
⊗ x

y∀R = R
�
⊗ y

Right adjunction

x∀RT = RT
�
⊗ x

y∃RT = R−1
�
⊗ y

co-Galois connection
x↑R−1 = R~

�
⊗ x−1

y↓R−1 = R−1
�
⊗ y−1

Figure 2. Domain diagram of the four-fold connection between the spaces implicit in a K-valued
matrix R (extended from [43]). Some maps, like the polar ·↑R : X̃ γ → B

µ
Y and its dual polar are

missing for clarity. The dotted lines highlight the components of the top quadriconcept; similarly, the
bottom, meet- and join-dense subsets can be easily spotted (see Section 3.2.2).

This picture is a grand summary but provides very little detail about the structure
inside the ranges of the adjoints, dual adjoints, closures and kernel functions, which we
investigate next. The core of the following proposition comes from [23], but it was not
proven there. In it we have emphasized the semifields generating the semimodules.

Proposition 3. In the conditions of Theorem 4,

1. The systems of ϕ-extents, -intents, -co-extents and -co-intents carry a K- or K -semimodule
structure generated by the rows and columns of the matrix:

B
γ
X = 〈R〉K B

µ
Y = 〈RT〉K (42)

N
µ
Y = 〈R~〉K N

γ
X = 〈R−1〉K

In particular, they are not sub-semimodules of the ambient spaces but their order duals,
B

γ
X ⊆ (X̃ γ)−1, Bµ

Y ⊆ (Ỹµ)−1, Nµ
Y ⊆ Ỹµ, and N

γ
X ⊆ X̃ γ.

2. These structures are isomorphic or dually isomorphic:

B
γ
X
∼= (B

µ
Y)

d ∼= N
µ
Y
∼= (Nγ

X)
d (43)
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3. In fact, they carry a complete lattice structure with operations:

ai ∈ B
γ
X , ∧i∈I ai = ∑•

i∈I
ai ∨i∈I ai =πR(∑•

i∈I
ai) (44)

bi ∈ B
µ
Y, ∧i∈Ibi = ∑•

i∈I
bi ∨i∈Ibi =πRT (∑•

i∈I
bi)

di ∈ N
µ
Y, ∧i∈Idi =κR~(∑•

i∈I
di) ∨i∈Idi = ∑•

i∈I
di

ci ∈ N
γ
X , ∧i∈Ici =κR−1(∑•

i∈I
ci) ∨i∈Ici = ∑•

i∈I
ci

Proof. For 1, the result involving the closures were proven in [25] [§ 3.2] on the stan-
dard Galois connection. For illustrative purposes we are going to prove it for the interior

systems using the co-Galois connection: let κR−1(x) = (x↑R−1)
↓
R−1 = R−1

�
⊗(RT

�
⊗ x) be

the projector onto the set of ϕ-co-extents, an interior operator, and let a generic y ∈
(Ỹµ)−1. Consider a K-combination of the columns of R−1, R−1

�
⊗ y. We have: κR−1(x) =

R−1
�
⊗(RT

�
⊗(R−1

�
⊗ y)) = R−1

�
⊗ y by the properties of the matrix products, whence

〈R−1〉K ⊆ N
γ
X. Now consider c ∈ N

γ
X whence R−1

�
⊗(RT

�
⊗ c) = c, but this precisely

means that c is the combination of columns of R−1, with coefficients b = RT
�
⊗ c, whence

N
γ
X ⊆ 〈R−1〉K, as desired. Four-fold GC-dually for ϕ-extents, -intents, and -co-intents.

Note that we have also proven that there is a b ∈ (Ỹµ)−1 such that b = RT
�
⊗ c = c∀RT so

that c = R−1
�
⊗ b. Which means that actually b ∈ B

µ
Y are the coefficients of the combination

above that generate c ∈ N
γ
X and vice-versa, so B

µ
Y = {c∀RT = RT

�
⊗ c | c ∈ N

γ
X} ∼=

{b∃RT = R−1
�
⊗ b | b ∈ B

µ
Y} = N

γ
X. GC-dually, with the left adjunction we can prove:

B
γ
X = {d∀R = R

�
⊗ d | d ∈ N

µ
Y} ∼= {a∃R = R~

�
⊗ a | a ∈ B

γ
X} = N

µ
Y. Likewise, with

the Galois connection we generate B
γ
X
∼= (B

µ
Y)

d and with the co-Galois connection, we
generate N

γ
X
∼= (N

µ
Y)

d, whence statement 2 follows 4-fold GC-dually.
For statement 3, consider Bγ

X. Since it is a complete K-semimodule, it is a complete
meet semilattice with the meet definition given by (44). For {ai}i∈J ⊆ B

γ
X we would like

to define a join operation so that a = ∨i∈J ai, with a ∈ B
ϕ
X. For that to be the case, since

the left adjoint of (36) is a join morphism we must have: a∃R = (∨i∈J ai)
∃
R = ∨i∈J(ai)

∃
R =

∑• i∈J (ai)
∃
R, the last step because B

µ
Y is a K-semimodule. Substituting the value of the

adjunct and operating we get a∃R = ∑• i∈J R~
�
⊗ ai = R~

�
⊗(∑• i∈J ai) = (∑• i∈J ai)

∃
R

. If

we close with the right adjoint we find: a = (a∃R)
∀
R = ((∑• i∈J ai)

∃
R
)
∀

R
= πR(∑• i∈J ai)

which provides the operational form of the join. This is clearly an upper bound on the
{ai}i∈J since we ∑• i∈J ai ≥ ai for i ∈ J, and we are applying to it a closure. It is the

lowest upper bound since for a′ ∈ B
γ
X with ∑• i∈J ai ≤ a′ < a, by applying the closure,

which is monotone, we must have πR(∑• i∈J ai) ≤ πR(a′) ≤ πR(a) but since previously

demonstrated πR(∑• i∈J ai) = πR(a) which entails πR(a′) = πR(a) and this entails a′ = a

in B
γ
X . Four-fold GC-dually for the other missing operations.

Note that the semimodule structures invoked by statement 1 in Proposition 3 involve
a scalar multiplication that is not implied for the other operation in the lattice described
in statement 3. In ([25], Section 3.1.3) a procedure similar to that used to construct the
complementary latticial operation is invoked to provide the analogue of a “scalar product”
in the dual semimodule structure , but we will not provide it here.
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3.1.4. The Complements and the Tetrahedron Connection

It should be evident by now that the picture of the four-fold connection is completed
by the existence of two more dual isomorphisms:

Lemma 3. In the conditions of Theorem 4, there are two dual lattice isomorphisms:

·cX : Bγ
X → N

γ
X ·cY : Bµ

Y → N
µ
Y (45)

a 7→ ac
X = ((a)↑R)

∃
RT = ((a)∃R)

↓
R−1 b 7→ bc

Y = ((b)↓R)
∃
R = ((b)↓R−1)

∀
RT

with inverses:

·Xc : Nγ
X → B

γ
X ·Yc : Nµ

Y → B
µ
Y (46)

c 7→ cX
c = ((c)∀RT )

↓
R = ((c)↑R−1)

∀
R

d 7→ dY
c = ((d)↓R−1)

∀
RT = ((d)∀R)

↑
R

so that ac
X = c↔ cX

c = a and bc
Y = d↔ dY

c = d. On the lattices, these complements are just the
inversion a = c−1 and b = d−1.

Proof. By composition of the polars in any two chains of generalized Galois connections
in the four-fold connection: this involves one monotone and one antitone connections,
whence the composition is antitone. Since they are compositions of isomorphisms when
restricted to the images of the polars, they are also (antitone) isomorphisms.

Let x ∈ X , with πR(x) = a ∈ B
γ
X, d = (x)∃R = (a)∃R and c = (d)↓R−1 . Then xc

X =

((x)∃R)
↓
R−1 = (d)↓R−1 = c. Using the expressions of the polars, we have xc

X = ((x)∃R)
↓
R−1 =

R−1
�
⊗(RT

�
⊗ x−1) =

(
R
�
⊗(R~

�
⊗ x)

)−1
= πR(x)−1 = a−1. So, in particular when x = a,

we have ac
X = a−1 = c.

Similarly, for x ∈ X , with κR−1(x) = c ∈ N
γ
X, with d = (x)↑R−1 , and a = (d)∀R we

have: xX
c = ((x)↑R−1)

∀
R
= (d)∀R = a . On the other hand, ((x)↑R−1)

∀
R
= R

�
⊗(R~

�
⊗ x−1) =(

R−1
�
⊗(RT

�
⊗ x)

)−1
= (κR−1(x))−1 = c−1, so, in particular when x = c, we have cX

c =

c−1 = a. The reasoning is row-column dual for the dual order isomorphism between B
µ
Y

and N
µ
Y.

Recall that (·)−1 : X → X , x 7→ x−1 is a (dual order) isomorphism. We just proved it
is also a (perfect) Galois connection between B

γ
X and N

γ
X just as Figure 3 shows.

X ∼= Kg X−1 ∼= Kg

B
γ
X N

γ
X

(·)−1

πR

(·) c
G

(·)−1

κR−1(·)
G
c

(·)c
G ≡ (·)−1

↪→X

(·)G
c ≡ (·)−1

↪→X−1

(a)

Y ∼= Km Y−1 ∼= Km

B
µ
Y N

µ
Y

(·)−1

πRT

(·) c
M

(·)−1

κR~(·)
M
c

(·)c
M ≡ (·)−1

↪→Y

(·)M
c ≡ (·)−1

↪→Y−1

(b)
Figure 3. Complements between B

γ
X and N

γ
X and B

µ
Y and N

µ
Y . This diagram has to be overlaid on Figure 1. (a) The extent-co-extent

complement, (b) the intent-co-intent complement.
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Note that this means that we do not have to use the new notation for this “dual
isomorphism” and we can use the inversion with this new understanding.

Furthermore, we have to complement our old version of the four-fold connection with
the two new inversions, to create a sort of tetrahedral figure as in Figure 4.

B
γ
X B

µ
Y

N
γ
XN

µ
Y

((·)↑R , (·)↓R)

((·)∃R , (·)∀R)
((·)c

X , (·)X
c )

((·)∀RT , (·)∃RT )

((·)c
Y , (·)Y

c )

((·)↑
R−1 , (·)↓

R−1 )

Figure 4. The tetrahedron of Galois connections of matrix R ∈ Kg⊗m.

3.1.5. Dual Exploration

It may seem strange that we started with K but the scalar products leading to the
definition of the different Galois connections operated in K. This is actually a requisite
of the original work discovering the connections [14], but it also dovetails into previous,
unrelated work [41,47].

We can do the opposite operation: start using K what leads onto operations in K.
Since the choice of semifield in which to interpret R represents a (choice of) modelling
bias [23], using these results is what we call bias-duality. This accounts for a K-dual of
Theorem 4 and Proposition 3:

Theorem 5 (The K-four-fold connection, invertible ϕ). Let K be a complete idempotent semi-
field, and consider the vector spaces X = Kg and Y = Km, a matrix R ∈ Kg×m, an invertible
element ϕ = γ⊗ µ ∈ K and the scaled spaces

X̃ γ = Kg �⊗ γ Ỹµ = Km �
⊗ µ (47)

(Ỹµ)−1 = Km
�
⊗ µ−1 = (̃Km

)
(µ−1)

(X̃ γ)−1 = Kg
�
⊗ γ−1 = (̃Kg

)
(γ−1)

Then

1. The bracket 〈x | R | y〉OI
K = x~

�
⊗ R

�
⊗ y−1 induces a Galois connection (·↑R, ·↓R) : X̃ γ ↼⇀ Ỹµ

between the scaled spaces through the polars

x↑R = RT

�
⊗ x−1 y↓R = R

�
⊗ y−1 (48)

whose composition generates closure operators:

πd
R(x) = (x↑R)

↓
R = R

�
⊗(R~

�
⊗ x) πd

RT (y) = (y↓R)
↑
R = RT

�
⊗(R−1 �⊗ y) (49)

which define two bijective sets, the system of ϕ-extents Bγ
X and the system of ϕ-intents Bµ

Y
over which the closures are the identities.

B
γ
X = (Ỹµ)

↓
R = πd

R(X̃ γ) B
µ
Y = (X̃ γ)

↑
R = πd

RT (Ỹµ) (50)
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2. The bracket 〈x | R | y〉IO
K = xT

�
⊗ R

�
⊗ y induces a co-Galois connection (·↑R−1 , ·↓R−1) :

(X̃ γ)−1 ⇁↽(Ỹµ)−1 between the scaled spaces through the maps:

x↑R−1 = R~
�
⊗ x−1 y↓R−1 = R−1 �⊗ y−1 (51)

whose composition generate kernel (interior) operators:

κd
R−1(x) = (x↑R−1)

↓
R−1 = R−1 �⊗(RT

�
⊗ x) κd

R~(y) = (y↓R−1)
↑
R−1 = R~

�
⊗(R

�
⊗ y) (52)

which define two bijective sets the systems of ϕ-neighbourhoods of objects or ϕ-co-extents Nγ
X

and ϕ-neighbourhoods of attributes or ϕ-co-intents Nµ
Y over which the kernel operators are

the identities.

N
γ
X = ((Ỹµ)−1)

↓
R−1 = κd

R−1((X̃ γ)−1) N
µ
Y = ((X̃ γ)−1)

↑
R−1 = κd

R~((Ỹ
µ)−1) (53)

3. The bracket 〈x | R | y〉OO
K = x~

�
⊗ R

�
⊗ y induces a left adjunction (·∃R, ·∀R) : X̃ γ�(Ỹµ)−1

between the scaled spaces through the left adjunct pair of maps:

x∃R = R~
�
⊗ x y∀R = R

�
⊗ y (54)

whose compositions, are again, the closure of extents and interior of attributes:

πd
R(x) = (x∃R)

∀
R κd

R~(y) = (y∀R)
∃
R (55)

which define another bijection between the systems of extents B
γ
X and neighbourhoods of

attributes Nµ
Y:

B
γ
X = ((Ỹµ)−1)

∀
R N

µ
Y = (X̃ γ)

∃
R (56)

4. The bracket 〈x | R | y〉II
K = xT

�
⊗ R

�
⊗ y−1 induces an adjunction on the right (·∀RT , ·∃RT ) :

(X̃ γ)−1
 Ỹµ between the scaled spaces through the pair of adjunct maps:

x∀RT = RT

�
⊗ x y∃RT = R−1 �⊗ y (57)

whose compositions are, again, the interior of objects and the closure of attributes:

κd
R−1(x) = (x∀RT )

∃
RT πd

RT (y) = (y∃RT )
∀
RT (58)

which define another bijection between the neighbourhood of objects Nγ
X and system of intents

B
µ
Y:

N
γ
X = (Ỹµ)

∃
RT B

µ
Y = ((X̃ γ)−1)

∀
RT (59)

5. The systems of ϕ-extents, -intents, -co-extents and -co-intents carry a K- or K -semimodule
structure generated by the rows and columns of the matrix:

B
γ
X = 〈R〉K B

µ
Y = 〈RT〉K (60)

N
µ
Y = 〈R~〉K N

γ
X = 〈R−1〉K

In particular, they are not sub-semimodules of the ambient spaces but their order duals,
B

γ
X ⊆ (X̃ γ)−1, Bµ

Y ⊆ (Ỹµ)−1, Nµ
Y ⊆ Ỹ

µ, and N
γ
X ⊆ X̃ γ.
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6. These structures are isomorphic or dually isomorphic:

B
γ
X
∼= (B

µ
Y)

d ∼= N
µ
Y
∼= (Nγ

X)
d (61)

7. In fact, they carry a complete lattice structure with operations:

ai ∈ B
γ
X , ∧i∈I ai = ∑•

i∈I
ai ∨i∈I ai =πd

R(∑•

i∈I
ai) (62)

bi ∈ B
µ
Y, ∧i∈Ibi = ∑•

i∈I
bi ∨i∈Ibi =πd

RT (∑•

i∈I
bi)

di ∈ N
µ
Y, ∧i∈Idi =κd

R~(∑•
i∈I

di) ∨i∈Idi = ∑•

i∈I
di

ci ∈ N
γ
X , ∧i∈Ici =κd

R−1(∑•
i∈I

ci) ∨i∈Ici = ∑•

i∈I
ci

Proof. Conventional approach: consider the bracket 〈x | R | y〉OI
K = x

�
\ R

�
/ yT =

x~
�
⊗ R

�
⊗ y−1 using residuation in K. Based on merely formal similarities to item 1 of

Theorem 4, this is going to generate a Galois connection—in the order of K which is dual
to that of K. By following the proof in [24] we arrive at the new polars and thence, to the
closures. Four-fold GC-dually.

Short approach: use bias-duality on the results of Theorem 4 and Proposition 3.

These results are summarized, again in a schematic diagram in Figure 5.

X̃ γ

(Ỹµ)−1

(X̃ γ)−1

Ỹµ

B
γ
X

B
µ
Y

N
γ
X

N
µ
Y

�
N
(

R~
)

�
N
(

R−1)

�
N (RT)

�
N (R)

⊥g

R
�
⊗>m

>g

R

R
�
⊗ R~

>m

RT
�
⊗>g

⊥m

RT

RT

�
⊗ R−1

⊥g

R−1 �⊗⊥m

>g

R−1 �⊗ RT

R−1

⊥m

R~
�
⊗⊥g

>m

R~
�
⊗ R

R~

Galois connection
x↑R = RT

�
⊗ x−1

y↓R = R
�
⊗ y−1

Left adjunction

x∃R = R~
�
⊗ x

y∀R = R
�
⊗ y

Right adjunction
x∀RT = RT

�
⊗ x

y∃RT = R−1 �⊗ y

co-Galois connection
x↑R−1 = R~

�
⊗ x−1

y↓R−1 = R−1 �⊗ y−1

Figure 5. Schematics of the 4-fold Galois connection of R with K bias, i.e., X̃ γ = (̃Kg)
γ

(cfr. Figure 2).
Note that the increasing sense of the arrows refers now to that of K, dually-ordered to K.
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Note that ([8], p. 70) already displays a less detailed version of Figures 2 and 5 side-by-
side. Although the order-theoretic implications were not evident there, the following was:

Proposition 4. Let K be the carrier set of both K and K and consider the matrix R ∈ Kg×m, and
an invertible element ϕ = γ⊗ µ ∈ K. In general K- and K-K-four-fold Formal Concept Analysis
produce non-isomorphic lattices.

Proof. Note that the fixpoint operators with K bias in (49), (52), (55) or (58) are none of
those with K bias in (6), (11), (14) or (17). Table 1 shows how these two sets of operators
relate (e.g., in bias duality).

Table 1. Comparison of closure and interior (kernel) operators obtained by changing the bias of
Formal Concept Analysis (K-FCA) from K (left) to K (right). Note how these are distinct but
systematically related operators.

Type of Fixpoint with Bias in K with Bias in K

extent πR(x) = R
�
⊗(R~

�
⊗ x) πd

R(x) = R
�
⊗(R~

�
⊗ x)

intent πRT (y) = RT
�
⊗(R−1

�
⊗ y) πd

RT (y) = RT
�
⊗(R−1 �⊗ y)

co-extent κR−1(x) = R−1
�
⊗(RT

�
⊗ x) κd

R−1(x) = R−1 �⊗(RT
�
⊗ x)

co-intent κR~(y) = R~
�
⊗(R

�
⊗ y) κd

R~(y) = R~
�
⊗(R

�
⊗ y)

By a well-known result in order theory, different closure (kernel) operators generate
different closure (interior) systems.

3.1.6. Generators and Bases

To find minimal representations for the lattices involved in Theorems 4 and 5 we
introduce:

Lemma 4 (Block forms involving sets of independent vectors, K bias). Let K be the support
set of a complete idempotent semifield K, a matrix R′ ∈ Kg×m. Then,

1. R can be reordered and factorized as

R =

[
RI J RI J
RI J RI J

]
(63)

where I and J are the sets of indices of K-independent rows and columns |I| = l and |J| = k,
respectively.

2. Alternatively, R can be factorized as

R =
[
V V

�
⊗W

]
R =

[
U

Z
�
⊗U

]
(64)

where V and U are the sets of K-independent columns and rows of R, respectively, and W
and Z are the coefficient matrices used to obtain the dependent columns and rows from them.

3. Furthermore, R can be factorized as

R =

[
�
El
Z

]
�
⊗ RI J

�
⊗
[
�
Ek W

]
with V =

[
�
El
Z

]
�
⊗ RI J and U = RI J

�
⊗
[
�
Ek W

]
(65)

where W = R~I J �
⊗ RI J and Z = RI J �

⊗ R~I J .
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Proof. For the first statement, we use the K version of the A-test [6] (§ 2.1.3, Proposition 2)
to detect a set of dependent columns with indices J so that the independent indices are
J = M \ J, and likewise for the indices of the dependent rows I and the independent
ones I = G \ I. From now on consider their cardinalities fixed as 0 < |J| = k ≤ m and
0 < |I| = l ≤ g. Using these indices, we build a permutation matrix for rows P and another
for columns Q as customary. By applying these to R′ we obtain the required block structure

on our target matrix R = PT
�
⊗ R′

�
⊗Q. Note that RI J ∈ Kl×k is the submatrix selected by

the indices of K-independent rows and columns.

To make (63) and (64) compatible, call V =
[

RI J
T RI J

T
]T

. Since V are an independent

set, they K-generate the other columns, say as V
�
⊗W =

[
RI J

T RI J
T
]T

whence R =[
V V

�
⊗W

]
. Similarly, by transposing R and following the previous procedure we have

UT =
[

RT
I J RT

I J

]T
we arrive at RT =

[
UT UT

�
⊗ ZT

]T
whence transposing obtains the

second part of (64).
For the third statement, from the first part of (64) we have U =

[
RI J RI J

�
⊗W

]
that

we may factorize as U = RI J
�
⊗
[
�
Ek W

]
. Dually, we can state VT =

[
RT

I J WT
�
⊗ RT

I J

]T
=[

�
El WT

] �
⊗ RT

I J . By applying the second part of (64) we find that

R =

 RI J RI J
�
⊗W

Z
�
⊗ RI J Z

�
⊗ RI J

�
⊗W

 and factorizing left and right obtains the result. To find

W we equate the last form and (63) so we get RI J
�
⊗W = RI J . Since RI J is just a matrix,

the previous equation means that in the GC of RI J , the intents W−1 get transformed as

(W−1)
↓
RI J

= RI J
�
⊗(W−1)−1 = RI J which are extents. Thefore these extents re-define W as:

(RI J)
↑
RI J

= RI J
T
�
⊗ R−1

I J
= W−1 whence W = R~I J �

⊗ RI J . Row–column and GC-dually, we

find Z = RI J �
⊗ R~I J .

Note the following:

• The material in statement 2 was introduced in ([6], Definition 9). The novelty in the
lemma is essentially parts 1 and 3.

• Note that the notation highlights the fact that we are using K bias. The dual-bias
proposition (implicit in the text) should change the notation accordingly to V, U, etc.

A reordering of rows (or columns) does not change the subspace being generated by
the matrix. We introduce a slight complexification of the notation for the lattices to make
evident which matrix they relate to:

Lemma 5. In the conditions of Theorem 3 and the notation in Lemma 4:

B
γ
X(R) = B

γ
X(V) B

µ
Y(R) = B

µ
Y(U) N

µ
Y(R) = N

µ
Y(U) N

γ
X(R) = N

γ
X(V) (66)

and in the conditions of Theorem 5 and the bias-dual of Lemma 4:

B
γ
X(R) = B

γ
X(V) B

µ
Y(R) = B

µ
Y(U) N

µ
Y(R) = N

µ
Y(U) N

γ
X(R) = N

γ
X(V) (67)
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Proof. Recall that for a generic matrix R ∈ Kg×m
we defined B

γ
X(R) = {a ∈ Kg | πR(a) =

a} with πR(x) = R
�
⊗(R~

�
⊗ x). To prove B

γ
X(R) = B

γ
X(V), let a ∈ B

γ
X(R) = 〈R〉K, so that

a = R
�
⊗ d. Recall from (64) that R =

[
V V

�
⊗W

] �
⊗ d, therefore

πV(a) = V
�
⊗(V~

�
⊗ a) = V

�
⊗(V~

�
⊗(R

�
⊗ d)) = V

�
⊗(V~

�
⊗(
[
V V

�
⊗W

] �
⊗ d))

=
[
V
�
⊗(V~

�
⊗(V

�
⊗ d)) V

�
⊗(V~

�
⊗(V

�
⊗W

�
⊗ d))

]
and by the properties of matrix products we finally have:

πV(a) =
[
V
�
⊗ d V

�
⊗W

�
⊗ d
]
=
[
V V

�
⊗W

] �
⊗ d = R

�
⊗ d = a

whence B
γ
X(R) ⊆ B

γ
X(V). Now let a ∈ B

γ
X(V) = 〈V〉K, so that a = V

�
⊗ d′, whence

πR(a) = R
�
⊗(R~

�
⊗ a) =

[
V V

�
⊗W

] �
⊗(
[
V V

�
⊗W

]~
�
⊗(V

�
⊗ d′))

= V
�
⊗(V~

�
⊗(V

�
⊗ d′))

�
⊕(V

�
⊗W)

�
⊗((V

�
⊗W)~

�
⊗(V

�
⊗ d′))

Note that the second terms is the closure π
V
�
⊗W

(V
�
⊗ d′) and that the first term can be

reduced by the matrix products so

πR(a) = (V
�
⊗ d′)

�
⊕π

V
�
⊗W

(V
�
⊗ d′) = V

�
⊗ d′ = a

where the last but one equality comes from the closure property π
V
�
⊗W

(V
�
⊗ d′) ≥ V

�
⊗ d′

and the fact that
�
⊕ selects the minimum. Therefore B

γ
X(V) ⊆ B

γ
X(R). Four-GC dually, and

bias dually.

Some comments are in order:

• When referring to the lattices of different matrices, as is the case with R and V, we
cannot escape their appearing in the notation, as in B

γ
X(R), since they are, in general,

different lattices. The pertinence of the decomposition of R into its independent rows
is precisely that the lattices remain the same.

• In a = R
�
⊗ d = d∀R the name is fixed since we know that a = d∀R ⇐⇒ d = a∃R ∈

N
µ
Y(R). Indeed, the 4-fold GC dual proves involve using b = a↑R = B

µ
Y(R) and

c = b∃RT ∈ N
γ
X(R). However note that in a = V

�
⊗ d′ in case k 6= m we have d′ ∈ Kk

and therefore d′ 6∈ N
µ
Y(R) ⊆ Km

(see below).
• We crucially triggered the simplification process for idempotent matrix products by

introducing a = R
�
⊗ d. We also used the fact that products of matrices generate

closure (or kernel) operators that allow us to discard the closed (or open) element

being operated upon based on the properties of the addition
�
⊕ (or

�
⊕). These two

patterns reappear time an again in demonstrations with the blocked forms.

With the preceding Lemma we have proven also the following corollaries.

Corollary 6. In the conditions of Theorem 3 and the notation in Lemma 4:

B
γ
X(R) = 〈V〉K B

µ
Y(R) = 〈UT〉K N

µ
Y(R) = 〈U~〉K N

γ
X(R) = 〈V−1〉K (68)
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and in the conditions of Theorem 5 and the bias-dual of Lemma 4

B
γ
X(R) = 〈V〉K B

µ
Y(R) = 〈UT〉K N

µ
Y(R) = 〈U~〉K N

γ
X(R) = 〈V−1〉K (69)

Proof. From the previous lemma we have B
γ
X(R) = B

γ
X(V). From (42) we have B

γ
X(V) =

〈V〉K. GC-dually for B
µ
Y(R). On the other hand, recall that B

γ
X(R) = (N

γ
X(R))−1 =

〈V〉K, whence N
γ
X(R) = (〈V〉K)−1 = 〈V−1〉K, and co-GC-dually for Nµ

Y(R). Bias-dually
for (69).

Recall also that by [13] (Theorem 3.3.9) V is a basis of this space, we have 〈R〉K = 〈V〉K,
another way to reach this result.

A simultaneous projection in both rows and columns, however, actually provides
generators only for isomorphic spaces. We first prove a technical Lemma.

Lemma 6. In the conditions of Theorem 3 , let R be factorized as in Lemma 4. Then the closure
and interior operators of RI J can be expressed in terms of the sets of independent rows and columns
of R, V and U as:

x ∈ Kk, πU(x) = πRI J (x) y ∈ Kl , πVT (y) = πRT
I J
(y) (70)

y ∈ (Kl)−1, κV~(y) = κR~I J
(y) x ∈ (Kk)−1, κU−1(x) = κR−1

I J
(x)

Proof. For y ∈ Kl
, recall that πVT (y) = VT

�
⊗(V−1

�
⊗ y) with VT =

[
RT

I J RT
I J
�
⊗ ZT

]
so that:

πVT (y) =
[

RT
I J RT

I J
�
⊗ Z

] �
⊗
([

R−1
I J

(Z~
�
⊗ R−1

I J )

])
�
⊗ y =

[
RT

I J RT
I J
�
⊗ Z

] �
⊗

 R−1
I J �
⊗ y

(Z~
�
⊗ R−1

I J ) �
⊗ y

 =

= RT
I J
�
⊗(R−1

I J �
⊗ y)

�
⊕ (ZT

�
⊗ RI J)

T �
⊗((ZT

�
⊗ RI J)

−1
�
⊗ y) = RT

I J
�
⊗(R−1

I J �
⊗ y) = πRT

I J
(y)

where the last but one step follows because (ZT
�
⊗ RI J)

T �
⊗((ZT

�
⊗ RI J)

−1
�
⊗ y) = RT

I J
�
⊗ Z

�
⊗(Z~

�
⊗ R−1

I J �
⊗ y) ≥ RT

I J
�
⊗(R−1

I J �
⊗ y) since Z ⊗ (Z~ ⊗ x) ≥ x is a closure. The result

follows because the upper addition selects the lowest term. For the other closure and
interior operators we use U =

[
RI J RI J

�
⊗W

]
, U−1 and V~ and find the results 4-fold

GC-dually.

The previous lemma does not provide information unless both k < m and l < g.

Proposition 5. In the conditions of Theorem 3, let R be factorized as in (65). Then, if l < g and
k < m,

B
γ
X(R) ∼= B

γ
X′(RI J) B

µ
Y(R) ∼= B

µ
Y′(RI J) (71)

N
µ
Y(R) ∼= N

µ
Y′(RI J) N

γ
X(R) ∼= N

γ
X′(RI J)

Proof. For the record, by Proposition 3 we have:

B
γ
X(R) ∼= (B

µ
Y(R))d ∼= N

µ
Y(R) ∼= (N

γ
X(R))d (72)

B
γ
X(V) ∼= (B

µ
Y′(V))d ∼= N

µ
Y′(V) ∼= (N

γ
X(V))d

B
γ
X(U) ∼= (B

µ
Y′(U))d ∼= N

µ
Y′(U) ∼= (N

γ
X(U))d

B
γ
X′(RI J) ∼= (B

µ
Y′(RI J))

d ∼= N
µ
Y′(RI J) ∼= (N

γ
X′(RI J))

d.
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First we prove that if k < m calling X̃ ′
γ
≡ Kl

then B
γ
X(R) ∼= B

γ
X′(RI J) and N

γ
X(R) ∼=

N
γ
X′(RI J). Note that Km ≡ Ỹµ 6≡ Ỹ ′

µ
≡ Kk

and we work with V. Then, by Lemma 5,
B

γ
X(R) ≡ B

γ
X(V), and by Lemma 6 we have πVT (y) = πRT

I J
(y) that is, Bµ

Y′(V) ≡ B
µ
Y′(RI J).

Therefore by composition B
γ
X(R) ≡ B

γ
X(V) ∼= (B

µ
Y′(V))d ≡ (B

µ
Y′(RI J))

d ∼= B
γ
X′(RI J)

where we have called X̃ ′
γ
≡ Kl

, although in general we only know l ≤ g. Of course, if l = g
we have X̃ γ ≡ X̃ ′

γ
and B

γ
X(R) ≡ B

γ
X(V) ≡ B

γ
X′(RI J). Similarly, from N

γ
X(R) ≡ N

γ
X(V)

and κV~(y) = κR~I J
(y) we prove N

γ
X(R) ≡ N

γ
X(V) ∼= N

γ
X′(RI J).

When l < g with Ỹ ′
µ
≡ Kk

we proceed row–column dually, using U as the pivot and
the third line of (72) to prove that Bµ

Y(R) ∼= B
µ
Y′(RI J), and N

µ
Y(R) ∼= N

µ
Y′(RI J).

If we demand that both l < g and k < m we obtain the desired results.

Note that the bias duals of Lemma 6 and Proposition 5 demand that we use the
K-version of the test to detect K-independent rows and columns I′ and J′.

So when either l < g or k < m we can effectively reduce the computation of the
original lattices of R to those of RI J , the reason why this procedure is called a reduction ([19],
chap. 1).

Proposition 3 along with Lemma 6 and Proposition 5 suggest that we reify the results
of (43) and (61) (see also [23]).

Definition 3 (The quadrilattice). Choose bias K and an invertible ϕ ∈ K. For a matrix R ∈
Kg×m, its quadrilattice Qϕ

(R)K is the set of four-tuples (a, b, c, d) with a ∈ B
γ
X(R), b ∈ B

µ
Y(R),

c ∈ N
γ
X(R), and d ∈ N

µ
Y(R) issued from Proposition 3 where a↑R = b⇔ b↓R = a⇔ b∃RT = c⇔

a∃R = d. Its bias-dual from Theorem 5 is Qϕ
(R)K.

Note that these are isomorphic or dually isomorphic lattices B
γ
X(R) ∼= (B

µ
Y(R))d ∼=

N
µ
Y(R) ∼= (N

γ
X(R))d, and further Bγ

X(R) = (N
γ
X(R))−1 and B

µ
Y(R) = (N

µ
Y(R))−1.

The following Proposition gives the promised form to the isomorphisms in Proposi-
tion 5.

Proposition 6. In the conditions of Theorem 3 and the notation in Lemma 4, let R be factorized as
in (63) and consider the quadrilattices Qϕ

(R)K and Q
ϕ
(RI J)K. Then, the following mappings,

φ : Qϕ
(R)K → Q

ϕ
(RI J)K (73)

(a, b, c, d) 7→ (a′, b′, c′, d′) = (
[
�
El

�
E
] �
⊗ a,

[
�
Ek

�
E
] �
⊗ b,

[
�
El �
E
]
�
⊗ c,

[
�
Ek �
E
]
�
⊗ d)

and:

φ−1 : Qϕ
(RI J)K → Q

ϕ
(R)K (74)

(a′, b′, c′, d′) 7→
([

�
El
Z

]
�
⊗ a′,

[
�
Ek
WT

]
�
⊗ b′,

[
�
El

Z−1

]
�
⊗ c′,

[
�
Ek

W~

]
�
⊗ d′

)

are quadrilattice isomorphisms.

Proof. Note that the transformations for c and d have been chosen to ensure a′ = c′−1 and
b′ = d′−1 what means we need only concern ourselves with the first two pairs of mappings.

The trivial case is if k = g or l = m, when we simply have the identities. However, for

k < g we have X̃ γ ≡ Kg 6= Kk ≡ X̃ ′
γ

, and, similarly, for l < m we have Ỹµ ≡ Kg 6= Kk ≡
Ỹ ′

µ
, and this extends to their inverses, hence the ambient spaces of the lattices above are

different.
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First we prove that each pair of component mappings is actually a bijection. Let

a ∈ B
γ
X(R) then a = V

�
⊗ d′, and the mappings acting on B

γ
X(R) and B

γ
X(RI J) are:

φa(a) =
[
�
El

�
E
] �
⊗V

�
⊗ d′ =

[
�
El

�
E
] �
⊗
[

RI J

Z
�
⊗ RI J

]
�
⊗ d′ = RI J

�
⊗ d′ = d′∀RI J

= a′ (75)

whereas in the inverse direction for a ∈ B
γ
X′(RI J), with a = RI J

�
⊗ d′:

φ−1
a (a′) =

[
�
El
Z

]
�
⊗ RI J

�
⊗ d′ =

[
RI J

Z
�
⊗ RI J

]
�
⊗ d′ = V ⊗ d′ = a (76)

Four-fold GC-dually for the other pairs of mappings. Note that by combining both
derivations we see that the same d′ appear in the definition of a and a′.

To see that the overall mappings respect the tuples in the quadrilattice, first consider
(a′, b′, c′, d′) ∈ Q

ϕ
(RI J)K. We have to prove a↑R = b: by definition a′ = φa(a), and we know

that b′ = (a′)↑RI J
= RT

I J
�
⊗(a′)−1, so

b =

[
�
Ek
WT

]
�
⊗ b′ =

[
�
Ek
WT

]
�
⊗ RT

I J
�
⊗(a′)−1 = UT

�
⊗(a′)−1

b↓R = R
�
⊗ b−1 =

[
U

Z
�
⊗U

]
�
⊗(U~

�
⊗ a′) =

[
�
El
Z

]
�
⊗U

�
⊗(U~

�
⊗ a′)

but since πU(a′) = πRI J (a′) = a′, we have b↓R =

[
�
El
Z

]
�
⊗ a′ = a. With a similar chain of

equalities we can prove a↑R = b. Note that the proof that (a′, b′, c′, d′) = φ(a, b, c, d) ∈
Q

ϕ
(RI J)K would use the same chains of proofs as the derivation above, but positing

b′↓RI J
= a′ ⇐⇒ a′↑RI J

= b′ and trying to find whether b↓R = a ⇐⇒ a↑R = b.
It is easy to see that the components are isomorphisms of complete lattices. For this

proof let i ∈ I by any set of indices. Then,

φa(∧i∈I ai) =
[
�
El

�
E
] �
⊗(∑•

i
ai) = ∑•

t∈T

[
�
El

�
E
] �
⊗ ai = ∧iφa(ai)

where we have used that Bγ
X(R) and B

γ
X(RI J) are K-semimodules whereby the meet is the

semimodule addition. Four-fold GC dually for the meets in the other coordinate lattices.
To prove φa(∨i∈I ai) = ∨i∈Iφa(ai), equivalently ∨i∈I ai = φ−1

a (∨i∈Iφa(ai)), recall that
for {ai}i∈I ⊆ B

γ
X(R), the complete join is ∨i∈I ai = πR(∑• i∈I ai). We write:

∨i∈I ai = πR(∑•
i∈I

ai) = πV(∑•
i∈I

ai) = V
�
⊗(V~

�
⊗(∑•

i∈I
ai))

Call d′i = V~
�
⊗ ai so ai = V

�
⊗ d′i and d′ = ∑• i∈I d′i. Since κR~(d′i) = V~

�
⊗(V

�
⊗ d′i) =

d′i for all i ∈ i,

∨i∈I ai = V
�
⊗(V~

�
⊗(∑•

i∈I
V
�
⊗ d′i)) = V

�
⊗(∑•

i∈I
V~

�
⊗(V

�
⊗ d′i)) = V

�
⊗(∑•

i∈I
d′i) = V

�
⊗ d′ = a
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On the other hand, call φa(ai) = a′i, so

∨i∈Iφa(ai) = πRI J (∑•
i∈I

a′i) = πU(∑•
i∈I

a′i) = U
�
⊗(U~

�
⊗(∑•

i∈I
a′i))

but since U =
[

RI J RI J
�
⊗W

]
= RI J

�
⊗
[
�
Ek W

]
and d′i = R~I J

�
⊗ a′i, we write

∨i∈Iφa(ai) = U
�
⊗(
[
�
Ek

W~

]
�
⊗(∑•

i∈I
R~I J

�
⊗ a′i)) = U

�
⊗(
[
�
Ek

W~

]
�
⊗(∑•

i∈I
d′i)) = U

�
⊗(
[
�
Ek

W~

]
�
⊗ d′) = U

�
⊗ d

with φd(d) =

[
�
Ek

�
E

]
�
⊗(∑• i∈I di) = ∑• i∈I

[
�
Ek

�
E

]
�
⊗ di = ∑• i∈I d′i = d′, whence

φ−1
a (∨i∈Iφa(ai)) =

[
�
El
Z

]
�
⊗(
[

RI J RI J
�
⊗W

] �
⊗ d) = R

�
⊗ d = a

3.2. The Basics of K-Four-Fold Formal Concept Analysis

In this section we transform the results on the 4-fold Galois connection in Section 3.1
as a basis for a K-based four-fold FCA (K-4FCA ).

3.2.1. Framing the Analysis

First note that in order to use the results of Theorems 4 and 5—including those of
Proposition 3—we have to provide the following items of information, a process we call
framing (the analysis):

1. BIASING. Choosing a non-empty support K and the actual complete idempotent
semifield whether K or K.

2. CONTEXTUALIZATION. Providing R ∈ Kg×m and G 6= ∅ 6= M, the sets of objects
and attributes, respectively, with |G| = g and |M| = m to build the formal context
(G, M, R)K, since we use K-bias.

3. SCALING. Providing invertible ϕ = γ⊗ µ used to scale the left and right semimodules.

Note that:

• An alternate way to carry out framing that does not alter its result is to first contextu-
alize the analysis and then provide the bias.

• Yet some other work casts the systematic variation of ϕ as an exploration of the hidden
regularities of the formal context [30,32,48].

• The corner cases for scaling ϕ ∈ {⊥,>} have limited interest, due to Proposition 2.
• In previous work, we have defined a fourth step of framing: COLOURING [23] the

choice of which type of connection to do an analysis with. K-4FCA makes this
redundant.

3.2.2. 4-Fold Formal (ϕ-)Concepts

Contextualization allows us to use traditional FCA notation and write the name of the
lattices in Proposition 3 by referring to the object G and attribute sets M as:

B
γ
G(G, M, R)K = B

γ
X(G, M, R)K B

µ
M(G, M, R)K = B

µ
Y(G, M, R)K (77)

N
µ
M(G, M, R)K = N

µ
Y(G, M, R)K N

γ
G(G, M, R)K = N

γ
X(G, M, R)K

Therefore, with the backing of (43) (and (61)) it makes sense to define the follow-
ing [23]:
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Definition 4. Let (G, M, R)K be a biased context and ϕ = γ ⊗ µ invertible values. Then a
generalized 4-fold formal ϕ-concept or quadriconcept is a 4-tuple (a, b, c, d) a ∈ B

γ
G(G, M, R)K,

b ∈ B
µ
M(G, M, R)K, c ∈ N

γ
G(G, M, R)K, d ∈ N

µ
M(G, M, R)K, such that the following rela-

tions hold:

a = (b)↓R = (d)∀R b = (a)↑R = (c)∀RT (78)

d = (c)↑R−1 = (a)∃R c = (d)↓R−1 = (b)∃RT

The set of such quadriconcepts is Qϕ(G, M, R)K . Notice that as a corollary of Lemma 3 and
Definition 3 for (a, b, c, d) a generalized concept

a = c−1 c = a−1 b = d−1 d = b−1 (79)

and also that quadriconcepts are partially ordered with the hierarchical order

(a1, b1, c1, d1) ≤ (a2, b2, c2, d2)⇔ a1 ≤ a2 ⇔ b1 ≥ b2 ⇔ c1 ≥ c2 ⇔ d1 ≤ d2 . (80)

Due to the linear algebraic properties of the adjuncts and Definition 4, we may easily
build multiple four-fold concepts at the same time.

Corollary 7 (The concept-forming functions). In the conditions of Definition 4, given a matrix
X ∈ Kg×k whose columns are K-valued sets of objects we can build all of their four-fold concepts
γ4(X) = (A, B, C, D), where every co-indexed 4-tuple of columns is a four-fold concept, as

B = X↑R A = B↓R C = A−1 D = B−1

Dually for matrices Y ∈ Km×k with K-valued sets of attributes for columns with µ4(Y) =
(A, B, C, D) as

A = Y↓R B = A↑R C = A−1 D = B−1

Proof. Just gather all those results as γ4(X) = (A, B, C, D) coindexing extents, intents, co-
extents and co-intents on the same generalized concept. Row–column dually for µ4(Y).

It is always interesting to know the top and bottom elements of the isomorphic lattices.

Corollary 8 (4-fold top and bottom). In the conditions of Definition 4,

>4 = γ4(>g) = (>g, RT
�
⊗⊥g,⊥g, R~

�
⊗>g) ⊥4 = µ4(>

m) = (R
�
⊗⊥m,>m, R−1

�
⊗>m,⊥m)

Note how the order of extents and intents are dual. These concepts have important
special cases:

Lemma 7. In the conditions of Definition 4,

1. >4 = (>g,⊥m,⊥g,>m) if and only if R has no full columns.
2. ⊥4 = (⊥g,>m,>g,⊥m) if and only if R has no full rows.

Proof. Note that R
�
⊗⊥m = ⊥g ⇐⇒ R−1

�
⊗>m = >g, so we only have to consider either

extents or co-extents. Suppose R
�
⊗⊥m = ⊥g. Then, if Ri· = >1×m, then Ri·

�
⊗⊥m = >,

whence R
�
⊗⊥m 6= ⊥g, a contradiction. For the other direction, suppose for a row i there is

a non-saturated column k , then Ri·
�
⊗⊥m = (∑•

j 6=k Rij ⊗⊥)
�
⊕⊥ = ⊥. The result follows

if this holds for every row. The other results follows column-row dually.
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For concept lattices it is always important to obtain the object- and attribute-concepts,
since they have special properties.

Lemma 8. In the conditions of Definition 4, the object-concepts γ4

(
�
Eg

)
and attribute-concepts

µ4

(
�
Em

)
are:

γ4

(
�
Eg

)
= (R

�
⊗ R~, RT, R−1

�
⊗ RT, R~) µ4

(
�
Em

)
= (R, RT

�
⊗ R−1, R−1, R~

�
⊗ R) (81)

These are join-dense and meet dense on the quadrilattice, respectively.

Proof. Since the columns of X ≡
�
Eg are the singleton sets of objects, we have:

B = RT
�
⊗(

�
Eg)
−1 = RT A = R

�
⊗ R~ C = R−1

�
⊗ RT D = R~

�
⊗(R

�
⊗ R~) = R~

Similarly, the columns of Y ≡
�
Em are the singleton sets of attributes, whence:

A = R
�
⊗(

�
Em)

−1 = R B = RT
�
⊗ R−1 C = R−1

�
⊗(RT

�
⊗ R−1) = R−1 D = R~

�
⊗ R

Note that the intents of γ4

(
�
Eg

)
are meet-dense on B

ϕ
M, hence join-dense in (B

ϕ
M)d,

and so γ4

(
�
Eg

)
are join-dense in Q

ϕ
(G, M, R)K . Dually for µ4

(
�
Em

)
, the meet-dense.

These four special elements are captured in Table 2, on the left, and also drawn in
Figures 2 and 5.

Table 2. Special elements of the 4-fold lattices with biases in K (left column) and K (right column) (see Section 3.1.5).

Special Element Bias in K Bias in K

top γ4(>g) = (>g, RT
�
⊗⊥g,⊥g, R~

�
⊗>g) γ4(⊥g) = (⊥g, RT

�
⊗>g,>g, R~

�
⊗⊥g)

meet dense µ4

(
�
Em

)
= (R, RT

�
⊗ R−1, R−1, R~

�
⊗ R) µ4

(
�
Em

)
= (R, RT

�
⊗ R−1, R−1, R~

�
⊗ R)

join dense γ4

(
�
Eg

)
= (R

�
⊗ R~, RT, R−1

�
⊗ RT, R~) γ4

(
�
Eg

)
= (R

�
⊗ R~, RT, R−1 �⊗ RT, R~)

bottom µ4(>m) = (R
�
⊗⊥m,>m, R−1

�
⊗>m,⊥m) µ4(⊥m) = (R

�
⊗>m,⊥m, R−1 �⊗⊥m,>m)

3.2.3. A Theorem of K-Four-Fold Formal Concept Analysis

Theorem 6 (Basic theorem of K-4FCA ). Let G be a set of formal objects, M a set of formal
attributes, (G, M, R)K a K-biased context, and invertible values ϕ = γ⊗ µ. Then:
1. The context analysis phase. Consider the scaled spaces of (29).

(a) The polar and co-polar operators, left and right adjuncts of (30), (33), (36), and (39)
form a quadruple Galois connection as in Figures 2 and 4 whose generalized or 4-fold
formal ϕ-concepts are the quadriconcepts (a, b, c, d) of Definition 4 whence the set of
generalized formal concepts is Qϕ(G, M, R)K .

(b) The set of quadriconcepts with the hierarchical order of Definition 4 is a complete
lattice called the quadrilattice Q

ϕ
(G, M, R)K = 〈Qϕ(G, M, R)K ,≤〉 with infima

and suprema given componentwise from (44) as:
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∧
t∈T

(at, bt, ct, dd) =

(∧
t∈T

at,
∨
t∈T

bt,
∨
t∈T

ct,
∧
t∈T

dt

) ∨
t∈T

(at, bt, ct, dd) =

(∨
t∈T

at,
∧
t∈T

bt,
∧
t∈T

ct,
∨
t∈T

dt,

)
(82)

(c) The concept-forming functions γ4() : G → Q
ϕ
(G, M, R)K and µ4() : M →

Q
ϕ
(G, M, R)K

g 7→ γ4(g) = γ4

(
(
�
EG)g

)
m 7→ µ4(m) = µ4

(
(
�
EM)m

)
(83)

—where
�
eg = (

�
EG)g and

�
em = (

�
EM)m select the vectors representing the singletons

{g} and {m}, respectively, and
�
EG and

�
EM are the matrices of unitary vectors for

objects and attributes, respectively—are mappings such that γ4(G) is supremum-
dense in Q

ϕ
(G, M, R)K , and µ4(M) is infimum-dense in Q

ϕ
(G, M, R)K .

2. The context synthesis phase.

(a) A complete lattice L = 〈L,≤〉 is isomorphic to (read “can be built as”) the quadrilattice
Q

ϕ
(G, M, R)K if and only if there are mappings γ : G → L and µ : M → L such

that

• γ(G) is supremum-dense in L , µ(M) is infimum-dense in L, and
• R(g, m) ≥ ϕ is equivalent to γ(g) ≤ µ(m) for all g ∈ G and all m ∈ M.

(b) In particular, consider the doubling context of L, K(L) = (L, L, Rϕ
≤), and the standard

context of L, S(L) = (J(L), M(L), Rϕ
≤) where J(L) and M(L) are the sets of join-

and meet-irreducibles, respectively, of L, and

Rϕ
≤ =

{
ϕ if γ(g) ≤ µ(m)

⊥ otherwise
(84)

then
Q

ϕ
(L, L, Rϕ

≤)K
∼= L ∼= Q

ϕ
(J(L), M(L), Rϕ

≤)K .

Proof. For the analysis part, statement (1.a) comes from Theorem 4, Proposition 3.2 and
the definition of quadrilattice. For statement (1.b) note that the quadruple order of (80) is
just the gathering of all the orderings of the connections. The component-wise infima and
maxima come from Proposition 3.3. Finally, (1.c) are just object and attribute interfaces to
the concept-forming functions of Corollary 7 based on the unitary vectors which obtain the
join- and meet-irreducibles by Lemma 8, that is,

γ4(G) = γ4

(
�
EG

)
µ4(M) = µ4

(
�
EM

)
. (85)

For the synthesis part, we apply Theorem 1 twice: first on the lattice L to create and
isomorphic copy of it as a concept lattice, B(G, M, I)1, then once again on a quadrilattice
and B(G, M, I)2 and we require that both concept lattices are the same. Here are the details.

For the first application, we have that L ∼= B(G, M, I)1 iff there are mappings γ : G →
L and µ : M→ L so that γ(G) and µ(M) are join- and meet dense in L; gI1m ⇐⇒ γ(g) ≤
µ(m) for all g ∈ G, m ∈ M; and ([20], Ch. 3), provides an explicit form for the isomorphic
pair of functions:

φ1 : BG → L ψ1 : L→ BG (86)

A 7→ φ1(A) =
∨

g∈A
γ(g) x 7→ ψ1(x) = {g ∈ G | γ(g) ≤ x} ∆

= Ax
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Note that the isomorphism is only actually with the lattice of extents instead of
the whole concept lattice. Taking this hint for the second application we concentrate
on the lattice of extents instead of the whole quadrilattice. We have that B(G, M, I)2 ∼=
B

ϕ
G(G, M, R)K when there are mappings γ4() : G → B

ϕ
G(G, M, R)K and µ4() : M →

B
ϕ
G(G, M, R)K so that γ4(G) and µ4(M) are join- and meet dense in Q

ϕ
(G, M, R)K , respec-

tively, and on the other hand, gI2m ⇐⇒ γ4(g) ≤ µ4(m) for all g ∈ G, m ∈ M. We develop
the last part of the equation:

γ4(g) ≤ µ4(m) ⇐⇒ γ4

(
�
eg

)
≤ µ4

(
�
em

)
(Definition)

⇐⇒ πR( �eg) ≤ �
em
↓
R

(Focus on extents)

⇐⇒ R
�
⊗(R~

�
⊗
�
eg) ≤ R

�
⊗(

�
em)
−1 (Definition of adjuncts)

⇐⇒ (
�
eg)
~ �⊗ R ≥ (

�
em)

T (Compatibility of products, conjugation)

⇐⇒ (
�
eg)
~ �⊗ R

�
⊗(

�
em)
−1 ≥ e (Vector residuation)

If we restitute the expressions for the scalings in the ambient spaces:

γ−1 ⊗ (
�
eg)
~ �⊗ R

�
⊗(

�
em)
−1 ⊗ µ−1 ≥ e ⇐⇒ (

�
eg)
~ �⊗ R

�
⊗(

�
em)
−1 ≥ γ⊗ µ = ϕ

whence

gI2m ⇐⇒ R(g, m) ≥ ϕ (87)

We can also provide an explicit form for the isomorphism, again onto the lattice of
extents on both accounts using πR(g) = πR( �eg):

φ4 : BG → B
ϕ
G(G, M, R)K ψ4 : Bϕ

G(G, M, R)K → BG (88)

A 7→ φ4(A) =
∨

g∈A
πR(g) a 7→ ψ4(a) = Aa = {g ∈ G | πR(g) ≤ a}

To complete the proof, we just match these two isomorphisms: First, recall that
the concept forming functions of part (1.c) obtain the join- and meet-dense as in (85).
Notice how the G and M for B(G, M, I)2 are those of (G, M, R)K. When we equate it to
B(G, M, I)1 the same G and M are those to be injected into L as dense elements. Second,
if we equate both concept lattices, we also equate their induced contexts whence γ(g) ≤
µ(m) ⇐⇒ gIm ⇐⇒ R(g, m) ≥ ϕ.

Third, since the composition of isomorphisms (of orders) is also an isomorphism (of
orders), we get the full expression of the overarching isomorphism:

φ : Bϕ
G(G, M, R)K → L ψ : L→ B

ϕ
G(G, M, R)K (89)

a 7→ φ(a) = φ1(ψ4(a)) =
∨

g∈Aa

γ(g) x 7→ ψ(x) = φ4(ψ1(x)) = φ4(Ax) =
∨

g∈Ax

πR( �eg)

Then the statements in (2.b) follow by either considering G ≡ L and M ≡ L and the
relation defined by (84) for the “double context” (L, L, Rϕ

≤)K or analogously concentrating
on the join- and meet reducibles G = J (L) and M = M(L) for the “small context”
(J (L),M(L), Rϕ

≤)K. Of course, instead of just inserting the lattice of extents, we synthesize
the whole quadrilattice from it, e.g. by using the context building function on the ϕ extents
Q

ϕ
(G, M, R)K = γ4

(
B

ϕ
G(G, M, R)K

)
.

Example 3 (FCA as K-4FCA ). The column spaces of all Galois connections between idempotent
spaces are complete lattices, and the synthesis part of the Fundamental Theorem 1 ensures that these
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can be expressed as the concept lattice of a particular context. This is what the proof of Theorem 6 is
based upon.

However, “Standard” FCA can be implemented by 33-4FCA using the default scaling ϕ =
γ = µ = e (actually, any value other than ⊥), synthesizing L ≡ B(G, M, I) as Q(G, M, I) ∼=
Q

ϕ
(G, M, Re

I)K and colouring on the first two components (cfr. [25] which uses only K-FCA [33 ]
for a similar purpose).

Since these steps use only elements from 33, an isomorphic copy of which is embedded in every
complete (idempotent) semifield, essentially choosing any of the latter allows for an implementation
of FCA, e.g., computing in the lattice Rmax,+. To maintain the order embedding with the boolean
semiring—33 ⊇ B with 0 < 1—those completed semifields where ⊥ < > should be chosen as bias.

3.2.4. On the Relation between K-4FCA and K-4FCA

The order-dual of Theorem 6 is readily seen by dualizing all of the constructions
and objects used in it, so we will not write it here. The relationship between their results,
however, is not merely about “turning orders upside-down”—that would be the case if

only
�
⊕ and

�
⊕were involved in expressions—but reflects a more profound duality of which

we present some examples below.

Example 4 (Utilities and costs as biases). The bias plays an important role in applications:
For instance, applications that maximize utility functions are naturally thought of with bias
in Rmax,+, while applications that minimize cost functions are naturally thought of with bias in
Rmin,+ = (Rmax,+)−1. The theory sketched above tell us exactly how to pass from thinking in terms
of (additively accumulating, idempotent) utilities to thinking in terms of (additively accumulating,
idempotent) costs. The complete semifield notation, further, allows us to mix them properly.

Example 5 (Resistances and conductances). The same kind of duality is found when adding
resistances (series addition) and conductances (parallel addition of resistances) in circuit analysis.
The upper and lower operators simply model different operations on the same underlying phe-
nomenon (resistivity) that has two manifestations (resistance/conductance). Note that this duality
is manifested in all completed positive semifields, not just in idempotent ones [49].

A quick investigation shows that we may relate the change of bias to the original bias
in K.

Lemma 9. Let (G, M, R) be a formal context, ϕ = γ⊗ µ invertible scalars and K the bias. Then

B
γ
G(G, M, R)K = N

γ
G(G, M, R−1)K B

µ
M(G, M, R)K = N

µ
M(G, M, R−1)K (90)

N
µ
M(G, M, R)K = B

µ
M(G, M, R−1)K N

γ
G(G, M, R)K = B

γ
G(G, M, R−1)K

Proof. The lattice-defining closures of (G, M, R)K are those of the right column of Table 1.
If we substitute R for R−1 we realise that these are the interior operators of (G, M, R−1)K.
Furthermore, we then realize that the polars in (48) are those in (10) for the inverted
incidence R−1. By the unicity of closure and interior operators and their lattices the result
follows for Bγ

G(G, M, R)K = N
γ
G(G, M, R−1)K and B

µ
M(G, M, R)K = N

µ
M(G, M, R−1)K. By

using the bracket 〈x | R | y〉IO
K = x−1

�
\ R

�
/ y~ = xT

�
⊗ R

�
⊗ y that generates the co-Galois

connection with bias in K we obtain the second set of results.

Proposition 7. Let (G, M, R) be a formal context, ϕ = γ⊗ µ invertible scalars and K the bias.
Then

Qϕ(G, M, R)K = (Q
ϕ
(G, M, R−1)K )

−1 (91)



Mathematics 2021, 9, 173 35 of 42

Proof. Note that Qϕ(G, M, R)K has four “component” lattices

Qϕ(G, M, R)K = (Bγ
G(G, M, R)K,Bµ

M(G, M, R)K,Nγ
G(G, M, R)K,Nµ

M(G, M, R)K)

By using the result in (90) we may write

Qϕ(G, M, R)K = (Nγ
G(G, M, R−1)K,Nµ

M(G, M, R−1)KB
γ
G(G, M, R−1)K,Bµ

M(G, M, R−1)K)

Recalling that (c, d, a, b) = (a−1, b−1, c−1, d−1), we apply the inversion operator to the
quadrilattice as a subspace.

(Qϕ(G, M, R)K )−1 = (Nγ
G(G, M, R−1)K,Nµ

M(G, M, R−1)KB
γ
G(G, M, R−1)K,Bµ

M(G, M, R−1)K)
−1

= (Nγ
G(G, M, R−1)K

−1
,Nµ

M(G, M, R−1)K
−1

,Bγ
G(G, M, R−1)K

−1
,Bµ

M(G, M, R−1)K
−1

)

= (B
γ
G(G, M, R−1)K,Bµ

M(G, M, R−1)K,Nγ
G(G, M, R−1)K,Nµ

M(G, M, R−1)K)

= Q
ϕ
(G, M, R−1)K

Since the inversion is an involution, the result follows.

Note that, we have suggested in passing the following results, important for transpo-
sition and conjugation contexts:

Corollary 9. If (a, b, c, d) is a ϕ-quadriconcept of Qϕ
(G, M, R)K , then (d, c, b, a) is a ϕ-quadriconcept

of Qϕ(M, G, R~)K , and vice-versa.

3.2.5. Applications: Context Reduction and Reconstruction

We have prepared two operations on contexts and their quadrilattices: reduction and
reconstruction. Reduction is just a corollary of previous results.

Corollary 10 (context reduction in K-4FCA ). In the conditions of Definition 4 for context
(G, M, R)K, if I is the index of independent rows and J that of independent columns of R, and RI J

the submatrix of R selected by such indices, then Q
ϕ
(G, M, R)K

∼= Q
ϕ
(I, J, RI J)K .

Proof. This is a corollary of Propositions 5 and 6 in the new setting of Definition 4.

It has already been proven that formal concepts allow us to approximate their inci-
dence ([6], Section 3). The following result is a generalization of this.

Lemma 10. Let R ∈ Kg×m be a matrix over a completed idempotent semifield K. Then:

1. Every generalized ϕ-quadriconcept (a, b, c, d) of the generalized concept lattice Qϕ
(G, M, R)K

generates a lower bound in the reconstruction of the matrix,

R ≥ a
�
⊗ b

T
= a

�
⊗ d
~
= c−1

�
⊗ b

T
= c−1

�
⊗ d
~

(92)

2. Every generalized ϕ-quadriconcept (a, b, c, d) of the generalized concept lattice Qϕ(G, M, R)K
generates and upper bound in the reconstruction of the matrix,

R ≤ a
�
⊗ bT = a

�
⊗ d~ = c−1 �⊗ bT = c−1 �⊗ d~ (93)

Proof. We prove this for the left adjunction. Since a∃R = d and d
∀
R = a we have that

a~
�
⊗ R

�
⊗ d ≥ e, whence:

R ≥ a~
�
\ e

�
/ d ⇐⇒ R ≥ a

�
⊗ d
~
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If we try to tighten the bound as in: R ≥ a
�
⊗ b

T

�
⊕ a

�
⊗ d
~

�
⊕ c−1

�
⊗ b

T

�
⊕ c−1

�
⊗ d
~

we

may compact this as R ≥ (a
�
⊕ c−1)

�
⊗(bT

�
⊕ d
~
) but we know from (79) that c = a−1 and

d = b
−1

whence R ≥ (a
�
⊕ a)

�
⊗(d~

�
⊕ d~) = a

�
⊗ d~, the last step, by the idempotency of

the addition. Bias-dually we obtain the upper bound.

The rest of a theory of context reconstruction for quadrilattices can be easily developed
from the results in [6] for a single Galois connection.

4. Discussion

4.1. FCA, K-Formal Concept Analysis and K-4FCA

In essence, the formal analysis of a context (G, M, R)K is based in a Galois connection
induced by linear operations in the dual semifield K and a transformed matrix. Thus
while FCA is eminently about computing with lattices, K-FCA is computing with lattices
in lattices.

While K-FCA (so, indeed, FCA) favours the use of antitone pairs of mutual quasi
inverses—that is, Galois connections—Linear Algebra favours pairs of monotonic quasi-
inverses—that is, left or right adjunctions (Appendix A).

Reasons of symmetry and generalization suggest that any attempt to define K-FCA
in terms of an adjunction would also make the absence of the Galois connections evident
and that is the reason why [23] first suggested that the proper study of K-FCA should
not be a single GC or adjunction, but the four connections at once. This paper is a better
justification and an exploration of that idea and why it is an alternative to just considering
simple linear functions, i.e., adjunctions, as the basic construction in Linear Algebra over
complete idempotent semifields.

4.2. The Case for K-Four-Fold Formal Concept Analysis

Perhaps the most important result that we are providing is Theorem 6. By comparing
the results of Sections 3.1 and 3.2 we may ask ourselves whether K-four-fold Formal
Concept Analysis warrants the reification carried in it.

Of course, one strong reason for it is the synthesis part of Theorem 6: the notions of
independently motivated sets of objects G and attributes M that generate supersets of the
join- and meet-irreducibles by means of the quadriconcept-forming functions suggest that
the conceptualization step of Section 3.2.1 is important for the universal-representation
capabilities of quadrilattices (and concept lattices in general).

This issue is related to Wille’s initial goal to make Lattice Theory more “actionable” [18].
Concepts like the “index sets” used in the reduction process in Section 3.1 would do for
purely algebraic constructs. However, the cognitive implications imposed on concept
lattices by the annotation of object- and attribute-concepts with their respective object
and attribute names provide a lot of the affordances of concept lattices—and by extension
quadrilattices—for data visualization and manipulation [31,32].

Another reason is the existence of the inverses of extents and intents described by the
tetrahedral connection depicted in Figure 4. The relation between extents and co-extents,
intents and co-intents is as intimate—in the existence of the perfect Galois connections
represented by the inversions—as that of extents and intents—in the existence of the Galois
connection of (5). Truly, extent and intents refer to two modes of existence as related by
the matrix, but our point here is that extents and co-extents are two “polarities” of that
existence. Since the choice of bias—K or K—highlights each of those polarities by the
results in Section 3.2.4 its seems important to have the four-types of objects available both
for mathematical manipulation and for cognitive focusing.

Yet, this very straightforward relationship between extents and co-extents, intents and
co-intents, instantiating a very straightforward inversion relationship—or negation from
the point of view of logics—may induce the belief that two of these domains is “more” basic,
vital or irreducible than the others. If so, which? If from the point of view of K-four-fold
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Formal Concept Analysis we take these to be extents and intents, the results in Section 3.2.4
suggest that from the point of view of K-four-fold Formal Concept Analysis , co-extents
and -intents would reasonably be the important ones for the same—dualized—reasons,
and vice-versa. Section 3.2.4, perhaps it is wise to carry all of them so as to maintain all
of their affordances at hand. With the reification we put forward the idea that it is the
quadrilattice the gestalt that captures the better notion of “concept”.

Furthermore, it is well-known that a (concept) lattice does not have, in general,
a complement for each of its elements whereas the existence of complements is neces-
sary for many applications. To wit, measure theory demands that complementary—not
just incompatible—events be available for every event. Quadrilattices show that such
elements may be available even if none of the lattices in the tetrahedron is boolean—hence,
a fortiori, a sigma-algebra. Ways to profit by the wealth of complements available in the
quadrilattices construct should be explored in the future.

The result in Section 3.2.5 on reconstructing the relationship by means of upper and
lower bounds built with the K- or K-quadriconcepts may seem to suggest that only two
of the isomorphic lattices are important, since one two coordinates of the quadriconcepts
are needed for it. Then again, precisely knowing which parts are being considered is
mandatory for a successful reconstruction, what sustains the notion that the quadriconcepts
are gestalten whose parts refer to each other in precisely the manner prescribed by the
four-fold connection.

Although the concept of quadrilattices is developed around invertible scaling, easier
to manipulate algebraically, it is also evident in the results of Section 3.1.2 that it is possible
to define a quadrilattice for ϕ ∈ {⊥,>}, although not very representative of what the
content of relation R is: most K-4FCA using the extremal values on any relation would
return the same 11 or 22 lattices.

As in many previous mathematical explorations, perhaps we should wait until the
applications catch up with the theory for a final ruling in this matter. The paradigm of
computing in (and with) lattices is a promising ground for such endeavours.
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Appendix A. Residuated Maps, Adjunctions and Galois Connections

This section follows [20]. Let P = 〈P,≤P 〉 and Q = 〈Q,≤Q〉 be partially ordered sets.
We have:

• A map f : P → Q is residuated if inverse images of principal (order) ideals of Q
under f are again principal ideals. Its residual map or simply residual, f # : Q→ P is
f #(q) = max{ p ∈ P | f (p) ≤Q q }.
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• A map g : Q→ P is dually residuated if the inverse images of principal dual (order)
ideals under g are again dual ideals. Its dual residual map or simply dual residual,
g[ : P→ Q is g[(p) = min{ q ∈ Q | p ≤P g(q) } .

This duality of concepts is fortunately simplified by a well-known theorem stating
that residual maps are dually residuated, while dual residual maps are residuated, hence
we may maintain only the two notions of residuated maps and their residuals.

In fact, the two notions are so entwined that we give a name to them: an adjoint
pair of maps (λ, ρ) is a pair (λ : P → Q, ρ : Q → P) between two ordered sets such
that ∀p ∈ P, q ∈ Q, p ≤P ρ(q) ⇐⇒ λ(p) ≤Q q , equivalently, p ≤P ρ(λ(p)) and
λ(ρ(q)) ≤Q q .

If the order relation is actually partial the lower or left adjoint, λ is uniquely deter-
mined by its right or upper adjoint, ρ, and conversely. The characterization theorem for
adjoint maps states that (λ, ρ) are adjoint if and only if, λ is residuated with residual ρ, or
equivalently, ρ is dually residuated with λ its dual residual.

Now consider the orders P = 〈P,≤P 〉 and Q = 〈Q,≤Q〉 and their order duals
Pd = 〈P,≥P 〉 and Qd = 〈Q,≥Q〉, to obtain two adjoint and two dually adjoint pairs:

Definition A1. (Four different types of Galois connections and adjunctions)

1. (λ, ρ) is an adjunction on the left or simply a left adjunction, and we write (λ, ρ) : P � Q
iif: ∀p ∈ P, q ∈ Q λ(p) ≤Q q⇔ p ≤P ρ(q) , that is, the functions are covariant, and we
say that λ is the lower or left adjoint while ρ is the upper or right adjoint .

2. (ρ, λ) : P
Q is an adjunction on the right or simply a right adjunction iff: ∀p ∈ P, q ∈
Q ρ(p) ≥Q q⇔ p ≤P λ(q) , both functions are covariant, ρ is the upper adjoint, and λ
the lower adjoint.

3. (ϕ, ψ) is a Galois Connection (proper), of two dual adjoints (ϕ, ψ) : P↼⇀Q iff: ∀p ∈ P, q ∈
Q ϕ(p) ≥Q q ⇔ p ≤P ψ(q) , that is, both functions are contravariant. For that reason
they are sometimes named contravariant or symmetric adjunctions on the right.

4. (4,4′) is a co-Galois connection, of dual adjoints (4,4′) : P⇁↽Q if: ∀p ∈ P, q ∈
Q 4(p) ≤Q q⇔ p ≥P 4′(q) , that is, both functions are contravariant. For that reason
they are sometimes named contravariant or symmetric adjunctions on the left. (4′,4) is also
a co-Galois connection.

Furthermore, as a sort of graphical summary, we introduce the diagram to the upper
left-hand corner of Figure A1 as the pattern that carries the structures described in [17].

We illustrate how to read it with the diagram at the top left, which has:

• A closure system, ρ(Q) = P, the closure range of the right adjoint (see below).
• An interior system, λ(P) = Q, the kernel range of the left adjoint (see below).
• A closure function [37] [suggest “closure operator”] γP = ρ ◦ λ ≥P IP , from P to

the closure range P = ρ(Q), with adjoint inclusion map ↪→P , where IP denotes the
identity over P.

• A kernel function [37] [also “interior operator”, “kernel operator”] κP = λ ◦ ρ ≤Q IQ,
from Q to the range of Q = λ(P), with adjoint inclusion map ↪→Q , where IQ denotes
the identity over Q.

• a perfect adjunction (λ̃, ρ̃) : P�Q, that is, a dual order isomorphism between the
closure and kernel ranges P and Q.
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ϕ φ
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φ

ϕ
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φ
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(b)

P Q

P Q

4

κP

4

4′

κQ
4
′

4

↪→P

4′
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(c)

P Q

P Q

ρ

κP

ρ λ

γQ
λ

ρ

↪→P

λ

↪→Q

(d)
Figure A1. Diagrams visually depicting the maps and structures involved in the adjunction on the left (λ, ρ) : P�Q (top left),
Galois connection (ϕ, ψ) : P↼⇀ Q (top right), the co-Galois connection (4,4′) : P⇁↽ Q (bottom left) and the adjunction on the right
(ρ, λ) : P
Q (bottom right) between two partially ordered sets (adapted from [17]). Closure operators are denoted by γP, γQ ,
interior (kernel) operators by κP, κQ , closure systems by P, Q and interior (kernel) systems by P, Q . (a) A left adjunction, (b) A Galois
connection, (c) A co-Galois connection, (d) A right adjunction.

Compare the mathematical objects above with those in a Galois connection proper seen
in the top right of Figure A1: the ranges are both closure systems and both compositions
closure operators due to the dualisation of the second set (we write γQ for the new closure
operator), resulting in the well-known perfect Galois connection, (ϕ̃, ψ̃) : P↼⇀Q , the pair
of dual order-isomorphic closure ranges lying at the heart of Formal Concept Analysis. The
diagrams in the bottom left and right of Figure A1 show analogue structures for co-Galois
connections and right adjunctions respectively.

The different monotonicity conditions account for different properties of the adjoint
maps [20]:

• if (λ, ρ) form a left adjunction, then λ is residuated, preserves existing least upper
bounds (for lattices, joins) and ρ preserves existing greatest lower bounds (for lattices,
meets).

• if (ϕ, ψ) form a Galois connection, then both ϕ and ψ invert existing least upper
bounds (for lattices, they transform joins into meets).
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• if (ρ, λ) form a right Galois connection, then ρ preserves existing greatest lower bounds
(meets for lattices) and λ is residuated, preserves existing least upper bounds (joins
for lattices).

• if (4,4′) form a co-Galois connection, then both 4 an 4′ invert existing greatest
lower bounds (for lattices, they transform meets into joins).

Table A1 summarises the main properties of all types of Galois connections.

Table A1. Summary of Galois connections and their properties, for P, Q posets.

Left Adjunction (TYPE OO): (λ, ρ) : P �Q Galois Connection (TYPE OI): (ϕ, ψ) : P ↼⇀Q
∀p ∈ P, q ∈ Q λ(p) ≤Q q⇔ p ≤P ρ(q) ∀p ∈ P, q ∈ Q ϕ(p) ≥Q q⇔ p ≤P ψ(q)

IP ≤ ρ ◦ λ and IQ ≥ λ ◦ ρ IP ≤ ψ ◦ ϕ and IQ ≤ ϕ ◦ ψ
λ = λ ◦ ρ ◦ λ and ρ = ρ ◦ λ ◦ ρ ϕ = ϕ ◦ ψ ◦ ϕ and ψ = ψ ◦ ϕ ◦ ψ

λ monotone, residuated ϕ antitone
ρ monotone, residual ψ antitone

λ join-preserving, ρ meet-preserving ϕ join-inverting, ψ join-inverting

co-Galois connection (TYPE IO): (4,4′) : P⇁↽Q Right Adjunction (TYPE II): (ρ, λ) : P
Q
∀p ∈ P, q ∈ Q 4(p) ≤Q q⇔ p ≥P 4′(q) ∀p ∈ P, q ∈ Q ρ(p) ≥Q q⇔ p ≤P λ(q)

IP ≥ 4′ ◦ 4 and IQ ≥ 4 ◦4′ IP ≥ λ ◦ ρ and IQ ≤ ρ ◦ λ
4 = 4 ◦4′ ◦ 4 and4′ = 4′ ◦ 4 ◦4′ ρ = ρ ◦ λ ◦ ρ and λ = λ ◦ ρ ◦ λ

4 antitone ρ monotone, residual
4 antitone λ monotone, residuated

4meet-inverting,4′ meet-inverting ρ meet-preserving, λ join-preserving

See [38] for a revision of the genesis and importance of Galois Connections and
adjunctions, as well as a discussion of the different notation and nomenclatures for these
concepts. An early tutorial with mathematical applications in mind is [36].

A Naming Convention for Galois Connections

The following naming convention was put forward in [17]. It stresses the composition
with order- and dual order-isomorphisms and relates to the original names as annotated
in Figure A1.

• We take the TYPE OO Galois connection to be a basic adjunction composed with an
even number of anti-isomorphism on the domain and range orders.

• To obtain a TYPE OI Galois connection compose a basic adjunction with an odd number
of anti-isomorphism on the range.

• To get a a TYPE IO Galois connection we compose a basic adjunction with an odd
number of anti-isomorphisms on the domain.

• Finally, a TYPE II Galois connection, is a basic adjunction with an odd number of
anti-isomorphisms composed on both the domain and range.
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