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Abstract
In the current electric propulsion industry for space applications, two of the main issues are the

lifetime limitation of the mature technologies, Hall effect thrusters and gridded ion thrusters, due to
the erosion of their electrodes; and the search for alternative propellants due to the scarcity of xenon.
Electrodeless thrusters with magnetic nozzles, in particular the helicon plasma thruster and the electron
cyclotron resonance thruster, are disruptive electric propulsion concepts that offer prolonged lifetime
and tolerance for a wide variety of propellants. These thrusters are still under development, and further
research is necessary for them to become competitive in terms of propulsive performances.

This thesis is focused on the modeling and simulation of the plasma discharge in electrodeless
thrusters with two codes. HYPHEN, a two-dimensional axisymmetric hybrid code, is used for full sim-
ulations of the thrusters. This code was extended from Hall effect thrusters to electrodeless thrusters,
within the objective of developing a multi-thruster simulation platform valid for many types of electro-
magnetic thrusters. VLASMAN, a one-dimensional kinetic code, is used for simulations of the plasma
expansion along the magnetic nozzles.

The hybrid formulation of HYPHEN offers a good trade-off between computational cost and re-
liability of the results for full simulations, with a particle-in-cell model for heavy species and a fluid
model for electrons. The particle model was ready for use from previous works, while the fluid model,
with the basis established, was incomplete from the numerical point of view. The fluid model is solved
on a magnetic field aligned mesh given the anisotropic character of the strongly magnetized electrons.
However, the mesh, for realistic magnetic field topologies, can be highly irregular and the preliminary
numerical algorithms were leading to inaccurate results. Thus, in this thesis, the numerical treatment of
the fluid model is investigated, and solid numerical algorithms are found allowing to solve even com-
plex magnetic topologies with singular points. Once the electron fluid model is completed, simulations
coupled with the particle model are run for the helicon plasma thruster prototype HPT05M. The simu-
lations are focused on the plasma transport assuming a known power deposition map from the helicon
antenna. The thruster performances and profiles of plasma magnitudes are studied. The prototype is
partially optimized, in terms of some design parameters, but the thrust efficiencies obtained are within
the state-of-art. The main limitations for a full optimization beyond the state-of-art are identified and
solutions are proposed.

Furthermore, HYPHEN was initially developed to simulate xenon and other atomic propellants.
In this thesis, as many candidates for alternative propellants usually have more complex chemistry, the
code is implemented with the main collisions for diatomic substances. Simulations are run with air
as propellant for HPT05M testing successfully the implementation. The results have allowed also to
evaluate the air-breathing concept in helicon plasma thrusters.

The kinetic formulation of VLASMAN is used for deeper studies of the plasma expansion along
the magnetic nozzles. In the expansion, the plasma becomes very rarefied, and more accurate simula-
tions than those from HYPHEN are required. Other one-dimensional steady state models were used
in previous works, however they were not able to solve self-consistently a subpopulation of electrons
trapped along the expansion. VLASMAN models the mechanisms responsible for the trapping of elec-
trons, the transient and collisional processes. Simulations with VLASMAN are run to study the trapped
electrons in terms of the transient history and collisionality. The solution of the subpopulation, and that



xi

of the whole plasma, reached in the steady state is found dependent on the transient history. Once the
collisions are added, even if rare, the transient history is erased and the steady state solution becomes
unique. The amount of trapped electrons is found important on the electron cooling and on the balances
of electron momentum and energy. Furthermore, some studies focused on the extraction of results for
implementation in macroscopic models are conducted.
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Resumen
En la industria actual de la propulsión eléctrica para aplicaciones espaciales, dos de los principales

problemas son la limitación de la vida útil de las tecnologías maduras, propulsores de efecto Hall y
propulsores iónicos con rejillas, debido a la erosión de sus electrodos; y la búsqueda de propulsantes
alternativos debido a la escasez del xenón. Los propulsores sin electrodos con tobera magnéticas, en
particular el propulsor Helicón y el propulsor cicloelectrónico, son conceptos de propulsión eléctrica
disruptivos que ofrecen una vida útil prolongada y tolerancia a una amplia variedad de propulsantes.
Estos propulsores aún están en desarrollo y se necesita más investigación para que sean competitivos
en términos de actuaciones propulsivas.

Esta tesis se centra en el modelado y simulación de la descarga de plasma en propulsores sin elec-
trodos con dos códigos. HYPHEN, un código híbrido axisimétrico bidimensional, se usa para sim-
ulaciones completas de los propulsores. Este código es extendido de los propulsores de efecto Hall
a los propulsores sin electrodos, bajo el objetivo de desarrollar una plataforma de simulación multi-
propulsor válido para muchos tipos de propulsores electromagnéticos. VLASMAN, un código cinético
unidimensional, se usa para simulaciones de la expansión del plasma a lo largo de las toberas magnéti-
cas.

La formulación híbrida de HYPHEN ofrece un buen punto intermedio entre el coste computa-
cional y la fiabilidad de los resultados para simulaciones completas, con un modelo de partículas para
especies pesadas y un modelo fluido para electrones. El modelo de partículas estaba ya listo para su uso
de trabajos anteriores, mientras que el modelo fluido, con la base establecida, estaba incompleto desde
el punto de vista numérico. El modelo fluido se resuelve en una malla alineada con el campo magnético
dado el carácter anisotrópico de los electrones fuertemente magnetizados. Sin embargo, la malla, para
topologías de campos magnéticos realistas, puede ser muy irregular y los algoritmos numéricos prelim-
inares llevaban a resultados inexactos. En esta tesis, se investiga el tratamiento numérico del modelo
fluido y se encuentran algoritmos numéricos sólidos que permiten resolver incluso topologías mag-
néticas complejas con puntos singulares. Una vez que se completa el modelo fluido, se llevan a cabo
simulaciones junto con el modelo de partículas para el prototipo de propulsor Helicón HPT05M. Las
simulaciones se centran en el transporte de plasma asumiendo un mapa conocido de deposición de
potencia de la antena Helicón. Se estudian las actuaciones del propulsor y perfiles de las magnitudes
del plasma. El prototipo se optimiza parcialmente, en términos de algunos parámetros de diseño, pero
las eficiencias de empuje obtenidas están dentro del estado de arte. Se identifican las principales lim-
itaciones para una optimización total más allá del estado de arte y se proponen soluciones.

Además, HYPHEN se desarrolló inicialmente para simular xenón y otros propulsantes atómicos.
En esta tesis, como muchos candidatos a propulsantes alternativos suelen tener una química más com-
pleja, el código se implementa con las principales colisiones de sustancias diatómicas. Simulaciones se
llevan a cabo con aire como propulsante para el HPT05M testeando con éxito la implementación. Los
resultados también han permitido evaluar el concepto de air-breathing en los propulsores Helicón.

La formulación cinética de VLASMAN se utiliza para estudiar con mayor profundidad la expan-
sión del plasma a lo largo de las toberas magnéticas. En la expansión, el plasma se vuelve muy en-
rarecido y se requieren simulaciones más precisas que las de HYPHEN. En trabajos anteriores se uti-
lizaron otros modelos unidimensionales estacionarios, sin embargo, no pudieron resolver de manera
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autoconsistente una subpoblación de electrones atrapados a lo largo de la expansión. VLASMAN mod-
ela los mecanismos responsables del atrapado de electrones: los procesos transitorios y colisionales.
Simulaciones con VLASMAN se llevan a cabo para estudiar los electrones atrapados en términos del
transitorio y colisionalidad. La solución de la subpoblación, y la de todo el plasma, alcanzada en el
estacionario depende del transitorio. Una vez que se incluyen las colisiones, incluso si son poco fre-
quentes, se borra el transitorio y la solución estacionaria colapsa en una única. Se descubre que la
cantidad de electrones atrapados es importante en el enfriamiento y en el balance de momento y en-
ergía de los electrones. Además, se realizan algunos estudios enfocados a la extracción de resultados
para su implementación en modelos macroscópicos.
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Chapter 1

Introduction

Electric propulsion (EP) for space missions was proposed in the early 20th century, and independently
by Goddard in 1906 [36] and Tsiolkovsky in 1911 [66]. However, only after 1950s, the space exploration
was impulsed in the context of the space race between US and USSR, and the first EP systems were
introduced. The Gridded Ion Thruster (GIT) and Hall Effect Thruster (HET), two of the most com-
mon mature EP systems nowadays, were first launched, respectively, by US in 1962 and USSR in 1971
[37]. Since then, EP has been developing continuously, and currently it is substituting the traditional
chemical propulsion (CP). There are initiatives such as the All-Electric Propulsion Satellite by Boeing,
the Eurostar Series satellite platforms with the option of full EP by Airbus, and the Starlink satellite
internet constellation by SpaceX, which contribute to full EP implementation for satellites in the near
future.

The EP systems use the on-board electric power of the spacecraft, usually supplied by solar panels,
to ionize the propellant and accelerate the resulting plasma with electromagnetic fields to generate
thrust [46, 37]. In principle, EP systems have no limitations on the specific impulse, i.e. the exhaust
velocity of the propellant. Conversely, in CP systems, the specific impulse obtained from combustion is
limited by the fuel specific chemical energy, a property intrinsic to the type of fuel. The rocket equation,
or Tsiolkovsky’s equation, relates the total impulse and the propellant mass needed for a mission as

∆V = Ispg0 ln
mdry + mprop

mdry
→

mprop

mdry
= exp

∆V
Ispg0

− 1, (1.1)

where: ∆V is the total impulse; mdry is the dry mass of the spacecraft, mprop the propellant mass; and Isp

is the specific impulse of the propulsion system with g0 = 9.8m/s2. We see that the higher the specific
impulse is the lower the required mass of propellant is, and typical values of Isp for EP are around
1000-5000s, while for CP are in the range 100-500s. Then, EP allows significant savings in propellant
mass, and therefore in mission costs since the weight during the launch is usually the main contribution
to the mission budget. The main drawback of EP is that the available power on-board is limited, and
the thrust produced is much smaller (thrust-to-weight 10−6-10−4, for GIT and HET) than in CP (thrust-
to-weight 10−2-102). The time for a manoeuvre is prolonged with EP, and is used mainly for in-space
manoeuvres such as station keeping, drag compensation, orbit transfers, orbit adjustments, etc.

EP systems are commonly classified based on the thrust mechanism, which can be electrothermal,
electrostatic or electromagnetic [47]:
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• Electrothermal. The thrust is due to the pressure of the plasma on the thruster walls. The plasma
is heated with electric power and expanded in a solid nozzle, in a similar way as in chemical
thrusters.

• Electrostatic. The thrust is produced by the electric force of plasma on electrodes. The plasma is
accelerated by the electrodes biased to different electric potentials.

• Electromagnetic. The thrust is generated by the interaction between the plasma currents and
the currents of the thruster magnetic circuit (created by a set of coils or magnets for an applied
magnetic field).

Two of the mature technologies, GIT and HET, belong, respectively, to the second and third group.
GIT ionizes the propellant with bombardment of high-energy electrons emitted by a hollow cathode.
The ions are accelerated with an electric field created by biased grids, and the ejected ion beam is
neutralized by the electrons of a second external hollow cathode. GIT is the EP thruster with best per-
formances: specific impulse∼ 3000s and thrust efficiency∼ 70%. HET has an internal anode and an ex-
ternal hollow cathode. The hollow cathode emits electrons: part of them goes to the anode, collide with
the propellant and produces ionization; and another part goes to neutralize the ejected ion beam. The
magnetic field is applied in-between the electrodes and makes the electrons drift azimuthally, which
prevents from short circuiting the discharge and generate the thrust. HET performances are a bit worse:
specific impulse ∼ 1500s and thrust efficiency ∼ 50%. The main drawback of GIT and HET is that the
operational lifetime is limited by the erosion of the electrodes. GIT has a lifetime about 30000hours (3
year) and HET has about 10000hours (1 year), but the modern satellites are designed, usually, to last for
more than 20 years on average.

Commercial EP thrusters use mostly xenon as propellant [37]. Xenon has a very good trade-off
of properties: low energy threshold for ionization, which means less power losses; heavy element,
good for thrust generation; and chemically inert, so that reactions with the electrodes, which modify
their properties, are avoided. However, xenon is a scarce element on Earth, the supply is poor and
will not satisfy the foreseen demand in the near future [77, 42]. Propellants alternative to xenon have
been searched, and currently there are many candidates. Traditionally, other noble gases, e.g argon
and krypton, have been proposed [35]. These are more abundant than xenon in the atmosphere, but
are still rare gases. On the other hand, non-noble substances have been investigated as well. Iodine is
advantageous from a system point of view, which allows compact storage in solid state and does not
need high pressure tanks, and has similar performances compared to xenon [99, 114]. Water, which
is abundant in the solar system, would make feasible the concept of in-situ resources utilisation for
propellant replenishment [75, 74, 94]. New thrust concepts have also appeared in this context, such as
the air-breathing thrusters, which have potential use in low Earth orbits for drag compensation. Since
no large propellant storage is needed, this concept would allow long-term missions at low altitudes
[28, 29, 87, 8]. The problem is that the non-noble substances, although versatile, are reactive, and will
further reduce the lifetime for HET and GIT.

The Electron Cyclotron Resonance Thruster (ECRT) and the Helicon Plasma Thruster (HPT) are
novel thrusters [11, 93, 2, 105], which have an electrothermal/electromagnetic character. The plasma,
mainly the electrons, is heated via interaction with electromagnetic waves emitted by an antenna. Once
energized, the electrons collide with the propellant and are able to ionize. The magnetic field applied in
conventional designs, is quasi-axial inside and divergent outside the thruster. Inside, the field screens
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the plasma from the walls to reduce the losses, and outside operates as a magnetic nozzle: it chan-
nels and accelerates the plasma to generate thrust, in an analogous way to a solid nozzle but being
contactless. The main difference between ECRT and HPT is in the way the plasma is produced and
heated. In ECRT, the frequency of the electromagnetic waves excites the electron cyclotron resonance,
and typically is within the microwave range of GHz. The electron cyclotron frequency is proportional
to the applied magnetic field, and the resonance happens usually around a localized surface since the
field strength is spatially dependent. In HPT, the radiofrequency range of MHz is used to get a helicon
plasma source, and heating is generally less localized.

The ECRT and HPT are electrodeless and, in principle, should have a longer lifetime than GIT
and HET. Being electrodeless makes them also tolerant to a wide range of propellants, even non-noble
substances [122, 123, 17]. They have a specific impulse around 1000s, and could substitute HET and GIT
in several scenarios. However, they are still under research, with a Technology Readiness Level (TRL)
of 4-5 [25]. The existing prototypes report still low performances and results of direct measurements
from thrust balances show that the thrust efficiency is below 10% [116, 81, 96, 106], which is still not
competitive with respect to GIT and HET. Research is being conducted extensively for ECRT and HPT
in order to increase their TRL and thrust efficiency. In Europe, there is a Strategic Research Cluster
on in-space EP, within the program Horizon 2020 promoted by the European Commission, to conduct
research on new disruptive EP technologies and concepts. Among them, there is the MINOTOR project
for ECRT, and the HIPATIA project for HPT.

The physics behind the operation of ECRT and HPT is not fully understood yet, which makes diffi-
cult to optimize their design, and further research is required. The theoretical models have flexibility to
perform fast parametric studies, and can estimate certain properties which experiments cannot measure
easily. Thus, the models, if reliable, are useful to guide the future designs. The methods for modeling
(with a decreasing level of complexity are):

• Kinetic approach [89, 121]. This describes the species with their distribution functions in phase-
space (i.e. physics-velocity space), which are obtained solving the Boltzmann equation. It is the
most accurate level for modeling. However, the application to full simulations of the plasma
discharge in thrusters means to simulate 6 dimensions, which is very costly from a computational
point of view.

• Particle-in-cell (PIC) approach [40, 115, 100, 104, 22, 26]. This is actually an alternative Lagrangian-
Eulerian form of the kinetic approach. The species distribution functions are discretized in macropar-
ticles, which are followed considering the forces applied to each of them. The level of accuracy
is similar to the kinetic approach, but there is noise in the results associated to the statistics of
the macroparticles. The smallest spatial and temporal scales, which are determined by the elec-
trons, need to be solved. Due to the large disparity in mass with respect to the heavy species, this
approach is not proper for full simulations either.

• Fluid approach [49, 71]. This characterizes directly the macroscopic properties of the species (e.g.
density, velocity and temperature), which are obtained solving a macroscopic model: a set of
equations from the velocity moments of the Boltzmann equation. This approach is much faster
than the kinetic and PIC ones but needs assumptions to close the model, which may reduce its
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physical consistency. At each step of the hierarchy of moments to the Boltzmann equation, macro-
scopic terms of next order appears. The equations need to be truncated at some point and closures
for the higher order terms are needed, which usually are energy equation and heat flux.

Aside from the pure approaches above, the hybrid approach using PIC for heavy species and fluid
for electrons is viewed as an excellent trade-off between accuracy and computational costs. The ac-
cepted standards of this approach was introduced by Fife, Parra and coworkers in Refs. [33, 78], with
the development of the codes HPHALL and HPHALL-2 for HET. Similar formulations afterwards were
used by other authors [39, 53]. In these codes, the PIC subcode is two-dimensional axisymmetric, and
the fluid subcode is partially 2D. Only ‘regular’ magnetic field topologies can be solved, i.e. with mag-
netic streamlines connecting inner and outer walls of an annular HET chamber and without singular
magnetic points. The electrons in HETs are confined within magnetic field lines, and those lines are
considered isothermal and equations are formulated for averaged electron magnitudes along them.
Nowadays, most new thrusters present more complex magnetic topologies [41, 50], which do not fit
within the capabilities of these codes. In particular: modern HET designs tend to implement magnetic
shielding of chamber walls [72, 73]; an alternative version of the HET, the High Efficient Multistage
Plasma Thruster, relies on magnetic topologies with several singular points and cusp-type topologies
[52]; and the HPT and the ECRT present magnetic nozzles with magnetic lines closing far away from
the thruster main chamber.

Our research group, Equipo de Propulsion Espacial y Plasmas (EP2) [32], is devoted to theoreti-
cal modeling in EP (with also extensive experimental activities), and is involved in many EP research
projects for the mature technologies and also for the novels ones ECRT and HPT, e.g. the projects
MINOTOR and HIPATIA mentioned above. Following the advantages of hybrid approaches, and as
continuation of the codes HPHALL and HPHALL-2, EP2 is developing HYPHEN [79, 31]: a multi-
thruster simulation platform to be applied for many types of electromagnetic thrusters, which was
initiated for HET and is extensible to ECRT and HPT. The code is 2D axisymmetric for heavy species
and electrons, with improvements to the previous ones. In the PIC subcode, a population control algo-
rithm is implemented to reduce the noise in the results, and dedicated computational lists are used for
each species to have the flexibility to handle mixtures of as many species as possible and the interac-
tions between them. In the fluid subcode, a fully 2D magnetized electron model is implemented. Since
magnetized electrons have anisotropic transport properties, the use of a magnetic field aligned mesh
(MFAM) avoids numerical diffusion [9, 80]. However, for realistic and complex magnetic topologies,
the use of a MFAM face many challenges such as the selection of schemes for numerical derivatives, and
the solution around the highly irregular boundary cells for this non-Cartesian mesh and an anisotropic
fluid.

As long as the Debye length is the smallest length of the plasma, and plasma quasineutrality holds
except in thin Debye sheaths around surfaces, hybrid codes benefit from quasineutrality being easily
implemented. HYPHEN is organized in three main modules: the Ion(I)-module, solving the dynamics
of the various ions and neutral species, the Electron(E)-module solving the electron response, and the
Sheath(S)-module solving the plasma interaction with different types of surfaces (dielectric, metallic,...)
[3, 79]. A fourth Wave(W)-module, solving the plasma-wave interaction and energy deposition, would
be necessary for electrodeless thrusters such as the HPT and the ECRT.

Furthermore, the plasma expansion along magnetic nozzle needs deeper analyses with a separate
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code. The plasma becomes very rarefied, and one-dimensional kinetic steady-state models [64, 4] have
been used. However, these models cannot solve self-consistently a subpopulation of electrons trapped
along the expansion, which are generated via transient processes or infrequent collisions, and are shown
to have a significant role on the properties of the expansion [86].

1.1 Thesis scope and objectives

In the framework of this thesis, HYPHEN is extended to HPT and ECRT plasmas. As aldready shown,
the modeling of these thrusters has two distinguished parts: plasma transport and plasma-wave inter-
action. The first part shares synergies with HETs, since in all these thrusters the plasma dynamics is
under an applied magnetic field. The main changes are associated to the different magnetic topologies
and their functions, and the different plasma heating mechanism. The second part is exclusive of HPTs
and ECRTs, and requires an additional model. This thesis is focused mainly on the plasma transport,
while the plasma-wave interaction is the objective of other related PhD theses [112, 48].

HYPHEN is improved in the numerical and modeling aspects. In the former, the electron fluid
model was not solved correctly due to the numerical problems on a MFAM. The numerical treatment
of the model is investigated thoroughly to find proper algorithms that assure the accuracy of the re-
sults. In the latter, the collisions of diatomic molecules are implemented so that simulations of complex
alternative propellants can be conducted.

The code, once assured the accuracy of the results, is applied to solve self-consistently the main
aspects of the plasma discharge and the plasma temperature given a known power deposition map,
and thus understand the physical phenomena in electrodeless thrusters with magnetic nozzles. The
main design parameters are studied, the main reasons of the low performances are identified, and
improvements are proposed. Furthermore, the code is used to assess the air-breathing concept for this
type of thrusters by studying air as alternative propellant. The discussions in this thesis are focused
mainly on HPTs, in particular on the prototype HPT05M [76], which is being developed within EP2 in
collaboration with SENER (see Fig. 1.1).

Figure 1.1: Pictures of (left) the HPT prototype HPT05M and (right) the vacuum chamber in the facilities
of EP2.
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Apart from HYPHEN, an 1D time-dependent and weakly-collisional kinetic code VLASMAN is
used for deeper analyses of the plasma expansion along magnetic nozzle. This code was developed by
Sánchez-Arriaga, and within the framework of this thesis some support was given for the development
[89]. The code implements a Boltzmann-Poisson system and the model improves a previous one in
Ref. [64, 4] allowing to study the unsteady evolution of the plasma and the collisional processes and,
solving self-consistently the subpopulation of trapped electrons. The properties of the expansion are
better characterized and the macroscopic behaviour of the plasma is discussed.

1.2 Thesis outline

The core of the thesis is organized as follows:

• Chapter 2 discusses the numerical treatment for the continuity and momentum equations of the
magnetized electron fluid model within HYPHEN on a MFAM. The main numerical problems
are identified and numerical algorithms to handle those problems are proposed. Closing the
fluid model with a polytropic electron temperature, simulations with HYPHEN are run for mini-
HPT to test the algorithms. The solution from the fluid model is studied together with thruster
performances. This chapter adapts the contents of the peer-reviewed journal article [120].

• Chapter 3 completes the electron fluid model with the energy and heat flux equations, and extends
the numerical treatment discussion in Chapter 2. Simulations with HYPHEN for HPT05M are
run solving the electron temperature from the energy equation for a given power deposition map.
Two design parameters, magnetic topology and thruster length, are studied, for the impact on
the plasma discharge profiles and performances. The main inefficiencies of the discharge are
analyzed, and thrust mechanisms are identified. The current configuration of HPT05M is partially
optimized and further improvements are proposed.

• Chapter 4 describes the modeling of collisions in HYPHEN and the implementation of those for
diatomic molecules. HYPHEN is used to evaluate the air-breathing concept for a particular config-
uration of HPT05M. Results of plasma profiles and performances are obtained, and are compared
with Xe. Proper operation conditions with air are discussed. This chapter was partially completed
during a research stay at the Consiglio Nazionale delle Ricerche in Italy, under the supervision of
Taccogna.

• Chapters 5 and 6 show the analyses of the plasma expansion along magnetic nozzle with VLAS-
MAN. Chapter 5 is focused on the transient process, and Chapter 6 on the collisions. Chapter 5
adapts partially the contents of the peer-reviewed journal article [89], and Chapter 6 the contents
of an article in process of revision for a peer-reviewed journal [121].

• Chapter 7 summarizes the main conclusions, and lists issues interesting for future research.

• Appendix A shows the simulation results with HYPHEN solving also the plasma-wave interac-
tion, which therefore produces a self-consistent power deposition map. The results are for HPT
prototypes.

• Appendix B shows the simulation results with HYPHEN for a ECRT prototype.
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Chapter 2

Hybrid simulation model: numerical
treatment (i)

This chapter adapts the published contents from a peer-reviewed journal article: "Numerical treatment of a mag-
netized electron fluid model within an electromagnetic plasma thruster simulation code", Plasma Sources Science
and Technology 28 (2019) 115004.

2.1 Introduction

The goal of this chapter is to analyze the numerical algorithms used to solve the electron continuity
and momentum equations on a given magnetic field aligned mesh (MFAM) of the Electron(E)-module
within the code HYPHEN. The strategies for the generation of a suitable 2D magnetic mesh, based
on geometric quality indicators, were already discussed in Ref. [80, 79]. The challenges here to obtain
accurate numerical algorithms come from several sides: (1) the high irregularity of the cells; (2) the large
anisotropy in electron conductivity caused by the magnetic field; (3) the treatment of non-magnetically
aligned boundary cells, and (4) the presence of null singular points. Finite volume, finite difference,
and least square methods will be proposed for each specific case.

The electron continuity and momentum equations are here closed with a polytropic state equa-
tion relating pressure and density. To illustrate the electron response with the proposed numerical
algorithms a HPT configuration will be used. This will allow to compare the present approach with
the simpler one by Ahedo and Navarro [7], where local current ambipolarity is imposed (and ions are
treated as a fluid).

The rest of the chapter is organized as follows. Sec. 2.2 presents the thruster and magnetic geome-
tries that will be simulated and the electron fluid model. Sec. 2.3 discusses the numerical treatment of
these equations. Sec. 2.4 assesses the previous numerical algorithms treatment with simulations of an
HPT plasma discharge. Sec. 2.5 summarizes the conclusions of this chapter.
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2.2 Problem formulation

2.2.1 Geometric and magnetic topologies

a)

Figure 2.1: (a) Scheme of the mini-HPT plasma domain to be simulated. The vessel length and radius
are 3 cm and 1 cm, respectively. The injector radius is 0.75cm. (b) Conventional magnetic field to be
used in cases C1A (and in case C1B with double strength). (c) Magnetic field with a null point used in
case C2.

Figure 1(a) presents a sketch of the plasma domain to be simulated, which is similar (but shorter) to
the one used in previous HPT studies [112, 7]. The vessel length and radius are L=3cm and R=1cm.
The injector of xenon occupies a circle of radius Rinj=0.75cm at the back of the chamber. The rest of
the vessel wall is made of a dielectric material. An external helical antenna around the vessel emits ra-
diofrequency energy inside, which is absorbed by the plasma. External coils with independent electric
currents generate an applied magnetic field B. Magnetic topology and strength depend on the values
and directions of these currents.

Figure 1(b) and 1(c) depict the streamlines and the equipotential lines (surfaces of revolution, in-
deed) for two magnetic topologies. Figure 1(b) shows the conventional one for a HPT, with quasi-axial
magnetic lines inside the vessel (to accomplish good magnetic confinement at the lateral walls), and di-
vergent magnetic lines outside (to form the magnetic nozzle that accelerates supersonically the plasma
beam and generates magnetic thrust [109, 76]). The topology of Fig. 1(c), bearing a singular magnetic
point, has been used in some prototypes [113] and has been selected here mainly to assess the capability
of the numerical scheme to deal with a null point.
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Two coordinates systems are used: first, the natural cylindrical reference frame {1z, 1r, 1θ}, with
coordinates (z, r, θ); and, second, the ’magnetic’ reference frame constituted by {1⊥, 1‖, 1θ}, with 1‖ =
B/B and 1⊥ = 1‖× 1θ and coordinates (λ, σ, θ). The orthogonal magnetic coordinates λ(z, r) and σ(z, r)
arise from the solenoidal and irrotational equations for the axisymmetric magnetic field, ∇ · B = 0 and
∇× B = 0, in an axisymmetric geometry:

∂λ

∂z
= rBr,

∂λ

∂r
= −rBz, (2.1)

∂σ

∂z
= Bz,

∂σ

∂r
= Br. (2.2)

The isolines are obtained by numerical integration of these equations and the unit derivatives satisfy

∂

∂1⊥
= rB

∂

∂λ
,

∂

∂1‖
≡ B

∂

∂σ
. (2.3)

The selection of a magnetic mesh with a suitable distribution of isolines is a hard task, since the rates of
change of λ and σ depend on the local strength of the magnetic field. Hence, the distances between the
surfaces defined by two given values of one curvilinear coordinate depend on the field intensity, and
can vary widely over the simulation domain. Ref. [80] discussed strategies for meshing definition with
a given number of isolines.

2.2.2 Electron fluid model

According to the sequential and time-marching solving of the models for heavy species and electrons,
at each timestep iteration, the Ion(I)-module delivers 2D maps of densities and fluxes of the different
heavy species. This data is implemented into the electron fluid model we describe next, which delivers
back the 2D maps of electric potential φ, electron current density je, and electron temperature Te.

Let ns, Zs, and us be the density, charge number, and macroscopic velocity of any independent
species s (i.e. electrons and different heavy species). Since the plasma is quasineutral, the electron
density satisfies

ne ' ∑
s 6=e

Zsns, (2.4)

and is thus known from the I-module. The ion and electron current densities are ji = e ∑s 6=e Zsnsus

and je = −eneue. The first one is computed by the I-module, the second one will be obtained from the
continuity equation

∇ · j = 0, (2.5)

for the electric current density, j = ji + je. For these current density vectors, we will distinguish
between the azimuthal and meridional current densities, that is, for instance, jθe = je · 1θ and ̃e =

je − jθe1θ .

The electron momentum equation is expressed as

0 = −∇(neTe) + ene∇φ + je × B + Fres, (2.6)
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where the total resistive force, Fres, is modelled as

Fres = −∑
s 6=e

νesmene(ue − us) ≡
ene

σe
(je + jc), (2.7)

with: νes the collision frequency with species s; σe = e2ne/meνe the scalar (or parallel) conductivity;
νe = ∑s 6=e νes the effective electron momentum collision frequency; and

jc = ene ∑
s 6=e

(νes/νe)us (2.8)

the heavy species contribution to electron resistivity, expressed, for convenience, in terms of an equiva-
lent current. Just for illustration, if the heavy species in the plasma are reduced to neutrals and singly-
charged ions, it is jc ' ji for νei � νen, and jc − ji ' ene(un − ui) for νei � νen.

Finally a polytropic state equation is postulated for Te:

Te = Te0 (ne/ne0)
γ−1 , (2.9)

where γ is the polytropic coefficient and ne0 and Te0 are two constants. This allows to define the
barotropy function

he =
γ(Te − Te0)

e(γ− 1)
, (2.10)

(expressed in the units of φ), which satisfies ∇he = ∇(neTe)/ene = γ(Te/e)∇ ln ne. [For the isothermal
case γ = 1, it is he = (Te0/e) ln(ne/ne0).]

Hence, the momentum equation reads

0 = ene(∇φ−∇he) + je × B + (ene/σe)(je + jc). (2.11)

which is indeed a tensorial Ohm’s law for je, Defining the Hall parameter χ = ωce/νe and setting
∂/∂θ = 0, the three scalar momentum equations in the magnetic frame can be written as

j‖e = σe

(
∂he

∂1‖
− ∂φ

∂1‖

)
− j‖c (2.12)

j⊥e =
σe

1 + χ2

(
∂he

∂1⊥
− ∂φ

∂1⊥

)
− j⊥c + jθcχ

1 + χ2 (2.13)

jθe = −j⊥eχ− jθc. (2.14)

Equations (2.12) and (2.13) set relation between the electron current density components and φ; the
rest of contributions are known from the I-module. Equation (2.14) does not include φ and thus is
uncoupled of the other two.

In general it is Lνe(me/mi)�
√

Te/mi with L the typical chamber dimension. This implies that

∂φ

∂1‖
≈ ∂he

∂1‖
�

j‖e + j‖c
σe

(2.15)

and Eq. (2.12) is ill-conditioned numerically to determine j‖e. This issue is ameliorated by using, instead
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Figure 2.2: Sketch of cells and faces in a MFAM. The three crosses (×) are examples of the three types
of faces. For each one, the circles surrounding them constitute the stencil considered for gradient re-
construction. The FDM is considered for an inner face. The WLSM is used for the non-inner faces with
stencils constituted by two levels of adjacency.

of φ, the thermalized potential Φ, defined as the correction to the polytropic Boltzmann relation for
electrons:

Φ = φ− he(ne). (2.16)

[Ref. [21] used the Bernoulli function He = −eΦ instead of Φ.] However, in Eq. (2.13) and for χ � 1,
we expect

∂φ

∂1⊥
∼ ∂he

∂1⊥
≤ O

(
j⊥eχ2

σe

)
, (2.17)

so operating with Φ or φ is indifferent when solving for j⊥e.

Regarding boundary conditions for the electron model, in general, they are set on the current per-
pendicular to the wall, jn = j · n, where n is the boundary normal unit vector pointing outwards. In
particular jn = 0 is imposed at the chamber dielectric walls and at the axis. Since there are no sources of
electric current inside the domain, the total current through the free-space boundary is zero. Two limit
cases to accomplish this condition are either to take the free-space boundary as ‘dielectric’ (i.e. jn = 0)
or as ‘conductor’ (i.e. φ=const). In addition, φ = 0 is set at an arbitrary reference point.

2.3 Numerical treatment

2.3.1 Problem discretization

The electron fluid equations will be solved in the magnetic meshes of Fig. 2.1. A Finite Volume Method
(FVM) is chosen to solve the current continuity equation while a Gradient Reconstruction Method
(GRM) is used to discretize the Ohm’s law for electrons. The cells of the magnetic mesh are divided in
two types, sketched in Fig. 2.2: inner cells, enclosed by two pairs of faces that are magnetic lines, and
boundary cells, with at least one face corresponding to a domain boundary which is not a magnetic line;
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boundary cells can have a number of faces different from 4. The cell center is the magnetic center for the
inner cells and the geometric center for the rest of cells. The faces of the magnetic mesh are classified in
three types: inner faces, separating two inner cells; boundary faces, corresponding to the plasma domain
boundary; and near-boundary faces, which correspond to boundary cells and are not boundary faces.
The face center is determined by the magnetic center or the geometric center when the former one is not
available.

Applying the FVM to the electric current continuity equation on any cell yields

0 =
∫

Ω
dΩ ∇ · j ≈∑

m
Sm jnm, jnm ≡ jm · nm, (2.18)

where Ω is the cell volume, index m applies to all the cell faces, nm is the face unit normal pointing
outwards, Sm is the area of the cone frustum face (in the 3D axisymmetric space), and jm is computed at
the center of the face. Except for boundary faces, jnm is either±j‖ or±j⊥ at the face, while for boundary
faces jnm is assumed known (the extension of the numerical method to other boundary conditions is not
treated in this work).

GRMs, which are discussed in detail in the next subsection, discretize the derivatives at a face
center m of a given function, say the thermalized potential Φ, along a generic direction 1, as a linear
combination of the function at several centers of surrounding cells. That is

∂Φ
∂1

∣∣∣∣
m
= ∑

l
gmlΦl , (2.19)

where l is the index of the cell centers involved, Φl are the values at those points, and gml are the
geometric factors of cell l with respect to face m. Using Eqs. (2.12) and (2.13) and GRMs, the parallel
electric current density at the center of a σ=const face m satisfies

j‖m = −σem ∑
l

gmlΦl + j′‖m, j′‖m = j‖im − j‖cm, (2.20)

and the perpendicular electric current density at the center of a λ=const face m is

j⊥m = − σe

1 + χ2

∣∣∣∣
m

∑
l

gmlΦl + j′⊥m, j′⊥m =

(
j⊥i −

j⊥c + jθcχ

1 + χ2

)∣∣∣∣
m

, (2.21)

where current densities related to heavy species and provided by the I-module are included in j′m.

Acting on all the mesh cells, Eq. (2.18) leads to the non-square matrix relation

A1 · {jnm∗} = B1, (2.22)

with: {jnm∗} grouping all current densities perpendicular to non-boundary faces m∗, A1 collecting the
areas of these faces; and B1 grouping all the information at boundary faces (B1 = 0 if all electric current
at the boundaries are zero). Then, applying Eqs. (2.20) and (2.21) yields

{jnm∗} = A2 · {Φl}+ B2, (2.23)

with {Φl} grouping Φ for all cells, B2 collecting the information on currents ji and jc from the I-module,
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and A2 containing plasma and geometric information at non-boundary faces. Eliminating {jnm∗} be-
tween the two matrix equations yields

A · {Φl} = B, (2.24)

with A = A1 A2 and B = B1 − A1B2. Since A is a square matrix, Eq. (2.24) is the matrix equation
to be solved for the thermalized potential. HYPHEN employs the PARDISO [83, 82] direct solver for
parallelized computation of the solution, although other solvers could be implemented (e.g., LIS [54]).

If the problem was to be solved directly for φ instead of Φ, the equation to consider would be

A · {φl} = B′, B′ ≡ B + A · {hel}, (2.25)

with B′ known from the I-module.

2.3.2 Gradient reconstruction methods

A Finite Difference Method (FDM) is a simple and well-known method that allows a good accuracy in
the numerical evaluation of gradients. The order of accuracy achievable by the FDM and the required
discrete positions at which the differentiable function must be evaluated are well-defined. The draw-
back is that the FDM is devised for structured meshes and is unsuitable for unstructured ones. In the
present case of a MFAM, the inner cells constitute a structured mesh in the magnetic coordinates but
boundary cells (with boundary faces not magnetically aligned) must be treated as in an unstructured
mesh and require other GRMs.

The most extended GRMs on unstructured meshes, which are to be used here for non-inner faces,
are the Weighted Least Squares Method (WLSM) and the Green-Gauss Method (GGM) [30, 95, 97].
The GGM is based on applying the divergence theorem on a finite volume to establish the relation
between the gradient within the said volume with the function values at its edges. Since in our problem
derivatives need to be obtained at the cell faces, the application of this method is not direct and a dual
mesh of finite volumes or an interpolation scheme must be introduced. This would add unnecessary
complexity and unknowns, since the definition of the numerical artifices required for the GGM is not
obvious. These reasons ruled out to use the GGM here.

On the other hand, the WLSM is built on Taylor’s expansions around a point (a face center here)
and it relates the gradients at that point with the values of the variable at a set of surrounding points
(cell centers in our case), called the stencil. The number of points of the stencil (number of Taylor’s
expansions and equations) is generally larger than the number of derivatives to be computed; thus a
weighted linear regression is introduced to obtain the solution. The WLSM can be applied straightfor-
wardly to our boundary cells but poses two issues. First, the optimal number and location of stencil
points is case-dependent and requires some trials and estimations. Second, since derivatives at dif-
ferent directions are obtained simultaneously, the method is prone to cause numerical diffusion in an
anisotropic problem, as it is shown in Appendix 2.A. This last issue explains that, although the WLSM
could be applied to all faces within the domain, it has been limited to non-inner faces.

The first-order Taylor’s expansion (say for Φ) around face m reads

Φl ' Φm +
∂Φ
∂1‖

∣∣∣∣∣
m

∆s‖ml +
∂Φ
∂1⊥

∣∣∣∣
m

∆s⊥ml , (2.26)
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where: Φl applies to cells l adjacent to face m, ∆s⊥ml and ∆s‖ml are arc lengths from face m to cell center
l. In the FDM, the stencil of points is selected so that they are aligned along one magnetic coordinate,
and thus arc lengths along the second coordinate are zero. Here, on an inner face m, a 2-point stencil
is used by taking the two inner cells adjacent to said face. The above Taylor’s expansion allows to
compute Φ and its derivative perpendicular to the face. The associated coefficients gml in Eq. (2.19) are
±∆s−1

‖ml or ±∆s−1
⊥ml .

On near-boundary faces the WLSM is applied on a stencil that extends until the second level of
adjacency; the first level being the cells directly adjacent to the face, and the second level being the cells
adjacent to those. This typically means 5-6 cells as it is illustrated in Fig. 2.2. If the above first-order
Taylor expansion with 3 unknowns is considered, the set of equations for the stencil is overdetermined
and the WLSM must be applied.

The linear system in Eq. (2.26) can be formally expressed as

{Φlk} = C · xm, xm = (Φ, ∂Φ/∂1‖, ∂Φ/∂1⊥)m (2.27)

with {Φlk} extended to the k adjacent cells and C a matrix of geometric coefficients. The WLSM function
F to be minimized is

F(x) = [({Φlk} − Cxm)]
T ·W · [({Φlk} − Cxm)], (2.28)

where superindex T is for the transposed matrix and the elements of the diagonal weighting matrix W
have been chosen as Wll = (∆s2

⊥ml + ∆s2
‖ml)

−1, i.e., the relative weight of each cell is proportional to
the inverse of the squared distance to the face. Other weighting methods are possible and have been
proposed in the literature; however the inverse square distance allows us to construct gradients that are
biased to over-represent local information, which we have found to work best with functions in which
large spatial gradients are expected. The solution of the WLSM for x is

xm = G · {Φlk}, G = (CTWC)−1CTW, (2.29)

and one column of G includes the coefficient gml needed in Eq. (2.19).

2.3.3 Magnitudes at the boundary faces

The above GRM yields Φ at all cell centers and the derivatives of Φ at all non-boundary faces. Interpo-
lating appropriately that data, a complete 2D picture of Φ and je is obtained (for instance at the regular
mesh nodes of the I-module), except for the values at the domain boundaries. There, the main difficulty
is that data extrapolation in an irregular mesh can yield large errors, as we show next. [Hereafter in this
subsection and for sake of illustration we assume jnm = 0 at any boundary.]

A first way of determining xm = (Φ, ∂Φ/∂1‖, ∂Φ/∂1⊥)m at a boundary face is just applying the
previous WLSM using two-adjacency level stencils, resulting of course in Eq. (2.29). Then, Eqs. (2.20)
and (2.21) yield the electric current densities at the boundaries, for instance, the component normal to
the boundary is

jnm = −σe,m

(
cos α

∂Φ
∂1‖
− sin α

1 + χ2
∂Φ
∂1⊥

)∣∣∣∣∣
m

+ j′nm, (2.30)
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with: j′nm = j′‖m cos α − j′⊥m sin α, and α=angle(nm, 1‖m). The accuracy of this standard WLSM at a
boundary face [called WLSM(1)] is very poor due to the combination of large magnetic anisotropy and
mesh irregularity. This is illustrated in Fig. 2.3(a), which plots, for a particular simulation, the relative
error

∣∣∣j(1)nm/ji,nm

∣∣∣, where j(1)nm is the perpendicular current density provided by the WLSM(1) and ji,nm is
the perpendicular ion current density at the boundary.

0
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Figure 2.3: Relative errors in computing magnitudes at the boundary faces with WLSM(1) and
WLSM(2). The coordinate l is an arc length parameter that begins at point (0, 0) and increases clockwise
along the boundary walls W1, W2, and W3.

A second way of determining xm is a modified WLSM [called WLSM(2)], which assures the fulfill-
ment of jnm = 0 in Eq. (2.30). The linear system from Eq. (2.27) is now expressed as

{Φlk −Φm} = C1 · x′m, x′m = (∂Φ/∂1‖, ∂Φ/∂1⊥)m. (2.31)

The solution of this WLSM(2) is

x′m = G1 · {Φlk −Φm}, G1 = (CT
1 WC1)

−1CT
1 W. (2.32)

Substituting the derivatives of Φ from Eq. (2.32) into Eq. (2.30) with jnm = 0, yields Φ at the boundary
face,

Φm =
n′ · G1 · {Φlk} − j′nm/σe,m

n′ · G1 · {1}
, (2.33)

with n′ =
(
cos α,−(1 + χ2

m)
−1 sin α

)
and {1} a vector of ones.

Figure 2.3(b) plots the relative difference in Φm between the two previous schemes, δΦm = Φ(1)
m −

Φ(2)
m , with superscripts (1) and (2) corresponding to WLSM(1) and WLSM(2), respectively. Since changes

of eΦ across the plasma domain are going to be O(Te0), the error on Φ(1)
m is significant. Furthermore, the

error becomes strongly amplified when deriving Φ and multiplying by σe, as Fig. 2.3(a) for the electric
current densities have shown.
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2.4 Simulation results

The numerical schemes of Sec. 3 for integrating the electron fluid equations in the MFAM of the E-
Module have been tested through several simulations of the mini HPT sketched at Fig. 2.1. The so-
lutions shown here correspond to run sequentially the E-module and the I-module until a stationary
discharge is reached. Simulations with three magnetic fields B are run: case C1A, with the magnetic
field of Fig. 2.1(b); case C1B, identical to C1A but with double strength of B; and case C2, with the
magnetic field of Fig. 2.1(c). In the 3 cases the injector delivers a xenon mass flow rate of ṁ=0.1mg/s
(equivalent to an electric current of eṁ/mi=73mA) with a mean injection velocity of uinj=300m/s and
a temperature of Tinj=0.01eV. Based on experimental data [56, 60], a polytropic coefficient γ = 1.2 is
used. The reference temperature is Te0=8eV and is assigned (arbitrarily) to point (z, r)=(1.4cm, 0.4cm).
Chamber walls, W1 and W2, are dielectric and the condition jn = 0 is imposed at them. For magnet-
ically guided plasmas, appropriate local boundary conditions at the downstream free-loss boundary
W3, where the total electric current is zero, are a matter of present debate (see for instance [58] and
references therein). For the purposes of the present chapter we will just take jn = 0 at W3. Notice that
consequently the plasma plume leaving the domain downstream is current-free.

The assessment of the previous numerical algorithms on the electron fluid model is carried out in
several ways. First, the thrusting performances of the three simulated cases will be briefly analyzed
with the aim of understanding particle and energy balances and checking the physical consistency of
the solution. Second, the 2D (z, r) maps of main plasma magnitudes will be discussed, checking again
for physical reliability of results. Third, a study of the contributions of the different terms of the electron
momentum equation in both magnetically-parallel and perpendicular directions will allow us to better
estimate dominant and marginal contributions and thus identify the best numerical treatment. And
fourth, the effects of cell size and plume extension will be assessed briefly.

2.4.1 Performances

Thruster performances, parametric analysis, and design optimization are not direct goals of this chapter.
Nonetheless, a succinct analysis of the performances of the 3 HPT simulations is still useful for inter-
pretation of the results. Appendix 2.B defines main thruster performance indicators and Table 1 shows
them for the 3 simulation cases. A very low thrust efficiency, ηF, is observed in all of them, coming from
the very low energy efficiency, ηene (4-14%). Most of the absorbed power is spent in the walls (about
56-61%) and inelastic collisions (35-38%). Poor magnetic confinement explains directly wall losses but
also the large inelastic collisions since neutrals are ionized twice, on average. This multiple ionization
is evident when observing that the propellant utilization ηu is just moderate (13-60%) while the ratio of
the total ion mass production rate versus the injected mass flow rate, ṁi,total/ṁ ≡ ηu/ηprod is 144-231%,
and we remind that inelastic losses are proportional to ṁi,total .

The relevance of magnetic confinement is clear when comparing case C1A to C1B and C2. Dou-
bling the magnetic field from C1A to C1B, implies a better magnetic confinement as confirmed by per-
formances: there is a moderate reduction of energy losses at the walls and a large increase of ηu. This
agrees with theoretical and experimental evidence [1, 7, 55, 108, 59]. Furthermore, in configurations
C1A and C1B, the lateral wall is partially shielded magnetically but not the back wall. As a conse-
quence, while the dielectric-to-injector surface ratio is 11.4 the dielectric-to-injector energy losses are
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about 4.6, 2.0 and 5.8 for cases C1A, C1B, and C2, respectively. Confinement of the lateral wall im-
proves from C2 to C1A and C1B, and this is reflected in the relative amount of energy losses at wall W2.
Regarding wall W1, there is an increase on losses in case C1B, which seems to be due to the maximum
plasma density being placed more upstream. Finally, plume efficiency, ηplu, is high in all cases, which
means that the magnetic nozzle performs correctly. In fact, the plume divergence semi-angle defined
as arccos√ηplu is moderate, about 24-26 deg.

Pa [W ] F [mN] ηu ηene ηplu ηF ηprod εinel εwall
C1A 8.36 0.166 0.25 0.07 0.83 0.016 0.14 0.37 0.56 = 0.10 + 0.46
C1B 10.57 0.365 0.60 0.14 0.83 0.063 0.26 0.38 0.48 = 0.16 + 0.32
C2 7.56 0.108 0.13 0.04 0.80 0.008 0.09 0.35 0.61 = 0.09 + 0.52

Table 2.1: Performance indicators. The two terms in the sums of the last column are the contributions
of walls W1 (first term) and W2 (second one).

2.4.2 2D plasma profiles

Figure 2.4 shows the 2D maps of main plasma magnitudes for case C1A. The map of ne [subplot 2.4(a)]
comes from the I-module via the quasineutrality condition. Subplot 2.4(c) for the meridional current
density ̃i is provided by the I-module too. The electron current density vector and the (thermalized)
electric potential are the outputs of the present electron fluid model. The reference values used for the
dimensionless parameters are

j0 =
eṁ

miπR2 = 234 A/m2, cs0 =

√
Te0

mi
= 2.43 km/s, n0 =

j0
ecs0

= 6.02 · 1017 m−3.

The ionization rate is maximum around the maximum of ne (i.e. close to z=0.5cm and the axis).
This explains also the behavior of the ion current streamlines ̃i. The location of the maximum ionization
rate near the back of the chamber is going to imply that many ion and electron streamlines end at the
chamber walls, explaining the large energy losses and plasma recombination there. Ions move guided
by the electric potential φ [subplot 2.4(b)] which satisfies Eq. (2.16). Since the thermalized potential
turns out to be much smaller than the electric potential [see Fig. 2.7(d) below], φ satisfies approximately
a ‘polytropic Boltzmann’ relation with the plasma density φ ' he(ne).

The wall-normal electric current density jn has been taken zero at all domain boundaries. This ex-
plains that the maps of ̃e(z, r) and ̃i(z, r) [Fig. 2.4(c) and 2.4(d)] are similar but not identical: a nonzero
meridional electric current density ̃ [Fig. 2.4(e)] develops. This feature will be further discussed in a
later subsection.

Since ions have a negligible azimuthal motion, the map of jθe [Fig. 4(f)] corresponds to the az-
imuthal electric current density created in the plasma. These circular loops have an intensity propor-
tional to the Hall parameter times j⊥e and a diamagnetic character (i.e. the electric current runs in
opposite direction to the coil currents creating B) [1, 6]. Their interaction with the electric currents in
the coils leads to action-reaction axial forces: the loops located in the magnetic nozzle constitute the
source of magnetic thrust [6] while those inside the chamber do not contribute practically to thrust.
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Figure 2.5 illustrates the electron fluid behavior for case C1B, where the magnetic strength has been
doubled compared to C1A. Although performances improve much, only mild differences are appreci-
ated in the 2D maps. Since the propellant utilization is larger, the plasma density is larger and, as a
consequence, all the current densities are larger too. The maximum plasma density is shifted a bit up-
stream, possibly due to the higher ionization. The topology of current streamlines is very similar to
C1A except for mild differences near the chamber walls due to better confinement.

Figure 2.6 corresponds to case C2. Comparing it with case C1A, the lower propellant utilization
leads to a lower plasma density but its general 2D shape is similar; some differences are observed in the
profiles of the electric potential inside the chamber. Current densities are naturally lower than in C1A,
but the most interesting feature are the differences in the meridional currents: observe the three ̃-loops,
the larger twisting of ̃ lines, and the changes of signs of jθe (around the separatrixes departing from the
singular null point). In addition, the gentle behavior of the electric potential and the electron current
density around the singular magnetic point (where the electron fluid becomes locally unmagnetized)
confirms the capability of the numerical scheme to deal correctly with such points.

a) b)

c) d)

e) f)

Figure 2.4: 2D maps of main plasma magnitudes for case C1A. The electron fluid model algorithms are
responsible of determining φ and je. The I-module provides ne and ji. Plots of plasma properties in this
and subsequent figures correspond to a time average of the last 100 timesteps (which correspond to 5µs
with the time step used) of the stationary solution.
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a) b)

c) d)

e) f)

Figure 2.5: Same than Fig. 2.4 for case C1B.
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a) b)

c) d)

e) f)

Figure 2.6: Same than Fig. 2.4 for case C2. The null magnetic point is indicated with a white dot.

2.4.3 Assessment of the momentum equation terms

The different terms of the electron momentum equations are evaluated in Fig. 2.7 for case C1A. Panel
2.7(a) shows that the contribution of heavy species to j‖e through j‖c, Eq. (2.12), is significant in certain
regions of the plasma domain. On the contrary, the contribution of heavy species to the perpendicular
electron current density, Eq. (2.13), is totally negligible: j⊥c/[(1 + χ2)j⊥e] < 10−4 in case C1A.

Panel 2.7(b) compares the electric current density to the ion and electron current densities, showing
that | ̃| � | ̃e|+ | ̃i| in most parts of the domain, but not everywhere (specially near some boundaries).
Then, panel 2.7(c) compares the parallel and perpendicular electron current densities, showing that they
are of the same order inside the chamber (where boundary conditions have a stronger effect), contrary
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a) b)

c) d)

Figure 2.7: Additional 2D maps of case C1A for the analysis of the terms in the electron momentum
equation. Upper and lower bounds have been imposed to the color scale to highlight main features.

to the naive idea that the anisotropic conductivity leads necessarily to j⊥e � j‖e. In the magnetic nozzle
region, the higher Hall parameter and the smaller effect of domain boundaries do lead to the parallel
current to dominate. Panel 2.7(d) plots the map of the thermalized potential Φ. This has variations
of about 10% of φ variations, which confirms that the electric potential follows approximately a poly-
tropic Boltzmann relation, φ(ne). However, this small Φ is crucial to determine the parallel electron
current density in a weakly-collisional electron fluid, both in the present magnetized case and in the
unmagnetized one [20]. In the magnetized case, Φ is practically constant along the magnetic lines with
∂Φ/∂1‖ � ∂Φ/∂1⊥, which makes more challenging the accurate computation of Φ and j‖e (this one is
the product of the small ∂Φ/∂1‖ times the very large parallel conductivity σe).

A reliable computation of Φ and j‖e was the reason to work on the highly irregular MFAM and to
use algorithms discretizing j‖e and j⊥e independently. Figure 2.8 compares the electric current densities
inside the chamber for C2 when using for inner faces either (a) the FDM or (b) the WLSM; in both
simulations, the WLSM is used in non-inner faces. The differences are very noticeable, particularly
near the singular point, where the WLSM is unable to reproduce well the two current loops and yields
too large values of the electric current density.

Finally, Fig. 2.9 compares results on the electric current density inside the chamber when either Φ
[Eq. (2.24)] or φ [Eq. (2.25)] are used as main variable in the numerical algorithms. In this comparison,
the differences are noticeable, the use of Φ leads to better-defined current streamlines and lower noise
in the values of the electric current. It must be mentioned that the temperature Te0 was doubled in this
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a) FDM b) WLSM

Figure 2.8: Electric current densities inside the chamber for case C2: (a) the FDM is used in inner faces,
(b) the WLSM is used in all faces. The white dot indicates the location of the magnetic null point.

a) Φ as unknown b) φ as unknown

Figure 2.9: Electric current densities inside the chamber for same magnetic field than case C1A but with
Te0 = 16eV (i.e. doubling the Te map). Numerical algorithms on the electron momentum equation are
applied directly on (a) Φ or (b) φ.

simulation to increase the effect of the electron pressure and thus the difference φ−Φ = he ∝ Te0.

2.4.4 On current ambipolarity and plume extension

In previous subsections, we have found that meridional electric currents develop in the otherwise
current-free plasma beam. These currents form several loops, which are framed by the boundaries
of the simulation domain, due to the condition jn = 0 applied there.

This issue of current ambipolarity (i.e. ̃ = 0) in a current-free plasma beam was carefully studied
by Ahedo and Merino [6, 5, 68] in the context of a divergent magnetic nozzle (i.e. the plume region
in the present case). They showed that fulfillment of current ambipolarity in the divergent nozzle
was only achievable if ions (and thus electrons) are fully-magnetized, a too ideal case. For the case
of interest of partially-magnetized (or unmagnetized) ions, current ambipolarity cannot be achieved
(except at particular surfaces) and its failure is linked to the detachment of ions from magnetic lines [6].
In the present case, which includes thruster chamber and nozzle, we find that meridional current loops
develop inside the chamber too. This implies that the simplified 2D fluid model (with the magnetic
field purely cylindrical) of Ahedo and Navarro [7] for a helicon plasma thruster, which assumed current
ambipolarity inside the thruster chamber, was incorrect in that postulate.
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However, although the formation of meridional currents in the thruster chamber and nozzle is an
interesting physical feature, Ahedo and Merino [6, 68] concluded that these currents have almost no rel-
evance on the thruster performances. On the one side, these meridional currents induce an azimuthal
magnetic field much smaller than the meridional field induced by the much higher azimuthal currents
[Fig. 4(f) for instance], and even this last induced field is negligible for the plasma densities considered
here. On the other side and more relevant for the present discussion, Ahedo and Merino found that, in
the collisionless limit, u‖e (and therefore j‖e) is a plasma variable uncoupled from the rest. As a conse-
quence, changes of jn at the downstream boundary, for instance, are mainly managed by j‖e, affecting
minimally the rest of the plasma response.

In order to verify that this behavior continues to apply in the present, more general model, simu-
lations of case C1A with plume axial lengths from 3 cm (in the nominal case of Fig. 2.4) to 4.5 cm and 6
cm have been run. As the condition jn,W3 = 0 is moved downstream with the plume length, the most
downward meridional current loop changes length and topology. Figure 2.10 (a) and (b) show the ion
and electric current densities for the 4.5cm-plume (i.e. 7.5 cm of total domain extension); plots have
been restricted to z ≤ 6 cm in order to compare them easily with Fig. 2.4 (c) and (e). Differences are
observed in ̃, but there are practically no changes on j̃i, and the same is true for ne and φ (not shown
in the figure). Also, thruster performance indicators remain basically the same for the three plume
lengths, with differences about 1-2% (which, in fact, is about the level of noise of PIC simulations). Fig.
2.10(c) shows, at the mean radius for each z = const section, the 1D profiles of | ̃i|, j⊥e, and j‖e for
the three plume lengths. Observe that differences are only relevant on j‖e and even these tend to fade
out if the plume is long enough. This completes the confirmation of the validity, in this more general
case, of Ahedo and Merino’s conclusions relative to the relevance of meridional electric currents in a
magnetically guided plasma beam.

Finally, the preceding analysis allows us also to assess the effects of simulating a truncated plasma
plume on the plasma/thruster response. As long as this length is not too short, the effects turn out to
be rather marginal. Furthermore, Ahedo and Merino’s theory and the present analysis suggest that the
conditions set at the downstream boundary W3 (either jn = 0 or a different one on the electric current or
potential) seem to be scarcely relevant on the plasma response, except for the parallel electron current
and the related meridional electric currents.

a) b)
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Figure 2.10: (a)-(b) Ion and electric current densities for a case identical to C1A except that the plume
axial length is 4.5cm instead of 3cm. For easier comparison with same currents in Fig. 2.4, plots have
been restricted to z ≤ 6cm. (c) Ion and electron currents for plume axial lengths of 3cm, 4.5cm and 6cm,
at the mean r of each z = const section.
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2.4.5 Effects of mesh refinement

Simulations so far have been run on a MFAM (for the electrons) and a structured mesh (for the I-
Module) of about 1200 cells each. To assess the solution sensitivity to mesh spacing, the case C1A with
Te0 = 16eV has been calculated with about 1200, 2400, and 4800 cells in each mesh. Increasing the num-
ber of cells is a costly process, since the time step has to be reduced as well to fulfill numerical stability;
this makes the simulation time to increase nearly quadratically. To have an idea of the computational
cost here, the base simulation of Fig. 2.4 with 1200 cells takes already about 12 hours in a machine with
12 cores (i.e. 6 days-core) to simulate 2.5ms.

Results of the mesh size sensitivity analysis are shown in Fig. 2.11. Figures 2.11(a) and 2.11(b) plot
the electric current density in the case of 4800 cells for the two numerical choices on computing φ and
must be compared with those of Fig. 2.9. As expected, smoother 2D maps are obtained as the mesh is
refined. When algorithms work directly with Φ [subplot 2.11(a)], the differences on the current lines
are small but the spatial irregularities on | ̃| of Fig. 2.9(a) have nearly disappeared. On the other hand,
when working directly with φ [subplot 2.11(b)], irregularities decrease but still persist and there are still
differences with subplot 2.11(a).

Figure 2.11(c) provides a more detailed evaluation of these results. It plots | ̃| at the exit section
of the thruster (z=3cm) for the three mesh sizes and the two numerical strategies on computing φ. The
convergence with the mesh size is observable and also the larger noise found when working directly
with φ. A quantitative assessment of the differences among the curves is obtained taking first the case
with 4800 cells and Φ as unknown as our ‘best (numerical) solution’. Then, calling | ̃|re f (r) the curve
for that case, the mean deviation of the rest of curves is defined as δ = 1/R

∫ R
0

∣∣∣| ̃|/| ̃|re f − 1
∣∣∣ dr with

R =1 cm. Values of this deviation (or apparent error) are given in the inserts of the two panels of Fig.
2.11(c). It is worth to notice that there is still a deviation of 9.3% with 4800 cells when working with φ,
larger than in the case of 2400 cells and working with Φ.

a) Φ as unknown b) φ as unknown
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c) Profiles at z =3cm

Figure 2.11: Panels (a) and (b) correspond to the same cases than Fig. 2.9 but using 4800 cells/mesh
instead of 1200 in the simulations. Panel (c) plots the cuts of the electric current density at the chamber
exit section, z =3cm, for the 1200, 2400 and 4800 cells/mesh cases and the two numerical strategies
followed to compute φ. The percentages shown in the inserts of panel (c) correspond to the mean
deviation δ (defined in the main text) with respect to | ̃| for 4800 cells and Φ as unknown.



2.5. Conclusions 25

2.5 Conclusions

The solution of a weakly-collisional, magnetized electron fluid model in a 2D axisymmetric geometry
presents important challenges on magnitudes such as the electron current density, the ambipolar electric
field, and the resulting electric potential map. These are caused by the large anisotropy between the
directions parallel and perpendicular to the magnetic field, which can cause strong numerical diffusion
ruining the accuracy of the results.

The first action for designing a reliable numerical treatment of that model is to operate on a mag-
netically aligned mesh, although this yields a large cell inhomogeneity in terms of size and aspect ratio.
The second main action is to use a finite difference method for gradient reconstruction, whenever possi-
ble, which here means in all inner faces (i.e. those unrelated to boundary cells). It has been proven that
weighted least squares methods, beyond presenting some arbitrariness on stencil and weight selection,
can lead to numerical diffusion. Therefore, their use must be limited to the faces of the irregular bound-
ary cells. Still, the computation of magnitudes in the boundary faces have required special modalities
of the WLSM and there is still room for further improvements. Additionally, the use of a finite volume
method for the electric current conservation equation has allowed to deal easily with the cells around
singular null-points of the magnetic field.

The numerical methods on the electron model have been tested successfully by implementing them
into the E-module of the HYPHEN code and simulating the plasma discharge in a HPT. The numeri-
cal benefits of using the thermalized potential instead of the natural electric potential, when solving the
parallel Ohm’s law under large magnetization and low collisionality, have been assessed too. Variations
of the thermalized potential are much lower than those of the electric potential, which allows to con-
clude (when a barotropy function exists) that the electric potential follows approximately a Boltzmann-
type relation with the plasma density. However, those variations are crucial in determining the parallel
electron current density. Indeed, this current component has a central role in the formation of merid-
ional electric current loops but these are shown to have a marginal effect on the rest of the plasma
response. Related to this, it is also shown that the response is rather insensitive to the plume axial
extension included in the simulation. Finally, the reliability of the solution against the number of cells
used in the simulation, specially important in the case of an irregular magnetic mesh, has been checked
positively.

The finite volume and gradient reconstruction methods on a MFAM have been analyzed here on
a simplified polytropic electron model. The first next step is to add the electron energy and heat flux
equations and to apply the algorithms developed here to them, done in Chapter 3. The second next
step is to match this electron transport model to the wave-plasma model and thus have a physically
complete discharge in a HPT, done in Appendix A.

2.A Testing gradient reconstruction methods

The accuracy of the FDM and the WLSM for gradient reconstruction of Φ is tested here using the simple
trial function

ψ(x‖, x⊥) = exp (−x‖/χ2) exp (−x⊥), (2.34)



26 Chapter 2. Hybrid simulation model: numerical treatment (i)

100 101 102 103
-12

-8

-4

100 101 102 103
-4

-2

0

2

Figure 2.12: Scheme of the stencils used by each GRM when testing with an analytical function. Panel
(left) corresponds to FDM and (right) to WLSM. GRM is done for a particular face of a hypothetical
MFAM, which is represented by a cross and located at (x‖, x⊥). The surrounding cells, whose centers
are marked by a circle, constitute the stencils. The main text defines the trial function and explains the
different configurations of the stencils.

where x‖ and x⊥ replicate the coordinates parallel and perpendicular to the magnetic field, the constant
χ replicates the Hall parameter and therefore controls the anisotropy level. The tests are performed at
x‖ = x⊥ = 0 on the vertical face shown in Fig. 2.12 and compare the numerical and analytical values of
∂ψ/∂x‖ there. Left and right sketches in Fig. 2.12 show the stencils used for the FDM and the WLSM,
respectively. The error on the numerical derivative (with subscript num) is

ε‖ =
∣∣∣χ2(∂ψ/∂x‖)num + 1

∣∣∣ . (2.35)

For the FDM two configurations of a 2-point stencil are used. In scheme FA, the cells are squares
and identical with length ∆x‖ = ∆x⊥ = 0.5. In scheme FB, the left cell increases ∆x‖ by a 10% compared
to FA. The relative error ε‖ is shown in Fig. 2.12(left). Both in schemes FA and FB, the error decreases
as ∼ χ−2 with χ increasing. This means an excellent performance of the FDM, with the error being
proportional to the second derivative of ψ. The higher error with the nonuniform FB is natural too. At
very large χ the error on FA reaches the machine precision.

Four schemes are used for assessing the relative error when using the WLSM. In scheme WA, an
8-point stencil with identical cells is used. In schemes WB and WC, the left cell changes ∆x‖ by a 10%
and a 1%, respectively. In scheme WD, the two upper cells change ∆x⊥ by a 10%. The relative error
ε‖ is shown in Fig. 2.12(right). Scheme WA behaves very well for any χ, but not as well as scheme
FA. Scheme WD behaves exactly as WA, meaning that nonuniformities in the perpendicular direction
do not matter. However, schemes WB and WC warn that nonuniformities in the parallel direction can
lead to large errors at large χ. This is the numerical diffusion effect. Since the MFAM of our problem is
highly nonuniform, it is concluded that the FDM must be used whenever it is possible.
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2.B Performance indicators

The thrust produced by the plasma beam satisfies

F =
∫

W3
∑

s
(nsmsuzsus · n + nsTs1z · n) dS (2.36)

with n the external normal to surface W3. This thrust, with dynamic and static components, includes
the contribution of both the heavy species (obtained through the I-module) and the electrons. The heavy
species contribution to thrust is obtained from the I-module and is computed directly with the particle
formulation and not with the above fluid one. Notice that if the simulated plume length is too short,
the plasma beam acceleration would be incomplete and the thrust would be slightly underestimated.

The overall thrust efficiency is defined as

ηF =
F2

2ṁPa
, (2.37)

where Pa is the power absorbed by the plasma. There are several partial contributions to ηF, that are
defined next. A steady-state discharge is assumed implicitly.

Let ṁi,W1, ṁi,W2, and ṁi,W3 be the mass flows of ions (of different electric charges) toward the
surfaces W1, W2 and W3 of Fig. 2.1, and ṁi,total = ṁi,W1 + ṁi,W2 + ṁi,W3 the total ion flow produced
by the thruster. The downstream ion flow ṁi,W3 is considered the useful one for thrust. The quality of
the plasma production in the chamber is characterized by the propellant utilization and the production
efficiency, defined respectively as, [7]

ηu =
ṁi,W3

ṁ
, ηprod =

ṁi,W3

ṁi,total
. (2.38)

The production efficiency measures the percentage of the total plasma production useful for thrust; the
rest of plasma production is just recombined at the walls.

In order to estimate a power budget and the power efficiency for this discharge, the energy balance
of the whole plasma must be considered. Adding for all plasma species, the total energy equation can
be expressed as

∇ ·∑
s

[(
5
2

nsTs +
1
2

nsmsu2
s

)
us + qs

]
= −∇φ · j + Qa −Qion −Qexc, (2.39)

where: Qa is the density of power deposited; and Qion and Qexc the power spent in ionization and
excitation (inelastic collisions) per unit volume. Integrating the equation over the whole domain, the
power balance is

Pa = Pion + Pexc + PW1 + PW2 + PW3, (2.40)

where Pa, Pion and Pexc are the volumetric integrals of Qa, Qion and Qexc, respectively, and the three
other integrals are energy flows through the different domain boundaries,

PW1 =
∫

W1
∑

s

[(
5
2

Ts +
1
2

msu2
s

)
nsus + qs

]
· ndS, (2.41)
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and identical expressions for walls W2 and W3. Equation (2.40) does not include the total work of the
electric field on the domain since it is zero. This comes out from∫

V
∇φ · jdV ≡

∫
W1+W2+W3

φj · ndS−
∫

V
φ∇ · jdV, (2.42)

where: the first term at the right-hand side is zero if jn = 0 at all surfaces, and the second term is zero
since there are no sources of current inside the domain [Eq. (2.5)].

In the complete model of a HPT discharge, Qa(z, r) will be determined from a wave-plasma sub-
model, such as the one developed in [112]. Then, Eq. (2.39) would determine the 2D map of electron
temperature. Here, since Te(z, r) has been prescribed through a polytropic relation with ne, Eq. (2.39) is
not used and, indeed, the power Pa required to sustain that Te(z, r) is derived from Eq. (2.40).

Based on the useful power PW3, the energy (or power) efficiency is defined as

ηene = PW3/Pa. (2.43)

The energy ’inefficiency’ is evaluated through

εinel =
Pion + Pexc

Pa
, εwall =

PW1 + PW2

Pa
, (2.44)

which measure inelastic and wall losses, respectively.

Finally, there is the plume efficiency, measuring the effect of plume divergence. Here, this is defined
as

ηplu =
Pzi,W3

Pi,W3
, (2.45)

where Pzi,W3 and Pi,W3 are the flows of, respectively, axial and total energy of ions. Combining partial
efficiencies, one has ηF ≈ ηuηeneηplu.
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Chapter 3

Hybrid simulation model: numerical
treatment (ii) and parametric analysis
for HPTs

3.1 Introduction

The goal of this chapter is to complete the electron fluid model with the energy and heat flux equations
for the E-module within HYPHEN. Here, the complete model, repeating some contents in Chapter 2,
is described for an easier discussion. In addition, the model is completed with turbulence, which is
not considered in Chapter 2. The model is discussed featuring the analogy of the energy and heat flux
equations to the continuity and momentum equations. In the drift-diffusive approach, the structure of
both systems of equations are similar: a conservation equation for current or energy, and a equation
for the fluxes of current or energy (generalized Ohm’s law or Fourier’s law). The numerical treatment
of the energy and heat flux system of equations is discussed. The spatial derivatives of the system, by
analogy, can be solved with an extension of the numerical algorithms found in Chapter 2. Furthermore,
this system has a temporal character, and thus a scheme is needed for temporal derivatives as well.
Finally, simulation results are obtained for HPT05M with HYPHEN solving the electron temperature
distribution for a given known power deposition map. The current configuration of HPT05M used
in the experimental settings, and the role of two design parameters, magnetic field topology and ves-
sel length, are studied. The performances, both overall and partial efficiencies, are investigated. The
balance of the thrust and the physical mechanisms of the thrust generation are looked into.

The rest of the chapter is organized as follows. Section 3.2 describes the configurations of HPT05M,
and the interaction between the modules within HYPHEN focused on the E-module. Section 3.3 dis-
cusses the numerical treatment of the E-module’s energy and heat flux equations. Section 3.4 shows the
results obtained for HPT05M. Section 3.5 summarizes the conclusions of the chapter.
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3.2 Model formulation

3.2.1 General aspects

Figure 3.1: (a) Sketch of the thruster and (b)-(d) 3 possible applied magnetic fields generated by the set
of coils.

Figure 3.1 (a) is a sketch of the HPT05M prototype. The thruster vessel is made of ceramic material and
has radius R = 1.25cm and length L. The back wall of the vessel is movable to change the length, and
3 lengths of L0 = 12cm, L1 = 6cm, and L2 = 3cm are considered. An injector is placed in that wall
occupying a circle of radius Rinj = 0.4cm, which delivers a mass flow ṁ with mean injection velocity
uinj and temperature Tinj. A set of 3 external coils are placed along the vessel to generate a stationary
magnetic field B. Figure 3.1 (b)-(d) show 3 fields: Field-0, Field-1 and Field-2, corresponding to switch
on progressively Coil-0, Coil-1 and Coil-2. With only Coil-0 on, the field has a convergent-divergent
geometry with a throat at the vessel exit, while switching on also Coil-1 and Coil-2 make the topology
inside the vessel tend to axial. The thruster has been operating in a configuration C0 with L0/Field-
0 and has reported very poor performances [118]. In this chapter, four alternative configurations are
tested exploring separately: (i) magnetic field topology, C1A (L0/Field-1) and C1B (L0/Field-2); and (ii)
vessel length, C2A (L1/Field-0) and C2B (L2/Field-0).

The plasma transport modules of HYPHEN are shown in Fig. 3.2 (a). The I-module and E-module
are run sequentially. Let us denote ns and us as, respectively, the density and velocity of species s (elec-
trons e, ions i or neutrals n); φ and Te as, respectively, the electric potential and electron temperature.
The I-module gives, as outputs, ns and us for heavy species. These outputs are taken by the E-module
together with the power deposition map. The E-module, and the S-module for wall magnitudes, give
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a complete solution of φ and Te, which are necessary for a new time advancement of the I-module. Fig.
3.2 (b) shows the given power deposition map Qa (for a self-consistent deposition map see Appendix
A). The deposition is uniformly distributed inside the vessel to obtain a fixed total deposited power Pa.
(Notice that as Pa is fixed, if the vessel length is changed then Qa needs also to be changed accordingly.)
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Figure 3.2: Structure of the code.

The I-module uses a Cartesian mesh defined on the natural cylindrical reference frame {1z, 1r, 1θ},
with coordinates (z, r, θ), as seen in Fig. 3.3 (a). This mesh is selected non-uniform in both radial and
axial directions based on the expected gradient of plasma properties. In the radial one, the mesh starts
coarse from the symmetry axis and concentrates cells close to the vessel walls. In the axial one, the
cell size increases from vessel to plume according to the expansion. The E-module uses a MFAM mesh
due the anisotropic character of the magnetized electron fluid as seen in Fig. 3.3 (b), and the details
of this mesh is explained in Chapter 2. As the meshes used by I-module and E-module are different,
interpolation of the plasma properties between them are required and linear methods are used. For an
accurate interpolation, it is tried to keep the MFAM cells with the same sizes as the I-module mesh ones
when possible.

-10 -5 0 5 10
0

1

2

3

4

5

a)

-10 -5 0 5 10
0

1

2

3

4

5

b)

Figure 3.3: (a) Cartesian mesh of I-module and (b) MFAM mesh of E-module for a particular simulation
case.
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3.2.2 Electron module

The electron fluid is described with a magnetized, weakly-collisional and drift-diffusive (inertialess)
model [79, 31]:

ne = ∑
s 6=e

Zsns, (3.1)

∇ · j = ∇ · (je + ji) = 0, (3.2)

0 = −∇(neTe) + ene∇φ + je × B + Fres + Fturb, (3.3)

∂

∂t

(
3
2

neTe

)
+∇ · he = −∇φ · je + Qe + Qa, (3.4)

0 = −5neTe

2e
∇Te − qe × B− 5Te

2e
(Fres + Fturb)− eneσ−1

e qe + Yturb. (3.5)

Equation (3.1) is the quasi-neutrality condition and allows to obtain density of electrons through the
densities of heavy species, where Zs is the charge number of species s. Equation (3.2) is the conservation
of current density j = je + ji, where je = −eneue is the electron current density and ji = e ∑s 6=e Zsnsus is
the ion current density, and the plasma beam is current-free since no current source exits. [The current
density vectors can be divided in the azimuthal and meridional current densities, i.e. jθs = js · 1θ and
j̃s = js − jθs1θ .] Equation (3.4) is the energy conservation. On the left-hand side, there is total variation
of energy: temporal derivative and total energy flux, which is he =

5
2 Teneue + qe with qe the heat flux.

On the right-hand side, the energy changes with: work of electric field −∇φ · je; inelastic collisions
Qe = −Qion − Qexc, where Qion and Qexc are, respectively, power losses for ionization and excitation
(see Chapter 4).

Equation (3.3) is for momentum and there is a balance among: pressure gradient −∇(neTe); elec-
tric field ene∇φ; magnetic force je × B; collisional resistive force Fres = −∑s 6=e νesmene (ue − us) =

eneσ−1
e (je + jc), νes the collision frequency with species s, σe = e2ne/meνe the conductivity, νe = ∑s 6=e νes

the total collision frequency, and jc = ene ∑s 6=e(νes/νe)us an equivalent current density representing
collisional effects of heavy species; and an anomalous transport force due to turbulence Fturb. Equation
(3.5) is for heat flux and has dual terms compared with the momentum equation. Here, two collision
terms are present, −Fres5Te/2e corresponds to the resistive force from the momentum equation, and
eneσ−1

e qe is the direct effect of collisions on the heat flux; and contributions of turbulence are also in-
cluded, −Fturb5Te/2e and Yturb. The turbulence terms are modeled with phenomenological models [33,
78] as Fturb = αt jθeB1θ and Yturb = −αtqθeB1θ , which enhance, respectively, the electron current and
heat flux across the magnetic field lines. The parameter αt has to be selected and, based on typical
values in the literature, is taken as αt = 0.01.

Equations (3.3) and (3.5) relate, as shown below, respectively, je with φ and qe with Te. Introducing
them into the conservation equations, je in Eq. (3.2) and qe in Eq. (3.4) gives, respectively, an elliptic
type equation for φ and a parabolic type equation for Te.

Generalized Ohm’s and Fourier’s laws

The Eqs. (3.3) and (3.5) can be rearranged, respectively, as generalized Ohm’s and Fourier’s laws,

je = σeK̃ ·
[
−∇φ +

∇pe

ene

]
+ j′e, j′e = −K̃ · jc, (3.6)
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and
qe = −

5
2

Te

e2 σeK̃ · ∇Te −
5
2

Te

e
K̃ ·
(

je + jc +
σe

ene
Fturb

)
. (3.7)

In these expressions, the normalized conductivity tensor is defined, on the magnetic reference frame,
as

K̃ =


1

1+χχ′ 0 χ′

1+χχ′

0 1 0

− χ′

1+χχ′ 0 χ′

χ
1

1+χχ′

 , (3.8)

where the Hall parameters are
χ =

ωce

νe
, χ′ =

ωce

νe + αtωce
, (3.9)

with ωce = eB/me the electron gyrofrequency.

The separate components of the Ohm’s law are

j‖e = σe

[
1

ene

∂ (neTe)

∂1‖
− ∂φ

∂1‖

]
+ j′‖e, (3.10)

j⊥e =
σe

1 + χχ′

[
1

ene

∂ (neTe)

∂1⊥
− ∂φ

∂1⊥

]
+ j′⊥e, (3.11)

jθe = −χ′ j⊥e + χ′ j′⊥e + j′θe. (3.12)

In a similar way, the components of the Fourier’s law are

q‖e = −σe
5
2

Te

e2
∂Te

∂1‖
− 5

2
Te

e

(
j‖e + j‖c

)
, (3.13)

q⊥e = −
σe

1 + χχ′
5
2

Te

e2
∂Te

∂1⊥
− 5

2
Te

e
j⊥e + j⊥c + χ (jθe + jθcχ′/χ)

1 + χχ′
, (3.14)

qθe = −q⊥eχ′ − 5
2

Te

e

(
jθe + jθc

χ′

χ

)
. (3.15)

The dynamics in the perpendicular components are determined by the magnetic field, whose infor-
mation is contained within the Hall parameters χ and χ′, and limits the transport across the magnetic
field lines. The first is the natural one and the second accounts for turbulence, which adds an additional
collisionality αtωce and enhances the limited transport.

The dynamics in the parallel components is characterized by the weakly-collisional condition and
thus high conductivity (σe ∝ ν−1

e ). In Eqs. (3.10) and (3.13), it happens that

∂φ

∂1‖
≈ 1

ene

∂ (neTe)

∂1‖
�

j‖e
σe

,
∂Te/∂1‖

Te
≈ 0. (3.16)

Thus, along magnetic field lines there is mainly a balance between pressure gradient and electric field,
and temperature remains isothermal. A Boltzmann relation can be established as

Φ = φ− Te

e
ln

ne

ne0
,

∂Φ/∂1‖
Φ

≈ 0, (3.17)
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where Φ is the thermalized potential with a reference density ne0. The condition in Eq. (3.10) makes the
computation of j‖e ill-conditioned numerically, since it is not a dominant term but needs to be solved.
As solution, Chapter 2 proposed to solve with Φ as unknown instead of φ. Introducing Φ, Eq. (3.10)
becomes

j‖e = σe

[
1
e

(
1− ln

ne

ne0

)
∂Te

∂1‖
− ∂Φ

∂1‖

]
+ j′‖e, (3.18)

and now j‖e/σe ∼ ∂Φ/∂1‖ ∼ e−1∂Te/∂1‖.

Boundary conditions and plasma-wall interaction (S-module)

The boundary conditions, when solving Eqs. (3.2) and (3.4), are set on the currents and total energy
fluxes normal to the surfaces: jn = j · n and hen = he · n with n the outward unit normal. On the axis,
symmetry implies that jn = 0 and hen = 0. On the ceramic walls, the dielectric condition jn = 0 is
applied and hen comes from the sheath model. On the free surface, the current-free condition states
that

∫
W3 jndS = 0. The condition can be fulfilled simply as jn = 0 without significant influences on the

simulation results if the free surface is far enough as seen in Chapter 2. Regarding the total energy flux,
kinetic studies [4] suggest that hen = cneTeuen with c a constant taken as c = 9/2.

The S-module relates plasma magnitudes at the quasi-neutral edge Q and the ceramic walls of
the vessel W. The model implemented is from Ref. [3], which: is collisionless and unmagnetized,
i.e. Debye length is much smaller than the mean free path and Larmor radius, and accounts for two
populations of electrons: (i) primary electrons from the plasma bulk and (ii) secondary electrons emitted
from the ceramic material. In addition, for primary electrons, the elastically reflected and repletion of
high energy tail particles are considered as well. The outputs of the model are the potential drop and
the total energy flux through the sheath,

eφWQ

TeQ
= ln

 ene

√
8Te
πme

4jin

∣∣∣∣∣∣
Q

σt (1− δwr) (1− δws)

, (3.19)

and
henQ = 2TeQ

jin/e
1− δws

− 2Tsδws
jin/e

1− δws
+ φWQ jin, (3.20)

respectively. In these expressions, δws is the fraction of secondary electrons emitted from the wall with
a temperature Ts, which is taken as Ts = 2eV; and δwr is the same but for elastically reflected primary
electrons. These yields depend on Te and are modeled as

δwr = δr0
E2

r(
TeQ + Er

)2 , δws =
2TeQ

Es
, (3.21)

where the parameters δr0, Es and Er depend on the type of ceramic material. Taking the common Boron
Nitride, we have that δr0 = 0.4, Es = 50eV and Er = 20eV [3, 103]. Finally, σt is the replenishment
fraction of the primary electron high energy tail, which changes usually in the range σt ∼ 0.1-0.3 and is
taken as σt = 0.1.
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3.3 Numerical treatment for E-module

Inside the E-module, the elliptic equation from the current conservation and Ohm’s law for φ and je,
and the parabolic equation from the energy conservation for Te are solved sequentially. The numerical
procedure used for the former was explained in Chapter 2, and the novelties are for the latter. In the
parabolic equation, the I-module provides heavy species densities and velocities; the quasi-neutrality
condition gives ne; and Qa is a known input. The numerical treatment requires first a temporal dis-
cretization. The implicit temporal schemes are preferable for a robust convergence, however, these
schemes are costly since the equation is non-linear in Te. Thus, as trade-off a semi-implicit scheme is
used to select the terms implicit (at t + ∆te) and explicit (at t) conveniently and linearize the equation
in Te. Applying the scheme to advance a time step ∆te, from time t to t + ∆te, yields

3
2

ne
Tt+∆te

e − Tt
e

∆te
+

3
2

∂ne

∂t
Tt+∆te

e = −∇ · he −∇φ · je + Qe + Qa, (3.22)

he =
5
2

neueTt+∆te
e + qe, qe = −

5
2

Tt
e

e2 σeK̃ · ∇Tt+∆te
e − 5

2
Tt+∆te

e
e
K̃ ·
(

je + jc +
σe

ene
Fturb

)
. (3.23)

On the left-hand side of Eq. (3.22), the temporal derivative of the energy is simply transformed to a
numerical form. On the right-hand side of Eq. (3.22), Te appears in the total energy flux of Eq. (3.23),
the convective fluxes (including the ones of qe) are ∝ Te, i.e. linear in Te, and the diffusive fluxes are
∝ Te∇Te, i.e. nonlinear in Te. The scheme takes Te implicit for the convective fluxes; Te explicit and
∇Te implicit for the diffusive fluxes. The terms without superscript come either from other modules or
have an internal non-linear dependence on Te and are taken at t. Other terms without superscript are φ

and ue (or je), which are taken from the solution of the elliptic equation at t so as to allow the method
of sequential time marching.

Once applied the temporal scheme, a spatial discretization is needed. Given the analogy with the
current conservation and Ohm’s law, the numerical procedure is similar as in Chapter 2. The equations
are solved on a MFAM such as the one of Fig. 3.3 (b). A finite volume method (FVM) is used to solve the
conservation, Eq. (3.22), and a gradient reconstruction method (GRM) is used for the flux, Eq. (3.23).

Applying the FVM to Eq. (3.22) for a generic cell yields

3
2

ne
Tt+∆te

el − Tt
el

∆te
Ωl +

3
2

∂ne

∂t
Tt+∆te

el Ωl + ∑
m

hnmSm = (−∇φ · je + Qe + Qa)|l Ωl , hnm = hem · nm,

(3.24)
where subscript l refers to a cell, with volume Ωl , and m to its faces, with area Sm and outward unit
normal nm. The volumetric terms are computed at cell centers, and the total energy flux at the face
centers. Apart from boundary faces, hnm is either h‖e or h⊥e, and for boundary faces hnm is known
from boundary conditions. A GRM is used to discretize Tt+∆te

e in hnm. In inner faces (those out of the
boundary), named as m∗, the function value or the derivatives of Te in hem∗ , say xm∗ , are obtained as

xm∗ = ∑
l

gm∗ lT
t+∆te
el , (3.25)

where gm∗ l are geometric coefficients dependent on the mesh and the specific GRM used.
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The Eq. (3.24) applied to all the cells yields the matrix system

A1{Tt+∆te
el }+ A2{hnm∗} = B1, (3.26)

where A1 contains the coefficients of the temporal terms, A2 the areas of the cell faces, and B1 the source
terms and the total energy fluxes to the boundary.

Then, applying Eq. (3.25) to fluxes in inner faces, we obtain

{hnm∗} = A3{Tt+∆te
el }, (3.27)

where A3 collects information on plasma and geometric properties (including the GRM coefficients).
Eliminating {hnm} from the two systems, we obtain

A{Tt+∆te
el } = B (3.28)

with A = A1 + A2 A3 and B = B1, which allows to solve Te in the cells.

In order to have the complete solution in the whole domain, we need to compute Te in the bound-
ary. The heat flux at the boundary faces, hnm, is known from the boundary conditions, and the solution
of Te has to be such that Eq. (3.23) gives the same value as the boundary conditions. In order to force
the constraint, we need a modification of the GRM,

xm = ∑
l

gmlT
t+∆te
el + gmmTt+∆te

em , (3.29)

which introduces Te at the boundary face m so that it becomes an unknown. Using this form of the
GRM in the constraint, we get an equation for each m,

∑
l

amlT
t+∆te
el + ammTt+∆te

em = hem, Tt+∆te
em =

hem −∑l amlT
t+∆te
el

amm
. (3.30)

Here, aml and amm are analogous terms to the matrices shown above.

The specific GRMs used were discussed in Chapter 2. The methods for the Ohm’s law were based
on the anisotropic character of the thermalized potential gradient, which has small variations along 1‖
and large variations along 1⊥. The weighted least square methods were found versatile, however they
compute derivatives along different directions at the same time and are prone to producing numerical
diffusion, and were used only for the highly irregular cells near the boundary. Inside the domain, finite
difference methods, which separate the computation of the derivatives, were used. Since the behaviour
of the thermalized potential in the Ohm’s law is the same for the electron temperature in the Fourier’s
law, here the same GRMs are used for the total energy fluxes.

3.4 Results

Simulations are run for the configurations C0, C1A/B, and C2A/B of HPT05M described in Sec. 3.2.
The operation conditions are the same for all the configurations. The injector delivers a mass flow
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ṁ = 1mg/s of xenon with a temperature of Tinj = 0.02eV and a mean velocity of uinj = 300m/s. The
total power deposited is Pa = 300W.

3.4.1 2D plasma profiles

Figure 3.4 shows the 2D maps of main plasma transport magnitudes for the configuration C0. The
same profiles for configurations C1A/B, with different magnetic field topologies, and for C2A/B, with
shorter vessel lengths, are displayed, respectively, in Figs. 3.5-3.6 and Figs. 3.7-3.8. The results in all
these figures are extracted once steady states are reached in the simulations.

In the configuration C0, the electron temperature [Fig. 3.4 (a)], inside the vessel, is homogeneous,
and we see that the heating is rather poor with a mean volumetric value of 〈Te〉 = 3.45eV. Besides,
the electrons are near isothermal along the magnetic field lines (see Fig. 3.1). This is expected from the
closure for the electron heat flux: the low collisionality makes the parallel conductivity huge, and the
gradient of temperature tends to zero to keep a finite heat flow in Eq. (3.13). The experiments confirms
this result inside the source [105]. However, also from experiments, a cooling is expected outside in the
plume [60], where a Fourier-type closure may be unsuitable once the plasma gets very rarefied along
the expansion.

The electrons, once heated, collide with neutrals to produce ionization. We see that, along the
discharge, the neutrals [Fig. 3.4 (b)] deplete, and the plasma [Fig. 3.4 (c)] is produced. The maximum of
the plasma density is around the section z = −2.5cm, where most of the ionization is produced. High
plasma densities up to ne ∼ 1019m−3 are obtained, but, full ionization is not found in the plume, where
ne ∼ nn.

The thermal energy of the plasma, stored mainly within electrons, is transformed into kinetic en-
ergy of ions to generate thrust through potential falls along the discharge. The potential [Fig. 3.4 (d)]
peaks near the vessel exit, and decays in all directions driving the ions [Fig. 3.4 (e)-(f)], |∆φ| ∼ 2〈Te〉/e
to the vessel and |∆φ| ∼ 6〈Te〉/e to the plume. The streamlines of ions stem from the section z =

−2.5cm, where the plasma density is maximum, and travel to two regions: the backward-flow region
z < −2.5cm, where ions hit the walls and are recombined; and the forward-flow region z > −2.5cm,
where are ions are accelerated for thrust generation. Since the backward-flow region occupies most of
the vessel, the amount of wall recombination, mostly in the lateral wall, is significant.

In configurations C1A/B, the magnetic field lines inside the vessel become axial when progres-
sively switching on the Coil-1 and Coil-2 (see Fig. 3.1). The backward-flow region gets smaller, with the
location of maximum ionization shifted to z = −9cm (C1A) and z = −12cm (C1B) [Fig. 3.5-3.6 (c) and
(f)], once the lateral wall is better shielded magnetically. The electron temperature isolines [Fig. 3.5-3.6
(a)] change accordingly with the magnetic field topology, and the heating is improved to 〈Te〉 = 5.13eV
(C1A) and 〈Te〉 = 14.49eV (C1B). The plasma, with similar maximum densities inside the vessel, is now
close to full ionization in the plume, where ne � nn [Fig. 3.5-3.6 (b) and (c)]; and the potential falls and
therefore the ion acceleration are larger [Fig. 3.5-3.6 (d) and (e)].

In configurations C2A/B, the rear side of the vessel is cut, which removes the backward-flow re-
gion and reduces the wall recombination. Once the wall recombination is reduced, again as for C1A/B,
the electron heating is improved to 〈Te〉 = 8.71eV (C2A) and 〈Te〉 = 25.35eV (C2B), which are higher
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than for C1A/B though. Given, the analogous behaviour for Te, the influence on the other plasma
profiles is also similar.

a) b)

c) d)

e) f)

Figure 3.4: 2D maps of plasma magnitudes for C0.
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a) b) c)

d) e) f)

Figure 3.5: 2D maps of plasma magnitudes for C1A.

a) b) c)

d) e) f)

Figure 3.6: 2D maps of plasma magnitudes for C1B.
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a) b) c)

d) e) f)

Figure 3.7: 2D maps of plasma magnitudes for C2A.

a) b) c)

d) e) f)

Figure 3.8: 2D maps of plasma magnitudes for C2B.
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3.4.2 Performances

Table 3.1 shows the performance indicators for C0, C1A/B and C2A/B. The indicators are defined in
Chapter 2, and the difference is the introduction of the dispersion efficiency

ηdisp =
F2

2ṁi,W3PW3
. (3.31)

This efficiency accounts for the velocity dispersion of plasma in the free loss surface W3, which comes
from two contributions: divergence of the plume and degree of thermal-to-kinetic energy conversion.
(Notice that ηF = ηuηeneηdisp.) In the configuration C0, we see a poor thrust efficiency of only ηF =

1.3%. This is mainly due to the very low energy efficiency of ηene = 5.3%, meaning that the power
losses are significant in: inelastic collisions losses, ηinel = 67%, dominated by excitation due to the low
electron temperature (〈Te〉 = 3.45eV), and wall losses, ηwall = 27.7%. The propellant utilization is of
ηu = 66%, and the plasma in the plume is not fully ionized. The total plasma production, ṁi/ṁ =

ηu/ηprod = 8.25, is much larger than the propellant mass flow, and for steady conditions, most of the
ionized propellant must be recombined to the walls, ṁwall/ṁ = ηu/ηprod − ηu = 7.59. These results
on the mass balance suggest that the propellant is ionized and recombined over and over along the
vessel, which is a consequence of the bad magnetic shielding of the walls. The velocity dispersion of
the plasma in the plume is noticeable, with a efficiency of ηdisp = 37.1%.

〈Te〉 [eV ] F [mN] ηu ηene ηdisp ηF ηprod εwall (W1/W2) εinel (ion/exc)

C0 3.45 2.85 0.66 0.053 0.371 0.013 0.08 0.010+0.267 0.241+0.429

C1A 5.13 4.01 0.92 0.116 0.253 0.027 0.13 0.040+0.326 0.205+0.313

C1B 14.49 7.49 0.98 0.341 0.278 0.093 0.24 0.252+0.196 0.116+0.095

C2A 8.71 5.37 0.97 0.181 0.273 0.048 0.16 0.118+0.314 0.178+0.209

C2B 25.35 8.02 0.97 0.449 0.239 0.104 0.36 0.249+0.158 0.073+0.071

Table 3.1: Performance indicators of different HPT05M configurations.

In the configurations C1A/B, the thrust efficiency increases about a factor of 2 for C1A, ηF = 2.7%,
and a factor of 7 for C1B, ηF = 9.3%. Given the better magnetic shielding, the plasma recombination to
the walls is reduced to ṁwall/ṁ = 6.16-3.10, and unnecessary plasma production is also reduced, which
is closer to the 100%, ṁi/ṁ = 7.08-4.08. The power losses are proportional to ṁwallTe, and since the total
deposited power is fixed, the lower ṁwall , the higher Te. Indeed, we have that electron temperature is
higher than for C0, with 〈Te〉 = 5.13-14.49eV. The energy efficiency is improved to ηene = 11.6-34.1%
due to the lower inelastic losses. The ionization losses, proportional to ṁi, and also the excitation losses,
important at low Te, are reduced accordingly giving εinel = 51.8-21.1%. The losses to the walls worsen to
εwall = 36.6-44.8% however, plasma recombination is smaller but the plasma reaching the walls is more
energetic. The propellant utilisation improves to ηu = 92-98%, and the dispersion efficiency remains
similar. In the configurations C2A/B, the plasma recombination concentrated at the rear side of the
vessel is removed, and analogous tendencies are observed as for C1A/B. The thrust efficiency increases
to ηF = 4.8-10.4% and some more noticeable improvements are obtained.

From C0 to C1B and C2B, we have improved significantly the thrust efficiency. However, the
performances of C1B and C2B are still within the current state-of-art of HPT prototypes [96, 106], and
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coincide with the highest ones reported from reliable measurements. We see that there is still room for
improvement of the energy efficiency, with significant power losses to the walls. Once the lateral wall
(W2) is better shielded, from εW2 = 26.7% (C0) to εW2 = 19.6% (C1B) and εW2 = 15.8% (C2B), the losses
are directed to the back wall (W1), from εW1 = 1.0% (C0) to εW1 = 25.2% (C1B) and εW1 = 24.9% (C2B),
where the magnetic field lines cut almost perpendicularly. Furthermore, the magnetic nozzle operation
is poor, something also observed in recent experiments [23], and needs to be improved.

3.4.3 On the thrust generation

The momentum equation, after adding all species, is

∇ ·∑
s
(msnsusus + nsTsI) = j× B, (3.32)

where I is the unit tensor. The electric field does not appear due to quasi-neutrality, nor the collisions
since they are internal to the plasma. Physically the thrust is the force exerted by the plasma on the
thruster, and integrating the momentum equation along the axial direction for the whole domain, we
obtain the thrust balance

F = Fp + Fm, (3.33)

with two contributions to thrust

Fp = −
∫

W1+W2
∑

s
(nsmsuzsus · n + nsTs1z · n) dS (3.34)

and
Fm = −

∫
V

jθ B sin γdV, γ = arctan(Bz/Br). (3.35)

In the case of Fp, it represents the pressure thrust of the plasma (both static and dynamic) on the ves-
sel walls, and can be separated as Fp = Fp,W1 + Fp,W2, with Fp,W1 for back wall and Fp,W2 for lateral
wall. (Notice that Fp,W2 is actually a tangential force to the lateral wall.) Regarding Fm, the azimuthal
current jθ , which is mainly due to the electrons, with a diamagnetic character reacts on the coils with
a force jθ B1⊥, and the proper deflection of the magnetic field lines, γ (γ < 0 convergent, γ > 0 di-
vergent), produces a magnetic thrust. This force has a volumetric character, and can be divided into
Fm = Fm,vess + Fm,plu, where Fm,vess accounts for the vessel and Fm,plu for the plume.

An alternative form of the thrust balance is

F = Fvess(1 + κF), κF = Fm,plume/Fvess, (3.36)

where Fvess = Fp + Fm,vess is the thrust generated inside the source, and κF is the increment of the vessel
thrust achieved along the magnetic nozzle.
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Fp Fm Fvess κF Fm,vess Fm,plu Fp,W1 Fp,W2

C0 4.84 −1.99 2.08 37% −2.76 0.77 2.60 2.24

C1B 6.82 0.67 6.35 18% −0.47 1.14 8.18 −1.36

C2B 6.82 1.20 5.57 44% −1.25 2.45 7.01 −0.19

Table 3.2: Total thrust breakdown: pressure force/magnetic force, and vessel force/plume increment.
Contributions to the magnetic term from source and plume, and to the pressure term from back wall
and lateral wall. The forces are in mN.

Table 3.2 shows the thrust balance for the configurations C0, C1B and C2B. First, in the form of
Fp and Fm, we see that Fp is the main mechanism of thrust, and gets larger from C0 to C1B and C2B,
where higher densities and temperatures are achieved. We also see that Fm is even a drag force instead
of a propelling force for C0, and small for C1B and C2B. In the form of Fvess and κF, Fvess differs from
Fp being smaller, and is increased along the plume with κF = 18-44%, which coincides with the range
obtained in experiments [107]. Thus, the magnetic nozzle can provide an important increment to thrust.
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Figure 3.9: 1D z-profiles at a mean r, about 75% of domain radius at each z = constant section, of (a)
azimuthal current density, (b) magnetic field angle, (c) magnetic field strength and (d) magnetic thrust
per unit volume for C0 (———-), C1B (- - - - - -) and C2B (···········).



44 Chapter 3. Hybrid simulation model: numerical treatment (ii) and parametric analysis for HPTs

The splitting of the magnetic force indicates that in the plume, Fm,plu is a propelling force as ex-
pected, but inside the vessel, Fm,vess is a drag force. This is an interesting result, since the theoretical
and experimental studies for this mechanism of thrust have been focused on the magnetic nozzle, and
do not discuss about the source [6, 34, 7, 106]. Figure 3.9 shows the magnetic force per unit volume
and its separate terms for the configurations C0, C1B and C2B. The 1D profiles at a mean r, about the
75% of the maximum radius for each z = constant section are shown. The azimuthal current density
[panel (a)] is dominant inside the vessel and decays outside in the plume. In the vessel, the geometry is
convergent (γ < 0) at least in some regions [panel (b)]. Although γ is small, due to the large magnetic
field strength [panel (c)] and azimuthal current, a drag force, which could be significant, is generated
[panel (d)]. We see that the drag force is the largest for C0, and then is reduced for C1B and for C2B,
where the convergent geometry is either reduced or removed. In the plume, with a divergent magnetic
field geometry (γ > 0), a propelling force is generated.

Regarding the pressure force, the splitting indicates that for C0, both Fp,W1 and Fp,W2 are compara-
ble, and for C1B and C2B, Fp,W1 dominates over Fp,W2, which becomes a drag force. Figure 3.10 shows
the pressure force per unit area on the vessel walls for the three configurations. In the back wall [panel
(a)], the pressure force is concentrated on the injection surface, r = 0-0.4cm. In the lateral wall [panel
(b)], the pressure force, which is much smaller, starts positive and turns to negative at some point along
the vessel. Remembering that the pressure force is the opposite of the plasma momentum flux to the
walls, the behaviour of the profiles, when changing the configurations, is explained with the shifts of
the location of maximum ionization. Since it shifts to the rear side when going from C0 to C1B and
C2B, the flux to that wall increases, and more plasma hits the lateral wall when travelling to the plume
generating a drag force.
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Figure 3.10: (a) Pressure force per unit area of the plasma on (a) back wall and (b) lateral wall of the
vessel for C0 (———-), C1B (- - - - - -) and C2B (···········).

3.5 Conclusions

The magnetized and drift-diffusive electron fluid model within HYPHEN is completed with the energy
conservation equation and a Fourier’s law as closure for the heat flux, so that the spatial profile of
electron temperature can be obtained for a given arbitrary known power deposition map. A parabolic
differential equation is found for Te combining the energy conservation and the Fourier’s law. The
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numerical procedure for the equation requires a temporal discretization, and a semi-implicit scheme
is proposed as a trade-off between convergence and simplicity. The scheme takes implicit the linear
terms and explicit the non-linear terms of the equation. Among the explict terms, we have also the
electric potential and electron velocity, which are solved from the current conservation and Ohm’s
law system sequentially in time within the electron fluid module. The spatial discretization of the
equation is by analogy similar to the one for the current conservation and Ohm’s law system, which
was introduced in Chapter 2. The discretization is done on a MFAM, a FVM is applied to discretize the
energy conservation on the cells of the mesh while GRMs are used to discretize the Fourier’s law on the
cells’ faces. The GRMs found in Chapter 2 for the derivatives of the thermalized potential in the Ohm’s
law to avoid numerical diffusion must be extended to the derivatives of the electron temperature in the
Fourier’s law, since the gradient of both have the same anisotropic character (small and large variations,
respectively, parallel and perpendicular to the magnetic field).

HYPHEN is used to study the prototype HPT05M, for which experimental results reported very
poor performances. Alternative configurations have been searched looking into two key design pa-
rameters, magnetic topology and vessel length. 2D maps of the main plasma transport magnitudes,
and performance indicators (plasma production, power balance and magnetic nozzle operation) are
obtained. Furthermore, the thrust mechanisms, pressure and magnetic contributions, are studied.

In the current configuration of HPT05M, with a coil at the long vessel exit, the magnetic field is
maximum there and decays fast. The magnetic shielding of the walls is bad and a region of backward-
flow plasma occupying most of the vessel is formed, which results in a huge wall recombination concen-
trated mainly in the lateral wall. Two options have been found to mitigate this problem: the first option
is to have a better magnetic shielding of the walls by placing more coils along the vessel; and the sec-
ond option is to shorten the vessel. The region of backward-flow and therefore the wall recombination
are significantly reduced or removed with these actions. The thrust efficiency, for the current configu-
ration, is very poor, 1.3%, as already suggested by the experiments, and the improved configurations
optimize the thrust efficiency to 9.3%-10.4%. The optimization, although significant, is partial, since
the performances achieved are still within the current state-of-art. The main reasons limiting higher
performances, are the power losses to the back wall, which conventional quasi-axial magnetic topology
cannot handle, and the operation of the magnetic nozzle, which has a significant velocity dispersion of
the plasma.

The thrust assessment suggests that the pressure contribution is the main mechanism of thrust.
Regarding the magnetic contribution, the magnetic force generated by the magnetic nozzle, gives an
increment of the thrust that can be significant. However, it is found that the magnetic force generated
by the source, if a convergent geometry exists inside the vessel, counteracts the one by the magnetic
nozzle canceling the overall magnetic contribution.

In view of the results, further optimization is required for HPT05M to become competitive. The
next step will be to find a non-conventional magnetic topology that can shield both back and lateral
walls, something that can be achieved with ring-cusps topologies [52, 15]. The operation of the mag-
netic nozzle needs to be improved as well. Although the typical values of efficiencies obtained are
observed in experiments, the modeling of the plume expansion needs to be revised. The electron cool-
ing, which is observed also in experiments, is not reproduced in our model. This is due to the diffusive
(Fourier-type) closure for the electron heat flux, commonly used in the literature, is not suitable once
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the plasma becomes very rarefied, and the electron heat transport in the plume requires further inves-
tigation. Chapters 5 and 6 have deeper studies of the plasma expansion along magnetic nozzle with
kinetic simulations.
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Chapter 4

Hybrid simulation model: modeling of
chemistry and alternative propellants
for HPTs

4.1 Introduction

The modeling of thruster operations with complex chemistry, which is necessary for many of the candi-
dates for alternative propellants, is not very advanced. The existing thruster models are rather simple
ones that are not able to handle mixtures of several substances or molecular collisions such as dissocia-
tion, vibrational and rotational excitation, etc. Recently, Sheppard and Little [94] progressed partially on
this issue: they developed a one-dimensional model for electrodess thrusters to characterize properly
the complex chemistry and obtained results for operation with water. Being one-dimensional, details
such as realistic magnetic topologies, different from a purely axial one, and wall losses are not consid-
ered. Furthermore, electric potential and electron temperature are not solved self-consistently, but are
related through a phenomenological relation.

This chapter presents the modeling with HYPHEN, which can handle multiple species and is im-
plemented with the collisions typical of diatomic molecules. Simulations are run for the HPT prototype
HPT05M using air as propellant, and plasma profiles and operation performances are studied and com-
pared with xenon.

The rest of the chapter is organized as follows: Section 4.2 explains the implementation of colli-
sions, Section 4.3 discusses the simulation results, and Section 4.4 summarizes the conclusions.

4.2 Modeling of collisions

4.2.1 Type of collisions

In low altitudes, where the air-breathing concept can be applied, the main components of air are N2 and
O [16]. From sea level until 200km, the composition is dominated by N2, and from 200km until 400km,
by O. The modeling of atomic substances are common and well-known, and the discussion is focused
on diatomic substances, which is the novel part implemented in HYPHEN.



48 Chapter 4. Hybrid simulation model: modeling of chemistry and alternative propellants for HPTs

Table 4.1 shows collisions for simulations with diatomic substances. The formula of each collision
is given for a generic substance, where A2 stands for a diatomic molecule and A for an atom, and super-
script + refers to positive ions and e to electrons. Only electron-heavy species collisions are considered,
while the heavy-heavy species and photon-driven ones are negligible within the normal operation con-
ditions in EP. The electrons, if energetic enough, can ionize and also dissociate the diatomic molecules
through collisions, thus producing molecular ions A+

2 and atoms A. Instead, the electrons without
enough energy excite A2, and the excitation acounts for the transitions between electronic states, and
also for those between vibrational and rotational states. Apart from the inelastic collisions, the electrons
can collide elastically with A2 and through Coulomb interaction with A+

2 . The derived species A from
dissociation suffers collisions as well being possible again the ionization to produce A+, the excitation,
and the elastic collisions.

Type of collision Formula

Elastic A2 + e→ A2 + e
Coulomb A+

2 + e→ A+
2 + e

Excitation A2 + e→ A∗2 + e
Ionization A2 + e→ A+

2 + 2e
Dissociation A2 + e→ 2A + e

Elastic A + e→ A + e
Coulomb A+ + e→ A+ + e
Excitation A + e→ A∗ + e
Ionization A + e→ A+ + 2e

Table 4.1: Type of collisions considered when simulating for diatomic molecules.

The collision i is characterized with a reaction rate Ri, which is, for negligible heavy species velocity
and an electron Maxwellian distribution of temperature Te,

Ri =

√
8

πmeT3
e

∫ ∞

εth,i

εeσi(εe)exp(−εe/Te)dεe. (4.1)

Here: εe is the electron impact energy, εth,i is the threshold energy of the reaction, and σi is the cross
section. The threshold energy is the one needed each time a collision of the reaction happens. The
elastic and Coulomb reactions have εth,i = 0, and the rest (ionization, excitation and dissociation) are
inelastic reactions, with εth,i > 0, which involve energy losses. The cross section of the reaction, σi, is
a function of εe, and data determined experimentally or theoretically is available in the literature. The
rate measures the likelihood for a reaction to happen, and physically represents the volume swept by
an electron in its trajectory. The rate multiplied by the density of the collision target, the heavy species,
give the collision frequency, i.e. the number of collisions which an electron suffers per unit time. The
collision frequency multiplied by the density of electrons is the number of collisions which the electrons
suffer per unit time and unit volume within a location.

Data of cross sections for low-temperature plasmas have been collected for N2, N and O. There are
data from journal articles specific for the topic [45, 44, 101, 102], where compilations are done; detailed
quantum mechanics computations [117, 110], and the online database LXCAT [62, 84]. The information
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is repeated over the different sources, and is postprocessed with a benchmark before being used in
HYPHEN.

100 101 102
10-16

10-14

10-12

a) N2

100 101 102
10-16

10-14

10-12

b) N

100 101 102
10-16

10-14

10-12

c) O

100 101 102
10-16

10-14

10-12

d) Xe

Figure 4.1: Reaction rates of air substances, Xe is shown for comparison.

N2 N O Xe
εth,ion 15.6 14.8 13.6 12.1

εth,elec−exc ∼ 10 ∼ 8 ∼ 8 ∼ 8
εth,vib−exc ≈ 0 - - -
εth,rot−exc ≈ 0 - - -

εth,diss 9.8 - - -

Table 4.2: Threshold energy [eV] of reactions for air substances, Xe is shown for comparison.

Figure 4.1 and Table 4.2 shows, respectively, the rates versus Te and the energy thresholds, for air
substances and Xe. The notation used for the collisions are: elastic collision (en), Coulomb collision (ei),
ionization (ion), electronic excitation (elec− exc), vibrational excitation (vib− exc), rotational excitation
(rot− exc), and dissociation (diss). The rate for Coulomb collision does not come from the sources men-
tioned above, but from a general analytical formula known from plasma theory [13]. The excitation
rates include the transitions from ground state to the relevant states that have been identified. Notice
that each transition from ground state to a higher energy state has a different threshold, and the values
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shown are averaged ones for the temperature range of interest (∼ 10eV) in EP. One of the main objec-
tives in an EP device is to try to fully ionize the propellant. Xe has a εion slightly smaller, and Rion 2-3
times larger than N2 and O. In N2, the ionization can happen as separate dissociation-ionization, but
this indirect way is more costly in terms of energy. The excitations imply energy losses and have to be
minimized: the electronic excitation thresholds are comparable to the ionization ones. In N2, there are
vibrational and rotational excitations additionally, which however have εi ≈ 0 and are basically elastic
collisions. The dominance of Rion over Rexc, happens if electron temperature is high enough: about
10eV for Xe and O, and 20eV for N2.

4.2.2 Implementation in HYPHEN

The plasma properties change along the discharge while their species collide between them. The colli-
sions modify the plasma via species production, momentum transfer and power losses. In the hybrid
formulation and quasi-neutral plasma approach of HYPHEN, the I-module is in charge of the genera-
tion of species. The momentum transfer and power losses are assigned to the E-module for electrons
due to the large mass disparity with respect to heavy species.

I-module

The collisions that generate species are ionization and dissociation. The former, as obvious, was already
implemented in HYPHEN, and here the algorithms are generalized to handle also the latter.

The generation is done for each mesh cell and per each time step of the I-module. First, the total
mass of the new species to be generated is obtained as

∆m = msnsneRes(Te)V∆t, (4.2)

where: V is the cell volume and ∆t the time step; ms and ns are, respectively, the mass and density
of the input species s, and ne the electron density; Res is the generation rate. Second, the amount of
macroparticles to be generated is given by

Np =
∆m

msWgen
, (4.3)

with Wgen the generation weight selected, i.e. the number of elementary particles within one macropar-
ticle. In ionization, Np is exactly the number of new macroparticles, but in dissociation, there are Np

pair of macroparticles.

The new generated macroparticles, apart from their weights, need to be assigned a position and a
velocity. The position of the macroparticles is allocated randomly with an uniform probability inside
the cell where they are generated. Regarding the velocity, the procedure is different for ionization
and dissociation. For ionization and each of the Np new macroparticles, we sample a velocity of the
original species from a Maxwellian distribution defined with the local properties, namely vs, and which
is allocated directly. For dissociation, the same sampling is done for each Np pair of new macroparticles,
but now vs has to be distributed over the pair. The distribution is done in a way so that the output
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species conserved the energy of the input ones. The output velocities have modules

|v1| =
√

2(1− x)|vs|, |v2| =
√

2x|vs|, (4.4)

where x is a random number chosen uniformly between 0-1, and directions also uniformly distributed
over the space.

E-module

In the fluid model of E-module in Chapter 3, the collisions contribute to momentum (Eq. 3.3) and
energy (Eq. 3.4), and more specifically to, respectively, the collision resistive force and power losses:

Fres = −ne ∑
s 6=e

νesme(ue − us), (4.5)

and
Qe = −ne ∑

s 6=e
νesεth,es. (4.6)

The collision frequency is defined as
νes = nsRes, (4.7)

and the sum in the two terms is extended over all types of collisions of e with species s.

4.3 Results

Simulations are run separately for N2 and O. The configuration C2B of HPT05M defined in Chapter 3 is
used, i.e. vessel length L = 3cm and only Coil-0 turned on. The propellants are evaluated for the same
operation parameters as in Chapter 3, i.e. a mass flow of propellant ṁ = 1mg/s and a known uniform
power density map with total power deposited Pa = 300W.

4.3.1 2D plasma profiles

The 2D plasma profiles for N2 and O are displayed in Figs. 4.2 and 4.3. Panels (a) show the electron
temperature, and profiles isothermal along the magnetic field lines and radially decaying are found.
Panels (b)-(c) show the neutral and plasma densities: the propellant is partially depleted, and the ion-
ization is poor (ne � nN2 , nO). In the case of N2, there is also dissociation, which is important since we
have nN2 ∼ nN as seen in panel (g). The generation of electrons come from ionization of both N2 and
N, panels (h) and (i) show the densities of n+

N2
and n+

N , and they are comparable. Panels (d) show the
potential, with a peak inside the vessel around (z, r) = (1.5, 0.8)cm, and decays in all directions. Panels
(e)-(f) show the meridional ion velocity and current density. We see that ions follow the potential fall:
a part of the ions hit and are recombined in the vessel walls, and another part exit the vessel and are
accelerated to supersonic conditions to generate thrust.

The analogous plots for Xe are shown in Fig. 4.4. The comparison reveals that the general physics
for N2 and O are similar to that of Xe. The main difference is that the electron temperature is larger for
Xe [panels (a)] and, with a higher level of ionization, the propellant is ionised nearly in totality [panels
(b)-(c)]. The potential falls are accordingly higher [panels (d)], and the ion acceleration is milder [panels
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(e)] since Xe is heavier. As discussed in Chapter 3, the electron heating is less effective if there are more
wall losses, which can be proved indeed in the ion fluxes of panels (f), and therefore it is related to the
magnetic confinement. The electron azimuthal current density, jθe, produces a force −jθeB1⊥, which,
inside the vessel (1⊥ ≈ 1r), screens the plasma from the walls. There is worse confinement for N2 and O
due to the larger level of collisionality: given the same amount of propellant mass flow, more particles
for N2 and O are present since they are lighter [panels (b)-(c)], and thus more collisions take place. Fig.
4.5 compares jθe and electron collision frequency νe for the propellants, and corroborate the argument.

a) b) c)

d) e) f)

g) h) i)

Figure 4.2: 2D maps of plasma magnitudes for N2.
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a) b)

c) d)

e) f)

Figure 4.3: 2D maps of plasma magnitudes for O.
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a) b)

c) d)

e) f)

Figure 4.4: 2D maps of plasma magnitudes for Xe.
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a) b) c)

d) e) f)

Figure 4.5: Electron azimuthal current density and total collision frequency for N2 (first column), O
(second column), and Xe (third column).

4.3.2 Performances

Table 4.3 shows the performance indicators (which are defined in Chapter 3) of the HPT operated with
N2 and O. The analogous results for Xe are shown for comparison. Apart from the deposited power
Pa = 300W, we also show the results for Pa = 600W. Xe offers better overall efficiency, ηF (notice that
ηF = ηmηeneηdisp), than N2 and O as expected. Operating with Pa = 300W, N2 and O have a ηF of
1.3-4.5%, which are noticeably worse than the 10.4% of Xe. The poor performance is due to the poor
electron heating: the volumetric mean temperature, 〈Te〉, is 4.84-5.19eV for N2 and O, while Xe has
25.35eV. In consequence, there is a low propellant utilization, N2 and O have a plume partially ionized,
ηm = 20-34%. Furthermore, the portion of power carried by the plume (useful for thrust) is worse
as well, ηene = 16-35%. The energy balance suggests that the larger power losses are due to inelastic
collisions, εinel = 44-69%, which are dominated by the excitation.

Introducing more power, Pa = 600W, 〈Te〉 grows accordingly. The increment is noticeable for Xe,
and small for N2 and O. In Xe, the efficiencies remain similar and thrust is increased. In N2 and O, the
propellant utilization is nearly double, and the portion of beam power is slightly improved. The overall
efficiency follows ηm and is increased to ηF = 2.4-7.6%. If further power is deposited and 〈Te〉 is high
enough to have full ionization (ηm ≈ 1), we can expect, based on the tendency observed, to achieve
ηF ∼ 5-10%. Then for high powers, air would have efficiencies comparable to those of Xe.

Since the simulations have been run separately for N2 and O, the performances of air as mixture,
within the first 400km of the atmosphere, are expected to be a kind of average between them. Re-
sults suggest that O presents a better performance than N2, thus thrust efficiency would increase with
altitude.
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〈Te〉 [eV ] F [mN] ηm ηene ηdisp ηF ηp εwall εinel (εion+εexc+εdiss)

N2-300W 4.84 2.82 0.20 0.16 0.40 0.013 0.40 0.15 0.11+0.53+0.05

O-300W 5.19 5.23 0.34 0.35 0.38 0.045 0.44 0.21 0.21+0.23

Xe-300W 25.35 8.02 0.97 0.45 0.24 0.104 0.36 0.41 0.07+0.07

N2-600W 5.37 5.38 0.38 0.20 0.32 0.024 0.42 0.16 0.10+0.50+0.04

O-600W 7.00 9.64 0.62 0.41 0.30 0.076 0.45 0.24 0.18+0.17

Xe-600W 46.98 11.34 0.98 0.45 0.24 0.108 0.37 0.50 0.03+0.02

Table 4.3: Performance indicators of a particular HPT05M configuration operated with N2, O and Xe.

4.4 Conclusions

The search of alternative propellants for EP is a current topic due to the scarce supply for Xe and the
foreseen growth of EP. Several candidates have been proposed with potential advantages. However,
many of them have molecular structures, and there was no simulation tool that, at the same time,
reproduces self-consistently the physics of the plasma discharge and models complex chemistry. The
simulation code HYPHEN fills that gap and contributes to a progress. The code has been extended
to include collisions typical of diatomic molecules, which already allows to assess a wide variety of
propellants. The tool is used to evaluate air as alternative propellant, which is the basis for air-breathing
concepts. The HPT05M prototype is used for the simulations.

Simulations are run considering low altitudes, where the air is still dense enough. Within the
first 400km, the air is dominated by N2 (0-200km) and O (200-400km), and N2 and O are evaluated
separately. The results of 2D maps and performances are shown and compared with Xe. Studies reveal
that the main 2D profiles and physical mechanisms of the discharge are similar. The main difference is
that the electron heating is less effective for N2 and O given the same amount of deposited power. This
is due to a worse confinement for them: for the same mass flow of propellant and being less massive,
their particle densities are larger and therefore they are more collisional. At low power (∼ 100W), the
low electron temperature, makes the plume poorly ionised and they have a thrust efficiency far from
that of Xe. At high power (∼ 1000W) however, for which the temperature is enough, they could be
competitive with respect to Xe. Furthermore, O is found to have better efficiency than N2, and then
higher altitudes of flight are better in terms of propulsive performance.
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Chapter 5

Kinetic study of magnetic nozzles:
transient process

This chapter adapts partially the published contents from a peer-reviewed journal article: "Kinetic features and
non-stationary electron trapping in paraxial magnetic nozzles", Plasma Sources Science and Technology 27
(2018) 035002.

5.1 Introduction

The modeling of magnetic nozzles has attracted great attention. One [19], two [10, 6, 69, 67] and three
[61] dimensional fluid models have been developed, and the transformation of the internal energy of the
plasma into directed kinetic energy, the plasma detachment, and the role played by the plasma-induced
magnetic field have been discussed. However, since plasma flows are generally weakly collisional, sim-
ple closures of the fluid equation hierarchy for the pressure tensor and the heat fluxes are doubtful. A
self-consistent determination of these magnitudes needs inevitably a kinetic description of the plasma.

Stationary solutions of the Vlasov equation in a magnetized plasma expansion have been obtained
recently [64]. After assuming steady conditions, a slender nozzle geometry, and a fully magnetized
plasma, the conservation of the total energy and the magnetic moment were used to write rigorously
the densities of the particles connecting with the source as functions of the electrostatic potential and
to compute the latter. It was then found that there exist regions in phase space not connected with
either the source or the downstream region, where doubly-trapped bouncing particles can exist. Since
in collisionsless plasmas the filling of those regions happens during the transient, a stationary model
cannot characterize rigorously the trapped particles. The plasma spatial solution and its numerical
convergence turned out to be very sensitive to the distribution of trapped particles on the divergent side
of the nozzle. After adding an heuristic population of trapped electrons, the authors found numerical
solutions with the electron density dominated by the confined electrons over most of the divergent jet.

Discussions on whether or not trapped population of electrons are an essential component of the
solutions and how they are determined also arise in other areas of plasma physics. For instance, for
an electron-attracting Langmuir probe in flowing plasma, it was argued that a population of electrons
should exist at the ram side of the probe [91]. The formation of such a trapped population during
the transient phase, which is an adiabatic process, has been observed recently in non-stationary direct
(eulerian) Vlasov simulations [88]. Adiabatic trapping in slowly varying time-dependent electric fields
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[38] has been considered in analytical studies of magnetized plasma expansion [85]. Particles can also
be trapped due to collisional effects. Particle collisions, which can also produce trapped particles, have
been included in non-stationary particle-in-cell (PIC) simulations [65].

This chapter studies plasma expansions in magnetic nozzles by using a non-stationary direct Vlasov
code. As compared to stationary fluid models, this technique computes the pressure tensor, the heat
fluxes and the population of trapped electrons self-consistently. PIC codes do also exhibit these two
features. However, due to the numerical noise, they do not give an accurate description if the number
of macroparticles per cell is small, a circumstance that is unavoidable in non-stationary simulations of
a plasma expansion into vacuum. Direct Vlasov codes, which are more demanding from a computa-
tional point of view because they discretize the distribution function in real and velocity spaces instead
of using macroparticles, provide a better accuracy and degree of detail of the distribution functions.

The contents of this chapter comes from Ref. [89]. This chapter shows only the results related to the
macroscopic response of the steady-state plasma. The kinetic features such as distribution functions, the
dependency of the steady-state solution on the transient history, and the transient trapping mechanism
of the electrons are not shown. (The latter was done mainly by Sánchez-Arriaga, with the support of
the rest of the authors, and can be found in Ref. [89].) The rest of the chapter is organized as follows:
Section 5.2 presents the mathematical model and describes briefly the numerical algorithm. The effects
of fixing in the code the size of the nozzle (finite simulation domain) and the electrostatic potential value
at the exit, two parameters that do not appear or are not externally imposed in a real infinite plasma
expansion, are shown in Sec. 5.3. The correct selection of these two parameters allows to reproduce
with the code the conditions of a real nozzle with zero net current. Section 5.3 also presents the particle
densities, momentum balances, temperature, and heat fluxes. Section 5.4 summarizes the conclusions
of the chapter.

5.2 Magnetic nozzle model based on guiding center theory

5.2.1 Plasma model

Let us consider a tank placed at z < z0 < 0 and filled with an electron-ion plasma. We are interested in
the time-dependent, magnetically-channeled plasma expansion that is produced when a hole of radius
R0 at z = z0 is opened at the plasma-vacuum wall. For the sake of illustration, the geometry of the
magnetic nozzle is the one corresponding to a current loop of radius RL (RL > R0) placed at the plane
z = 0. It generates a stationary and non-uniform magnetic field in the vacuum region that reaches
its maximum value BT at z = 0 (the nozzle throat T). The forward distribution functions of ions and
electrons entering the nozzle are assumed semi-Maxwellian,

fα(t, z = z0, v‖ > 0, v⊥) = N∗
(

mα

2πkBT∗α

)3/2
exp

(
− mαv2

2kBT∗α

)
, α = i, e, (5.1)

while the backward distribution functions will be determined self-consistently by the expansion charac-
teristics. Here N∗ and T∗α are reference parameters (not the actual densities and temperatures at z = z0

that also involve the backward distribution function), v =
√

v2
‖ + v2

⊥ is the velocity, and v‖ and v⊥
the velocity components parallel and normal to the magnetic field lines. For convenience, hereafter
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the axial coordinate, time, velocities, magnetic field, electrostatic potential, particle distribution func-
tions, and densities, are all normalized and we will write z/λ∗De → z, tω∗pe → t, v‖,⊥/λ∗Deω∗pe → v‖,⊥,
B/BT → B, eφ/kBT∗e → φ, fα/N∗ (me/kBT∗e )

3/2 → fα, where λ∗De =
√

ε0kBT∗e /N∗e2 is the Debye
length, ω∗pe =

√
N∗e2/meε0 the electron plasma frequency, kB the Boltzmann constant, me the electron

mass, e the elementary charge, and ε0 the vacuum permittivity. As shown below, the plasma dynamics
depends on the following dimensionless parameters in our model

rL ≡
RL
λ∗De

, δα ≡
T∗α
T∗e

, βα ≡
mα

me
, Zα, (5.2)

where the subscript α = e, i denotes electrons and ions, and mα and Zα are the mass and the charge
number of the α-species.

We follow a paraxial approximation and assume a slender and slowly-varying magnetic field, i.e.
we take RL/R0 >> 1, and just look at the center line of the magnetic nozzle. Under this hypothesis,
the parameter R0 does not appear anymore in the model and one just needs the normalized magnetic
field at the center line. It reads

B(z) =
r3

L(
r2

L + z2
)3/2 1z, (5.3)

where 1z is an unit vector along the z-axis. Therefore, we are having a convergent-divergent nozzle
with the maximum of the magnetic field B = 1 at z = 0 and B → 0 as z → ±∞; the analysis here will
be focussed at the divergent side of the nozzle. The model also assumes that the magnetic field is very
strong and the normalized Larmor radii satisfies ρLα ≡ βv⊥/|Zα|B << rL. In the limit ρLα/rL → 0,
the slow drift motion of the particles across the field lines can be ignored and the normalized magnetic
moment

µα =
βαv2
⊥

2B
(5.4)

is conserved (for brevity, we will generally write µα → µ). Hereafter, we will work with the gyrocenter
variables (z, v‖, µ, γ), and will also average the distribution functions of the particles fα over the fast
gyrophase γ

f̄α(t, z, v‖; µ) =
1

2π

∫ 2π

0
fα(t, z, v‖, µ, γ)dγ. (5.5)

The evolution of the gyrocenter distribution function f̄α is governed by the Vlasov equation

∂ f̄α

∂t
+ v‖

∂ f̄α

∂z
+ aα

∂ f̄α

∂v‖
= 0, (5.6)

where we ignored the induced magnetic field and introduced the parallel dimensionless acceleration

aα = − 1
βα

(
Zα

∂φ (t, z)
∂z

+ µ
dB (z)

dz

)
. (5.7)

The normalized electric field E = E‖B/B = −∂φ/∂z is given by the paraxial Poisson’s equation

B
∂

∂z

(E‖
B

)
= ∑

α=e,i
Zαnα (5.8)
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with the particle densities computed from the distribution functions as

nα(z) =
∫

fαdv =
2πB
βα

∫ +∞

−∞

∫ +∞

0
f̄αdv‖dµ. (5.9)

Therefore, the dynamics of the electrons and the ions governed by the two Vlasov equations in Eq. (5.6)
are nonlinearly coupled through the electrostatic potential. This set of equations must be integrated
with appropriate boundary and initial conditions, discussed in Subsec. 5.2.3.

5.2.2 Evolution of macroscopic quantities

The evolution equations of the main macroscopic quantities are helpful in the analysis of the simula-
tions. The average or mean value of any quantity ψ is computed as

〈ψ〉α =
1

nα

∫
ψ fαdv =

2πB
βαnα

∫ +∞

−∞

∫ +∞

0
ψ f̄αdv‖dµ. (5.10)

Interesting quantities are: densities nα = 〈1〉α, Eq. (5.9); macroscopic velocities parallel to the magnetic
field uα =

〈
v‖
〉

α
; current densities jα = Zαnαuα; temperatures T‖α = βα

〈
c2
‖α

〉
α

and T⊥α = B 〈µ〉α,
where we introduced the peculiar velocities c‖α = v‖ − uα; pressures P‖α = nαT‖α and P⊥α = nαT⊥α;

and (parallel) heat fluxes of parallel and perpendicular energy, Q‖α = 1
2 βαnα

〈
c3
‖α

〉
α

and Q⊥α =

Bnα

〈
µc‖α

〉
α
, respectively. According to Sec. 5.2, the normalization has been done with characteris-

tic variables involving the electron mass.

The evolution equations of these quantities are obtained straightforwardly by taking velocity mo-
ments in Eq. (5.6). In the paraxial case, the equations for continuity, axial momentum, total energy, and
perpendicular energy are, respectively,

∂nα

∂t
+ B

∂

∂z

(nαuα

B

)
= 0, (5.11)

∂

∂t
(βαnαuα) + B

∂

∂z

(
βαnαu2

α

B

)
= −Zαnα

∂φ

∂z

+

[(
P‖α − P⊥α

) ∂ ln B
∂z
−

∂P‖α
∂z

]
, (5.12)

∂

∂t

[
nα

(
βα

2
u2

α +
T‖α
2

+ T⊥α

)]
+

B
∂

∂z

[
nαuα

B

(
βα

2
u2

α +
3
2

T‖α + T⊥α

)
+

Q‖α + Q⊥α

B

]
+ jα

∂φ

∂z
= 0, (5.13)

∂

∂t
(nαT⊥α) + B2 ∂

∂z

[
1

B2 (nαuαT⊥α + Q⊥α)

]
= 0. (5.14)

This set of macroscopic equations is incomplete, unless equations for the parallel heat fluxes Q‖α and
Q⊥α are added, which will introduce higher order magnitudes. A closure of the set of the fluid equa-
tions is not simple in a collisionless plasma.
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Here, the consistent kinetic solution is obtained directly, so the fluid equations are used to interpret
the results, mainly the steady-state ones in Section 5.3. In this respect, in the above equations, 1/B
plays the role of the effective beam area [furthermore, it is in fact the natural spatial variable (instead
of z) in the divergent paraxial nozzle]. Thus, in Eq. (5.11), nαuα/B is the species flow (i.e. the flux
area integrated), which is constant spatially in steady-state. The species current, jα/B, and the total
plasma current, I = (je + ji)/B, are constant in steady-state too. In Eq. (5.12), the two last terms on the
right-hand side are the contribution of the divergence of the pressure tensor (i.e. the net pressure force).
Then, the steady-state limit of Eq. (5.13) yields that the total enthalpy flow, Ḣα, is constant spatially,

Ḣα ≡
nαuα

B

(
βα

2
u2

α +
3
2

T‖α + T⊥α + Zαφ

)
+

Q‖α + Q⊥α

B
= const. (5.15)

Here, (Q‖α + Q⊥α)/B is the total heat conduction flow. The steady state limit of Eq. (5.14) yields that
the (convection plus conduction) flow of perpendicular energy evolves proportional to B−1

nαuαT⊥α + Q⊥α

B2 = const, (5.16)

which is the direct consequence of the conservation of the magnetic moment of the species. These con-
servation laws were already used in Ref. [63] to analyze the plasma response in a convergent magnetic
field. Finally, if the mean kinetic energy is eliminated from Eq. (5.13) by using Eqs. (5.11) and (5.12), the
evolution equation for the internal energy is obtained,

∂

∂t

(P‖α
2

+ P⊥α

)
+ B

∂

∂z

{
1
B

[
uα

(
3
2

P‖α + P⊥α

)
+ (Q‖α + Q⊥α)

]}
−uα

[
∂P‖α
∂z

+
(

P⊥α − P‖α
) ∂ ln B

∂z

]
= 0, (5.17)

which can susbtitute for Eq. (5.13).

5.2.3 Simulation domain and boundary conditions

We are interested in the time-dependent plasma expansion along the (semi-infinite) divergent nozzle,
extending from z = 0 (the throat T) to z = ∞. However, since the numerical simulation requires to
work with a finite domain, the downstream end of the domain (point M) will be placed at a certain
zM � 1, with BM << 1. A parametric analysis of the combined influence of zM and rL on the solution
is carried out below. Furthermore, it turns out that, in spite of applying quasineutrality at the upstream
end of the simulation domain, a non-desirable Debye sheath, extending a few Debye lengths develops
there. In order to eliminate its spurious influence, the usptream end of the domain has been placed at
the convergent side of the nozzle, in particular, at z0 = −rL/2.

At the domain entrance, we set Maxwellian functions for the injected particles,

f̄α(t, z = z0, v‖ > 0; µ) = χα(t) f̄Mα (5.18)

with

f̄Mα =

(
βα

2πδα

)3/2
exp

(
−

βαv2
‖

2δα
− Bµ

δα

)
(5.19)
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and χe = 1. The parameter χi(t) is dynamically varied to accomplish quasineutrality at entrance section
z = z0, once reflected-back particles are taken into account there. [For instance, if no ions are reflected
back and all electrons are, then χi = 2.] At the domain downstream end, in order to simulate the
vacuum at infinity, we impose no incoming particles into the domain,

f̄α(t, z = zM, v‖ < 0; µ) = 0. (5.20)

Regarding initial conditions, one would initially set f̄α(t = 0, z > z0, v‖; µ) = 0. However, since
such a hard transition can lead to numerical issues, our simulations used

f̄α(t = 0, z > z0, v‖; µ) = f̄Mα × exp
(
− z− z0

L0

)
(5.21)

with L0 a dimensionless parameter that controls the density gradient of the initial plasma profile. A
value L0 = 2, which yields a profile with width about a few Debye lengths, is enough to provide a
smooth transition at t = 0 in the simulations.

Finally, Poisson’s equation requires two boundary conditions on the electrostatic potential. Clearly,
there is the freedom to take φ(z = z0) = 0. With respect to the boundary condition at the downstream
end, the studies of the semi-infinite, stationary nozzle with a simple plasma have shown two things.
First, the potential decays monotonically to an asymptotic value φ = φ∞ < 0 (i.e. yielding dφ/dz|∞ →
0). Second, the net electric current of the plasma beam I is not a parameter independent of φ∞: a
parametric current-voltage curve I(φM) with ∂I/∂|φ∞| > 0 exists. This behavior of the current-voltage
curve is simple to explain: for normalized distribution functions at injection, the more negative φ∞ is, a
larger fraction of electrons injected into the nozzle is reflected back to the reservoir while (near) all ions
cross freely the nozzle, and thus the more positive becomes I. Therefore, in the downstream end of our
finite simulation box we can impose either φM = φ(zM) or I. The first choice is the natural one for the
numerical scheme. Notice then, that the case of most practical interest, I = 0, which corresponds to a
current-free plasma beam, requires to iterate on φM.

5.2.4 Direct Vlasov solver

This section discusses briefly the main features of the novel direct Vlasov code VLASMAN (VLAsov
Simulator for MAgnetic Nozzles), that has been developed for the numerical integration of Eq. (5.6).
A mesh of points zi with i = 1, . . . Nz is defined within the interval z0 ≤ z ≤ zM. These points are
distributed non-uniformly in order to keep constant the ratio between the resolution of the mesh and the
local Debye length, which is expected to vary as λDe ∼ n−1/2 ∼ B−1/2. The velocity space, involving
v‖ and µ, was truncated as −vα

max ≤ v‖ ≤ vα
max and 0 ≤ µ ≤ µα

max and discretized with Nv‖ × Nµ

points. Unlike the spatial mesh, which is common for both species, different maximum velocities and
magnetic moments are chosen for electrons and ions. For both species, the velocity mesh is uniform.
The unknowns of the code are the values of the distribution functions at the points of the mesh and at
discrete times tm, f̄α(tm, si, v‖j, µk).

Since µ appears as a parameter in Eq. (5.6), the algorithm just needs to solve a one dimensional
equation Nµ times. Given the distribution function f̄α(tm, si, v‖j, µk), the value at tm + ∆t is found by
using a splitting algorithm that treats the convective terms in the z and v‖ directions separately, and
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gives a scheme of second order in ∆t [18]. A short summary of the splitting algorithm and a description
of the numerical schemes implemented for the interpolation and the numerical integration are given in
[89].

In the simulations, we took the physical parameters δi = 1, βi = 100, Zi = 1, and considered
several values of rL. The value of βi is not realistic for an electron-ion plasma but it still separates sig-
nificantly the electron and ion response times and helped us save computational resources. Regarding
the geometry of the nozzle, we set z0 = −rL/2, i.e. the divergent and convergent segments have lengths
equal to rL/2 and zM, respectively. The most relevant numerical parameters are Nv‖ = 77, Nµ = 101,
ve

max = 5, vi
max = 0.5, µe

max = µi
max = 12.5, and ∆t = 0.03. Tradeoffs analysis varying the numerical

parameters zM and φM are shown in Sec. 5.3.

5.3 Stationary solution and parametric analysis

The effect of the truncation of the computational box up to a length zM and the setting of the electrostatic
potential value φM at that position have been investigated by running a large number of simulations.
After taking an expansion rate of rL = 50, the physical and numerical parameters explained in Sec.
5.2.4, and several values of zM and φM, we integrate the Vlasov-Poisson system forward in time until
the plasma reached the corresponding stationary state. For each simulation, the latter was verified by
monitoring the time evolution of the most important variables, such as density and potential, and the
z-profiles of nαuα/B, which becomes uniform at stationary conditions.
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Figure 5.1: Net current-to-magnetic field ratio j/B versus the total potential drop (φM) and the one
between the throat and zM (φTM) for several expansion rates and box sizes. The curves practically
overlap, also for the case rL = 100 (not shown).

First of all, Fig. 1 shows the results of investigating the influence of the total potential fall φM on
the electric current I across the nozzle in steady-state. As expected and known from previous models,
the current I (abcissa) is positive for large, negative values of φM (ordinate), and negative otherwise.
The most relevant result here is the universal character of the curve φM(I): it is practically independent
of rL and zM (as long as BM � 1), which allows to infer that this curve reproduces the behavior of
the semi-infinite nozzle too. Furthermore, Fig. 5.1 shows that the curve φTM(I) for the potential fall
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along the divergent part of the nozzle is (near) universal too. The principal, current-free beam case has
potential falls of φM ≈ −2.75 and φTM ≈ −2.34. Such potential drops are consistent with previous
calculations from stationary kinetic models (extrapolate to mi/me = 100 the results in Fig. 4(c) of Ref.
[64]). Hereafter, we focus the analysis at discussing the (approximate) ’current-free case’ φM = −2.75.
The steady states values of the normalized species current are Ii = −Ie ' 0.074.
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Figure 5.2: (a), (b) and (d) Respectively, the normalized space charge, φ versus z and ni versus 1/B for
rL = 50 and several zM. (c) φ versus 1/B for zM = 800 and several expansion rates.

Figure 5.2 shows (near) stationary axial profiles for different rL and zM. Panel (a) plots the relative
space charge for rL = 50 and several lengths of the simulation box; panels (b) and (c) plot the electric
potential profile versus z and B−1, and panel (d) the ion density versus B−1. Three different spatial
regions can be distinguished in panels (a)-(c). First, a small sheath (with a relative space charge < 5%
and extending a few Debye lengths) forms at the entrance of the simulation domain, in spite of having
forced quasineutrality locally at z = z0. This ’numerical’ sheath is caused by the need of the electric
field to adapt the entrance distribution functions of ions and electrons and it was the reason to include a
small convergent part of the nozzle, even though the work is focused on the divergent nozzle behavior.
Second, there is the large quasineutral region, with a decreasing electric field as we move downstream.
Third, there is a second Debye sheath at the downstream end of the simulation. Since the Debye length
is proportional to n−1/2

α [and thus nearly proportional to B−1/2, according to panel (d)], it increases by
1-2 orders of magnitude along the discharge, thus giving the impression that the downstream sheath
is thick. Just for reporting, the relative space-charge and the potential fall in the downstream sheath
are nearly constant, because of the low electric field at the sheath entrance and the need to adjust the
total potential fall to φM. Panel (c) shows that φ depends more naturally on B−1 in the quasineutral
region. In panel (d), we see that ni is near proportional to B, indicating a much gentler dependence
of ui on B (to have niui/B=const). The electron density ne behaves as ni except at the downstream
sheath where it decreases more sharply. Normalized plasma densities at the entrance and the throat are
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ne0 = 0.97 and neT = 0.62, the difference indicating the jet acceleration in the small convergent region
of the nozzle. Finally, at the simulation box entrance, the ratio of ion-to-electron densities for forward
moving particles, that is, χi in Eq. (5.18) is 1.53: this ratio would be close to 2 and 1 if the entrance
would be, respectively, at the throat and further upstream in the convergent magnetic nozzle.
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Figure 5.3: Stationary, spatial profiles of inertial, pressure, and electric forces of ions and electrons for
rL = 50 and zM = 800.

The stationary momentum equation of ions and electrons, Eq. (5.12), states the balance

FI
α = FP

α + FE
α , (5.22)

between the inertial force (or flow of species momentum) FI
α , the pressure force FP

α , and the electric force
FE

α . Both FI
α are positive, both FP

α are expected to be positive, while FE
i > 0 and FE

e < 0. Furthermore,
one has: FE

e ' FE
i in the quasineutral region; and FI

e /FI
i ∼ me/mi � 1 for the current-free and ’small

current’ cases. The combination of these two facts implies that the electron inertia is negligible, and the
electric and electron pressure forces balance each other, i.e. FP

e ' −FE
e � FI

e . For ions, the inertial force
is dominant, and the relevance of the ion pressure depends on upstream conditions for Ti/Te. These
trends are confirmed by Figure 5.3(a), which plots FE

e , FP
e , and FI

i ; the two other forces are obtained by
just applying Eq. (5.22). In this case, the ion flow is supersonic and thus is accelerated freely by the
electric force.

Figure 5.3(b) assesses the different contribution to the net electron pressure force, that is, the pres-
sure tensor divergence. This can be expressed in two different ways:

∇ · ¯̄Pα =
∂P‖α
∂z

+
(

P⊥α − P‖α
) ∂ ln B

∂z
≡ B

∂

∂z
(

P‖α
B

) + P⊥α
∂ ln B

∂z
. (5.23)

The first division is based on the parallel pressure gradient and the magnetic mirror effect, and the
second is based on the P‖α and P⊥α contributions. The panel shows, interestingly, that the parallel pres-
sure gradient and the magnetic mirror effect are individually much larger as their difference (i.e. they
compensate practically each other). This makes them not very suitable to characterize the total pressure
contribution. On the contrary, the P‖α and P⊥α contributions are of the same order as their difference.
For this particular case, the P⊥α-contribution dominates mildly upstream, while the P‖α-contribution
dominates totally downstream. The milder behavior of the z-derivative of P‖α/B compared to that of
P‖α, and the drop of the P⊥α-contribution, are due to nα ∝ B approximately and the behaviors of T‖α
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and T⊥α shown below. Although not shown, the ion pressure contributions behave in the same way
than the electron ones.
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Figure 5.4: (a), (b) The perpendicular temperature of the electrons and the ions, respectively. (c) Their
parallel temperatures and (d) the mean kinetic energy of the ions. zM = 800 and solid, dashed, and
dot-dash lines correspond to rL = 100, 50, and 25, respectively.

Figure 5.4(a)-(c) displays the stationary spatial profiles of the parallel and perpendicular temper-
atures of ions and electrons for zM = 800 and rL = 25, 50, and 100. In this collisionless plasma, these
kinetic temperatures simply express the dispersion of particle velocities. The first interesting feature is
that both perpendicular temperatures decrease with B−1, a behavior related to the conservation of mag-
netic moment. On the contrary, the parallel temperatures are rather constant spatially, except for the
decrease of T‖e at the downstream sheath. Therefore, the plasma expansion along the divergent nozzle
implies both anisotropy and cooling [the average temperature is (T‖α + 2T⊥α)/3]. This behavior agrees
qualitatively with stationary, kinetic, fully-quasineutral models (see Fig. 7 in Ref. [64]). Apparently,
the main difference of the non-stationary model, which computes the population of trapped electrons
self-consistently, is a softer decay of the parallel temperature. Values of normalized temperatures at the
throat are T‖iT ' 0.30, T⊥iT ' 1.20, T‖eT ' 0.86, T⊥eT ' 0.90, and they are explained by the analysis of
Ref. [63] for a convergent magnetic geometry: there the ion distribution function is determined by the
combination of the magnetic mirror and the free extraction at the throat, while electrons remain near
Maxwellian. Figure 5.4(d) displays the ion axial kinetic energy, which increases downstream thanks
to the electric potential energy. For this current-free case, the electron axial energy behaves exactly the
same in the quasineutral region (but it is me/mi times lower).

Figure 5.5 analyzes the z-profiles of the heat (or internal energy conduction) flows. We recall that
Q‖ and Q⊥ represent parallel fluxes of the parallel and perpendicular thermal energies (perpendicular
fluxes are zero in our model). Notice that, since this is a collisionless plasma, no Fourier-type law
is expected to apply for these heat flows. Panel (a) shows that: the area-integrated parallel heat flows,
Q‖α/B, are approximately constant (except, as often, near the ends of the simulations) while the parallel
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Figure 5.5: Axial profiles of the heat fluxes [panel (a)] and their relative rates versus the pressure fluxes
[panel (b)] rL = 50 and zM = 800.

flows of perpendicular thermal energy, Q⊥α/B, decrease proportional to B2. The same dependence
with B was found for the internal energy convection flows, nαuα(3T‖α/2) and nαuαT⊥α. To complete
this, panel (b) determines the relative rates of internal energy conduction versus the pressure flux for
ions and electrons. Focusing on the main quasineutral region, conduction of parallel and perpendicular
internal energies of electrons is about 50-52% of its convection; for ions conduction represents 4% and
11% in the parallel and perpendicular cases; more parametric analyses are needed to ascertain how
these values depend on the upstream plasma conditions. In spite of this, it seems clear that, both for
ions and electrons, the internal energy perpendicular flow decreases in proportion to B, Eq. (5.16), and
becomes negligible downstream. Then, since the total enthalpy flow is conserved, Eq. (5.15), that loss
of perpendicular energy goes mainly into increasing the axial kinetic energy, which is the macroscopic
equivalence of the classical particle mirror effect, for ions, and the electric potential energy for electrons.

5.4 Conclusions

In this chapter, the steady-state behaviour of the plasma expansion, from the Vlasov-Poisson solver,
is discussed. The parametric analysis shows how the electrostatic potential drop and the size of the
simulation box should be selected to reproduce relevant physical conditions in the simulations. Along
the expansion, a non-neutral region is found downstream, which is a consequence of the semi-infinite
expansion truncation. However, the results are robust with respect to the simulation domain length,
for a larger length, the quasineutral solution upstream does not change, and the overall potential drop
and final relative space-charge are the same along the downstream sheath. The cooling of both ions
and electrons are observed, with the perpendicular temperatures tending to zero due to the magnetic
mirror while the parallel ones tend to a non-zero values. The parallel and perpendicular heat fluxes are
found to scale with the respective convective fluxes of internal parallel and perpendicular energies.

The analysis of kinetic features, which is not shown in this chapter but is found in Ref. [89], pro-
vides quantitative information about the relative importance of the different electron populations. Re-
flected electrons are the dominant population in the quasineutral region, followed by the free and the
trapped electrons. The latter represents about 20% of the total. This figure is much smaller than the one
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needed to make stationary Vlasov-Poisson solver converge in previous studies. Therefore, a popula-
tion of trapped electrons seems to be a fundamental component of the expansion but it is not as large
as considered earlier. Moreover, it is shown that the exact amount of trapped electrons depends on the
particular history of the system and several steady states are possible.

5.A Effect of the convergent segment
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Figure 5.6: (a), (b) The charge densities and potential profiles for simulations with lengths of the con-
vergent segment equal to z0 = −50 (solid black), z0 = −25 (dashed blue) and z0 = −12.5 (red dashed-
dotted). The curves practically overlap.

Although this work is focused on the divergent segment of the nozzle, we here explain briefly
why it is convenient to add a small convergent segment in the simulation domain, and the impact of
its length, |z0|, in the results of the expansion in the divergent region. A short parametric analysis for
z0 = −50,−25,−12.5 and rL = 50, is presented next.

Panel (a) of Fig. 5.6 displays the normalized charge density profiles in stationary conditions. The
sheath forms always at the left edge of the simulation box and its strength mitigates as the length of
the convergent segment is increased [see inset in panel (a)]. Eventually the sheath would disappears if
the whole plasma source were included, as it is the case in the stationary model of Ref. [64]. Panels (a)
and (b) show that both the charge density and the electric potential (when referenced to the throat) are
almost unaltered by the segment length (if this is larger than a few Debye lenghts). The same conclu-
sion was reached for other plasma properties in the divergent nozzle, like for instance the temperature
profiles. In this respect, the results of our work are robust. If the left edge of the simulation were
placed at the throat, a non-negligible sheath would appear next to the throat affecting significantly the
potential fall along the divergent nozzle. It is clear that there are distribution functions that avoid the
development of a sheath at the left edge, but we do not see a way to characterize them. The presence
of this spurious sheath has been reported also in full particle-in-cell simulations of unmagnetized and
magnetized plumes too [43, 57].
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Chapter 6

Kinetic study of magnetic nozzles:
collisions

This chapter adapts the contents of the article titled "Time-dependent expansion of a weakly-collisional plasma
beam in a paraxial magnetic nozzle", which has been submitted to Plasma Sources Science and Technology and is
under revision [121]. Although this is a continuation of Chapter 5, some notation changes were found convenient.

6.1 Introduction

As continuation of Chapter 5, this chapter extends VLASMAN into the weakly-collisional regime. The
occasional electron-electron collisions can alter (and presumably increase) the occupancy level of the
trapped-electron region, and thus verify if the full occupancy postulated by the quasineutral, steady-
state kinetic (SSK) model of Martínez-Sánchez et al. is achieved [64]. A Bhatnagar-Gross-Krook (BGK)
intraspecies collision operator [12] is used. This attempts to relax the local velocity distribution func-
tion (VDF) towards a drifted Maxwellian VDF with the same density, drift and temperature. Recently,
Ahedo et al. [4] came back to the SSK model to characterize the total potential drop and other down-
stream plasma magnitudes; analyze the mass, momentum and energy balances; and discuss closures
for electron heat flux. The kinetic and macroscopic solutions from VLASMAN will be compared to the
ones of Ref. [4].

Section 6.2 explains the physical model and the simulation setup. Most of this section has been
already described in Chapter 5, but as the notation has changed, it is repeated with the new notation for
consistency in this chapter. Section 6.3 presents the main kinetic features and the role of the collisions.
Section 6.4 presents the spatial profiles of macroscopic magnitudes and the balances of macroscopic
equations. Section 6.5 discusses on closure laws for electron heat flux. Section 6.6 discusses on the total
potential drop as boundary condition. Section 6.7 summarizes the conclusions.

6.2 Magnetic nozzle model

6.2.1 Physical model and boundary conditions

A paraxial convergent-divergent MN defined by a stationary magnetic field B is considered. If the
plasma beam is fully magnetized, it is contained within a magnetic surface of area A(z) = πR2(z).
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Although the results are far more general, for sake of illustration, the simulations here consider the
particular magnetic field generated by a current loop of radius RL. The paraxial approximation requires
that R� RL. Then, the axial magnetic field on the plasma beam is the one at the axis

B(z) ' BM

[1 + (z/RL)2]
3/2 1z, (6.1)

and the condition ∇ · B = 0 yields A(z)B(z) = const. In fact, the larger RL is, the lower the nozzle
divergence rate is: d ln A/dz ∝ 1/RL. Figure 6.1 sketches the magnetic field and the simulation domain.
The nozzle throat M is located at z = 0, BM is the maximum field and AM is the minimum area. The
simulation domain, which is initially empty, extends from a plasma source at z0 < 0 to a downstream
boundary zD > 0. The source ejects a fully-ionized Maxwellian-like plasma constituted of electrons
and singly-charged ions. Electrons and ions reaching the downstream boundary zD leave the domain.

-100 0 200 400
0

0.5

1

Figure 6.1: Sketch of the magnetic nozzle (left) and the external magnetic field B (right). Plasma is
injected from a source and expands from z0 to zD with the nozzle throat M at z = 0.

Let α = e, i denote electrons and ions, respectively, with mass mα and charge number Zα. The
distribution function of the species α, fα(t, z, v‖, v⊥, ϕ), depends on time t, axial coordinate z and species
velocity v = v‖B/B + v⊥. For convenience, the latter is split in the parallel (v‖) and perpendicular (v⊥)
components to B, and in turn, the perpendicular one is given by its module v⊥ and the gyrophase ϕ.
The high-magnetization limit considered here means that the Larmor radius, ρLα ≡ mαv⊥/eB (with
e the elementary charge), of any species is small compared to the scale length of the variation of the
magnetic field, i.e. ρLα/RL � 1. In addition, the low collisionality limit means that the species collision
frequency να is much smaller than the gyrofrequency, ωcα = eB/mα, and the inverse of the transit time
in the MN. Under these conditions, the plasma is attached to the magnetic field lines, and the guiding
center theory can be applied [14]. The details of the gyromotion are not important and, instead of using
fα, the evolution of its average value in the gyrophase ϕ can be followed. This gyrocenter VDF is of
the form f̄α(t, z, v‖, µ), where the magnetic moment µ = mαv2

⊥/2B substitutes to v⊥ as independent
variable.

Ignoring any self-induced magnetic field and in the limit of small Larmour radius and large gy-
rofrequency, the Boltzmann equation for the gyrocenter VDF is [98, 14]

∂ f̄α

∂t
+ v‖

∂ f̄α

∂z
+ aα

∂ f̄α

∂v‖
=

δ f̄α

δt
, (6.2)
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where the species acceleration,

aα = − 1
mα

[
Zαe

∂φ (t, z)
∂z

+ µ
dB (z)

dz

]
, (6.3)

is due to both electric and magnetic mirror forces. Finally, the paraxial Poisson equation for the electro-
static potential φ is

B
∂

∂z

(
1
B

∂φ

∂z

)
= − e

ε0
∑

α=e,i
Zαnα, (6.4)

with ε0 the vacuum permittivity, and the condition AB = const was applied. The collisionless case of
this model was used in the study of Ref. [89].

Macroscopic magnitudes such as density (nα), mean axial velocity (uα), parallel and perpendicu-
lar temperatures and pressures (T‖α and T⊥α, p‖α and p⊥α) and axial heat flux (qα) are obtained from
velocity moments of f̄α:

nα = 〈1〉α , nαuα =
〈

v‖
〉

α
, p‖α = nαT‖α = mα

〈
c2
‖

〉
α

,

p⊥α = nαT⊥α = B 〈µ〉α , qα =
mα

2

〈
c3
‖

〉
α
+ B

〈
µc‖
〉

α
, (6.5)

where c‖ = v‖ − uα and

〈ψ〉α =
2πB
mα

∫ ∫
ψ f̄αdv‖dµ. (6.6)

The mean temperature and pressure are, respectively, Tα = (T‖α + 2T⊥α)/3 and pα = nαTα.

Internal collisions within a particular species are modeled with the BGK operator [12]

δ f̄α

δt
= να

(
f̄Mα − f̄α

)
, (6.7)

where να represents an intraspecies collision frequency. This operator drives each plasma species to-
wards local thermodynamic equilibrium by relaxing the local VDF f̄α towards the Maxwellian VDF
with the same local and instantaneous nα, uα and Tα, i.e.

f̄Mα(t, z, v‖, µ) ≡ nα

(
mα

2πTα

)3/2
exp

−mα

(
v‖ − uα

)2

2Tα
− Bµ

Tα

 . (6.8)

For a weakly-collisional plasma beam in a MN, the transit times (between z0 and zD) of ions and elec-
trons are small compared to the mean collision times ν−1

α . Thus, only trapped electrons, bouncing back
and forth within the MN, are really affected by collisions. Therefore, ion collision frequency νi will
be neglected and only the electron collision frequency νe appears in the model. Furthermore, for the
elementary parametric study on collisional effects to be attempted here, νe will be taken constant, i.e.
representing an average value along the expansion. Only Appendix 6.B explores briefly a variable νe.
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The Boltzmann equation needs boundary conditions at z0 and zD. At z0 the injected species (v‖ > 0)
are taken to follow the semi-Maxwellian VDFs

f̄α(t, z0, v‖ > 0, µ) = nα?(t)
(

mα

2πTα?

)3/2
exp

(
−

mαv2
‖

2Tα?
− Bµ

Tα?

)
, (6.9)

where Te? and Ti? are constant. Regarding nα?, ne? is also constant while ni?(t) is such that the plasma
is quasineutral at any time at z0, i.e. n0 ' ne0 ' ni0. If z0 is far away from the MN throat, into the
convergent segment (as it will be the case here), ne?, ni?, Te? and Ti? correspond at steady state, to the
densities and temperatures of the species at z0, i.e. n0, Te0, and Ti0; hereafter, only these last symbols
will be used. At zD no species return once it reaches the domain exit and it gives the condition

f̄α(t, zD, v‖ < 0, µ) = 0. (6.10)

The boundary conditions for the Poisson equation are φ(z0) = 0 and φ(zD) = φD, where φD is the total
potential drop and it regulates the total net current in the plume.

The solutions of the Boltzmann-Poisson model are found with VLASMAN. A detailed explanation
of the numerical scheme without collisions is in Ref. [89] and the implementation of the novel collision
operator is described in Appendix 6.A.

Variables are non-dimensionalized with n0, Te0, λDe0 =
√

ε0Te0/n0e2 and ce0 =
√

Te0/me. Dimen-
sionless variables are represented with hat on the top:

ẑ =
z

λDe0
, t̂ = t

ce0

λDe0
, v̂‖ =

v‖
ce0

, µ̂ = µ
BM
Te0

, f̂α ≡ f̄α
c3/2

e0
n0

, φ̂ =
eφ

Te0
.

The typical electron and ion transit times are τte = (zD − z0)/ce0 and τti = (zD − z0)/cs0, with
cs0 =

√
Te0/mi, while the typical electron collision time is ν−1

e . In order to reach a stationary behavior
for both ions and electrons, the total simulation time τsim must be larger than both τti and ν−1

e . The
criterion followed here is τsim ≥ 2.0 max(τti, ν−1

e ), which assures a change of results below 1% in the
last fourth of the simulation.

The level of e-e collisionality will be measured with the dimensionless parameter

ν̃e = νeτte,

which is small in the weakly-collisional regime. This will be the central parameter of the present inves-
tigation. The other dimensionless parameters of the model are φ̂D, ẑ0, ẑD, RL/λDe0, mi/me and Ti0/Te0;
and most of them were already discussed in Ref. [89].

The baseline configuration of the simulations here takes

φ̂D = −3, ẑ0 = −100, ẑD = 400, RL/λDe0 = 50, mi/me = 100, Ti0/Te0 = 1.

Thus, the computational domain includes a significant portion of the convergent segment (B(z0)/BM =

0.09) and a nearly complete expansion (B(zD)/BM = 0.002). The total potential drop selected cor-
responds approximately to a current-free plume in the weakly-collisional regime as discussed in Sec.
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6.6. The unrealistically low mass ratio mi/me = 100 allows us saving computational resources while
keeping the electron and ion time scales well-separated. The large convergent segment, not included in
Ref. [89], allows to have plasma sonic conditions in a natural way around the MN throat and a better
comparison with the SSK model of Ref. [4].

6.3 Kinetic features

6.3.1 Basic concepts

The formulation followed here determines the distribution function f̄α in the four-dimensional phase-
space (t, z, v‖, µ). In our continuum approach and for each species α, the characteristic lines C :

[
z(t), v‖(t), µ(t)

]
of the Boltzmann equation (6.2) are defined in the phase-space as satisfying

dz
dt
|C = v‖,

dv‖
dt
|C = aα,

dµ

dt
|C = 0. (6.11)

Along these lines, the variation of the distribution function is exclusively due to collisions

d f̄α

dt
|C =

δ f̄α

δt
, (6.12)

where the collision operator is a function in the phase-space representing the collective collisional ef-
fects. Furthermore, the energy function can be defined in the phase-space as

E(t, z, v‖, µ) =
1
2

mαv2
‖ + B(z)µ + Zαeφ(t, z), (6.13)

which satisfies
dE
dt
|C = Zαe

∂φ

∂t
. (6.14)

Therefore, the energy is constant along the characteristic lines in the steady state.

As a consequence, only in the absence of collisions and the steady state, f̄α is conserved along
the characteristic lines together with E and µ. Besides, in the collisionless plasma, the trajectory of
individual particles coincide with the characteristic lines being E and µ the conserved particle energy
and magnetic moment. These facts were used in Ref. [64] to take E instead of v‖ as a more convenient
independent variable to determine f̄α. Since

v±‖ (z, E, µ) = ±

√
2

E− B (z) µ− Zαeφ (z)
mα

, (6.15)

the sign discrimination requires to split the VDF as

f̄α(z, E, µ) = f̄+α (z, E, µ) + f̄−α (z, E, µ),

with f̄+α (z, E, µ) and f̄−α (z, E, µ) the downstream (v‖ = v+‖ ) and upstream (v‖ = v−‖ ) parts, respectively.
Applying the change of variable v‖ → E, Eq. (6.12) is reduced, in the collisionless steady-state case to
[86]

v±‖
∂ f̄±α (z, E, µ)

∂z
= 0, (6.16)
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i.e. f̄±α are z-independent piecewise functions for a given set of (E, µ).

The condition v‖ = 0 defines a maximum magnetic moment, which, for electrons, is

µm(z, E) =
E + eφ(z)

B(z)
, (6.17)

such that there are no electrons with µ > µm(z, E). Then, two critical energies are defined: E = e|φD|
and E = E?, where E? satisfies

∂2µm(z, E?)

∂z2 = 0,

dividing the phase-space (z, E, µ) in three electron subpopulation regions sketched in Fig. 6.2. Examples
of trajectory of individual electrons, without collisions, are plotted within the regions. For E < E? [panel
(a)], there is only one subpopulation: all electrons from the source are reflected back, at the location z
where µ = µm(z, E). For E? < E < e |φD| [panel (b)], there are two subpopulations separated by
(z, µ) = [zT(E), µT(E)] (where point T corresponds to the minimum of µm): those with z > zT and
µ > µT are trapped electrons and the rest of them are reflected ones. For E > e |φD| [panel (c)], there
are also two subpopulations: those with µ < µT are free electrons and those with µ > µT and z < zT

are reflected ones.

In the steady-state, collisional problem of interest here, the above three regions in the phase-space
(z, E, µ) continue to be perfectly defined and are named as free-, reflected-, and trapped-electron re-
gions. In the particle approach, collisions will make individual electrons go in and out of these regions.
In our continuum approach, the collision operator determines the flows in and out of these regions,
which are balanced in the steady state.

Figure 6.2: Cases of maximum magnetic moment µm curves for electrons. Each panel represents a
specific energy. The vertical dash-dot lines represent the position of the MN throat, and the horizontal
dashed lines separate the subpopulation regions. Examples of trajectory of individual electrons shown
are for the absence of collisions.
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6.3.2 Effect of collisions on trapped-electron subpopulation

a) b) c)

d) e) f)

Figure 6.3: Steady-state electron VDF f̂e and target Maxwellian VDF f̂Me in the µ-z plane for the cases
of ν̃e = 0, 0.01 and 0.1. Results are for E/Te0 = 2.85.

The effect of collisions on trapped-electron subpopulation is studied with the simulation settings of Sec.
6.2. Figure 6.3 (a)-(c) show the steady-state electron VDF in the µ-z plane together with µm(z) curves
for E/Te0 = 2.85. This energy satisfies E? < E < e |φD| and is convenient for analyzing the trapped-
electron subpopulation. From left to right, the panels correspond to different e-e collisionalities going
from collisionless case to weakly-collisional cases with ν̃e = 0, 0.01 and 0.1. The reflected-electron
region includes the entire convergent segment and a low-µ band in the divergent one, and is practically
unaffected by collisions. On the contrary, the trapped-electron region is nearly empty in the collisionless
case, ν̃e = 0, and increasingly populated for larger ν̃e. In the collisionless case, only a narrow magnetic
moment band above µT is populated, which is filled during the transient period [89]. The BGK collision
operator drives the electron VDF to a local Maxwellian VDF. Figure 6.3 (d)-(f) plot the steady-state
Maxwellian VDF for the respective electron VDF shown above them. The larger the collisionality is, the
more electrons are trapped, but at the same time the extension of their (z, µ)-region gets smaller.

Figure 6.4 plots 1D vertical and horizontal cuts for the case ν̃e = 0.1 of Fig. 6.3 (c) and (f). Figure 6.4
(a) plots µ-profiles of f̂±e and f̂±Me at ẑ = 300, i.e. near the maximum of µm(z) curve. Two µ-regions are
identified: (i) µ < µT , populated with reflected electrons, and zoomed in Fig. 6.4 (b); and (ii) µ > µT ,
populated with trapped electrons. Since reflected and trapped electrons are confined subpopulations
and do not contribute to the macroscopic transport of magnitudes (e.g. charge or energy), one has
f̂+e (µ̂) ≈ f̂−e (µ̂) in spite of having f̂+Me(µ̂) 6= f̂−Me(µ̂). On the contrary, both regions differ in the positions
of f̂±e relative to f̂±Me. For trapped-electron region, collisions make f̂±e to lie between f̂+M and f̂−M, while
this is not the case for reflected-electron region, nearly unaffected by collisions.
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Figure 6.4 (c) displays the z-profiles of f̂±e and f̂±Me at µ̂ = 3. This line cuts the µm(z) curve at zr,
zt1 and zt2. The region 0 < z < zr is filled with reflected electrons, and the region zt1 < z < zt2 with
trapped electrons; the interval zr < z < zt1 is void because µ > µm. The reflected-electron region covers
nearly the entire convergent segment and is zoomed in Fig. 6.4 (d). There, the electron VDFs inherit
the Maxwellian properties at the upstream source, i.e. f̂±e ≈ f̂+e (z0). In the trapped-electron region, f̂±e
lie between f̂+Me and f̂−Me just as in the µ-profiles, and we have that ∂ f̂e/∂ẑ ≈ 0 in spite of the varying
f̂±Me(ẑ).
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Figure 6.4: 1D profiles of f̂±e and f̂±Me extracted from 2D profiles of Fig. 6.3 (c) and (f) [case ν̃e = 0.1 and
E/Te0 = 2.85]: (a) µ-profiles at ẑ = 300, and (c) z-profiles at µ̂ = 3; (b) and (d) are zooms of (a) and (c),
respectively.

The SSK model of Refs. [64, 4] postulates that the functional form of f̂e in trapped region was
identical to the one in reflected region, which was Maxwellian-like, thus indicating that the occupancy
level of trapped region was maximum. Let us define 〈 f̂t(E)〉 and 〈 f̂r(E)〉 as the average values of the
VDFs in trapped and reflected regions, respectively. For E/Te0 = 2.85, the ratio 〈 f̂t〉/〈 f̂r〉 is 0.6%, 2.5%
and 12.7%, for ν̃e = 0, 0.01 and 0.1, respectively. Similar values are obtained for other energies within
E∗ < E < e|φD|, which implies, roughly

〈 f̂t〉/〈 f̂r〉 ∼ ν̃e for ν̃e � 1. (6.18)

The SSK model postulates 〈 f̂t〉/〈 f̂r〉 = 100% and therefore, overestimates greatly the trapped region in
the weakly-collisional regime.
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As seen, when collisionality increases, the trapped region is more populated but such region
shrinks too, so the contribution of trapped electrons to the electron density does not necessarily in-
creases. Figure 6.5 shows the relative contributions of the three subpopulations to ne(z) for ν̃e = 0 and
0.1. In the figure, nt, nr and n f correspond to trapped, reflected and free densities, respectively. The
contribution of the trapped electrons increases, but much less than 〈 f̂t〉/〈 f̂r〉: the maximum percentage
of trapped electrons just increases from 25% to 40% for the two plotted cases. This moderate behavior
of trapped electrons differs with the one in the SSK model, where nt is, by large, the main contribution
to electron density in an ample region of the divergent segment. Finally, the simulations are with the
constant-νe BGK model, and Appendix 6.B shows one with νe not constant, but varying spatially with
the electron density.
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Figure 6.5: Steady-state density percentages of the three electron subpopulations for two cases of ν̃e.

6.4 Macroscopic response

This section analyzes the steady-state response of macroscopic magnitudes and the momentum and
energy balances for each species. Results here will be compared with the collisionless case of Ref. [89]
and the alternative SSK model of Ref. [4].

6.4.1 Spatial profiles

Figure 6.6 shows the spatial profiles of main macroscopic plasma magnitudes. Results are presented
again for the collisionless and weakly-collisional cases with ν̃e = 0, 0.01 and 0.1. The inclusion here of
a large convergent segment facilitates the comparison with Ref. [4] and differs from Ref. [89], where
(practically) just the divergent segment was considered. In particular, conditions at the MN throat
differ substantially. With the e-e collisionality changing, the potential, Fig. 6.6 (a), shows differences
in the divergent segment caused by the different amount of trapped electrons. Collisionality favors a
smoother potential drop and reduces the extension of the non-neutral region next to the downstream
boundary zD, Fig. 6.6 (c). (As pointed out in Ref. [89], the non-neutral region is somehow ‘artificial’, a
result of bringing the final potential at infinity to zD. The further downstream zD is located, the plasma
solution in quasineutral region does not change, and extends further downstream.) Collisionless ions
are closely driven by the potential as ni and ui show, Fig. 6.6 (b) and (d). Thanks to the convergent
segment, ion macroscopic velocity becomes sonic around the throat; to this respect, notice that the
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macroscopic model of the next subsection is not complete enough to define an exact sound velocity for
the ion collisionless fluid. Potential and plasma density at the throat are similar to those obtained in
Ref. [4], eφM/Te0 = −0.6 and niM/n0 = 0.52, and corresponds approximately to a Maxwell-Boltzmann
relation, ni/n0 ≈ exp (eφ/Te0), in the convergent segment.

The initially temperature-isotropic ions, Fig. 6.6 (e), become strongly anisotropic along the conver-
gent segment due to the magnetic mirror as in Ref. [4], having T‖iM/Te0 = 0.3 and T⊥iM/Te0 = 1.29 at
the throat. The behaviour in the divergent segment is also equivalent to the one found in Ref. [4], with
a near-constant T‖i (T‖iD/Te0 = 0.19) and a rapidly decaying T⊥i. The profiles of the electron temper-
ature, Fig. 6.6 (f), follow the main trends of those in Ref. [4], being near-isothermal and near-isotropic
in the convergent segment (T‖eM/Te0 = 0.84 and T⊥eM/Te0 = 0.9). In the divergent segment, strong
anisotropy is developed, T‖e decays to a non-zero value (T‖eD/Te0 = 0.43), while T⊥e decays to zero. In-
terestingly, larger collisionality means more trapped electrons, and these tend to decrease noticeably T‖e
and increase slightly T⊥e resulting in less anisotropy and a smaller mean temperature Te. Indeed, the
electron temperature is much less anisotropic and Te is much smaller in Ref. [4], where more trapped
electrons are found.
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Figure 6.6: Steady-state spatial profiles of macroscopic plasma magnitudes. Curves correspond to three
cases of ν̃e: 0 (-.-.-.-.), 0.01 (- - - -) and 0.1 (——).

Figure 6.7 shows, for the case ν̃e = 0.1, the temperatures of the three electron subpopulations
treated as independent species. Different behaviors are observed for each one. Interestingly, the trapped
subpopulation is nearly isotropic, while the free and reflected ones are anisotropic. Besides, the free
subpopulation has a larger velocity dispersion than the two confined subpopulations. The temperature
of the whole electron species is determined by the dominant subpopulation. Here, only free electrons
reach zD and which explains that TeD ' Tf D. Since the free electrons are nearly unaffected by collisions,
the values of the temperature at zD are independent of collisionality [Fig. 6.6 (f)]. On the other hand,
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in Ref. [4], where the trapped electrons still dominates downstream, the electrons have that TeD ' TtD

being much more isotropic and cooler.
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Figure 6.7: Parallel and perpendicular electron temperatures for each electron subpopulation [case ν̃e =
0.1]. Notice that, locally, free and reflected electrons have practically the same ratio T⊥/T‖.

As a summary, Table 6.1 compares downstream results from the present study (case ν̃e = 0.1) with
those of the SSK model in Ref. [4], for identical upstream plasma sources and near-zero net current.
The just commented difference on TeD, caused by different amounts of trapped electrons, is the main
discrepancy and, as it will be seen below, explains the difference in qeD. The SSK model was compared
with experimental data of MNs for particular thrusters in Ref. [24]. The main plasma profiles showed
good agreement except for the electron cooling, which was too large in the SSK model. The more
moderate electron cooling obtained with VLASMAN fits better with the experimental trends.

Variable VLASMAN SSK model

φ̂D −3.0 −3.2
I/I0 −0.05 0
Ii/I0 0.61 0.59

uiD/cs0 2.9 3.0
εe/Te0 4.2 4.5
εi/Te0 1.6 1.7

T‖eD/Te0 0.43 0.07
T‖iD/Te0 0.19 0.11
T⊥eD/Te0 ∼ 0 ∼ 0
T⊥iD/Te0 ∼ 0 ∼ 0

qeD/neDueDTe0 0.2 1.2
qiD/niDuiDTe0 ∼ 0 ∼ 0

Table 6.1: Comparison of results between VLASMAN (case ν̃e = 0.1) and the SSK model of Ref. [4].
Species currents are defined in Eq. (6.19), I0 = en0cs0 AM and I = Ie + Ii. Species energies are defined
in Eq. (6.21).

6.4.2 Momentum and energy balances

The macroscopic plasma equations are obtained from Boltzmann equation’s integral velocity moments.
For the present BGK collision operator (intraspecies collisions), no sources are introduced for charge,
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momentum and energy. The resulting equations are the same collisionless ones of Ref. [89], which in
the steady state for species α = i, e are

Iα = eZαnαuα A = const, (6.19)

mαnαuα
∂uα

∂z
+ Zαenα

∂φ

∂z
+

∂p‖α
∂z

+
(

p⊥α − p‖α
) d ln B

dz
= 0, (6.20)(

Zαeφ +
mα

2
u2

α +
3
2

T‖α + T⊥α +
qα

nαuα

)
nαuα A = const = εαnαuα A. (6.21)

Equation (6.19) expresses the conservation of the species current. The momentum equation (6.20),
which cannot be reduced to a first integral, includes the axial components of ∇ · pα: ∂p‖α/∂z and
(p⊥α − p‖α)d ln B/dz, the latter is the macroscopic magnetic mirror force and is relevant only if the
pressure is anisotropic. Equation (6.21) is the conservation of the total energy flow, which includes: the
flow of kinetic energy, the convective flow of internal energy and the heat flow (or diffusive flow of
internal energy), and also the flow of potential energy. Naturally, the total energy ‘per particle’ εα is
conserved too. (The energy per particle, εα − Zαeφ (excluding the potential energy), is not conserved
however.)
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Figure 6.8: Balances of (a)-(b) momentum and (c)-(d) energy ‘per particle’ for ν̃e = 0.1. Units in (a)-(b)
are referred to Te0/λDe0 and in (c)-(d) to Te0. Momentum and energy corresponds to Eqs. (6.20) and
(6.21), divided over nα and nαuα A, respectively. These results are for Ti0 = Te0.

Figure 6.8 analyzes the contributions (per particle) of the different terms in momentum and energy
equations for both species and case ν̃e = 0.1. Notice that for the energy equation of each species, the
magnitude Zαeφ− εα is used so that the sum of the plotted contributions is zero. The electron momen-
tum, panel (a), shows a balance between the electric force and the pressure tensor divergence. The two
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contributions to this last force have different signs. The macroscopic magnetic mirror force, which is
proportional to the temperature anisotropy, is here larger than in Ref. [4]. The downstream electric
force is small compared with the individual contributions of the pressure tensor. With respect to ions,
panel (b), the individual contributions to the ion pressure tensor divergence dominate in the conver-
gent segment. In the divergent segment, both the electric force and the total pressure force contribute
similarly to the increase of ion momentum.

For the plotted case in panels (c) and (d), since φ(z0) = 0 and kinetic energies are negligible up-
stream, the average energies per ion and electron are εi = 1.6Te0 and εe = 4.2Te0, which represent the
thermal energies of ions and electrons upstream. As Ti0 = Te0, the differences between the values is
due to the ‘diffusive’ contributions per flowing particle, qα/nαuα, negative for ions and positive for
electrons. Along the expansion, the variation of potential energy reduces the thermal energy of elec-
trons to a final non-zero value εe + eφD = 1.2Te0, while the MN transforms both the upstream thermal
energy of ions and the thermal energy lost by electrons into kinetic energy, until the downstream value
εi − eφD = 4.6Te0 (i.e about 1/3 and 2/3 coming from, respectively, ion and electron thermal energy).
The potential energy terms vanish when an electron/ion pair is considered. The upstream plasma ther-
mal energy is 5.8 Te0, and downstream, still 1.2 Te0 (about 20%) is thermal. Table 6.1 compares these
results with the ones of Ref. [4] showing similar general trends. The main difference is that, given a
similar total energy flow for electrons downstream, those flows are distributed in a different way. Here,
a much higher TeD (smaller electron cooling) implies a larger convective flow and consequently a lower
diffusive flow.

6.5 On closure laws for electron heat flux

As it is well-known, the successive macroscopic equations derived from velocity moments of the Boltz-
mann equation include terms of next-order. In the case of the set of Eqs. (6.19)-(6.21), these are the
heat fluxes for ions and electrons, which turn out to be important contributions in certain regions of the
MN. The main concern is with the electron heat flux in the divergent MN, due to its relevance in the
far expansion of plasma plumes. In order to assess the strong influence of the collisionality on the heat
flux, the condition ν̃e � 1 is relaxed in the analysis here, although the high-magnetization condition
νe � ωce is formally maintained. Fig. 6.9 shows the spatial variation of the heat flow for different ν̃e.
The heat flux changes little while in the weakly-collisional regime, but then decreases much (since the
VDF evolves to a Maxwellian, which has qe = 0).

The need of postulating a closure relation of the energy equation, external to the Boltzmann equa-
tion, was already discussed in Ref. [4]. It was concluded that a Fourier type law was not adequate,
while a convective law, with qe ∝ neueTe, could fit well with the exact solution ‘on average’ but not lo-
cally. Furthermore, it was shown that this type of law was equivalent to a polytropic electron behavior.
Here, a combined convective-plus-diffusive law of the form

qe = αneTeue − β
5neTe

2meνe

dTe

dz
(6.22)

is investigated, where coefficients α and β are fitted with a least-square method applied only on the
divergent MN profiles. This law is compared with two others: a purely-convective one with β = 0 and
fitting only for α; and a purely-diffusive one with α = 0 and fitting only for β.
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Figure 6.10 shows the results of the three approximate heat flux laws for different collisionali-
ties. Figure 6.10 (a)-(b) depict α and β, while Fig. 6.10 (d)-(i) show the three fitting heat flux-profiles
compared to the exact profile. The combined heat flux law yields, of course, the best fitting. In the
weakly-collisional regime, one has α ≈ 2.1 and β � 1. Parameter β remains negligible up to ν̃e ∼ 1,
while α decreases moderately to α ≈ 1.4. For ν̃e > 1, β starts to increase from near-zero and reaches
β ≈ 1 at ν̃e ∼ 100, when α has decreased to near-zero.

Observing in Fig. 6.10 (d)-(i) the profiles for the three fittings, we conclude that a purely-convective
law (i.e. with β = 0) is a suitable choice from ν̃e � 1 to up, say, ν̃e ∼ 10. A crude collision-dependent
law for α would be

α ≈

1.9 for log10ν̃e < −1

1.3− 0.6log10ν̃e for − 1 < log10ν̃e < 1
. (6.23)

For ν̃e ≥ 10, and into the highly-collisional regime, a purely-diffusive law (i.e. with α = 0) seems
adequate with β following, roughly,

β ≈

0.5 log10ν̃e for 1 < log10ν̃e < 2

1 for log10ν̃e > 2
. (6.24)

These two fittings, valid for the crude constant-νe BGK model, are just illustrative of the tendencies of
ᾱ and β̄ with the collisionality.

The double-parameter fitting has confirmed the proposal from Ref. [4] of a convective law in the
weakly-collisional regime, while showing the transition to a diffusive law as collisionality increases.
Reference [4] also pointed out that the convective law is equivalent to assuming an electron state law
pe ∝ nγ

e with a polytropic coefficient

γ =
5 + 2α

3 + 2α
. (6.25)

In fact, a more appealing interpretation of the electron gas behavior, well aligned with classical ther-
modynamics, is that the electron gas has an specific enthalpy he = Teγ/(γ − 1) such that Eq. (6.21),
ignoring the small kinetic energy, can be expressed as[(

−eφ +
γ

γ− 1
Te

)
neue − κ̄

∂Te

∂z

]
A ' const = εeneue A, (6.26)

where κ̄ = β̄5neTe/2meνe represents the thermal conductivity. This interpretation considers that the
monoatomic gas does not behave like a collisional monoatomic one (with γ = 5/3) but as a gas mixture,
which indeed is the case: a mixture of the free, reflected and trapped subpopulations. The effective
specific heat ratio γ is shown in Fig. 6.10 (c). In the weakly-collisional limit, the electron gas expands
near-adiabatically with γ ≈ 1.28, a value slightly larger than experimental estimates [24, 60, 51] because
of the artificially low mass ratio; the studies of Refs. [4, 70] with a polytropic index γ show this to
depend on the propellant mass ratio and upstream plasma conditions. As the electron gas becomes
collisional, γ increases (with an evolution towards 5/3) and a diffusive heat flux appears to accompany
the specific enthalpy, with the effective collision frequency given in κ̄ by νe/β.
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Figure 6.9: Heat flux in the divergent MN for increasing ν̃e: 0, 0.01, 0.1, 1 and 10. Units are referred to
n0Te0cs0/BM.
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Figure 6.10: (a)-(c) Direct and derived coefficients (defined in the main text) obtained fitting for three
heat flux laws: combined convective-plus-diffusive law (—∗—), purely-convective law (- - 4 - -) and
purely-diffusive law (- - N - -). (d)-(i) Heat flux-profiles from the three laws versus the exact profile
(——) for six cases of ν̃e.
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6.6 On the total potential drop

In the most natural formulation of the problem, the total potential drop |φ̂D| is a boundary condition,
while the ion and electron currents, Ii and Ie, are outputs. Once the steady state is reached, these two
currents and the net current, I = Ii + Ie, are constant along the expansion as stated by Eq. (6.19). Figure
6.11 plots the currents Ii and I, which have been non-dimensionalized with I0 = en0cs0 AM, versus e-e
collisionality and two different |φ̂D|. The ion current in panel (a) is, quite obviously, independent of ν̃e,
but it is also independent of |φ̂D|: ions are freely accelerated within the divergent MN so the potential
drop does not control their flow. However, the potential drop regulates tightly the electron current, by
reflecting back a certain (large) fraction of electrons and letting a certain (small) fraction of free electrons
to reach the end of the domain. This flow control is clearly observed in panel (b), where |Ie| = |I − Ii|
decreases with |φ̂D|. For |φ̂D| fixed, the rate of variation of Ie with collisionality is practically negligible
in the weakly-collisional regime, and starts to be significant once in the collisional regime.
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Figure 6.11: (a) Total ion current (b) and total net current versus ν̃e for two values of total potential drop
φ̂D: −3 (—�—) and −3.5 (—N—).

In most cases of interest, plasma plumes are current-free, i.e. I = 0. To set this as a boundary
condition implies |φ̂D| to become an eigenvalue of the problem. For instance, a current-free plume has
|φ̂D| ≈ 3, 3.1, 3.5 and 3.7 for, respectively, ν̃e ∼ 0.01, 0.1, 1 and 10 in the cases shown above in Fig. 6.11.
Then, an efficient way to proceed would be to adjust φD(t) dynamically along the simulation, but there
were concerns that this dynamical adaptation could modify the amount of trapped subpopulation and
thus the steady-state solution. In fact this was the case in the collisionless simulations of Ref. [89]. In
order to assess this issue when collisions are present, we proceed as in Ref. [89] and run the same case
with two different temporal laws for the total potential drop: φ

(1)
D (t) = φD f and

φ
(2)
D (t) = φDi +

φD f − φDi

2

(
1 +

2
π

arctan
t− ts

τs

)
. (6.27)

If an appropriate value of τs is used, φ
(2)
D is almost equal to φDi until time ts. Afterwards, φ

(2)
D transits

smoothly to φD f . This test has been carried out with similar values to those in Ref. [89]: ts = 4τte,
τs = 0.02τte, eφDi = −Te0 and eφD f = −3Te0, and a collisionality of ν̃e = 0.1 within the weakly-
collisional regime. The plasma evolution in the two simulations are different but both converged to the
same steady state, as shown in Fig. 6.12. Panel (a) depicts the z-profile of the relative density ratio of
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trapped electrons at two different instants, ts and steady state. Panel (b) shows the evolution of some
macroscopic magnitudes at ẑ = 300: parallel electron temperature and potential. Simulations with
other temporal laws for φD have been tried with similar conclusions. Thus, collisions, even if scarce,
erase the transient response and lead to a unique steady-state solution.

After we have confirmed this uniqueness, there is more freedom in setting the downstream bound-
ary condition. One case of clear practical interest is to impose a current-free condition to the plasma
beam and to iterate on a varying φD(t) until convergence at steady state. Furthermore, alternative ways
to implement the downstream boundary condition, such as the one proposed in Ref. [58] (in a different
but assimilable context), can be attempted too.
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Figure 6.12: Simulation results with two different temporal laws for φD: φ
(1)
D (——) and φ

(2)
D (- - - -),

which are defined in the main text. Both of the cases are run with e-e collisions for ν̃e = 0.1. Results
shown are: (a) spatial profile of nt/ne at ts and steady state, and (b) temporal evolution of φ and T‖e at
ẑ = 300.

6.7 Conclusions

Direct kinetic simulations of the Boltzmann-Poisson problem with a BGK collision operator have been
used to study the transient and steady-state expansion in a paraxial magnetic nozzle of a plasma with
weak intraspecies electron collisions. A central goal has been to determine the relative density ratio of
trapped electrons contained in a phase-space region isolated from the upstream plasma source and the
downstream vacuum and to compare it with: (i) the very low occupancy obtained in the collisionless,
time-dependent model of Sánchez-Arriaga et al. and; (ii) the full occupancy postulated in the SSK
model of Martínez-Sánchez, Ahedo and coworkers. Simulations show that the maximum density ratio
increases moderately from 25% to 35-45% within the weakly-collisional regime, with occupancy levels
of the trapped region from 0.6% to 10-20%. These numbers are far from the full occupancy and the
dominance of trapped electrons of the SSK model in the divergent MN.

Simulations have been run to show that collisions erase the transient history, and thus, in contrast
to the collisionless case, the steady-state solution is unique. This will allow in future work to set the
steady-state net current of the plasma beam (for instance, to zero), by adapting in a transient period the
total potential drop.
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Spatial profiles of plasma macroscopic magnitudes show that the effect of occasional collisions is
felt only through the density of trapped electrons in the divergent MN. Consequently the convergent
MN is unaffected, while the potential drop in the divergent MN moves upstream. The parallel and
perpendicular temperatures of ions and electrons follow similar general trends to the SSK model. Inter-
estingly, the electron subpopulations present different velocity dispersions: trapped electrons are rather
isotropic and cold, reflected electrons are anisotropic and cold, while free electrons are anisotropic and
hotter. The resulting temperatures of the whole electron species reflect these features, weighed with
their partial densities. This explains that here, with free electrons dominating downstream, the electron
temperature is much more anisotropic and the cooling is much milder than in the SSK model.

The macroscopic balances of momentum and energy are also similar in general lines to those from
the SSK model. The main differences come from the different electron temperature anisotropy and cool-
ing. In electron momentum, here the macroscopic magnetic mirror force is larger. In electron energy,
here since the convective flux of thermal energy is larger, the diffusive flux is necessarily smaller.

Finally, the issue of a closure law for the heat flux has been revisited investigating the electron gas
response for different collisionalities. The conclusion is that electrons behave as a ‘gas mixture’ (of free,
reflected, and trapped subpopulations) with an effective specific heat ratio, and follow a Fourier heat
flux law defined with an effective collision frequency. In the weakly-collisional limit, the gas mixture is
near-adiabatic. In the highly-collisional limit, the gas behaves as monoatomic and the classical Fourier
heat flux law is recovered.

6.A Numerical scheme

The simulations have been carried out with an updated version of the code VLASMAN. The numerical
scheme from Ref. [89] is extended to implement the collision operator defined in Eq. (6.7), and the main
changes are shortly explained. The Boltzmann equation (6.2) is solved with a second-order splitting
method [18, 92]. This method, given the VDFs at time t, advances them to t + ∆t, for each µ as

f̄α(t + ∆t, z, v‖) = C1/2S1/2F 1S1/2C1/2 f̄α(t, z, v‖). (6.A.1)

The operators C, S and F solve, respectively, for να( f̄Mα − f̄α), −v‖∂ f̄α/∂z and −aα∂ f̄α/∂v‖. Super-
scripts in the operators, 1/2 and 1, indicate time steps of, respectively, ∆t/2 and ∆t.

The collisional part of Eq. (6.A.1) is the novel one and the collision operator is defined with a
Crank-Nicolson method following Ref. [27],

C1/2 f̄α(t, z, v‖) = f̄α(t, z, v‖) +
να∆t

2 + να∆t

[
f̄Mα(t, z, v‖)− f̄α(t, z, v‖)

]
. (6.A.2)

Notice that if να = 0 then the operator is consistent since f̄α is not modified.

The streaming and force operators (S1/2F 1S1/2) are the same as in Ref. [89] with

S1/2 f̄α(t, z, v‖) = f̄α(t, z− v‖∆t/2, v‖), (6.A.3)

F 1 f̄α(t, z, v‖) = f̄α(t, z, v‖ − aα∆t). (6.A.4)
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The electric field in aα of the force operator is found by solving Poisson equation with the densities
computed from S1/2C1/2 f̄α.

The operators above are applied on the phase-space defined by z, v‖ and µ. As explained in
Ref. [89], a non-uniform mesh of Nz points between z0 ≤ z ≤ zD that keeps constant the ratio mesh
resolution-local Debye length is used, and an uniform one of size Nv‖ × Nµ is used for velocity space.
The latter mesh is truncated with −vα

max ≤ v‖ ≤ vα
max and 0 ≤ µ ≤ µα

max, where the limits vα
max and

µα
max are selected large enough. Here, after including the convergent MN and with the addition of

collisions, high-µ reflected and trapped subpopulations are, respectively, injected and generated. Since
they coexist with the low-µ free subpopulations, an uniform µ-mesh with enough points that reproduce
correctly the dynamics of all subpopulations is not computationally feasible. Thus, as alternative we
use a grid with a uniform part from 0 ≤ µ ≤ µα

max1 for free subpopulations and a non-uniform one
from µα

max1 ≤ µ ≤ µα
max for reflected and trapped subpopulations, where an intermediate limit µα

max1 is
introduced and selected properly.

6.B A density-dependent collision frequency
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Figure 6.B.1: Simulation results of some plasma spatial profiles for a spatially dependent e-e collision
frequency ν̃e = 0.1ne(z)/n0 (——), and a constant one ν̃e = 0.1 (- - - -).

In this work, the simplest BGK collisional operator with a constant e-e collision frequency has been
used. In order to validate the robustness of the results, and without aiming to enter into the full com-
plexity, a simulation with ν̃e proportional to the local electron density is presented here. Figure 6.B.1
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shows some results for ν̃e = 0.1ne(z)/ne0 and compared them to those with ν̃e = 0.1. In spite of the
quick decay of ν̃e with the density, the subpopulation of trapped electrons [panel (b)] and therefore, the
macroscopic magnitudes [panels (c) and (d)] are modified slightly. The trends are similar with the ones
in Figs. 6.5 and 6.6 when varying ν̃e.



89

Chapter 7

Conclusions and future work

This thesis has progressed on the modeling and understanding of the plasma discharge in electrodeless
thrusters with magnetic nozzles. The main topics of the thesis are divided in full simulations of the
plasma discharge with HYPHEN, a 2D axisymmetric PIC-fluid hybrid code with application to many
electromagnetic thrusters; and simulations of the plasma expansion along magnetic nozzle with VLAS-
MAN, an 1D Boltzmann-Poisson kinetic code. The use of VLASMAN is motivated since the expanding
plasma along the magnetic nozzle becomes very rarified and far from thermodynamic equilibrium, and
deeper studies are required with a kinetic code.

On the side of full simulations, first the thesis has contributed to the development of HYPHEN.
The bases of the PIC model for heavy species and the fluid model for electrons were established, re-
spectively, by Domínguez-Vázquez [31] and Pérez-Grande [79]. However, the code was used only for
simulations in HETs. Besides, several numerical problems were found due to the anisotropic charac-
ter of the strongly magnetized electrons, specially if magnetic field topologies were complex. For the
present research, the code has been extended for simulations in electrodeless thrusters. The numerical
treatment for the fluid model has been investigated thoroughly, and solid numerical algorithms have
been found for the problems. Besides, the code (originally with the capability of simulating only atomic
propellants) is implemented with the main collisions of diatomic propellants. Many of the alternative
propellants for Xe, an issue of increasing interest in EP, are diatomic and in this way the code is able to
evaluate them. Second, the thesis, with the extended and improved HYPHEN, has contributed to study
the HPT prototype HPT05M revealing details of the plasma discharge and guidelines on the design, and
to evaluate air-breathing concepts in HPTs by running simulations with air substances as propellants.
Although the studies are focused mainly on HPTs, the efforts on HYPHEN have allowed to produce
results for ECRTs in the framework of another thesis as shown in Appendix B.

On the side of kinetic simulations for magnetic nozzle, VLASMAN is used to model the transient
processes and rare collisions and characterize self-consistently a subpopulation of electrons trapped
along the expansion, which previous steady state kinetic models cannot solve. The kinetic trapping
process of the electrons is revealed, and the macroscopic behaviour of the plasma is studied.
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7.1 Conclusions

7.1.1 Full simulations with HYPHEN

The numerical treatment of the electron fluid model in HYPHEN is discussed for the continuity equa-
tion and the Ohm’s law from the momentum equation. Closing the fluid model with a polytropic rela-
tion for the electron temperature, simulations are run for a mini-HPT to test the numerical algorithms
proposed. Chapter 2 contains the discussion and the following conclusions are obtained.

• The main numerical difficulties are caused by the anisotropic character of the strongly magnetized
electron fluid. The numerical algorithms have to treat properly the strongly different transport
properties between the directions parallel and perpendicular to the magnetic field, and avoid
numerical diffusion.

• A magnetic field aligned mesh, which separates the parallel and perpendicular transport prop-
erties, is required. However, this mesh has irregular cells and specially close to boundary for
realistic spatially varying magnetic fields.

• The continuity equation is solved with a finite volume method. This allows to have flexibility on
irregular meshes such as magnetic field aligned meshes.

• The Ohm’s law is discretized with gradient reconstruction methods. Finite difference methods
and weighted least squares methods are compared. It is found that finite difference methods
avoid numerical diffusion problems, since they select stencils of cells in a way that mixture of
information from different directions are avoided. Weighted least squares methods, although
versatile, are very arbitrary in the selection of stencils of cells and can lead to numerical diffusion.
The former is used everywhere except near the boundaries, where the cells are highly irregular
and the latter needs to be applied.

• The numerical computation of the parallel electron current density requires to introduce the ther-
malized potential as unknown instead of the potential. In the model used for the electron mo-
mentum, the information of the electron current density is present through collisions and, within
the weakly-collisional and highly magnetized regime, the parallel component is a negligible term.
The use of the thermalized potential allows to group the other dominant terms so that they be-
come of the same order as the current density.

• The numerical algorithms for the electron fluid model are tested within HYPHEN for simula-
tions of a mini-HPT being able to produce accurate results even for non-conventional magnetic
topologies with null points. The thruster performances and the 2D profiles of electron related
magnitudes are obtained, and the analysis on them concludes that the physical response is con-
sistent.

• Sensitivity analyses on the domain truncation and number of cells are performed. Both of them
have confirmed the reliability of the results, and also provides numerical convergence information
useful for future simulations.

The electron fluid model in HYPHEN from Chapter 2 is completed with the energy equation and a
Fourier’s law as closure for the heat flux. The numerical treatment for the added equations to the model
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is discussed. Given a power deposition map, the profile of the electron temperature is solved and sim-
ulations are run for the prototype HPT05M. The 2D profiles of main plasma transport magnitudes, and
performances are obtained for the current and other alternative configurations of the thruster. Chapter
3 contains the discussion and the following conclusions are obtained.

• The system of the energy equation and the Fourier’s law is shown to be equivalent to the one of
continuity equation and Ohm’s law in the drift-diffusive approach of the electron fluid model.
Both of the systems have the conservation of a magnitude (current or energy), and are comple-
mented with an equation relating the flux of the magnitude with the gradient of the field to be
solved (electric potential or electron temperature). The main difference is that the energy equation,
contrary to the continuity equation, has a temporal character, and requires temporal discretization
apart from spatial discretization.

• A semi-implicit temporal scheme is used for the energy equation selecting conveniently the terms
explicit and implicit. This scheme, within the numerical convergence of the results, simplifies
the numerical procedure to solve the electron fluid model. First, it allows to solve the energy
equation sequentially with respect to the continuity equation. Second, it linearizes the discretized
equations. Once applied the temporal discretization, the spatial discretization is virtually the
same as the one for the continuity equation and Ohm’s law.

• The current configuration of HPT05M has a coil at the vessel exit to generate the applied mag-
netic field, which is maximum at the exit and decays fast, and as the vessel is long, the magnetic
shielding of the walls is bad in most of the vessel. A region of backward-flow plasma occupying
most of the vessel is formed, which results in a significant plasma recombination to the walls.

• Alternative configurations are proposed to mitigate the problem, ones with more coils along the
vessel to improve the magnetic shielding, and others with shorter vessels. These configurations
either reduces (first ones) or directly removes (second ones) portions of the backward-flow region.

• The current configuration has a very poor thrust efficiency (1.3%) caused by the huge wall recom-
bination. The alternative configurations improve the thrust efficiency (9.3-10.4%) by reducing the
wall recombination.

• The optimization with the alternative configurations, although significant, is partial. The perfor-
mances achieved are still within the current state-of-art. The main reasons limiting for higher
performances, are the power losses to the back wall, which conventional quasi-axial magnetic
topology cannot handle, and the operation of the magnetic nozzle, which has a significant veloc-
ity dispersion in the plume.

• The balance of thrust is studied distinguishing between pressure force and magnetic force. The
pressure contribution is found as the main mechanism of thrust. Regarding the magnetic con-
tribution, the magnetic force generated by the divergent magnetic nozzle gives an increment of
the thrust that can be significant. However, the magnetic force generated by the source, if a con-
vergent geometry exists inside the vessel, can counteract the one by the magnetic nozzle. The
existing studies have been focused on the magnetic nozzle and do not discussed about the source.

HYPHEN is updated to handle collisions of diatomic molecules. This allows to evaluate many of
the alternative propellants candidates to substitute Xe. Simulations with air substances as propellant
are run for a configuration of HPT05M to test the updated code, and evaluate air-breathing concepts in
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HPTs. Simulations are run separately for N2 and O, the dominant substances in the low altitudes of the
atmosphere, where the concepts could be applied. Chapter 4 contains the discussion and the following
conclusions are obtained.

• The results for the 2D profiles of the plasma magnitudes and the performances are shown and
compared with Xe. The results reveal that the main physical phenomena of the plasma discharge
are similar.

• With the same operation conditions, the magnetic confinement for N2 and O is worse than for Xe:
since they have less molecular and atomic masses, higher densities are achieved and collisions are
more likely to happen. The wall recombination is larger, as consequence of the worse magnetic
confinement, and makes the heating of the electrons less effective.

• At low power (∼100W), the low electron temperature makes the plume poorly ionized and the
thrust efficiency is far from that of Xe. At high power (∼1000W) however, for which the temper-
ature is high enough, the thrust efficiency could be competitive to that of Xe.

• The comparison of the performances between O and N2 shows that O has better efficiencies. In
the atmosphere N2 dominates from 0-200km and O from 200-400km, and thus for air-breathing
concepts, higher altitudes of flight are better in terms of propulsive performance.

The electron temperature obtained with HYPHEN in Chapters 3 and 4 show that the electrons
continue isothermal along the magnetic field lines in the plume, and the cooling found in experiments
is not observed. The assumptions on the electron thermodynamics in the fluid model needs to be
revisited, in particular the Fourier-type law for the electron heat flux. VLASMAN allows deeper studies
with kinetic simulations for the very rarefied plasma in the plume.

7.1.2 Kinetic simulations of magnetic nozzle with VLASMAN

First, VLASMAN is used to study the transient process of a collisionless plasma expansion along a
paraxial magnetic nozzle. A fully ionized Maxwellian plasma from a tank is injected into vacuum,
which is initially empty, under the presence of a divergent magnetic field. Chapter 5 contains the
discussion and the following conclusions are obtained.

• The spatial profiles of macroscopic plasma properties are obtained. A quasi-neutral region is
found followed by a non-neutral region downstream to the end of the domain. An electron cool-
ing is observed, the perpendicular electron temperature decays to zero due to the magnetic mirror
effect while the parallel decays to a non-zero value developing a temperature anisotropy.

• The evolution of the distribution functions of electrons and ions during the transient process are
shown, and the formation of the steady state plasma beam is observed. Once in the steady state,
the distribution is anisotropic for electrons and mono-energetic for ions.

• The mechanisms for the trapping of electrons along the expansion during transient processes are
identified, and trajectories of electrons getting trapped are plotted.

• The amount of trapped electrons in the steady state is proven to depend on the history of the
system, and thus, also the macroscopic response of the plasma.
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• The amount of trapped electrons, in the cases analyzed, is 25% of the total electron density as
maximum, which is much smaller than what steady state kinetic models postulate.

Second, as continuation, VLASMAN is used to study the same plasma expansion but adding in-
traspecies collisions for electrons, and under a convergent-divergent magnetic field. Chapter 6 contains
the discussion and the following conclusions are obtained.

• A parametric analysis is done varying the collision frequency for electrons. The rare collisions are
noticed mainly for the subpopulation of trapped electrons, which have a large residence time.

• Adding collisions, the amount of trapped electrons increases, from 20% for collisionless case to
40-50% for weakly-collisional cases of maximum density ratio. In spite of the increase, the amount
is still far from what steady state kinetic models postulate, which have a ratio close to 100% down-
stream of the expansion.

• Simulations show that collisions, even if rare, erase the transient history for the subpopulation of
trapped electrons. Thus, under the presence of collisions, the macroscopic response of the plasma
obtained in the steady state becomes unique.

• The subpopulation of trapped electrons is found to be cold and isotropic, compared to the other
subpopulations. With more amount of trapped electrons, further electron cooling and less tem-
perature anisotropy are observed downstream of the expansion.

• The problem for the electron heat flux closure is investigated for different collisionalities, from
weakly-collisional to highly-collisional regimes. For an arbitrary collisionality, it is found that the
electrons behave as a gas mixture of different subpopulations with an effective specific heat ratio,
and follow a Fourier-type law for the heat flux defined with an effective collision frequency. In
the weakly-collisional regime, the gas mixture is adiabatic; and in the highly-collisional regime,
the gas behaves as monoatomic and the classical Fourier-type law for the heat flux is recovered.

7.2 Future work

The tasks interesting for future work within the topic of full simulations with HYPHEN are:

• The configurations for the prototype HPT05M that improve the thrust efficiency beyond the cur-
rent state-of-art have to be searched. The problems identified in the simulations of this thesis,
for partially optimized configurations of HPT05M, are the poor magnetic shielding of the back
wall, where a significant amount of power losses are produced, and the operation of the magnetic
nozzle. For the first problem, non-conventional magnetic topologies that can shield both the back
wall and the lateral wall can be assessed, e.g. the ring-cusps ones used in other electric propulsion
concepts. HYPHEN has been proved able to handle those non-conventional topologies, and the
assessment is feasible. For the second problem, better understanding is required to take actions.
The influence of the design and operation parameters on two of the efficiencies of a magnetic
nozzle, plume divergence and internal-to-kinetic conversion efficiencies, may be studied.

• The performances of HPT05M for a wide variety of operation parameters, mass flows and input
powers, can be mapped so that the operation regimes of the thruster are characterized.
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• Other alternative propellants (such as Ar, Kr, I2...) with interesting properties, apart from air,
can be assessed for HTPs. For each of them, it can be studied how the design and operation
parameters need to be modified with respect to Xe in order for them to be competitive.

• The full simulations for HPTs have to be completed with the solution of plasma-wave interaction,
which will reveal aspects of the radiofrequency wave propagation and the heating mechanisms
of the plasma. A module solving that problem developed by other colleagues of EP2 has been
integrated to HYPHEN. Some results for HTPs prototypes are shown in Appendix A.

• The simulation results for HPT05M have to be further validated against experiments. Although
references to experimental evidences have been made, more detailed comparisons are necessary.
For that, dedicated experiments can be set as the prototype belongs to EP2.

The tasks interesting for future work within the topic of kinetic simulations of magnetic nozzle
with VLASMAN are:

• A parametric analysis on the source conditions can be done. The study of ion-electron mass
and temperature ratios on the plasma response is required to complete and generalize the results
obtained in this thesis. This study would allow, for example, to characterize the coefficients for the
electron heat flux closure obtained, which is useful for implementation in electron fluid models
such as the one of HYPHEN.

• The analyses have been based on several assumptions. Two of the most important are the paraxial
and fully magnetized assumptions. Both of them are not valid downstream, once the magnetic
field divergence and strength becomes, respectively, large and small. The model needs to be
extended to 2D, in order to characterize these aspects.
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Appendix A

Fully coupled simulations of two HPT
prototypes

In this thesis, the simulations with HYPHEN have been focused on the plasma transport of HPTs. A
W-module for the plasma-wave interaction in HPTs was developed in the doctoral work of Tian [112],
and is being updated in an ongoing PhD thesis by Jiménez [48]. The W-module has been integrated
in HYPHEN as part of the present research [119]. This appendix shows some simulations of HYPHEN
with a W-module solving for the plasma-wave interaction.

Figure A.1 shows the structure of HYPHEN with the W-module. The plasma transport modules
(E-module, I-module and S-module) have been explained in Chapter 3. The outputs of the W-module
are the fast electric field Ẽ, which is a periodic magnitude with the high-frequency of the antenna, and
the time-averaged power absorption, named Qa as in Chapter 3, for the slow plasma transport. The
W-module is called each long run (until convergence) of the modules for plasma transport, and the
stationary solution of the plasma discharge is searched for.

Figure A.1: Structure of HYPHEN with W-module.



96 Appendix A. Fully coupled simulations of two HPT prototypes

The fully coupled simulations are run for the prototypes HPT05M and HPT03. Figure A.2 shows a
generic sketch of the thrusters similar to that of Chapter 3, and the simulation domains of HYPHEN’s
modules. The thruster vessel has radius R = 1.25cm, and length L = 12cm for HPT05M and L = 6cm for
HPT03. An injector with a circle of radius Rinj = 0.4cm delivers a mass flow ṁ = 1mg/s. The applied
magnetic field is generated by a coil in the case of HPT05M, and has a convergent-divergent geometry
with the throat in the vessel exit [Fig. A.3]. In the case of HPT03, it is generated by permanent magnets,
and has a non-conventional topology with a null point inside the vessel [Fig. A.6]. The simulation
domain for the plasma transport is delimited by the surfaces W1 and W2 (dielectric walls), and W3
(free surface).

A half-helical antenna wraps the vessel. The antenna has length La, mean radius ra and thick-
ness da. Its geometric center is located at an axial position za. The dimension and the position of the
antenna is summarized in Table A.1 for HPT05M, and in Table A.3 for HPT03. The antenna emits at
the frequency of f = 13.56MHz, and is regulated so that the total power deposited to the plasma is
Pa = 300W. The simulation domain of the W-module is larger than for the plasma transport and ends
in a perfect conductor boundary, which is the case of a vacuum chamber.

Notice that the configuration of HPT05M is the C0 described in Chapter 3, while HPT03 has not
been discussed before. The operation conditions of these thrusters, mass flow and total power deposi-
tion, are the same used in Chapter 3.

Figure A.2: Sketch of the simulation domains for HPT05M.

The following sections show the results for the two thrusters. Performances, in Tables A.2 and A.4,
are obtained. 2D profiles of the plasma-wave interaction magnitudes are displayed in Figs. A.4 and
A.7. 2D profiles of the plasma transport magnitudes are displayed in Figs. A.5 and A.8. The notation is
the same as in Chapter 3.
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Discussion of results: HPT05M

The power deposition map [Fig. A.4 (a)] obtained with the W-module differs significantly from the
homogeneous one assumed in Chapter 3. Most of the power absorption is concentrated in some spots
within the first half of the vessel. The module of the high-frequency electric field [Fig. A.4 (b)-(d)],
compared to the magnetic topology [Fig. A.3], shows that the power absorption comes mainly from
waves propagating perpendicular to the magnetic field lines, which are identified as the Trivelpiece-
Gould waves [111].

Although the power deposition map is quite different, the heating is similar as seen in the electron
temperature [Fig. A.5 (a)]. Similarly to Chapter 3 [see Fig. 3.4 (a)], inside the vessel, the temperature
turns out to be homogeneous with a value about 2.5eV. The magnetic field lines of the topology used
connect the spots of the power deposition with other regions of the thruster, and thus the high parallel
heat conductivity distributes efficiently the non-homogeneous power. As consequence, the other 2D
profiles are also similar when comparing Fig. A.5 to Fig. 3.4. The performances obtained, comparing
Table A.2 to Table 3.1, are close except for the operation of the magnetic nozzle with a better dispersion
efficiency here.

Discussion of results: HPT03

The power absorption [Fig. A.7 (a)] is concentrated near the null point of the magnetic field [Fig. A.6].
Interestingly, near the null point the weak field makes the electron gyrofrequency (usually in the range
of GHz) to decay and match with the operation frequency of the antenna (13.56 MHz), and thus electron
cyclotron resonance is produced. The resonance is also observed in the module of the high-frequency
electric field [Fig. A.7 (b)-(d)]. Thus, technically this prototype is working as an ECRT.

The main differences in the 2D profiles for plasma transport with respect to HPT05M are deter-
mined also by the magnetic topology. The power is distributed mainly by the magnetic field lines near
the null point with noticeable higher electron temperature in those lines [Fig. A.8 (a)]. In the corners of
the vessel lateral wall, given a density of power deposition (although smaller), the low density of the
plasma [Fig. A.8 (c)] makes larger the temperature (energy per particle). This is again an effect of the
magnetic topology, which shields better those corners, while the wall recombination is concentrated in
the central region of the vessel [Fig. A.8 (f)], where the field is the weakest and with lines perpendicular
to the wall.

The performances [Table A.4] show that the thrust efficiency is about 4 times larger than that of
HPT05M. In terms of the partial efficiencies, except the dispersion efficiency, both the mass efficiency
and the energy efficiency are larger.
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HPT05M

Settings

Parameter Value

Mass flow ṁ 1mg/s
Propellant xenon

Power deposition Pa 300 W
Antenna type half-helix

Antenna frequency f 13.56 MHz
Antenna loop radius ra 1.75 cm

Antenna central position za -6.0 cm
Antenna length La 7.5 cm

Antenna thickness da 0.3 cm

Table A.1: Simulation parameters Figure A.3: Applied magnetic field

Results

〈Te〉 [eV ] F [mN] ηm ηene ηdisp ηF ηprod εwall (W1/W2) εinel (ion/exc)

2.89 2.43 0.45 0.033 0.673 0.010 0.05 0.015+0.228 0.253+0.471

Table A.2: Performance indicators of HPT05M

a) b)

c) d)

Figure A.4: 2D maps of plasma-wave interaction magnitudes for HPT05M
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a) b)

c) d)

e) f)

Figure A.5: 2D maps of plasma transport magnitudes for HPT05M
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HPT03

Settings

Parameter Value

Mass flow ṁ 1mg/s
Propellant xenon

Power deposition Pa 300 W
Antenna type half-helix

Antenna frequency f 13.56 MHz
Antenna loop radius ra 1.9 cm

Antenna central position za -3.25 cm
Antenna length La 4.5 cm

Antenna thickness da 0.4 cm

Table A.3: Simulation parameters Figure A.6: Applied magnetic field

Results

〈Te〉 [eV ] F [mN] ηm ηene ηdisp ηF ηprod εwall (W1/W2) εinel (ion/exc)

3.96 5.07 0.72 0.098 0.609 0.043 0.11 0.140+0.379 0.187+0.196

Table A.4: Performance indicators of HPT03

a) b)

c) d)

Figure A.7: 2D maps of plasma-wave interaction magnitudes for HPT03
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a) b)

c) d)

e) f)

Figure A.8: 2D maps of plasma transport magnitudes for HPT03
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Appendix B

Fully coupled simulations of an ECRT
prototype

In this thesis, HYPHEN has been extended to analyze the plasma transport and performances in HPT
prototypes. ECRTs share the same plasma transport model than HPTs and differ on the plasma-wave
regime and the required numerical techniques to solve the plasma-wave model. Sánchez-Villar is carry-
ing out a PhD thesis within EP2 centered on developing a specific W-module for ECRTs (based on finite
element methods instead of finite difference methods of Tian [112]) and its application to an ECRT pro-
totype [116, 81] developed by the Office National d’Etudes et de Recherches Aérospatiales (ONERA)
in France. In a joint effort, we have published an article [90] with full simulations of that prototype
coupling the W-module of Sánchez-Villar to the transport modules of HYPHEN described within this
thesis.

Just as an illustration of the simulations and results on the article [90], Fig. B.1 shows a sketch of the
thruster and the simulation domains. This thruster has an annular injector of xenon placed at the back
wall. In magenta some applied magnetic field lines are shown, which in this prototype are completely
divergent within the simulation domains. A coaxial cable feeds electromagnetic power through a cavity
located at the back wall. Figure B.2 shows the main 2D profiles for plasma transport magnitudes, which
have qualitative similarities to the ones for HPTs in Chapter 3 and Appendix A.

Figure B.1: Sketch of the simulation domains for the ECRT prototype developed by ONERA.
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Figure B.2: 2D maps of plasma transport magnitudes obtained with HYPHEN for the ECRT prototype
developed by ONERA.
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