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ABSTRACT

HE problem of human behavior learning is a popular interdisciplinary research topic that
has been explored from multiple perspectives, with a principal branch of study in the
context of computer vision systems and activity recognition. However, the statistical methods
used in these frameworks typically assume short time scales, usually of minutes or even
seconds. The emergence of mobile electronic devices, such as smartphones and wearables,
has changed this paradigm as long as we are now able to massively collect digital records
from users. This collection of smartphone-generated data, whose attributes are obtained in
an unobtrusive manner from the devices via multiple sensors and apps, shape the behavioral
footprint that is unique for everyone of us. At an individual level, the data projection also
differs from person to person, as not all sensors are equal, neither the apps installed, or the
devices used in the real life. This point actually reflects that learning the human behavior
from the digital signature of users is an arduous task, that requires to fuse irregular data.
For instance, collections of samples that are corrupted, heterogeneous, outliers or have short-
term correlations. The statistical modelling of this sort of objects is one of the principal
contributions of this thesis, that we study from the perspective of Gaussian processes (GP).
In the particular case of humans, as well as many other life species in our world, we are
inherently conditioned to the diurnal and nocturnal cycles that everyday shape our behavior,
and hence, our data. We can study these cycles in our behavioral representation to see that
there exists a perpetual circadian rhytm in everyone of us. This tempo is the 24h periodic
component that shapes the baseline temporal structure of our behavior, not the particular
patterns that change for every person. Looking to the trajectories and variabilities that our
behavior may take in the data, we can appreciate that there is not a single repetitive behavior.
Instead, there are typically several patterns or routines, sampled from our own dictionary,
that we choose for every special situation. At the same time, these routines are arbitrary
combinations of differents timescales, correlations, levels of mobility, social interaction, sleep
quality or will for working during the same hours on weekdays. Together, the properties of
human behavior already indicate to us how we shall proceed to model its structure, not as
unique functions, but as a dictionary of latent behavioral profiles. To discover them, we have
considered latent variable models.

The main application of the statistical methods developed for human behavior learning
appears as we look to medicine. Having a personalized model that is accurately fitted to
the behavioral patterns of some patient of interest, sudden changes in them could be early
indicators of future relapses. From a technical point of view, the traditional question use to
be if newer observations conform or not to the expected behavior indicated by the already
fitted model. The problem can be analyzed from two perspectives that are interrelated, one
more oriented to the characterization of that single object as outlier, typically named as
anomaly detection, and another focused in refreshing the learning model if no longer fits to
the new sequential data. This last problem, widely known as change-point detection (CPD)
is another pillar of this thesis. These methods are oriented to mental health applications,
and particularly to the passive detection of crisis events. The final goal is to provide an
early detection methodology based on probabilistic modeling for early intervention, e.g. pre-
vent suicide attempts, on psychiatric outpatients with severe affective disorders of higher
prevalence, such as depression or bipolar diseases.






RESUMEN

L problema de aprendizaje del comportamiento humano es un tema de investigacion inter-
disciplinar que ha sido explorado desde multiples perspectivas, con una linea de estudio
principal en torno a los sistemas de visién por ordenador y el reconocimiento de actividades.
Sin embargo, los métodos estadisticos usados en estos casos suelen asumir escalas de tiempo
cortas, generalmente de minutos o incluso segundos. La aparicién de tecnologias moviles,
tales como teléfonos o relojes inteligentes, ha cambiado este paradigma, dado que ahora es
posible recolectar ingentes colecciones de datos a partir de los usuarios. Este conjunto de
datos generados a partir de nuestro teléfono, cuyos atributos se obtienen de manera no in-
vasiva desde multiples sensores y apps, conforman la huella de comportamiento que es unica
para cada uno de nosotros. A nivel individual, la proyeccién sobre los datos difiere de per-
sona a persona, dado que no todos los sensores son iguales, ni las apps instaladas asi cémo
los dispositivos utilizados en la vida real. Esto precisamente refleja que el aprendizaje del
comportamiento humano a partir de la huella digital de los usuarios es una ardua tarea,
que requiere principalmente fusionar datos irregulares. Por ejemplo, colecciones de muestras
corruptas, heterogéneas, con outliers o poseedoras de correlaciones cortas. El modelado es-
tadistico de este tipo de objetos es una de las contribuciones principales de esta tesis, que
estudiamos desde la perspectiva de los procesos Gaussianos (GP).

En el caso particular de los humanos, asi como para muchas otras especies en nuestro
planeta, estamos inherentemente condicionados a los ciclos diurnos y nocturnos que cada
dia dan forma a nuestro comportamiento, y por tanto, a nuestros datos. Podemos estudiar
estos ciclos en la representaciéon del comportamiento que obtenemos y ver que realmente
existe un ritmo circadiano perpetuo en cada uno de nosotros. Este tempo es en realidad
la componente peridédica de 24 horas que construye la base sobre la que se asienta nuestro
comportamiento, no inicamente los patrones que cambian para cada persona. Mirando a las
trayectorias y variabilidades que nuestro comportamiento puede plasmar en los datos, pode-
mos apreciar que no existe un comportamiento tinico y repetitivo. En su lugar, hay varios
patrones o rutinas, obtenidas de nuestro propio diccionario, que elegimos para cada situaciéon
especial. Al mismo tiempo, estas rutinas son combinaciones arbitrarias de diferentes escalas
de tiempo, correlaciones, niveles de mobilidad, interaccién social, calidad del sueno o inicia-
tiva para trabajar durante las mismas horas cada dia laborable. Juntas, estas propiedades
del comportamiento humano nos indican como debemos proceder a modelar su estructura,
no cémo functiones tinicas, sino cémo un diccionario de perfiles ocultos de comportamiento,
Para descubrirlos, hemos considerado modelos de variables latentes.

La aplicacién principal de los modelos estadisticos desarrollados para el aprendizaje de
comportamiento humano aparece en cuanto miramos a la medicina. Teniendo un modelo
personalizado que estd ajustado de una manera precisa a los patrones de comportamiento
de un paciente, los cambios espontdaneos en ellos pueden ser indicadores de futuras recaidas.
Desde un punto de vista técnico, la pregunta clasica suele ser si nuevas observaciones encajan
0 no con lo indicado por el modelo. Este problema se puede enfocar desde dos perspectivas
que estan interrelacionadas, una mas orientada a la caracterizacion de aquellos objetos como
outliers, que usualmente se conoce como deteccién de anomalias, y otro enfocado en refrescar
el modelo de aprendizaje si este deja de ajustarse debidamente a los nuevos datos secuenciales.
Este tltimo problema, ampliamente conocido como deteccion de puntos de cambio (CPD) es
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otro de los pilares de esta tesis. Estos métodos se han orientado a aplicaciones de salud
mental, y particularmente, a la deteccién pasiva de eventos criticos. El objetivo final es
proveer de una metodologia de deteccién temprana basada en el modelado probabilistico
para intervenciones rapidas. Por ejemplo, de cara a preveer intentos de suicidio en pacientes
fuera de hospitales con trastornos afectivos severos de gran prevalencia, como depresion o
sindrome bipolar.
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CHAPTER 1

INTRODUCTION

UMANS, as well as many other life species in our world, are inherently conditioned to the
diurnal and nocturnal cycles that everyday shape our behavior. In the particular case
of human individuals, such cycles can be accurately measured with modern technology, e.g.
electronic devices, and they appear to be periodic every 24 hours. We can easily study these
cycles to see that there exists a perpetual circadian rhythm in everyone of us. However, the
existence of periodic components only indicates our tempo and hence, the baseline temporal
structure that underlies our lifes, not the particular patterns that are different for every
individual. With this idea in our minds, we can state that every single person has its own
behavioral footprint, circadian itself, that only shares a few common pillars with the rest of
the population, but remains still unique for her or him.

Looking to the particular paths and variabilities that our behavior may take, we appreci-
ate that there is not any single repetitive behavior in everyone of us every day. Instead, there
are typically several patterns or routines, that we choose for every special situation. At the
same time, our routines are arbitrary combinations of different timescales, levels of mobility,
social interaction, sleep or will for working during the same hours every weekday. Together,
these properties of the human behavior already indicate to us how we shall begin to model its
structure, not as an unique latent function but as a dictionary of latent behavioral profiles.
We may discover them, if we look to the data that we all generate every single day.

This thesis advances in the problem of modelling the human behavior as a sequence of
latent behavioral elements that we aim to discover based on uncertainty quantification. The
main application of this sort of models appears as we look to medicine. Having a personalized
model that is accurately fitted to the behavioral routines of some patient of interest, sudden
changes in them can be early indicators of future relapses. This is of particular relevance in
the context of mental health, where the assessment and passive monitoring of sufferers is a
key milestone, for instance, to detect critical events for the evolution of chronic disorders.
To achive this goal using machine learning (ML) methods, with the purpose of being later
integrated in digital systems, we explore three main areas of study. First, we consider general
models for the problem of learning from heterogeneous observations, that is, high-dimensional
combinations of several statistical data types (i.e. real-valued, binary or categorical variables).
We then study novel inference methods, in particular these ones that are capable of being
deployed in online, or distributed scenarios. We pay a special attention to the problem of
continually learn their parameters for being adapted to the evolution of behavior along time.
Finally, our discoveries are connected to change-point algorithms, with the idea of designing
general detectors for any type of human-generated data that we may be interested in.

1.1 Human Behavior Learning

The problem of modelling human behavior has been already explored from multiple perspec-
tives, with a principal branch of study in the context of computer vision systems (Chaaraoui
et al., 2012). The ideas behind this family of methods are typically focused in the identifica-
tion of the short-term activity performed, i.e. sitting, walking, running, paying, etc, from raw



video sequences (Ma et al., 2016; Nunez et al., 2018) or simply images (Jalal et al., 2015).
Others use information from inertial sensors (Nazabal et al., 2015) for automatic activity
recognition, which is indeed a popular interdisciplinary research topic. It is worthy to men-
tion some of their applications, among the ones, security, wellbeing systems and monitoring
of elderly patients are significant to us. However, such learning methods often focus on a
smaller timescale, usually seconds and/or minutes. Here, we are interested in the human
behavior with important attention to the circadian component of the observations, which is
in the order of hours and days.

The scope of the work presented in this thesis goes further than the previously mentioned
methods, as we deal with the idea of personalized behavioral footprints that are projected
on the smartphone-generated data. Also, on the records collected everyday in our electronic
devices from multiple apps and sensors. At an individual level, this projection differs from
person to person, as not all sensors are the same and neither the apps installed, or the
devices used, which are never imposed. This purpose actually reflects that modelling human
behavior from the digital signature of an individual is an arduous task, that requires to fuse
irreqular data. This idea of observations with irreqularities will be later discussed in depth.
The statistical modelling of this sort of objects is one of the principal contributions of this
thesis.

The study of the digital circadian cycles of individuals is recursively visited in this work,
where we based our initial perspective on the preliminary approach of Aledavood et al.
(2015a). Their findings illustrated, in the beginning, that the circadian rhythms of people
persist in the aggregated data from multiple sources, e.g. from mobility longitudinal traces,
social interactions or even call registers. This motivated us to apply a probabilistic modelling
on the top of the data aggregation, in order to capture the underlying components that might
be hidden in every case. To do that, we got inspired by the idea of eigenbehaviors presented
in Eagle and Pentland (2009), where an individual’s behavior could be approximated as a
weighted sum of latent components or vectors. Particularly, we found a coincidence in the
timescale that we where looking for, in the order of hours to capture a latent structure valid
for every day. Moreover, the work of Eagle and Pentland (2009) shared with the previous
Eagle and Pentland (2006), the idea of multi-modal data modelled with discrete latent objects
that we also adopted. However, this last approach focused in the analysis of complex social
systems and particularly on the interactions between individuals, something that falls out of
the scope of our project.

1.1.1 A Mental Health Perspective

The emergence of mobile electronic devices such as personal smartphones or wearables has
also gained significant attention in healthcare due to their ubiquitous conditions, mainly for
pervasive sensing. It is now widely known as electronic health (e-Health) in the literature. In
particular, this disruption of mobile technologies afforded new opportunities (Miller, 2012) to
obtain objective, reliable and real-time monitoring data of patients outside the ambulatory
domains where assessment cannot be driven in a formal and daily manner.

For mental health, the principal advantage of such personal mobile devices is that their
embedded monitoring systems are completely unobtrusive to the users, typically outpa-
tients with chronic disorders. This property avoids direct interactions of clinicians with
patients, that are often time-consuming and limit the potential counfounders due to the
self-representation. Moreover, we are aware of the difficulties carried out by psychiatry clin-
icians to daily assess the state of patients. In this context, the degree of disability has been
traditionally assessed using periodic reports written down by patients or their caregivers.
However, this sort of protocols limit the utility of evaluations, as their are typically of poor



reliability or patients are unaware of their own symptoms that may lead to imminent relapses.

The presence of smartphones in patient’s pockets, opens the door to novel methodolo-
gies, e.g. statistical behavior modelling for improving the assessment of the life conditions in
chronic psychiatric outpatients (Osmani, 2015; Marzano et al., 2015; Firth et al., 2016; Bar-
rigbn et al., 2017). Mainly, those ones with diseases of higher prevalence, such as schizophre-
nia or affective mood disorders (depression or bipolar diseases). To help on these clinical
tasks, we find a key point of connection between behavioral modelling and new methods on
e-Health. Our final idea for the application of the statistical methods is therefore to provide
a digital support to psychiatric clinicians, within useful tools for the systematic monitoring
and assessment of the behavioral state of patients during their daily lifes out of hospitalary
domains.

1.1.2 The Role of Change Detection

Once a probabilistic model is well fitted to the clinical data of interest, or in our particular
case, to the behavioral observations monitored from patients, we do think about its potential
usage. As machine learning practitioners, using statistical models (without supervision) for
clinical diagnosis is a meaningless strategy. We cannot deliver to digital systems the decision-
making on sensitive chronic patients. Instead, and also based on the data-driven discipline
chosen for this thesis, we can still detect if new data conform or not to the expected behavior
indicated by the model. In other words, we should not say if some behavioral pattern is
beneficial or not for the the disease, but we can detect if something is just different that the
events previously observed. If there is a change at some time step of the sequential data, we
can detect it.

From a medical point of view, the appearance of changes has deserve some attention.
This detection of changes, often considered as relapses for early intervention systems have
demonstrated to be of practical use in mental health, particularly in schizophrenia (Barnett
et al., 2018; Torous et al., 2017). Our aim in this thesis is to explore this theme, providing
a full detection tool for clinicians with three key properties. First, to approximate every
patient’s behavioral routines in a reliable manner using statistical components with some
degree of interpretability. Second, having statistical models that discriminate if new data
belongs or not to the learned representation, we develop a change-point detection method
where outputs are also interpretable in a medical context. Finally, based on the recent spirit
of e-Health and also focused in the mental health problem, we identify relevant contributions
of the aforementioned statistical methods for suicide attempt prevention.

1.1.3 Problems of Behavioral Data Modelling

We have partially shown our purpose for modelling human behavior via statistical methods
based on uncertainty quantification. However, if we look to the applicability of such methods
in real-world examples, most attention has been payed to the development of complex learning
systems that only work on wltra preprocessed data. We do refer to this type of data as the
case of having all samples in the same statistical domain, i.e. continuous or discrete variables,
without the presence of outliers or having filtered out the missing attributes or objects that
overflow the sensing range. As a consequence, two main problems typically affect this sort of
preprocessing stages. The first issue is related to the growth of datasets, whose observations
already come from thousands to millions. Such filtering processess use to be more and more
time-demanding and, in some scenarios with temporal constraints, it is not possible to filter
the data in an affordable time. The second issue emerges from a statistical point of view.
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Filtering out the undesired data is not a realistic solution for models and might also lead to
biased results or even non-understandable conclusions in many cases.

Fortunately, probabilistic ML methods have demonstrated to be more robust to non-
preprocessed data than other deterministic methods, for instance, frequentist or discrimi-
native models. If some of the features are lost, we can still infer them conditionally, given
the rest of information, or if there is plenty of outliers, we may know how unlikely they are,
having the observed data. Note that this paradigm is specially well suited to the applica-
tions considered in this thesis, as human behavior is typically projected into an irregular
multimodal data that is correlated among dimensions.

Irregular Observations

We know that there is extensive work in the literature about probabilistic learning methods
for regular data, and more specifically, for homogeneous observations. We refer to these
type of data as the set of objects whose attributes are assumed to be always of the same
statistical nature. This assumption often leads to the choice of a single likelihood density, e.g.
Gaussian, Bernoulli, categorical, etc, that links the statistical uncertainty of the data within
the latent structure of the problem via the parameters. If we look to the particular problem
of human behavior learning, this assumption is not possible to be taken. As said above
and also based on the empirical expirience, behavioral data from smarpthones is typically
generated by different sensors, apps or contains very different information. In addition to
the problem of being a temporal problem, where an outcome should be presented as soon
as possible, then, transforming all the attributes into a common statistical codification is a
handicap. However, our reference to irregular data does not finish with the heterogeneous
components, as we also consider high-dimensional objects, with outliers and even periodic
correlations between features at different scales.

Flexible Inference Methods

We have mentioned how statistical learning systems must face irreqular datasets with hetero-
geneous attributes to estimate human behavior. However, a second drawback also limits the
direct application of state-of-the-art methods in this context. Due to the human behavioral
data shape an underlying changing representation, that often evolves along time, we must
consider temporal statistical models for this challenge. This temporal evolution of the ob-
servations opens the door to two strategies. The first one would be to wait until a sufficient
amount of data records were stored, and then, use the statistical learning method to model
both the behavior and its evolution along time. The main problem of this point of view is
that neither clinicians or patients can wait years for a predictive output. Instead, the second
strategy addresses the temporal correlation in a different way. The idea is to adapt models in
a recursive manner, that is, using online methods. This has motivated many researchers to
consider online settings in the literature, but here we face the challenge within the irreqular
data conditions. For this reason, we adopt the notion of having flexible inference processes
that could be adapted to sequential observations as well as distributed setups for preserving
the privacy of patients.

1.2 Overview of Models and Contributions
This thesis is oriented to the design, implementation and evaluation of statistical learning

models, based on probability theory and uncertainty quantification, for the problem of human
behavior learning. Having reliable representations of an individual behavior is the first step
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in order to detect abnormal events or shifts that can be harbingers of imminent relapses in the
context of medicine. For this task, we have faced several problems during the development
of this thesis. The proposed statistical methods for solving them are also the principal
contributions of our work. We now survey the ones proposed for the modelling task, the
inference challenges and the potential applications that we found in mental health.

1.2.1 Gaussian Processes for Heterogeneous Data

There is remarkable evidence that by simultaneously exploiting the correlations between mul-
tiple attributes in observed objects, it is possible to provide better predictions, particularly
in scenarios with missing or noisy data. In the context of Gaussian process (GP) models, both
Bonilla et al. (2008); Dai et al. (2017) have demonstrated this statement. With this growing
interest, the apparition of multi-output Gps generalised the powerful predictive model to the
vector-valued setup (Alvarez et al., 2012). Regarding the type of output data to be modelled,
the main focus in the literature for GPs has been on regression problems for continuous vari-
ables. Traditionally, outputs are assumed to follow a Gaussian likelihood distribution where
the mean function is parameterized by the GP and the variance is often treated as unknown
hyperparameter. Bayesian inference is tractable for these models.

However, few attempts have tried to extend the GP setting, and particularly the MOGP,
to other types of likelihoods. For examples, Skolidis and Sanguinetti (2011) used the output
functions of a MOGP for jointly modelling several binary classification problems, each of which
used a probit likelihood. In this case, posterior inference was performed using expectation-
propagation (EP) and the variational mean-field approach. Both Chai (2012) and Dezfouli
and Bonilla (2015) used the coregionalization model in MOGPs for modeling a single cate-
gorical variable with multinomial logistic likelihoods. The output variables in this model
were used as replacements for the linear predictors in the softmax function. For the single-
output GP case, the usual practice for handling non-Gaussian data has been replacing each
parameter of the likelihood model by one or more independent GP priors. Since computing
integrals becomes often intractable, different alternatives have been offered for approximate
inference. Examples are the Gaussian heteroscedastic regression model (Lézaro-Gredilla and
Titsias, 2011), Laplace approximations (Vanhatalo et al., 2013), Poisson likelihoods (Saul
et al., 2016) or even Wishart processes (Wilson and Ghahramani, 2011).

Our contribution in this area of study is to provide an extenson of MOGP models for
prediction in heterogeneous databases. This is the case for which the output variables are
an arbitrary combination of continuous, categorical, binary or other discrete variables, each
one with a different likelihood distribution. The key principle is to use the outputs of the
MOGP as the latent functions that modulate the parameters of several likelihood functions,
one likelihood density per heterogeneous attribute. Based on the inducing variable for-
malism in MOGPs introduced by Alvarez and Lawrence (2009), we introduce variational
methods for inference. We experimentally provide evidence of the benefits of simultane-
ously modeling heterogeneous data in different applied problems, among the ones, human
behavior modelling stands out. Interestingly, our implementation of the model follows the
spirit of Hadfield et al. (2010), where the user of the learning system only needs to spec-
ify a list of desired likelihood densities: 1ikelihood 1ist = [Bernoulli(), Poisson (),
HetGaussian()], where HetGaussian() refers to the heteroscedastic Gaussian distribution,
and the number of latent parameter functions per likelihood is assigned automatically.



1.2.2 Continual Learning and Recyclable Inference

One of the most desirable properties for any modern machine learning method is the handling
of very large datasets. Since this goal has been progressively achieved in the literature with
scalable models, much attention is now paid to the notion of efficiency. For instance, in
the way of accessing the data. The fundamental assumption uses to be that samples can
be revisited without restrictions a priori. In practice, we encounter cases where the massive
storage or data centralisation is not possible anymore for preserving the privacy of individuals,
e.g. health and behavioral data. The mere limitation of data availability forces learning
algorithms to derive new capabilities, such as i) distributing the data for federated learning
(Smith et al., 2017), ii) observe streaming samples for continual learning (Goodfellow et al.,
2014) and iii) limiting data exchange for private-owned models (Peterson et al., 2019).

A common theme in the previous approaches is the idea of model memorising and recy-
cling, i.e. using the already fitted parameters in another problem or joining it with others for
an additional global task without revisiting the collection of data. If we look to the functional
view of this idea, uncertainty is still much harder to be repurposed than parameters. This is
the point where GP models play they role.

Another contribution in this thesis is to provide a novel approach that extends the ex-
isting posterior-prior recursion of online Bayesian inference, e.g. with conjugate exponential-
families, to the infinite-functional space setting of GP models. The key principle of the
statistical method is the use of the conditional GP predictive equation to build implicit prior
distributions where past posterior discoveries are propagated forward. We say the word im-
plicit as long as the instances of inducing inputs are integrated, but the conditioning on their
variational parameters remains. The entire model is amenable to stochastic optimization,
letting us consider any irregular form in the sequential observation process. Additionally, the
continual method is fully applicable to the multi-channel scenario, that is, to MOGP models
as well as their heterogeneous counterpart.

Moreover, in this thesis we also investigate a general framework for recycling distributed
variational approximations to GPs based on inducing inputs. Based on the fundamental
properties of Kullback-Leibler divergence between stochastic processes (Matthews et al.,
2016) and Bayesian inference, the proposed method ensembles an arbitrary amount of varia-
tional GP models with different complexity, likelihood function and location of pseudo-input
instances, without revisiting any data. The recyclable framework is also amenable for regres-
sion, classification and heterogeneous tasks, and it is neither restricted to any specific sparse
GP approach. We remark its potential use in applied cases, like large collections of patients
data, where distributed databases are easily found.

1.2.3 Hierarchical Change-point Detection

Change-point detection (CPD), which consists of locating abrupt transitions in the generative
model of the observations, is a problem with plethora of applications. In this thesis, we
use CPD methods in behavioral data applied to mental health. However, the main focus
of cPD has been traditionally on batch settings, where the entire sequence of observations
is available and has to be segmented. This particular scenario is not well fitted to our
application of interest. Instead, CPD is most useful for us in online settings, where change-
points must be detected as new incoming samples are observed. This family of methods have
two intertwined tasks to solve: i) segmentation of sequential data into partitions (or segments)
and ii) estimation of the generative model parameters for the given partitions. Concretely,
since each partition has a different generative distribution, the identifiability of the change-
points is related to the difference between such densities, and hence, their parameters. In



this context, Bayesian inference is of particular utility for inferring the distributions given
prior beliefs in a reliable manner (Adams and MacKay, 2007).

However, it can be observed that, for complex likelihood models, which have a growing
number of parameters much higher than the amount of observations between two consecutive
chage-points, reliable CPD becomes unfeasible. This use to be the case of, although is not
restricted to, high-dimensional and/or heterogeneous observations, which usually have a
prohibitive number of parameters for the CPD discrimination.

One of the main contributions of this thesis is to introduce a novel approach for cpPD.
To address the aforementioned issue, we present a hierarchical probabilistic model based on
latent variables. The CPD problem can be carried out on the lower-dimensional manifold,
where the discrete latent variables lie. The main advantage is that the method requires less
evidence that the observational counterpart since the number of parameters is reduced. This
yields faster and more reliable detections. However, the new statistical methods introduces
new challenges that we also address for robust detection and its application to scenarios with
an unbounded dimensionality of the latent structure. The key idea of this last model is to
use the Chinese-restaurant process (CRP) (Pitman, 2002), which is a well-known Bayesian
non-parametrics method to model the latent variables. Experimental results on real data
show how the hierarchical approach performs reliably, which is a fundamental point for its
application to human behavior problems.

1.2.4 Early Detection for Mental Health

For psychiatry, the principal advantage of personal mobile devices is that their embedded
monitoring systems are completely unobtrusive for patients. This avoids short-term periodic
interactions with clinicians, that are time-consuming for the healthcare system, and limits
potential counfounders due to the self-representation. This one is sometimes the cause of
subjective data gathering, i.e. via paper-and-pencil questionnaires, strongly dependent of the
static behavioral state of the sufferer. Fortunately, these problems motivated the apparition
of electronic mental health (e-Mental-Health) methods that nowadays are an emergent field
(Osmani, 2015; Firth et al., 2016; Barrigén et al., 2017).

Regarding the comprehension of human behavioral dynamics and their digital phenotypes
in affective disorders (Saha et al., 2016; Marzano et al., 2015), these novel pervasive services
are ideally suited for capturing the behavioral states of patients during their daily routines.
Existing approaches have already explored the analysis of human behavior from numerous
modalities of information, such as activity recognition, communications registers, text and
voice recognition, and similarly to the data considered in this thesis, mobility metrics.

Importantly, real-time prediction of triggering symptoms before an imminent relapse in
mental health is strongly related to the detection of abrupt behavioral transitions. In this
context, preventative medical interventions with automatic statistical methods in on the
neccesity of using learning approaches where both dynamical characterization of profiles and
detection of behavioral changes is performed as individuals emotional state may quickly vary
during time.

The main applied contribution in this thesis is to propose a novel methodology for the
detection of behavioral changes in psychiatric outpatients using different sources of daily
information recorded from their personal smartphone. The key idea is to introduce proba-
bilistic ¢CPD methods for estimating the probabilities of change from the heterogeneous data
of patients. In particular, we solve together both problems of heterogeneous likelihood func-
tions and the high-dimensionality in CPD by assuming the hierarchical approach with latent
variables. The experimental results in a preliminary study show the feasibility of the method
for detecting behavioral changes in outpatients, and the easy intepretation for clinicians.
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Finally, the CPD tool is put into practice within larger datasets for suicide attempt preven-
tion in the context of the Smartcrises study protocol (Berrouiguet et al., 2019). Validation
results within the clinical dates recorded from urgencies and hospitalary interventions show
promising insights for the future of this technology in mental health.

1.3 Thesis Organization

The present doctoral manuscript is divided into four main chapters, that we shortly review
in the following paragraphs for a better comprehension of the document and its organization.
The references to all published pieces of work, where contributions were initially presented,
are included in the introductory lines of each chapter.

Chapter 2: Models for Heterogeneous Data

This is perhaps, the first technical chapter of the thesis. Particularly, it focuses on the very
first decisions to be taken for modelling both heterogeneous and irregular data observations,
i.e. in presence of missing values. We begin with one simple approach based on discrete latent
representations, such as latent class or mixture models, that accept multivariate likelihood
distributions. Here, the features of observational vectors are accepted to belong to more-than-
one statistical data type. This is, we mix binary and real-valued data in a same likelihood
model with good results on inference. This same idea is later expanded to other types of
probabilistic models, and particularly, to Gaussian processes (GP). The second half of the
chapter is dedicated to the presentation of the heterogeneous multi-output GP model and its
evaluation on different datasets with a purpose of scalability.

Chapter 3: Continual and Distributed Inference

In this chapter, we consider those scenarios where data cannot be accessed in a regular
manner, that is, observations appear to be distributed or delivered to the system in a con-
tinual/online way. In particular, we propose several inference and learning methods based
on stochastic processes, with special attention to GP models. In the first half, we present
our idea for recycling already fitted models that we scale up via variational methods and
GPs with arbitrary likelihood functions. In the next section, the previously described het-
erogeneous multi-output GP model in the preceding Ch. 2, is extended for being deployed in
a continual learning setup. This methodology fuses concepts from sparse approximations to
GPs, variational inference methods and signal processing.

Chapter 4: Change-point Detection

Once data modelling and inference methods are presented in Ch. 2 and Ch. 3 respectively,
we focus on the problem of change-point detection (cpD). The fourth chapter develops a
detailed analysis of methods for detecting abrupt distribution shifts in sequences of data with
high-dimensionality. In addition, we also consider the rest of issues previously mentioned,
e.g. heterogeneous likelihood functions and missing entries. Particularly, we introduce the
hierarchical ¢PD model in the first half, which is an adaptation of Bayesian CPD to the pres-
ence of latent variables. This also allow us to scale up the model’s order without restrictions,
also improving its robustness. We propose several modifications of this idea, for instance,
introducing the chinese-restaurant process (CRP) mechanism in the latent counterpart.
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Chapter 5: Behavior Change Detection

All the technical advances and methods developed for data modelling, inference and change-
point detection are put into practice in this chapter. The idea is to use behavioral models to
detect change from smartphone-based data of psychiatric patients. The chapter is divided in
three main sections. The first one presents the initial medical study where the probabilistic
models were deployed for proving the viability of the hypothesis. In the second part, the
clinical mental health study is extended for further applications, particularly for suicide
attempt prevention. In this case, the multi-modal heterogeneous models presented in Ch.
2 are directly applied with a significant result. Finally, to demonstrate the significance and
impact of the results obtained with both the behavior models and the change-point methods,
detected events are compared and validated within clinical data from urgencies and hospital
interventions.

Chapter 6: Conclusions and Future Work

We conclude the thesis by surveying the main technical contributions, as well as the advances
based on the application of the human behavior models. As the reader should notice, this
thesis combines ideas from multiple perspectives and research topics, to name a few, machine
learning, behavior analysis, multivariate statistics and in the last case, mental health from a
biomedical point of view, not fully clinical. Even being a first step towards the use of machine
learning methods in behavioral related sciences and particularly in psychiatry, we provide
additional ideas for the future development of both heterogeneous data models, distributed
and continual inference and finally, change-point detection methods within latent variables.
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CHAPTER 2

MODELS FOR HETEROGENEOUS DATA

ROBABILISTIC learning models are especially well-suited for the problem of irreqular data
P observations. This sort of compler data can be easily found in any application with the
purpose of modelling the human behavior. The main idea behind is that learning methods
based on probability and uncertainty quantification are typically more robust to the appari-
tion of input missings or unexpected events in the dataset. Among those models, such ones
based on the concept of latent variables are of maximum interest for us. The ability to de-
sign low-dimensional latent manifolds with either continuous and discrete properties or even
a temporal structure on demand is the first step forward to design reliable human behavior
models for irregular observations.

In this chapter, we consider two different families of learning methods for the problem
of human behavior modelling and its complementary heterogeneous data. Here, we refer to
heterogeneous as the arbitrary combination of variables from different statistical data-types
in the same set of observations, for example, a mix of binary, real-valued or categorical data.

We begin in Sec. 2.1 with the analysis of latent variable models in the context of low-
dimensional discrete manifolds. We named them as latent class models following the original
nomenclature used in Griffiths and Ghahramani (2011). As described in Sec. 2.1.2, we ex-
tended this family of latent variable models to accept heterogeneous likelihood distributions,
and different mixes of statistical types are also considered. Additionally, a second extension
is included to capture the periodic structure of the data via circadian covariance functions
in Sec. 2.1.4. The same strategy is considered for a second family of latent variable models,
Gaussian processes (GPs) (Rasmussen and Williams, 2006). In this case, latent variables are
substituted with non-linear functions in the real-valued domain. In Sec. 2.2, we first introduce
GP models from scratch followed by their adaptation to multi-task scenarios, well-known as
multi-output GPs, in Sec. 2.2. Finally, in Sec. 2.2.1 we present a novel generalization of the
GP models for handling heterogeneous likelihood functions, which is the main contribution
of this chapter. In particular, this last model is capable to work with both large-scale data
and irregular observations. The main details about the approximate inference carried out
are described in Sec. 2.2.1 and further algorithms for parallel or continual extensions are
included in the next Chap. 3.

The main technical advances described in this chapter have been previously presented in
two research works. The first portions on heterogeneous latent class models and circadian
covariance functions were included in Moreno-Muiioz et al. (2018, 2020), which was accepted
in the Pattern Recognition Journal and it is pending for formal publication. Second, the
results on heterogeneous GP models were presented in Moreno-Munoz et al. (2018), that
was accepted in the 2018 Conference on Advances in Neural Information Processing Systems
(NeurIPS) as a spotlight oral presentation in Montréal, Canada.

2.1 Latent Variable Models for Heterogeneous Data

Unsupervised learning methods typically assume that there exists a low-dimensional latent
structure responsible of the generative process of the data. In many well-known cases, this
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structure refers to a common parameterization of the high-dimensional observations, for
instance, given a linear mix of coefficients or real-valued factors that are later combined
somehow. In others, a subset of auxiliary statistical variables are introduced for building
the additive structure that helps in the problem of understanding the data. This ones are
accepted to be both discrete or continuous, and depending on their nature, latent variable
approaches are known with one name or another, e.g. factorial models or topic analysis.
Additionally, one of the key problems in modern probabilistic ML is to face the decision on
the nature of such latent structure and hence, its dimensionality. Often, practioners consider
this as a problem of model selection.

In the last decades, the advances on latent variable models have been typically focused
on the design of the latent structure and its variables, the corresponding parameterization
and/or the inference mechanism required, which in many cases needs of approximations.
However, a common ingredient among this family of probabilistic methods, is the connection
of the hidden auxiliary objects with the high-dimensional observations via the likelihood
distribution function. As a consequence, if both observations and latent variables lie under
the assumption of independence and the distribution equality, then there are no restrictions
for heterogeneous features in the data. Notice that this approach is more realistic as it
enlarges the number of real-world scenarios where latent variable models could be applied.
With a few exceptions (Khan et al., 2010; Valera et al., 2017), this idea has not been explored
in depth. Consequently, we did a first exploration to it in this section.

2.1.1 Latent Class Models

One of the simplest types of latent variable models, is based on the idea that having ob-
served N vectors x;, there exists a hidden class variable z; which indicates the subset of
generative properties of that particular vector. In this family of latent class models, such
as mizture models (McLachlan and Basford, 1988; Bishop, 2006), the generative parame-
ters are typically assigned to every class variable. Assuming that all the observations are
in a larger vector * = [z{, 24 ,...,x\]", its latent counterpart is attached in the vector
z =[21,%2,...,2n]". Typically, the joint probability distribution between these two vectors
is given by the factorisation p(x, z) = p(x|z)p(z), where the prior probability over the assign-
ments p(z) determines the nature of the model and initially sets the number of assignments
K.

Importantly, the conditional probability distribution p(z|z), that we name here as the
likelihood function of the latent variable model, is the one that determines how the class
assignments z; are related to the properties of observations x;. In this preliminary section,
we analyse how this last distribution p(x|z) is the one that is capable to deal with multiple
modalities, including heterogeneous features in a very simple manner. We remark that the
traditional assumptions have been focused on the case of homogeneous data and the question
of using finite or infinite orders for the dimensionality of the latent structure.

Finite Mixture Models

The well-known mizture models are a special case of latent class models, where the assign-
ments of classes are independent among them. Particularly, the prior distribution p(z) over
the latent variables factorises according to the i.i.d. assumption. Thus, having a maximum
of K class assignments, the distribution is

N N

K
p(z) =] p) =] II =", (2.1)

i=1 i=1k=1
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where we have considered that the latent variable marginals p(z;) are Categorical distributed.
The expression I{-} makes reference to the indicator function, whose output is one if the
condition is satisfied and zero otherwise. The parameter ® = [my,ma,..., 7 K]T is indexed un-
der this factorisation by both the ith and kth values of z;. Under this model, the conditional
likelihood distribution of the observations takes the form

N K
p(x|z) :HH (|05 ) ==k} (2.2)

where p(x;|0}) is the likelihood probability of every observation x; given the parameters 6y
associated to the kth assignment of the latent class variables z;. Importantly, the distribution
p(x;]0%) is often assumed to belong to one single family of probability density functions. For
instance, when dealing with binary data, we typically place a Bernoulli mixture or Gaussian
typed in the case of multivariate real-valued data (Bishop, 2006; Murphy, 2012). Looking
to the properties of p(x;|0x), we determine that it is particularly well suited for an extra
factorization under the assumption of conditional independence (CI) in the dimensions of
observations. The idea of introducing mixes of likelihood functions in the conditional term
p(x;]01) makes us to consider this sort of latent class models. This is the first approach in
the thesis for modelling irregular and heterogenous observations with probabilistic methods.

2.1.2 Heterogeneous Latent Class Models

Motivated by the application of probabilistic modelling to human behavior characterization,
we consider data that posses some degree of heterogeneity and types of periodic temporal
structure, with a 24h period, induced by the circadian rhythm of each individual. For this
reason, we study here how to embed heterogeneous data models within the aforementioned
temporal structure. The ideas presented in this section are also valid for any dataset with
known periodicity.

To account for the periodic dependencies of the data, we propose to arrange them such
that a single observed sample x; at time t stacks the observations of one period as shown
in Fig. 2.1. Additionally, we build heterogeneous observations by stacking dimensions from
different statistical data-types on larger vectors x; = [z}, z2,...,2P]T, with D being the
number of heterogeneous data types. This means for us, that the sequence x1.; summarizes
consecutive instances (or time-steps) of different heterogeneous observations.

For the description of one single observation, represented by x;, we propose a heteroge-
neous latent class model. The likelihood distribution takes the form

K D
p(wl=. {6367 .. .0P})) =[] [T, (2:3)
k=1d=1

where latent class variables z; are the indicators of which component is active for the partic-
ular kth likelihood function. Concretely, the factorized expression in Eq. (2.3) is composed
by K components, each one with its own likelihood distribution p(wﬂeg) for each data type.
The variable 0% denotes the natural parameters of the dth data type that we aim to learn
conditioned to the given latent class. It can also be seen that we have assumed conditional
independence (1) in Eq. (2.3), given the latent variable z; and the parameters. This as-
sumption simplifies the inference procedure, while at the same time makes the heterogeneous
observations x}, 2, ...,z easy to be modelled.
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e We use letter p as
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Figure 2.1: Schematic illustration of the embedded circadian model. Each green-shaded box
represents a daily observation x;. Each observation is heterogeneous, i.e., mix of real, binary
values, etc. Moreover, associated to x;, there exists a single latent variable z; that is lower
dimensional and we aim to discover.

2.1.3 Circadian Gaussian-Bernoulli Model

Among all heterogeneous statistical data types that may be incorporated to the daily rep-
resentation x;, we choose here two representative cases for the considered application in
human behavior learning. In particular, we assume that each observation x; is composed by

binary and real-valued features, that is, x; = [(xi°*)", (xP™) "], where the L.h.s. variables
are ;! € R? and xp™ = [zpf,...,zp"]T, with zpi* € {0,1}. Additionally, we use p to
denote the dimensionality of each kind of observation, and in our particular case it is given

by a function of the period. For example, if each component of 2}°* represents the travelled

distance during a given hour, then p = 24, which corresponds to one day, the period induced
by the circadian rhythm.

Note also that we are assuming that all data types have the same dimensionality p, but it
would be straightforward to extend the model for different orders of dimensionality. Next, we
select Bernoulli and Gaussian marginal distributions for the initial heterogeneous likelihood
function, yielding

@z =k, {0k 1)) = play™, 2} |0)

p
— N[0, K, + D) [ Ber(a}i" |, (2.4)

j=1

where, for the time being, we denote 8y = {p;,~,} as the set of likelihood parameters for
each latent class value k. Here, p;, = (g1, .., tip), where each py; € [0,1], is the mean
of the jth Bernoulli feature and -y, are the parameters of the covariance matrix D. This
one is chosen to be a common diagonal matrix for all latent classes z;, and is given by
D = diag(07,...,07), and the parameters of K. In particular, the covariance matrices Ky
are positive-definite and correspond to each class k as well. The purpose of the diagonal
matrix D is to introduce heteroscedasticity in the model since we are assuming that the noise
may vary within time inputs, that is, to be different across dimensions. A similar strategy
will be later presented in Sec. 2.2.1 for Gaussian process models.

To capture the periodic (circadian) feature of real-valued data x®!, we employ a pe-
riodic covariance function, similar to the works in Solin and Sérkkéd (2014) and Durrande
et al. (2016). Then, the matrix Ky is generated by a non-stationary periodic kernel, i.e.
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[Kk}j,j' = gx(J,7"), where the time or dimension j is assumed to be equally spaced (e.g.
j=1,2,3,...,p). Further details about this function are provided in Sec. 2.1.4. Addition-
ally, to obtain interesting insights, we consider that the distribution N (z:*®!|0, K + D) is
generated using a hierarchical methodology similar to the ones presented in Hensman et al.
(2013b, 2015b). In our case, the mean vector f is drawn from a zero-mean Gaussian, such
that f ~ N(0,K}), which yields zi¥|f ~ N'(f, D).

Following the standard approach used in latent class variable models, we need to compute
the complete likelihood function, which included the prior probability for each latent variable
indicator z;. By defining the specific latent variable prior distribution as p(z; = k) = 7y, the
complete likelihood function at time ¢ is

p(xs, 20 = k|{0k}kK:1) =plz = k)P(wt|Zt =k,0;) = Wkp(wt‘ek)~ (2~5)

Next, taking into account that the heterogeneous observations are conditionally i.i.d., the
complete joint log-likelihood finally becomes

I{z: = k} log 7y,

[M]=
] >

Lo =logp(xre, 21.4|{Ok, ThIiey) =

~
Il
—
=~
Il
_

{2 = k} log (™| pay,)

+
1
M= 11

+ I{z = k} log p(x**|K},, D). (2.6)

[M]=

1

~
Il

=~
Il

=

One last comment is in order. If we need to take observation at non-uniformly spaced inputs
j, say that the dimensions are not equally correlated as j # 1,2,3,...,p anymore, then
the heterogeneous approach would also accept a different subset of inputs for each x; in a
straightforward manner. The reason behind is explained in the next section.

2.1.4 Circadian covariance functions

The proposed latent class model also captures the circadian feature of data for each kth as-
signment. In particular, it includes a temporal embedding and the use of periodic covariance
functions gx(j, '), which in this case must be also non-stationary. Notice that afternoon-
evening events should have a different correlation pattern than, for instance, nocturnal hours
and early morning, which prevents the use of other stationary approximations. We propose
to build non-stationary kernels with an input-dependent mapping si(j), similarly to the one
used in Heinonen et al. (2016). Here, we have g (j,j) = sk (5)sk(5")gx (5 —3"), where g (5 —5")
is a stationary periodic covariance function, associated to the kth class. This models the in-
trinsic temporal structure during a day. In this case, we take the periodic version of the
exponential kernel, which is given by

o 2sin(w|j — 4’|/ D
gk(j—Jj') = olpexp ( ( ng 71/ )), (2.7)
k

and for si(7), the hour-specific term, we use a squared Fourier series of order C, with C' < D.
This last constraint imposes a limit on the smoothness and avoids overfitting. Thus, s(j) is

se(j) = <a§0 +Cé {akc cos (Q;fj) + bpesin (220])] ) 2, (2.8)
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where aj, = [aro, . ..,arc] " and by, = [bg1,...,brc] " are the Fourier coefficients that parametrize
the covariance matrix of the kth class, K, together with the parameters of the exponential
kernel, o, and /£}.

2.1.5 Alternative Latent Variable Models

There is plenty of extensive literature in the context of latent variable models for homoge-
neous datasets, where all the features that describe the high-dimensional observations are
of the same statistical nature, either continuous or discrete. In the past decades, significant
advances were done for mixed data scenarios, that is, pairs of one-to-one regression and clas-
sification problems (Khan et al., 2010). However, these models were often limited to the case
of mixing two problems (regression and classification) at once and arbitrary combinations of
other data types were not accepted.

Looking in depth to latent variable models, a few works considered this sort of approaches.
We remark the importance of Khan et al. (2010), where factor analysis models are extended
to accept a mix between continuous real-valued attributes and categorical observations. Im-
portantly, this work shed light on the difficulties for performing inference given this sort of
multivariate likelihood distributions, and variational methods had to be considered. Follow-
ing a similar direction, Klami et al. (2012) used properties of exponential families to model
heterogeneous coupled data (often named multi-view observations) via principal component
analysis.

However, the recent alternative presented in Valera et al. (2017, 2020) opened the door
to a more principled use of heterogeneous likelihood models in the context of latent variable
models, in this case feature-based. The idea in this case is to assume that heterogeneous
observations are mappings of some set of Gaussian distributed variables. This simple trans-
formation simplifies significantly the number of assumptions to be taken, and at the same
time, makes easier to accept other types of parameterizations and even latent variable struc-
tures. As a consequence of this advances, Nazabal et al. (2020) extended the idea for having
a deep latent structure under an heterogeneous likelihood function to the domain of varia-
tional autoencoders (VAE). The balance between heterogeneous attributes has been recently
improved in the context of deep generative models (Ma et al., 2020).

2.2 Gaussian Process Models for Heterogeneous Data

Probabilistic models based on Gaussian process (GP) methods (O’Hagan, 1992; Williams,
1998) are widely know for its flexible nature in the task of discovering correlations given
input-output data observations. Since the interest caused by the formal presentation of Gps
in Rasmussen and Williams (2006), 15 years ago, they have become a standard approach in
the machine learning literature for modelling problems where non-linear parameterizations
are needed, as well as strong uncertainty metrics for the posterior predicitive duties.

The main idea behind GP models is the specification of distributions over non-linear
function spaces. This mechanism takes an important advantage. This is, the fact that the
functions over such spaces are infinite dimensional objects. Thus, one can only instantiate the
desired function values in several input points of interest if needed. However, the properties of
the functional space still persist and may help the practitioner to perform any predictive task
or conditional estimation. Despite there exist other several distributions to be considered for
the infinite functional space (Shah et al., 2014), it is assummed to be Gaussian in this sort
of stochastic processes. This decision is of particular relevance in the context of probabilistic
modelling and particularly inference, as the integration becomes tractable in most cases.

16



In the very beginning, output observations were usually considered to be noisy versions
of the function values, alike other regression methods in the literature. The noise model was
assummed to be Gaussian and additive. This led most of the methods to link the underlying
GP function to the mean parameter, e.g. first moment, of the real-valued data. In other words,
just Gaussian likelihood distributions were considered for the output samples under study.
In such cases, posterior inference only consisted of calculating the probabilities over the mean
function, which coincides with the values of the underlying GP function. Additionally, it is
well known that the assumption of a zero-mean prior in the functional space facilitates this
same mechanism of inference, keeping it even simpler.

Putting all these ideas in the context of latent variables modelling, we can find a dual
interpretation of the underlying (and unknown) function that parameterizes the likelihood
distribution and hence, the data. In this case, the GP prior distribution plays a similar role
as the marginal distribution on the latent variables that we introduced in Sec. 2.1.2. We also
consider the key differences between both approaches, that in our present scenario, lead to
not i.i.d. observations. Additionally, we see that there is still an open door in the formulation
of GP models for introducing a similar methodology as the one considered with latent class
models. This approach is the one that we develop in this section.

Formulation of Gaussian processes

Consider supervised learning scenarios where data consists of pairs of input-output obser-
vations D = {x,,y,})_,, with &, € RP and outputs y,, being either continous or discrete.
From the perspective of a GP model, we assume that every output sample is generated as
Yn ~ P(Yn|fn), where f, is the non-linear function evaluation f(x,). Here, the latent func-
tion f(-) that parameterizes the likelihood distribution is drawn from an infinite-dimensional
GP prior, such that f ~ GP(0,k(-,-)), where k(-,-) can be any valid covariance function or
kernel. The zero mean is assumed for simplicity in the inference.

Looking to one of its simpler versions, where we may consider Gaussian additive noise, the
real-valued outputs ¥, are assumed to be y,, = f(,)+¢€. The noise is i.i.d. with variance 2.
This is equivalent to say that the likelihood distribution over the vectors y = [y1,v2, - .-, yn] ',
takes the form p(y|f) = N(y|f,02I). Here, f = [f(z1), f(x2),..., f(xn)]". The last
term in the previous likelihood expression can also be rewritten as a zero-mean Gaussian
distribution, p(y|0,X), where ¥ = k(z,x) + 021. Notice that we stack input vectors to be
x=[r,x,... ,a:N]T. Deriving the conditional distributions given the Gaussian likelihood
model, we arrive to exact expressions for the posterior inference of f values, and hence, of
the mean parameters for the output observations.

If we want to perform a predictive computation on some test input points x,, then we
obtain the equations for Gaussian process regression (Rasmussen and Williams, 2006), that
is

p, =k (K +or D)y, (2.9)
Vs = kuw — k) (K 4+ 021) 7, (2.10)

where k. = k(@., ), kex = k(@4, x,) and K = k(x, ). Both p, and v, represent the mean
and wvariance of the estimation over the test points of interest.

The application of the predictive conditional equations in Eq. (2.9), Eq. (2.10), represents
the main weakness of GP models. As the reader probably noticed, the inversion of K becomes
undesirable as N — oo, and the number of operations turns to be unhandleable. Fortunately
this problem is well known, and many works have been proposed since scaling up probabilistic
machine learning models became a priority.
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Sparse Approximations

Exact inference in GP models is widely known for its time complexity, which scales pro-
hibitively to O(N?3) for inverting the kernel matrix and O(N?) in memory cost. The compu-
tational constraints of standard implementations have motivated the development of many
approximations in the literature. Among the principal works on scaling up GP models, we
should remark those ones based on sparse methods (Seeger, 2003; Snelson and Ghahramani,
2006; Titsias, 2009a). The most part of this models construct approximations based on a
smaller subset of M <« N inducing variables, which are also evaluations of the infinite-
dimensional GP function. This approach allows to reduce the time complexity from O(N3)
to O(NM?), as the true observations y are conditioned to such inducing variables that we
aim to infer.

Usually, the difference between sparse methods rely on the way of treating the subset of
inducing variables. A preliminary strategy in Snelson and Ghahramani (2006) considered
such inducing variables as latent function values of f. These ones were later fitted as close as
possible to the true output observations via maximum likelihood. Then, given a new input
set x,, the predictive distribution of the GP is obtained as

e =k Oy Kun(A +0n1) "'y, (2.11)
Ve = kow — k(K3 — O3 ew + 02, (2.12)

where Oy = Ky + Kyn(A +02)_ 1K),y and A = diag(\), with A\, = K,,,, — kJK&lkn.
Notice that covariance matrices K and K s are built from the kernel function evaluations
between the N input data points and the M inducing variables. The K}, is a square matrix.
In terms of complexity, note that the computation of the predictive terms are dominated by
the inversion of K, which is M long. Additionally, this inversion is later multiplied by the
correlation matrix K s, what lead us to the final maximum cost of O(NM?). This order
of complexity has been maintained in the context of sparse approximations for GP models
since its presentation, with a few recent exceptions (Wang et al., 2019) based on matrix
decompositions. Beyond that, the original method in Snelson and Ghahramani (2006) still
required to fit the pseudo-inputs in a non-smooth manner, and once put into practice, it was
extremely difficult, e.g. find an optimal solution for the position the inducing variables close
enough to the true N samples.

Based on the application of approximate marginal likelihood methods for fitting such
sparse GP regression models, Titsias (2009a) introduced variational inference to estimate the
location of inducing inputs and the adjacent hyperparameters. The key property of this new
formulation was that it allowed to minimize the Kullback-Leibler (KL) divergence between
the approximate variational distribution and the target posterior over the latent function
values. In practice, to perform inference over the instances of the function f, Titsias (2009a)
selected variational marginal densities of the form

q(f,u) = p(flu)q(u), (2.13)

where u are the function evaluations over the inducing inputs z = {z,,}M_, with z,, €

RP, such that w = [f(z1), f(22),..., f(zax)]". The distribution g(-) is the density used to
approximate the posterior at the collection of latent function values u. The factorization in
Eq. (2.13) will be recursively used in this thesis, particularly in the next Ch. 3.

The choice for ¢(u) is typically a Gaussian distribution parameterized by the parameters
., and S,,, the mean vector and covariance matrix respectively. In the original formulation
of Titsias (2009a), where an homoscedastic Gaussian likelihood model was chosen for the
output observations, the lower bound under the log-marginal likelihood has a closed form.
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Its expression is derived in Titsias (2009b). Additionally, this closed-form tractability leads
to obtain unique optimal values for both u,, and S,. !

The approach presented in Titsias (2009a) was later extended in multiple directions. For
the interest of this thesis, we remark three advances in the literature. First, the selection of
the optimal number of inducing points M, which is the natural way to reduce the complexity
of the approximate GP inference model. In addition to the perspective of Titsias (2009b),
more recently, Burt et al. (2019, 2020) has investigated the convergence rates of inducing
inputs in the context of sparse GP regression and the vanilla kernel. Likely, this advances will
be expanded to other types of covariance functions and likelihood models. The idea is to know
exactly how many inducing inputs are needed conditioned to the number of data N. Second,
the additive Gaussian noise model was extended to accept heteroscedastic datasets. To do
so, Lézaro-Gredilla and Titsias (2011) introduced a secondary GP function g to parameterize
the likelihood variance, such that o2 = o%(z,) ¥n € {1,2,..., N}, to be input-dependent.
Finally, the original Gaussian likelihood model in Titsias (2009a) was substituted by others,
for instance, Bernoulli distributions for scalable binary classification (Hensman et al., 2015a).

It is important to mention that the variational sparse methodology was also considered
for multi-task or multi-output GP models, as we will see later in this section.

Multi-output Gaussian Processes

Multi-output Gaussian processes (MOGP), generalise the powerful Gaussian process (GP) pre-
dictive model to the vector-valued random field setup (Alvarez et al., 2012). Additionally, it
has been experimentally shown that by simultaneously exploiting correlations between mul-
tiple outputs and across the input space, it is actually possible to provide better predictions,
particularly in scenarios with missing or noisy data samples (Bonilla et al., 2008; Dai et al.,
2017).

The main focus in the literature for GP and particularly MOGP models, has been on
the definition of suitable cross-covariance functions between the multiple outputs that allow
for the treatment of outputs as a single GP with a properly defined covariance function
(Alvarez et al., 2012). The two classical alternatives to define such cross-covariance functions
are the linear model of coregionalisation (LMC) (Journel and Huijbregts, 1978) and process
convolutions (Higdon, 2002). In the former case, each output corresponds to a weighted sum
of shared latent random functions. In the latter, each output is modelled as the convolution
integral between a smoothing kernel and a latent random function common to all outputs. In
both cases, the unknown latent functions follow Gaussian process priors leading to straight-
forward expressions to compute the cross-covariance functions among different outputs. More
recent alternatives to build valid covariance functions for MOGP include the work by Ulrich
et al. (2015) and Parra and Tobar (2017), that build the cross-covariances in the spectral
domain.

Formulation of MOGP models

The use of Gaussian process models for modelling multiple-output observations, often named
as vector-valued functions (Alvarez et al., 2012), follows a similar direction as in the single-
output GP case. This type of probabilistic models, usually based on regression setups, has
been largely study in the context of geostatistical scenarios, and in particular, the LMC
approach.

The standard formulation for multi-output GPs considers a set of D dimensional outputs
{ya(x)}_,, with y4 € R and € RP. These real-valued outputs are also assummed to be

1See Eq. (10) in Titsias (2009a) for further details.
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noisy versions of D latent output functions { f4(z)}2_,. In the case of LMC, each component
fa is assumed to be

Q
fa(®) = agquq (), (2.14)
g=1

where u,(x) are the latent functions and aq, the mixing coefficients. At this point, we
see the sort of approaches that this method introduces. The latent functions u,(x) can be
modelled in very diffent manners, and in this thesis we will consider the use of separate
GP priors. Thus, the processes {uq(:c)}qul are independent. This independence constraint
can be also relaxed and even different mixings for the functions are allowed. The particular
advantage of this structure is on the computation of cross-correlations between functions fg,
and hence, their corresponding output values y4. An example of the exact computation of
these cross-correlations will be later included in Sec. 2.2.1.

However, LMC approaches based on the instantaneous mixing of a subset of latent pro-
cesses have some limitations in practice. For instance, it would be not possible to model
multi-task problems with certain types of correlations, e.g. one output being a blurry version
of another, or at list, the multi-output GP learning would be too limited. A powerful solution
to these limitations is to introduce convolution. The idea of exploiting convolutions between
base processes has been previously developed in Higdon (2002), extended in Wikle (2002)
for spatiotemporal covariances and Paciorek and Schervish (2003) for non-stationary appli-
cations. The model introduced in Boyle and Frean (2004) considers that each f; process is
now expressed as a convolution integral of a latent process u, and a smoothing kernel G4(x),
such that

Fal@) = /X Gl — yu(r)dr, (2.15)

Further details on the computation of cross-correlations between functions fq and f/; can be
checked in Alvarez and Lawrence (2011). Importantly, even though convolutional processes
(cP) in combination with multi-output GP models work better in practice, its computational
complexity still scales up to O(Q3N?) for prediction and O(Q3N?) for storage. These costs
are equivalent to the case of single-output GP regression but adapted to the ) dimensional
multi-output setting. As a consequence, Alvarez and Lawrence (2009); Alvarez et al. (2010)
introduced sparse approximations to the full covariance matrix, exploiting similar advantages
as Titsias (2009a) did in the original scenario. The same approximations to multi-output
GPs are applied in this thesis, but considering the simpler LMC model as a first approach for
scaling up our methods. This is detailed in the following section.

2.2.1 Heterogeneous Multi-output Gaussian Processes

Regarding the statistical type of outputs that can be modelled by MOGP, most alternatives
focus on multiple-output regression for continuous variables. Traditionally, each output is
assumed to follow a Gaussian likelihood where the mean function is given by one of the out-
puts of the MOGP and the variance in that distribution is treated as an unknown parameter.
Exact Bayesian inference is usually tractable for these models.

In this section, we are interested in the heterogeneous case for which the outputs are a
mix of continuous, categorical, binary or discrete variables with different likelihood functions.
A similar approach as the one we were intereseted in Sec. 2.1.2.

Consider a set of output functions Y = {yq(x)}L_,, with & € RP, that we want to jointly
model using Gaussian processes. Notice that each yq4(x) is often assumed to be continuous
and Gaussian distributed. Instead, we look to the scenario which outputs in ) are a mix
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of continuous, categorical, binary or discrete variables with several generative distributions.
In particular, we assume that the distribution over yq(x) is completely specified by a set
of input-dependent parameters 04(x) € X7¢, where we have a generic X domain for the
parameters and .J; is the number of parameters that define the distribution. Each parameter
04i(x) € O4(x) is a non-linear transformation of a Gaussian process prior function fu; (),
this is, 84 () = g4;(f4;(x)), where gq4;(+) is a deterministic function that maps the GP output
to the appropriate domain for the parameter 6. To make this notation more concrete, let
us assume an heterogeneous multi-output problem for which D = 3 as an example.

Bernoulli-Poisson-Gaussian Distributed Outputs

Assume that the output y; () is binary and that it is modelled using a Bernoulli distribution.
The Bernoulli likelihood function uses a single parameter (the probability of success), J; = 1,
restricted to values in the range [0, 1]. This means that 01 (x) = 611(x) = g11(f11(x)), where
911(-) could be modelled using the logistic sigmoid function o(z) = 1/(1 + exp(—z)) that
maps o : R — [0, 1].

Second, assume that another output ys(x) corresponds to a counting variable that can
take values ya(x) € NU {0}. This variable can be modelled using a Poisson distribution
with a single parameter (the rate), Jo = 1, restricted to the positive real numbers. This
means that 85(x) = 021 () = go1(f21(x)), where go1(-) could be modelled as an exponential
function g91(-) = exp(+) to ensure strictly positive values for the parameter.

Finally, y3(x) could be a continuous variable with heteroscedastic noise. It can be mod-
elled using a Gaussian distribution where both the mean and the variance are functions of
x. This means that @3(x) would correspond to 83 = [g31(f31(x)), gs2(f32(x))] ", where the
first function is used to model the mean of the Gaussian, and the second function is used to
model the variance. Therefore, we can assume the g3 (-) is the identity function and g3o(-) is
a mapping that ensures that the variance takes strictly positive values, e.g. the exponential
function.

Heterogeneous Likelihood Formulation

Having the previous multivariate output data, let us now define a vector-valued function
y(z) = [y1(x),y2(x),...,yp(x)]". We assume that the outputs are conditionally indepen-
dent given the vector of parameters @(x) = [01(x),02(x),...,0p(x)]". These parametric
vectors are defined by specifying the vector of latent functions

_f(CE) = [fll(x)afu(w)V‘ . ~,f1J1(a7)f21(117), e '7fDJD<w)]T € RJle

where the total number of functions J is constrained to satisfy J = ZdD:1 Jg. The expression
for the likelihood distribution is given by

(2.16)

D D
p(y(@)|0(x)) = p(y(@)|f (@) = [ | p(va(@)0a(@)) = ] plya(@)|fa(x)),
d=1

d=1

(2.17)

where we have defined fy(x) = [fai (@), faz (@), ..., fas, (@)]T € R7*1 the set of latent
functions that specify the parameters in 64(x). Notice that J > D. This is, there is not
always a one-to-one map from f(x) to y(x). The reader should notice that the factorization
in Eq. (2.17) is analogous to the one used in the case of latent class models of Sec. 2.1.2. In
this case, the latent functions fy will be correlated together using the MOGP model.

Most previous work has assumed that D = 1, and that the corresponding elements in
O4(x), that is, the latent function values in fi = [fi1(a),..., fis, (z)] are drawn from
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independent Gaussian processes. However, important exceptions on this point are Chai
(2012) and Dezfouli and Bonilla (2015), that assumed a categorical variable y; (x), where the
elements in f; (x) were drawn from an intrinsic coregionalisation model.

In what follows in this section, we generalise the model for D > 1 and potentially hetero-
geneous outputs yq(x). The word “output” will be recursively used to refer to the elements
ya(x) and “latent parameter function” (LPF) or “parameter function” (PF) to refer to fg;(x).

Multi-parameter GP priors

The main point of departure from previous work is in modelling function values f(x) us-
ing a multi-parameter Gaussian process prior that allows correlations for all the parameter
functions fg;(2). The introduction of a linear model of corregionalisation type for covariance
matrix functions facilitates the expresiveness of correlations between functions fg;(x) and
fajs(x). The particular construction of these multi-parameter GP priors is as follows.

We consider an additional set of independent latent functions U = {ug(x )} ~_, that is

linearly combined to produce J LPFs { fq;(x)} j]d’1 4—1- Bach latent function or process uq(x)

is assumed to be drawn from an independent GP prior such that ug ~ GP(0, kq(-,-)), where
k, can be any valid covariance function, and the zero mean is assumed for simplicity. Then,
each latent parameter fg () is given as

Q Ry

fai(@) =D aiiquy( (2.18)

q=1 i=1

where u/ () are i.i.d. samples from ug(-) ~ GP(0,kq(-,-)) and afijq € R. The mean function
for fqj() is zero and the cross-covariance function kg, ¢, , (z,x') = cov[fy(z), farj (2')] is

equal to Zq 1 b‘(ldj) (i ka(@, @), Where b‘(zdj)7(d,j,) = 221 Aig Qg

The formal definition of the input data is given by = {x,}_,, and £ € R¥*P  as a set
of common vectors for all outputs yq(x). Although, the presentation of the model could be
extended for the case of different set of inputs per output datum. We also define the vector-
valued functions as fg = [f4;(x1), faj(®2), .., faj(®n)]T € RNXY fu = [fl,.. .,fde] €
R7N* and f = [f,..., fA]T € RIV*L

Then, the generative model for the heterogeneous multi-output GpP formulation is as
follows. We sample output function values f ~ N(0,K), where K is a block-wise matrix
with blocks given by {de,-»de/j/}géli};{i{flj{=1,j/=1- In turn, the elements in Ky, ¢, , are
kfdjgfd’j/ (p, T ), with @, @, € x. For the particular case of equal input observations x for
all LPFs, the matrix K can also be expressed as the sum of Kronecker products

Q
K=> AA 0K, => B, 2K,
g=1
where A, € R7*f4 has entries {aéjq}gz’{?jii,iﬂ and for B, are {b(d (' ﬁg’?i”ﬁ_’ﬁjzld,:l.
Thus, the matrix K, € RN has entries given by kq(@y, ) for @, @, € x. Matrices
B, € R7*7 are known as the corregionalisation matrices.

Once we are able to obtain vector-valued samples for f, we may evaluate the proper vector
of parameters 8 = [0 0 .. OT] where we assumed that 8; = f,;. Having specified 0, we
can generate samples for the output vector y=1[yl,...,yp]" € XPN*! where the elements
in y4 are obtained by sampling from the conditional distributions p(y,(«)|04(x)). Importantly,
to keep the notation uncluttered, we will assume from now that R, = 1, meaning that
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A, =23, ¢ R7*1 and the corregionalisation matrices are rank-one. In the literature, such
model is widely known as the semiparametric latent factor model (Teh et al., 2005).

2.2.2 Scalable Variational Inference Framework

Given an heterogeneous dataset D = {x,y}, we would like to compute the posterior distri-
bution for p(f|D), which is intractable in our model. In what follows, we use similar ideas
to Alvarez and Lawrence (2009); Alvarez et al. (2010) that introduced the inducing variable
formalism of Sec. 2.2 for computational efficiency in MOGP models. However, instead of ex-
plicitly marginalising the underlying latent functions U to obtain a variational lower bound,
we keep their presence in a way that allows us to apply stochastic variational inference as in
Hensman et al. (2013a); Saul et al. (2016).

Inducing Variables for Heterogeneous MOGP

A key idea to reduce the computational complexity of Gaussian process models is to introduce
auzxiliary variables or inducing variables, which typically open the door to sparse approzi-
mations (Sec. 2.2). The variables have been used already in the context of MOGP models
(Alvarez et al., 2009, 2010). A subtle difference from the single output case in Sec. 2.2 is that
the inducing variables are no longer taken from the same latent process, say f(x), but from
the latent processes U instead. Those are used also to build the model for multiple-outputs.
We follow the same formalism here for heterogeneous data.

We start by defining the set of M inducing variables per latent function u,(x) as u =

[ug(21), - uq(za)] T, evaluated at a set of inducing inputs z = {2z, }1_; € R™*P. We also
define the vector u = [u; ,... ,ug]—r € ReMx1 For simplicity in the exposition, the general

assumption is that all the inducing variables, for all ¢, are evaluated at the same subset of
pseudo-inputs z.

Instead of marginalising {uq(m)}qul from the standard LMC model in Eq. (2.18), we ex-
plicitly use the joint Gaussian prior p(f,u) = p(f|u)p(u). Due to the assumed independence
in the latent functions u, (), the distribution p(u) factorises according to p(u) = Hqul p(ug),
with u, ~ N (0,K,). Here, matrices K, € RM*M has entries k,(zi, z;) with z;, z; € z. No-
tice that in this case, the dimensions of matrices K, are different to the ones in the previous
Sec. 2.2.1, since we now consider the sparse approximation.

The LPFs instances fy are conditionally independent given u, so we can rewrite the
conditional distribution p(f|u) as

D Jg
p(flu) = IT [T p(falw)
d=1j=1
D Jg
= H HN (fdj|dejuK;111u’dejfdj - de_;‘uK;qlLK—frdju) ) (2.19)
d=1j=1

where Ky, € REM*QM ig 5 hlock-diagonal matrix with sub-blocks given by K, and Ky, €
RNX@M g the cross-covariance matrix computed from the cross-covariances between fy;(z)
and u4(z). The expression for this cross-covariance function can be obtained from Eq. (2.18),
leading to ky,u, (%, 2) = agjqkq(x,z). More details can be also revisited in Alvarez et al.
(2012). This form for the cross-covariance between the LPF fg;(x) and u,(2) is a key difference
between the inducing variables methods for the single-output GP case and the MOGP case.
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Construction of Variational Bounds

As in other GP methods with non-Gaussian likelihood functions, exact posterior inference is
intractable. However our priority is to model the heterogeneous data in an scalable man-
ner. For this task, we use variational inference methods to compute a lower bound £ for
the marginal log-likelihood log p(y), and for approximating the target posterior distribution
p(f,u|D). We follow the notation of Alvarez et al. (2010), where the posterior distribution
over the LPFs f and the LFs u can be approximated via

D Jg4 Q

d=1j=1 q=1

where g(uy) = N(ug|p,,,Su,) are the auxiliary variational distributions whose natural

parameters {uuq, Suq}qQ:1 we aim to optimize for maximising our lower bound £. Building
on previous work by Saul et al. (2016), we derive a lower bound that accepts any log-
likelihood function that can be modulated by the LPFs f. The lower bound L for logp(y)
can be obtained as follows

log p(y) = log / Pyl £)p(flw)p(u)d fdu

> /q(f,u) log (p(y|f;§)}{‘u1;)p(u)> dfdu = L. (2.21)
We can further simplify the previous expression of £ in Eq. (2.21) to obtain
Q
£~ [ s twatw o p(ulf)dfdu— > KL lg(u,)p(e,)
qg=1
D Jg Q
— [/ T L pttstwatw ospty prdudf > KLlaullp(a)), (222
d=1j=1 q=1

where KL is the Kullback- Leibler divergence. Moreover, the approximate marginal posterior
for f4 is q(fa;) = [ p(fajlu)g(u)du, leading to the exact expression

Q(.fdj) =N (-fdj‘dejuK’l_L’LlL“u’ K.fdjfdj + K.fdjuK'l_L’llL (S’u - K'u’u) K de u) ’ (2'23)

where p, = [ty s Hy,]" and S, is a block-diagonal matrix with blocks given by the
variational matrices S,,,. Importantly, the log-conditional distribution logp(y|f), that here
we know as the likelihood function of the heterogeneous model, factorises according to the
previous Eq. (2.17) as

D
logp(y|f) = Zlogp Yalfa) =Y logp(yalfar, faz, -, fusy)- (2:24)

d=1 d=1

Using the expression for logp(y|f), we can rewrite the expression for the variational bound
L as

D Q
L= Bo(tu). alfas, 108P(Wal fars -, Fas,)] Z q(uy)||p(uy)] - (2.25)
d=1
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When D = 1 in the expression above, we recover the same bound as in Saul et al. (2016). To
maximise this lower bound £, we need to find the optimal variational parameters { Ho, }qu1

and {Suq}?:l. In this particular model, we choose to represent each matrix S, as the

product of lower-triangular matrices Sy, = La, L;';q and, to ensure the positive definiteness
for S, we estimate Ly, instead of S, .

Approximate Methods for Variational Expectations

There are still intractable issues in the variational expectations (or integrals) on the log-
likelihood functions. Since we construct these bounds in order to acccept any possible sta-
tistical data-type, we need a general way to solve this sort of integrals. One obvious solution
is to apply Monte Carlo (MC) methods, however it would be too slow both maximising the
lower bound and updating variational parameters by sampling thousands of times (for ap-
proximating expectations) at each iteration of the optimization process. Instead, we address
this problem by using Gaussian-Hermite (GH) quadratures as in Hensman et al. (2015a) and
Saul et al. (2016).
One example with GH quadratures is in order. To compute the integrals of the form

E, 7, [logp(yal fa)] = /Q(fd) log p(yal fa)dfa. (2.26)

that we here consider to be univariate for simplicity, we apply the approximation

s
1
Eq(f.0) [log p(yalfar)] ~ NG Z ws log p(ya|v2var fs + mar), (2.27)
s=1

where mg; and vy, are the mean and variance of the variational distribution ¢(f41), respec-
tively. In addition, the pair of values {ws, fs} is obtained by taking a chosen number S of
points from the Hermite polynomial
. o2 db 2

Importantly, notice that this process must be done sequentially for multivariate expectations,
which results in a multidimensional sum with an storage cost of O(SP*) where D; is the
number of output functions involved in the integral. For very large-dimensional Categorical
output, new ways of parameterizations should be considered, for instance, Ruiz et al. (2018).

Stochastic Variational Inference

Turning back to the formulation of the lower bound, the conditional expectations in Eq. 2.25
above are also valid across data observations, so that we can express the bound as

D N
L= Eotut@)alfur, @) 108 pGa(@n)| far (@), ., fas,(Tn))]

d=1n=1
Q
— > KLIg(u)l|p(u,)]. (2.28)

g=1

This functional form allows the use of mini-batches of smaller sets of training samples, per-
forming the optimization process using noisy estimates of the global objective gradient (Rob-
bins and Monro, 1951). Similar strategies have been used in Hoffman et al. (2013); Hensman
et al. (2013b, 2015a) and Saul et al. (2016).

25



An scalable bound of this type makes our multi-output model applicable to large hetero-
geneous datasets. Importantly, we remark that the computational complexity is dominated
by the inversion of Ky, with a cost of O(QM?) and products like K, with a typical cost
of O(JNQM?). However, several extensions can be adopted in the parameterization of the
likelihood functions, so these costs could be even smaller.

Learning of Hyperparameters and Prediction

Q

The hyperparameters of the heterogeneos MOGP include 2, {B4},_;, and {fyq}(?:l, which are

the hyperparameters associated to the covariance functions {k, (-, ')}qul. Since the variational
distribution g(w) is sensitive to changes of the hyperparameters, we maximise the variational
parameters for ¢(u), and the hyperparameters using a variational EM algorithm (Beal, 2003)
when employing the full dataset, or the stochastic version when using mini-batches (Hoffman
et al., 2013).

Moreover, for the computation of predictive probabilities, we consider the set of test
inputs x,. Assuming that p(uly) = ¢(u), the predictive distribution p(y.|y) associated to
., can be approximated as p(y.|y) = [ p(ys|f+)q(f«)df«, where at the same time ¢(f.) =
J p(fi|u)g(w)du. The predictive variational expression factorizes according to

D Jg

Q(.f*) = H H Q(fdj*)a (2'29)

d=1j=1

and it involves evaluating matrices Ky, . at x.. As in the case of the expectation in-
tegrals in the lower bound of Eq. (2.25), the integral for p(y.|y) above is intractable for
the non-Gaussian likelihoods p(y«|f«). For this integrals, we can make use of MC methods
or quadratures to approximate them. Simpler integration problems are obtained if we are
only interested in the predictive mean, E[y.|y], and the predictive variance, var[y.|y]. The
expressions of both predictive terms are given by

E[yjly] = / E[y) £3]a(F)dfs, (2.30)
var [y;|y] = /var[yélf;‘]q(fé‘)df(}‘ +/1E[y2|f5]2q(f§)df§ —E[y;ly]”. (2.31)

Note that prediction can be performed independently for each dth output type y4 given their
corresponding LPFs fg.

2.2.3 Heterogeneous Single-output Gaussian Processes

It is important to mention that the we have considered so far heterogeneous data problems in
a vector-valued manner. In both Sec. 2.1.2 and Sec. 2.2.1, target observations are modelled as
multimodal vectors, where each dimension belongs to a different statistical data type, e.g. the
nth output of the heterogeneous MOGP is assumed to be y,, = [y1 (%), ¥2(xn), - - -, yp(xn)] T
However, this assumption can be relaxed to obtain more flexible models where each univariate
output observation vy, is of different nature (either continuous or discrete) and we model it
using a single-output GP prior.

This is a natural extension of GPs to heterogeneous likelihood models with a slightly
different structure than the one used in Sec. 2.2.1 and in Moreno-Munoz et al. (2018). In
that cases, there are no restrictions to accept a single-output GP function, such that densities
p(yn|f(x,)) may change per data point {x,,y,}. The only difference with the key stochas-
tic variational approximations in the literature (Hensman et al., 2013a, 2015a) is that the
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expectation integrals in the lower bound (similarly as in Eq. (2.28)) may also be computed
over several likelihood functions instead, one per data point. However, we identify some
inconvenients in this type of modelling. Each ith expectation term could be imbalanced with
respect to the others. For instance, if mixing Bernoulli and Gaussian distributed variables,
binary outputs could contribute more to the objective function than the rest, due to the
dimensionality. To overcome this issue, local GP models could be considered as in Moreno-
Munoz et al. (2020a). This will be analyzed, from a technical point of view, later in Ch. 3.
Another drawback of this approach is that data-types need to be known beforehand, perhaps
as additional labels.

2.3 Evaluation of Models for Heterogeneous Data

In this section, we aim to evaluate the performance of the latent variable model presented in
Sec. 2.1.2 and the Gaussian process model of Sec. 2.2.1 for heterogeneous data also developed
in this chapter. The current section is therefore divided into three main blocks. First, the
experimental results presented in the next Sec. 2.3.1 correspond to the circadian Gaussian-
Bernoulli model of the previous Sec. 2.1.3. Its evaluation is divided between the Ch. 2 and Ch.
4, within the change-point detection approaches. Here, we focus exclusively on the ability of
the model for capturing the underlying periodic features from heterogeneous distributed data.
Second, another set of experiments is dedicated to the analysis of heterogeneous MOGPs, that
we formulated in Sec. 2.2.1. The empirical validation is performed accross different datasets
(both synthetic and real-world) oriented to the general application of this thesis. We pay
special attention to the modelling of demographic and human behavior data collections as
well as we aim to demonstrate its scalability for large scale datasets. Finally, we describe
extra simulations in the context of heterogeneous single-output GPs.

2.3.1 Heterogeneous Latent Class Model Simulations

In this experiment, we considered data that consists of location raw traces (latitude-longitude
coordinates) recorded via the personal smartphone of a student of our laboratory. The
observations were recorded during 275 consecutive days. The collection contains a bit more
than 100K instances that correspond to the user’s GPS coordinates every 3 minutes on average.
In this case, we considered two types of metrics (Canzian and Musolesi, 2015): i) a real-valued
signal of the log-distance travelled per hour and ii) daily binary vectors of presence or absence
at home. Further details on these data are included in Ch. 5, where the applications to human
behavior are reviewed.

Circadian Phenotypes

One of the strengths of the heterogeneous latent class model described in Sec. 2.1.2 is the
ability to capture the 24h periodic structure from the collection of mobility metrics. It is
based on the estimation of Fourier coefficients for the covariance function given the distance
values. After fitting all hyperparameters in the maximization step during the EM inference
algorithm, we are able to reproduce the patterns that describe how a person usually behaves
during each type of day. In Fig. 2.2, we represent the set of multimodal periodic functions
generated from the squared Fouries series, sx(j), and the estimated vectors of probability g
of the Bernoulli likelihood density, given the heterogeneous model.
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Figure 2.2: Circadian patterns of mobility. The results are obtained for K = 5. (UPPER
ROW) Periodic functions generated from the squared Fourier series with the estimated hy-
perparameters. Functions represent the variance in the mobility per hour and type of day.
(LOWER ROW) Thermal plots of multivariate Bernoulli distribution, i.e., the probability of
being at-home during different hours.

2.3.2 Heterogeneous Multi-output GP Simulations

In this section, we evaluate the heterogeneous MOGP model on different scenarios with irreg-
ular data. To demonstrate its performance in terms of multi-output learning, prediction and
scalability, we explored several applications with both synthetic and real-world data. For
all the experimental results in this section, we considered the wanilla RBF kernel for each
covariance function k,(+,-). The number of latent functions u,(-) was set to @ = 3.

For the standard optimization, i.e. without the need of stochastic gradient updates, we
used the LBFGS-B algorithm. When svi was explicitly needed, we considered the ADADELTA
method and mini-batch sizes of 500 samples per output. All the performance metrics are
given in terms of the negative log-predictive density (NLPD), calculated from the test subsets
of data. This sort of metrics are also applicable to any type of likelihood function and its
computation is straightforward.

Missing Gap Prediction

In the first experiment, we evaluate if the model is able to predict observations in one
output using training information from another one. We setup a toy problem which consists
of D = 2 heterogeneous outputs, where the first function y;(x) is real-valued and yo(x)
binary. Assumming that heterogeneous outputs do not share a common input set, we observe
N7 = 600 and N5 = 500 samples respectively. All inputs are uniformly distributed in the
input range [0, 1], and we generate a gap only in the set of binary observations by removing
Niest = 150 samples in the interval [0.7,0.9]. Using the remaining points from both outputs
for training, we fitted the heterogeneous MOGP model.

In Fig. 2.3, looking to subfigures (a) and (b), we see how the uncertainty in binary test
predictions is reduced by learning from the first output, which is a regression problem. In
contrast, Fig. 2.3 (c) shows wider variance in the predicted parameter when it is trained
independently. For the multi-output case in the left-hand subfigures, we obtained an NLPD
value on test data of 32.5 = 0.2 x 102, while in the single-output case of the right-hand
subfigure, the NLPD was 40.51 4 0.08 x 1072,
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Figure 2.3: Comparison between multi-output and single-output performance for two het-
erogeneous sets of observations. (A) Fitted function and uncertainty for the first output. It
represents the mean function parameter p(x) for a Gaussian distribution with o2 = 1. (B)
Predictive output function for binary inputs. Blue curve is the fitting function for training
data and the red one corresponds to predicting from test inputs (true test binary outputs
in red too). (C) Same output as in (B) but training an independent chained GP only in the
single binary output (GP binary classification).

Human Behavior Learning

In this experiment, and also motivated by the final objective of this thesis, we are interested
in modeling human behavior. Particularly, with application to psychiatric patients. Previous
work by Soleimani et al. (2018) already explored the application of scalable MOGP models
to healthcare for reliable predictions from multivariate temporal data. The data of this
experiment comes from a medical study that asked patients to download a monitoring app
(EB2) on their personal smartphones (Berrouiguet et al., 2018). The ubiquitous system is
able to capture traces about mobility, communication metadata and interactions in social
media networks. The work has a particular interest in mental health as we well see later in
Ch. 5. Particularly, shifs or misalignment in the circadian feature (24h cycles) of the human
behavioral patterns captured, can be interpreted as early signs of crisis.

BERNOULLI HETEROSCEDASTIC BERNOULLI GLOBAL

HETMOGP  2.24 £0.21 6.09 £ 0.21 5.41+£0.05 13.74+£0.41
CHGP 2.43£0.30 7.29+£0.12 5.19+£0.81 14.91+£1.05

Table 2.1: Behavior dataset test-NLPD (x1072). Best NLPD metrics are underlined.

The preprocessing stage of this experiment consisted of three steps. First, we obtained a
binary indicator variable of presence/absence at home by monitoring latitude-longitude and
measuring its distance from the original patient’s home location within a 50m radius range.
All locations were previously anonymized in a privacy-preserving manner. Then, using the
already measured distances, we generated a mobility sequence with all log-distance values.
The last step was to obtain binary samples representing the use/non-use of the WHATSAPP
application in the personal smartphone. At each monitoring time instant, we used its dif-
ferential data consumption to determine the use/non-use of the application. Finally, we
considered an entire week in seconds as the input domain x,, € X, that we also normalized
to the range [0, 1].
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Figure 2.4: Results for multi-output modeling of human behavioral data. After the training
process, all output predictions share a common (daily) periodic pattern, initially induced by
the social media features (purple).

Demographic Modelling

Based on the large scale experiments in Hensman et al. (2013a), we obtained the complete reg-
ister of housing properties sold in the Greater London County during 2017 (https:www.gov.
uk/government/collections/price-paid-data). The data was preprocessed and particu-
larly, we translated all property addresses to latitude-longitude coordinates. For each spatial
input data-point, we considered two observations, one binary and one real-valued. The first
one indicates if the property is or not a flat (zero would mean detached, semi-detached, ter-
raced, etc..), and the second output is the sale price of houses. Particularly, we transformed
this output to the real domain using the mapping log(y + 1).

BERNOULLI HETEROSCEDASTIC GLOBAL

HETMOGP  6.38 £ 0.46 10.05 £ 0.64 16.44 £ 0.01
CHGP 6.75 £0.25 10.56 £ 1.03 17.31 +£1.06

Table 2.2: Demographic modelling test-NLPD (x1072). Best NLPD metrics are underlined.

Our goal is to predict the heterogeneous features of houses given a certain location in the
London area. We used a training set of N = 20,000 samples, and 1,000 for test prediction.
The number of inducing points was set to M = 100. Results in Fig. 2.5 show a portion of the
entire heterogeneous dataset and its test prediction curves. We obtained a global NLPD score
of 16.44 4+ 0.01 using the MOGP model and 17.31 4+ 1.06 in the independent output setting;
both metrics are (x1072). There is also an improvement in performance when training our
multi-output model even in large scale datasets. Error scores are shown in Tab. 2.2 per
output.

High-dimensional Inputs

In the last experiment with the heterogeneous MOGP model, we tested its robustness on
the arrythmia dataset, available in the UCI repository (http://archive.ics.uci.edu/ml).
We use a dataset of dimensionality p = 255 and 452 samples that we split in training,
validation and test subsets. We use the model for predicting the binary output (gender) and
the continuous output (logarithmic age). The prediction of both output values is compared
against independent chained GPs, one per output function. The binary samples are modelled
using a Bernoulli likelihood distribution and the continuous one as Gaussian distributed. We
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Figure 2.5: Results for spatial modeling of heterogeneous data with MOGP models. (TOP
ROW) 10% of training samples for the Greater London County. Binary outputs in red-blue
colors are the type of property sold in 2017 and real-valued ones are the log-prices included in
the house sale contracts. (BOTTOM ROW) Posterior predictive test curves for Niest = 2,500
input samples. Multimodal R? curves share common patterns as long as their LPFs are linear
combinations of a unique set of components {uq}qul.

obtained an average NLPD value of 0.0191 for both the multi-output and independent output
function models. The slight difference was in the standard deviation, which was better with
the presented methodology.

2.3.3 Heterogeneous Single-output GP Simulations

Based on Moreno-Munoz et al. (2020a) and the local GP models that will be later introduced
in the next Ch. 3, we analysed how single-output heterogeneous GP priors can be used if
one of the tasks is of regression type (real-valued continuous outputs) and the other a ap
classification (binary samples) problem.

For the simulations depicted in Fig. 2.6, we considered the demographic dataset also used
in Sec. 2.3.2 for spatial modelling with MOGPs. In this new case, we have two subsets of
input-output pairs of variables: i) the binary contract of houses (leasehold vs. freehold) and
ii) the log-price per latitude-longitude coordinate in the Greater London County. Looking to
Fig. 2.6, we show the input space divided into four quadrants (Q) of the city area{Q1, Q2,
Q3, Q4}. Data points contained in the quadrant Q1 are exclusively real-valued and Gaussian
distributed. On the other hand, quadrants {Q2, Q3, Q4} are trained with a different Gp
classifier, and output variables are binary. To clarify, Q1 is the right-upper corner given
the central axes. Particularly, our purpose in this experiment is to learn a single latent Gp
function from the binary data on {Q2, Q3, Q4} via classification and Q1 via regression.
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This is, the same function f parameterizes different likelihood densities at each subset of
quadrants.

To evaluate the predictive performance of the proposed inference model, we hid the latent
process f in order to be predicted within a Bernoulli likelihood density in Q1. In particular,
we want to asses whether the GP function f, learned partially with real-valued data from
house prices on the other quadrants, can improve the prediction task (classification) over the
local area where we first learned only with binary observations from Q1. The heterogeneous
model shows a test NLPD of 7.94 4+ 0.01 in independent classification while the joint task
predicts with an NLPD of 8.0040.01 in the Q1. We asses that the heterogeneous GP prediction
is better in Q1 than the independent local GP classifier. This result shows a similar advance
as the ones obtained with the MOGP model in Sec. 2.3.2, shown in Fig. 2.5. The mean function
of the GP regressor is passed through the sigmoid function to clarify the multimodality in
Fig. 2.6.

London household data — {¢ = classification, » = regression}
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Figure 2.6: Results for the spatial GP modeling of a single-output heterogeneous data col-
lection. (LEFT COLUMN) 75% of training samples are binary and the rest are real-valued
and Gaussian distributed. The demographic dataset corresponds to the Greater London
County. Binary outputs (red) are the type of property sold in 2017 and real ones (green-
blue) are prices included in sale contracts. (RIGHT COLUMN) Test prediction curves for the
local regression and classification tasks. Prices of houses are in log-scale.

2.4 Discussion

This chapter introduces two novel extensions of well-known statistical methods for handling
heterogenous data collections. Based on the standard latent class models, whose discrete
latent structure is of particular interest later in Ch. 4 and 5, we developed an heteroge-
neous circadian mixture. This model can be used to capture the uncertainty from arbitrary
combinations of statistical data types and, at the same time, characterize the underlying
short-term periodicities between the features of observation vectors. Additionally, we in-
troduced covariance functions to accept non-stationary periodic samples, whose components
are restricted to 24h, but also accept others. Despite that the model introduces conditioning
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across heterogenous likelihood densities via the discrete latent assignments, the parameter-
ization of attributes is still independent. In contrast to this assumption of independence,
we extended multi-output GP models for heterogeneous observations. The GP model is able
to work on large scale datasets by using sparse approximations within stochastic variational
inference methods. In this case, we illustrated how a linear model of corregionalisation
(LMC) correlates all the output parameter functions in the densities. Experimental results
show promising improvements with respect to the independent learning of heterogeneous
data attributes in both settings. One based on latent variables and another on non-linear
parameterizations of densities with stochastic processes.
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CHAPTER 3

CONTINUAL AND DISTRIBUTED INFERENCE

HE first issue that a probabilistic model must face when addressing the problem of human
behavior learning is the observation of heterogeneous statistical variables. However,
having addressed this particular problem in the preceding Ch. 2, we now focus on the manner
that the irregular data are observed, its influence in the inference process of models or the
methods that we use for fitting them. In the particular case of this chapter, we pay attention
to the way of accessing observations, going one step further than the traditional assumption.
This one is typically related to the case where all samples can be revisited without restrictions
a priori. In practice, when modelling human behavior, one encounter examples where the
massive storage or data centralisation is not possible anymore for preserving the privacy of
individuals, e.g. healthcare or behavioral data. Another potential restriction would be the
need of providing an output prediction rather than awaiting for the entire observation of
the desired event. For instance, it would be meaningless to await three or five years until
sufficient data from a mental health patient would be stored. Sometimes, the decision-making
steps based on the probabilistic predictions cannot be delayed. The mere limitation of the
data availability forces learning algorithms to derive novel capabilities, such as i) distributing
the data for federated learning, ii) observe streaming samples for continual learning and iii)
limiting data exchange for private-owned models.

A common theme in the previous approaches is the idea of model memorising and recy-
cling, i.e. using the already fitted parameters in another problem or joining them to others
for an additional global task without revisiting any data. If we look to the functional view
of this idea, uncertainty metrics are still much harder to be repurposed than parameters.
This is the point where stochastic processes, and particularly Gaussian process models, once
again, play their role in this thesis.

We begin in Sec. 3.1 with the presentation of recyclable Gaussian process models, a novel
methodology for distributing the computational cost of inference accross several nodes or
machines. The main point of interest in this model is the ability for re-building new global
tasks from the subsets of distributed parameters without revisiting any data. The frame-
work ensembles independent variational approximations of Gaussian processes and allows for
regression, classification or even single-output heterogeneous likelihoods, as in the previous
Sec. 2.2.3. A similar spirit is preserved in Sec. 3.2, where we address the problem of contin-
ual learning in both single-output and multi-task Gaussian process models. The general idea
is to extend Gaussian processes for handling sequential input-output observations. The ap-
proach uses the existing prior-posterior recursion of online Bayesian inference, i.e. where past
posterior discoveries become future prior beliefs, to the infinite-dimensional view of function
spaces.

The technical results described in this chapter have been previously presented in two
main pieces of work. The first one, Moreno-Munioz et al. (2020a) was submitted to the 2020
Conference on Advances in Neural Information Processing Systems (NeurIPS), and now it
is been revised for a future re-submission. The second piece of work, Moreno-Munoz et al.
(2019) was initially submitted to the Journal of Machine Learning Research (JMLR) and a
revised version of the manuscript will be submitted in the near future.
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3.1 Recyclable Gaussian Processes

In this section, we investigate the novel approach

GPa GPgp GPc
of a general framework for recycling distributed
variational sparse approximations to Gaussian pro-
cess (GP) models, as illustrated in the Fig. 3.1. It

based on the properties of the Kullback-Leibler di-
vergence between stochastic processes (Matthews ¢P»
et al., 2016) and the formal definition of Bayesian
inference. The proposed recyclable method ensem-
bles an arbitrary amount of variational GP models
Ensemble

with different complexity, likelihood and location of
pseudo-inputs, without revisiting any data. W

Data Formulation mmm unobserved mmmm observed

Figure 3.1: Recyclable GPs (a, B, C
and D) are re-combined without access-
ing to the subsets of observations.

Similarly as we did in the preceding Ch. 2, we con-
sider a supervised learning problem where we ob-
serve input-output training data D = {x,, y, }2_,,
with & € RP. The general assumption is to consider
that output samples y,, are i.i.d. and can be either discrete or continuous variables. In this
section, we also express the likelihood model as p(y|f), being the non-linear function f(-)
the one that is generated from a zero-mean GP prior of the form f ~ GP(0,k(:,-)). The
covariance function k(-,-) is chosen as the wanilla kernel (RBF) in this section, but many
others can be also introduced without any restriction.

The dataset D is assumed to be partitioned into an arbitrary number (i.e. 2, 5, 10,
100, 1k, etc) of K subsets that we aim to observe and process independently, that is,
{D1,Ds,...,Dk}. There are no restrictions on the amount of subsets or the number of
learning nodes to be used. The subsets {D;}X | do not need to be of the same size, and
we only restrict them to be Ny < N. However, since we think in applications with a large
number of observations, even per subset Dy, e.g. of a patient, we still consider that N} for
all {1,2,..., K} is sufficiently large for not accepting exact GP inference due the temporal
and computational demand of the inversion of covariance matrices. Notice that the variable
k is an index now, while k(-, -) makes reference to the kernel function of the GP model.

3.1.1 Sparse Approximations for Distributed Subsets

In this recyclable approach, we also adopt the sparse GP methodology based on the inducing
variables, together with the variational framework of Titsias (2009b). In our particular
formulation with K distributed partitions and their adjacent samples, we define subsets
of M, <« Ny inducing inputs, such that Z, = {zm}%il, where z,, € R? and their non-
linear function evaluations by f(-) are denoted as up = [f(21), f(2z2), -, f(zar)]T. We
remark that f is considered to be stationary across all distributed tasks, being u; Vk €
[1,2,..., K] values of the same function. A detailed review of this type of variational sparse
approximations is included above, in Ch. 2.

Here, to obtain multiple independent approximations to the posterior distribution p(f|D)
of the ¢P function, we introduce K auxiliary variational densities ¢x(f), one per distributed
partition Dj. Additionally, each variational gx(f) on every k-th local domain factorises
according to

ax(f) :p(f¢uk|uk)Qk(uk), (3.1)
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with gi(ur) = N (wg|pr, Sk) and p(fru, |ur) being the standard conditional GP prior distri-
bution given the set of hyperparameters ~, for each kth kernel function. Importantly, to fit
the local variational densities g (ug ), we build lower bounds £, on the marginal log-likelihood
distribution (ELBO) of every data partition Dj. Then, we use optimisation methods, typically
gradient-based, to maximise the K objective functions Ly in an asynchronous manner. One
per distributed task, separately. Each local ELBO is obtained as follows

Ny,
Ly, = ZEqk(fn) [log p(yn|fn)] — KL[gr (ur)|lpr (ur)], (3.2)

n=1

with py (ug) = N (ui]0, Kj), where covariance matrices Kj, € RMx*Mr have entries k(2y,, 2.,)
with z,,, 2 € Zj,. They are also conditioned to certain kernel hyperparameters -+, that we
also aim to estimate. The bold variable f,, corresponds to instances f(,) and the marginal
posterior density comes from the following integration

() = [ pUfalun)anaw)dus. (3.3)

In practice, the distributed local bounds L are identical to the one presented in Hensman
et al. (2015a) and also accept stochastic variational inference (Hoffman et al., 2013; Hensman
et al., 2013a). An important detail on this derivations is that, while the Gp function is
restricted to be stationary across tasks, the likelihood distribution model p(y,|f.) is not.
This point opens the door to the heterogeneous likelihood setting presented in Sec. 2.2.3.

3.1.2 Global Inference from Local Learning

Having a dictionary which contains the already fitted local variational solutions, while others
can be still under computation, we focus on how using them for performing global inference of
the GP model. Such dictionary consists, for instance, of a list of objects &€ = {&1,&2,- -+ ,Ex}
without any specific order, where each object are the parameters & = {¢y,vi, Zr}. We use
¢, to denote the variational parameters, e.g. py and Si.

Ideally, to obtain a global inference solution given the GP models described in the dictio-
nary, the resulting posterior distribution should be valid for all the local subsets of data. In
practice, this is only possible if we consider the entire dataset D in a maximum likelihood cri-
terion setting. Specifically, our goal now is to obtain an approximate posterior distribution
q(f) =~ p(f|D) by maximising a lower bound L under the log-marginal likelihood log p(D)
over all observations without revisiting the data already observed by the local models.

For this task, we begin by considering the full posterior distribution of the stochastic pro-
cess, similarly as Burt et al. (2019) does for obtaining an upper bound on the KL divergence.
The principal idea is to use infinite-dimensional integral operators, previously introduced by
Matthews et al. (2016) in the context of variational inference, and even before by Seeger
(2002) for standard GP error bounds.

The use of infinite-dimensional integrals is equivalent to an augment-and-reduce strategy
(Ruiz et al., 2018). It consists of two main steps: i) we augment the model to accept the
conditioning on the infinite-dimensional stochastic process f(-) and ii) we use properties of
Gaussian marginals to reduce the infinite-dimensional integral operators to a finite amount of
GP function values of interest. Similar strategies have been used in the context of continual
learning for Gps (Bui et al., 2017a; Moreno-Muitioz et al., 2019). This will be later discussed
in Sec. 3.2.
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Global Objective Function

The variational construction considered is as follows. We first denote y as all the output
targets {y, }\_, in the dataset D and f., as the augmented infinite-dimensional GP function.
Notice that we assume that f., contains all the function values taken by f(-), including that
instances at {a, }t, and {Z;}I | for all the k-th partitions.

The augmented log-marginal expression is therefore

logp(y) = logp(y1,y2,. .., Yk) = log/p(y, foo)df oo (3.4)

where each y; = {yn}fzvil is the subset of output values already used for training the local
GP modes in Eq. (3.2). The joint distribution expanded via integration in Eq. (3.4) factorises
according to

log / D(Y, foo)dfe = log / Pl fo)p(foc) o (3.5)

where p(y|fs) is the augmented likelihood term of all output targets of interest and p(foo)
the GP prior over the infinite amount of points in the input-space RP. This last density takes
the form of an infinite-dimensional Gaussian, that we will avoid to evaluate explicitly in the
following equations.

To build the lower bound on the log-marginal distribution shown in Eq. (3.4), we in-
troduce a global variational distribution g(u.) = N (w«|pt«,Sx) that we aim to fit. The
inducing variables u, correspond to function instances of the process f(-) given the new
subset of inducing inputs Z. = {2, }*_,, where M is the free-complexity degree of this
global variational distribution. The expression of the log-marginal distribution within the
new density g(u,) is

q(ux)

lozp(y) =10 [ p(ul ()i =10 [ LSwl ()
=105 [ [ S oo 10 ) i (3)

Notice that the differentials df., have been splitted into dfecv, du«, and at the same time,
we applied properties of Gaussian conditionals in the GP prior to re-write the distribution
P(fro) a5 the product p( focrsu, [te)p(us).

To derive the preliminary bound in Eq. (3.6), we also exploited the reparameterisation
trick introduced by Gal et al. (2014) for distributing the computational load in the main
expectation term of variational inference methods for Gps. It is based on a double-application
of the Jensen’s inequality, one w.r.t. the new instances w, and another w.r.t. the rest of
function values foozwu,. It is obtained as

to20(w) =108 | | Lyl £0 . ) s

108 [ [ a0l o 0 ) )

=log <]Eq(u*> []Epum#u*lu*) [pwlfoo)p(Z:)H)

(
> Eyfu) [log (Emmu*luﬂ [p(y'f ”)qubm
>

o (sl 22 )] |- 61

~— —

"h R

1

Eq(u.) {Epum#u* )
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Moreover, the last prior distribution is p(u«) = N (1|0, Kux) where [Kux],, , := k(2m, 2n),
with z,,, z, € Z,, conditioned to the global kernel hyperparameters 1, that we also want
to estimate. Notice that the double expectation integration is placed in the last two terms
of Eq. (3.6), and it comes from the factorization of the infinite-dimensional integral operator
and the application of the Jensen’s inequality twice. The full derivation of this bound can
be found in the appendix of this thesis.

The nested integration in the bound in Eq. (3.7) allows to ensemble the local GP tasks
via the likelihood densities. This is the goal of the following sections.

Local Likelihood Reconstruction

The augmented likelihood distribution p(y|fo) is, perhaps, the most important ingredient of
our derivations in this section. It allows us to apply conditional independence (C1) between
the subsets of distributed output targets yi. This gives a factorized term that we later use
for introducing the local variational experts in the bound in Eq. (3.7), that is

K
log p(ylfoo) = D 108 (Y| foo)- (3.8)
k=1

To avoid the revisiting of old local likelihood terms, and hence, re-evaluating the distributed
subsets of data Dy that might not be available anymore, we use the Bayes theorem but
conditioned to the infinite-dimensional augmentation in Eq. (3.8). It indicates that the local
variational densities g (f) can be approximated as

4k (foo) % P(foolyr) o< P(foo)P(Yk|foo), (3.9)
where the augmented approximate distribution also factorises according to
4k (foo) = P(foortur [wr) ak (ur), (3.10)

as in the variational framework used in Titsias (2009b). Similar expressions consisting on the
full stochastic process conditionals were previously used in Bui et al. (2017a) and Matthews
et al. (2016), with a particular emphasis on the theoretical consistency of the augmentation.

Thus, we can find a reliable approximation for each local likelihood term p(yx|fso) by
inverting the Bayes theorem in Eq. (3.9). Then, the double conditional expectation in Eq.
(3.7) turns to be

K

]Ep(foo;éu*|u*) [logp(y|foo)] ~ ZEp(foc;éu*lu*) |:10g
k=1

Qk(fm)]
p(foo)

< qr(uk)
= ;Ep(udu*) l:log p(uk) :l s (311)

where we applied properties of Gaussian marginals to reduce the infinite-dimensional expec-
tation, and factorised the process densities to be explicit on each subset of fixed inducing-
variables wy rather than all f., instances. For example, the integral [ p(foo)dfoostu, 1S
analogous to [ p(foorzus: Uk)dFooru, = p(ur) via marginalisation.

Variational Contrastive Expectations

The introduction of K expectation terms over the log-ratios in the bound of Eq. (3.7), as a
substitution of the local likelihoods, leads to particular advantages in the model. If we have a
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nested integration in Eq. (3.7), first over u, at the conditional prior distribution, and second,
over uy, given the log-ratio log(gx(ur)/p(ur)), we can exploit the GP predictive equation to
write down

iE E lo . (uk) _ iE lo qr (uk) (3.12)
e [P [ ) 7 g e [ ) ] '
where we first obtained g¢(uy) via the integral

ge(ux) = / (1)t |t (3.13)

that coincides with approximate predictive GP posterior. This distribution can be obtained
analytically for each kth subset uj using the following expression, whose complete derivation
is provided in the appendix of this thesis. That is,

ge(ur) = N (up KK p, K + KK Sk — Koo ) K Ko), (3.14)

where, once again, we use ¢, = {4, S}, the global variational parameters that we aim to
learn. One important detail of the sum of expectations in Eq. (3.12) is that it works as an
average contrastive indicator that measures how well the global distribution ¢(u.) is being
fitted to the local experts qx(ug).

Without the need of revisiting any of the previously observed subsets of data, with their
adjacent distributed samples, the GP predictive distribution g¢(uy) is playing a different role
in contrast to the usual one. Typically, we assume the approximate posterior ¢(-) fixed and
fitted, and we evaluate its predictive performance on some test data points. In this case, it
goes in the opposite way. The approximate variational distribution g¢(uy) is unfixed, and it
is instead evaluated over each k-th local subset of inducing-inputs Zj.

Lower Ensemble Bounds

We are now able to simplify the initial bound in Eq. (3.7) by direct substitution of the first
term with the contrastive expectations presented in Eq. (3.12). This substitution gives us
the final version of the lower bound Lg < logp(y) on the log-marginal likelihood for the
global Gp, that is

5 [ (228)] - (3

5 [ [ (228 -2 o (22
i é%*) Epun [log (2085 || — KL gt )

pk(uk)

Le=Equ.)

K
= Ege(uy) 108 g (ur) — log pr(ur)] — KL [g(u.)|[p(u)],  (3.15)
k=1

The maximisation of this bound L¢ is w.r.t. the parameters ¢., the hyperparameters ),
and the inducing inputs Z,. To assure the positive-definiteness of the variational covariance
matrices {Sk}le and S, on both local and global cases, we consider that they all factorize
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according to the Cholesky decomposition S, = LLT. We can then introduce unconstrained
optimization methods to final the optimal values for the lower-triangular matrices L.

A priori, the ensemble GP bound is agnostic with respect to the likelihood model chosen.
There is also a general derivation in Matthews et al. (2016) about how stochastic processes
and their integral operators are affected by projection functions. That is, different linking
mappings of the function f(-) to the parametric domain of 6. In such cases, the local lower
bounds Ly in Eq. (3.2) might include expectation terms that are just intractable. Since we
build the recyclable framework to accept any possible statistical data-type, we propose to
solve the integrals via Gaussian-Hermite quadratures are was originally done in Hensman
et al. (2015a); Saul et al. (2016) and if it is not possible, an alternative would be to apply
Monte-Carlo (MC) methods. As a reference, we included a little section in Ch. 2 on how
quadratures can be used to solve expectation integrals in the context of variational GP models.

Gaussian Marginals for Infinite-dimensional Integral Operators

The generalized use of the properties of Gaussian marginals is the key point in the present
section. In particular, such properties indicate that, having two normal-distributed random
variables a and b, its joint probability distribution function (pdf) is given by

pla,b) = N ([Zb] , EZZ gbZD , (3.16)

and if we want to marginalize out one of the variables {a, b}, then it turns to be

/p(a, b)db =p(a) =N (g, Xaa)- (3.17)

This same property is applicable to every derivation with GP models and, in our case, it is the
one that we use to reduce the infinite-dimensional integral operators over the full stochastic
processes. An example of this can be found in the expectation terms E, s . |u.)[-] that we
previously presented in Eq. (3.7). Its final derivation included in Eq. (3.15) to only integrate
on uy, rather than on the function values fo£,, comes from

) = D(foor fun un ) Wrltes)
:N <|:mf00#{u*,uk}u*:| , |: Qf@c#{u*-,uk}lu* QfOC¢{u*vuk}7uk|u*:|> , (318)

Moy |u., Wi, oot {um,up } | Un U [

p(fOO;ﬁu*

that if we marginalize if we marginalize over foofu, u,}|t«, ends in the following reduction
of the conditional prior expectation

Ep(foosu, fun) [9(ur)] = /p(fooyéu* ) g(ur)dfoortu.,
- / / PPt e any 2 10) 0 (108) 0 o,

- / D)9 (wi)duug = Epuy oy [o(ur)], (3.19)

where we also denoted g(ug) = log (¢ (ur)/pr(ur)) and we also used

/p(foo;ﬁ{u*,uk}vuk'“*)dfoo#{u*,uk} = p(uk) = N(muk\u*aQuMu*)v (320)

for the final derivation.
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Computational Cost and Connections

The computational cost of the local models is O(NyM?), while the global GP reduces to
O((>, My)M?) and O(M) in both training and prediction, respectively. The methods
included in Tab. 3.1 typically need O(>", N?) for global prediction of tasks.

A last theoretical aspect is the link established between the global bound in Eq. (3.15) and
the underlying idea introduced in Tresp (2000) and Deisenroth and Ng (2015). Distributed
GP models are based on the application of CI to factorise the likelihood function across terms
of subsets. To approximate the posterior predictive distribution under the aforementioned
conditions, they combine local estimates, divided by the GP prior. Looking to our particular
recyclable framework, this strategy is analogous to the one presented in Eq. (3.15), but in
the logarithmic plane instead and the variational inference setup.

3.1.3 Capabilities of Recyclable Gaussian Processes

We highlight several use cases for the proposed framework. The idea of recycling GP models
opens the door to multiple extensions, with a particular attention to the human behavior
learning problem. That is, the local-global modelling of heterogeneous data and the adapta-
tion of model complexity in a data-driven manner.

GLOBAL PREDICTION — Our purpose might be to predict how likely an output test datum
y; is at some point x; of the input space RP. In this case, the global predictive distribution
can be approximated as p(y:|D) = [ p(y|fi)q(fi)df:, with the variational (output function)
distribution ¢(f) coming from the integration ¢(f;) = [ p(fi|ws)q(tws)du,. As mentioned in
the previous subsection, the integral can also be obtained by quadratures when the solution
is intractable.

RECYCLABLE GP AND NEW DATA — In practice, it might not be necessary to distribute the
whole dataset D in parallel tasks or nodes, with only a few subsets of data D available for
the global ensemble. Instead, it is possible to combine the samples in Dy, with the dictionary
of local GP variational distributions. In such cases, we would only approximate the likeli-
hood terms in Eq. (3.7) related to the distributed subsets of samples. The resulting combined
bound between local variational approximations and new unseen data would be equivalent
to Eq. (3.15) with additional expectation terms on the new output observations.

STATIONARITY AND EXPRESIVENESS — We typically assume that the non-linear function f(-)
is stationary accross subsets of data. If this assumption is relaxed, some form of adaptation
or forgetting should be included to match the local GP models. Other types of methods can
be also considered for the ensemble, as for instance, with several latent functions (Lazaro-
Gredilla and Titsias, 2011) or sparse multi-output GPs (Alvarez and Lawrence, 2011). The
current framework also accepts GPs with increased expressiveness. For example, to get multi-
modal likelihoods, we can use mixtures of GP experts (Rasmussen and Ghahramani, 2002).

DATA-DRIVEN COMPLEXITY AND RECYCLABLE ENSEMBLES — One of the main advantages
of the recyclable GP framework is that is allows to perform data-driven updates of the model
complexity. That is, if an ensemble ends in a new variational GP model, it also can be
recycled. Hence, the number of global inducing-variables M can be iteratively increased
conditioned to the amount of samples considered. A similar idea was already commented as
a potential application of the sparse order-selection theorem by Burt et al. (2019).
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MODEL RECYCLING AND USE CASES — The ability of recycling GP models in future or ad-
ditional global tasks has a significant impact the human behavior applications, where fitted
private-owned models in smartphones can be shared for external predictions rather than the
data itself. Its application to medicine is also of high interest for us and particularly, for this
thesis. If one has a personalized GP model for every patient, epidemiologic surveys can be
built from them without centralising private data. This is, perhaps, the key contribution of
the recyclable GP framework of this section.

3.1.4 Related Work on Distributed Gaussian Processes

The flexible nature of GP models for defining prior densities over non-linear functional spaces
has made them a suitable alternative in many probabilistic regression and classification prob-
lems. However, GP models are not immune to settings where the model itself needs to adapt
to irreqular ways of accessing the data, e.g. asynchronous observations or missings input
areas. Such settings, together with the GP’s well-known computational cost for the exact
solutions has motivated plenty of approaches focused on parallelising inference.

Regarding the task of distributing the computational load between learning agents or
nodes, several GP models have been inspired by the local experts Jacobs et al. (1991); Hinton
(2002). Mainly, two seminal GP works exploited this connection before the modern era of
sparse variational approximations. While the Bayesian committee machine (BCM) of Tresp
(2000) focused on merging independently trained Gaussian processes on subsets of the same
data, the infinite mixture of GP experts (Rasmussen and Ghahramani, 2002) increased the
model expresiveness by combining local GP experts. The approach presented in Sec. 3.1 is
closer to the first method, whilst the second one is also amenable but out of the spirit of this
thesis.

The emergence of large datasets, with size N > 10%, led to the introduction of approx-
imate models, that in combination with variational inference (Titsias, 2009a), succeed in
scaling up GPs. Two more recent approaches that combine sparse GPs with ideas from dis-
tributed models or computations are Gal et al. (2014) and Deisenroth and Ng (2015). Based
on the variational GP scheme of Titsias (2009a), Gal et al. (2014) presented a novel re-
parameterisation of the lower bound. This approach allows to distribute the computational
cost accross several nodes, being also applicable to Gps with stochastic variational inference
(Hensman et al., 2013a) and with non-Gaussian likelihoods Hensman et al. (2015a); Saul
et al. (2016).

Out of the sparse approximations to GPs, more inspired in Tresp (2000) and product of
experts (Bordley, 1982), the distributed GP model of Deisenroth and Ng (2015) scaled up the
parallelisation mechanism of local experts to the range of N>>10°. Their approach is focused
on exact GP regression, not considering classification or other non-Gaussian likelihoods. In
Tab. 3.1, we provide a description of the different methods and their main properties, also if
each distributed node is a GP itself or not.

Additionally, if we look to the property of having nodes that contain usable GP models
showed in Tab. 3.1, the present approach is similar to Deisenroth and Ng (2015); Cao and
Fleet (2014) and Tresp (2000). The main difference is that we introduce variational approx-
imation methods for non-Gaussian likelihoods. Another detail is that the idea of exploiting
properties of full (infinite-dimensional) stochastic processes Matthews et al. (2016) for sub-
stituting likelihood probabilities in a general bound has been previously explored in Bui et al.
(2017a) and Moreno-Mufioz et al. (2018). Whilst the preliminary work in Bui et al. (2017a)
ends in the derivation of expectation-propagation (EP) methods for streaming inference in
GPs, the introduction of the distributed reparameterisation of Gal et al. (2014) maker our
inference more natural.
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Table 3.1: Main properties of distributed GP models in the literature

MODEL N REG. non-N REG. CLASS. HET. INFERENCE GPyopz DATA ST.
Tresp (2000) v X X X Analytical v v
Ng and Deisenroth (2014) v X X X Analytical v v
Cao and Fleet (2014) v X X X Analytical v v
Deisenroth and Ng (2015) v X X X Analytical v v
Gal et al. (2014) v v v X Variational X X
Moreno-Munoz et al. (2020a) v v 4 v Variational 4 X

(*) Respectively, Gaussian and non-Gaussian regression (AN & non-N REQ), classification (CLASS), heterogeneous
(HET) and storage (ST).

There is also the inference framework of Bui et al. (2018) for both federated and continual
learning scenarios, but focused on EP and the Bayesian approach of Nguyen et al. (2018). A
short analysis of its applications to GPs is included for continual learning settings, but far
from the large-scale scope of the method presented in this thesis. Moreover, the spirit of
using inducing-points as pseudo-approximations of local subsets of data is shared with Bui
and Turner (2014), that comments its potential use for distributed setups. More oriented to
dynamical modular models, we find the work by Velychko et al. (2018), whose factorisation
across tasks is similar to Ng and Deisenroth (2014) but oriented to state-space models.

3.2 Continual Multi-task Gaussian Processes

The resurgence of interest on probabilistic adaptative methods shows us that, the better
the models are adapted to time evolving behaviors, the easier its applicability on real-world
problems is. A remarkable evidence of how necessary this real-time adaptation is for machine
learning can be deduced from multiple applications, e.g. systems for intensive care units (ICU)
patients or electronic health records (EHR). In the context of this thesis, it is a key milestone
for the purpose of modelling human behavior in an online manner, and as we will see in the
next chapter, having adaptive probabilistic models to heterogeneous high-dimensional data
is the first step forward to the detection of anomalous events or outliers.

Among all the adaptive approaches that can be considered, in this thesis and particularly
in this chapter, we focus on the continual methods. Continual learning, also known as life-
long learning, is a very general family of online learning methods whose principal properties
are the adaptation to non i.i.d. data, characterization of tasks that evolve over time and
capture of new emergent patterns previously unseen by the model itself.

3.2.1 Continual Gaussian Processes

Gaussian process models are not excluded from the need of real-time adaptation. Despite
their extended use in temporal applications, recursively updating their parameters without
revisiting training samples is not a trivial problem yet. Particularly in GPs, the difficuties
are double. First, the estimation of non-linear latent functions is constrained by the same
principles of online Bayesian learning, that is, how to re-introduce former posterior discoveries
as new prior beliefs. Second, due to GP priors are based on the construction of covariance
matrices via kernel functions, incrementally adapting such matrices to new incoming samples
requires expensive ways of matrix completion or even unfeasible inversions when large data
is observed.

However, there has been a noticeable effort on adapting GP models for sequential input-
output observations over the past decades. As standard Gaussian GP regression scenarios
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are usually accompanied by tractable solutions, preliminary works focused exclusively on
the iterative counterpart. In particular, this paradigm attracted significant attention since
the seminal works by Csaté and Opper (2002) and Girard et al. (2003) presented the two
preliminar alternatives to perform online predictions. One used moment matching to fit
sequential posterior distributions from one single recent sample. In the second case, moti-
vated by one-step ahead predictions, they incorporated an additive input in an equivalent
state-space model, which consists of mappings over the last few observed instances, L steps
back.

Besides initial approaches to online GPs, other recent works have also addressed the
continual learning problem. For example, sequential rank-one updates of locally trained GPs
were proposed in Nguyen-Tuong et al. (2008), where they also introduce an inclusion-deletion
strategy of data points for the model online adaptation. The GP is learned by EP as in Henao
and Winther (2010). Also for the single-output GP case, but closer to the scalable framework
developed in this thesis, we find that the stochastic gradient descent method in Hensman
et al. (2013a) for Gaussian regression and Hensman et al. (2015a) for classification, are
applicable to online settings. However, it would require to consider ever-increasing datasets,
which a priori might be problematic. Another recent example is the semi-described (missing
inputs) and semi-supervised (missing outputs) GP learning model in Damianou and Lawrence
(2015). Here, forecasting regression problems are considered as a semi-described scenarios
where predictions are obtained iteratively in an auto-regressive way.

In terms of scalability for single-output GP models, both Cheng and Boots (2016) and Bui
et al. (2017a) extended online learning methods and uncertainty propagation to the popular
variational inference setup of sparse GP approximations. They used a novel KL divergence
formulation that constrains the new fitted distribution w.r.t. the one in the previous instant.
While the first work is only related to univariate Gaussian regression problems, the last
approach has the additional advantage of accepting limited non-Gaussian likelihoods as well
as it is able to include a-divergences for more general inference. This last method is analysed
in Nguyen et al. (2017) within its theoretical bounds.

An exception to the previous works is the approach in Solin et al. (2018). Instead of
employing sparse methods, the authors use the approximate Markovian structure of Gaus-
sian processes to reformulate the problem as a state-space model. Within this framework,
the complexity is reduced from cubic to linear cost in the number of observations, but still
stays unfeasible w.r.t. the number of states. Introducing a fast EP scheme helps to over-
come the issue. Additionally, the model is capable to perform the online learning of kernel
hyperparameters as well as dealing with non-Gaussian likelihoods.

Sequential Data Formulation

Consider supervised learning scenarios where pairs of input-output data D = {x,,yn}2_;
are observed in a sequential manner, with & € RP as in the previous GP approaches. Out-
put targets y,, can be either continuous or discrete. We assume the sequential observation

process to be a finite stream of smaller subsets or batches, such that D = {D;, Do, ..., Dr}.
Additionally, each t—th batch, D; = {x,, yn}ﬁil, may have an irregular size, this is, different

length per data partition and N, < N i all cases. This data notation is analogous to the one
presented in the previous Sec. 3.1.

From the GP perspective, we also consider that every output sample is generated as y,, ~
P(Yn|fn), where f, is the non-linear function f(x,). As we assumed in Sec. 3.1, the latent
process parameterizes the likelihood model and it is drawn from a GP prior f ~ GP(0, k(-,-)),
where k(-,-) can be any valid covariance function. The zero-mean is assumed for simplicity
in the derivations.
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Since we do not know when the next subset D, arrives at each time-step ¢t — 1, the waiting
time and memory allocation resources cannot be estimated a priori. Commonly, due to the
size of the batches is irregular and also unknown. Based on Bui et al. (2017a), we assume
that receiving the entire sequence of data and computing the posterior distribution p(f|D) is
unfeasible and extremely high-time demanding. As alternative, we will consider a continual
learning strategy, which refers to the ability of adapting models in an online fashion when
data samples are not i.i.d. updating their parameters without re-observing the entire data
sequence.

In what follows, we will use the notation D = {Dqjq, Dnew }, Where the collection Dojq =
{Zo1d, Yora } makes reference to all variables seen so far and the collection Dyew = {Tnew, Ynew }
is defined as the smaller subset of new incoming variables. For this construction, notice
that if D, is observed at a given time ¢, the old collection would correspond to Dyyq =
{D1,Ds,...,Di_1}, while Dy = D;. This results in an ever-increasing collection Dyjq that
is recursively evaluated for fitting the GP model.

Sparse Approximations for Sequences

Exact inference in the standard GP is widely known for its O(N?3) complexity for training and
O(N?) per test prediction as we showed in Ch. 2. In our sequential case, given the previous
description of the new and old data collections, the computational cost for learning the exact
GP function could be even more intensive, with a recurrent complexity of O(N7), O((Ny +
N3)3),...,O(N3) for prediction. Following the same approach as in Ch. 2 for heterogeneous
MOGPs and, as in Sec. 3.1 for parallelisable GPs, we introduce inducing inputs (Snelson and
Ghahramani, 2006).

Importantly, we follow the same variational derivation of Titsias (2009a), previously in-
troduced in this thesis. Here, the choice for the joint auxiliary density ¢(f,u) is to factorize
according to ¢(f,u) = p(f|u)g(w). This reduces the variational inference problem to learn
the parameters of the distribution ¢(u), that we also assume to be Gaussian.

As the starting point for our continual derivation, we condition every observed output ¥,
to the augmented infinite-dimensional GP, that is f, as we did in Sec. 3.1 and also based on
Bui et al. (2017a). This leads to have likelihood densities p(y,|fs) instead. Every infinite-
dimensional variable f,, contains all the instances of the process f(-). This also includes
the inputs {x,}"_, and the inducing variables {z,,}»_,. The idea play a key role in the
development of the continual update, as it did in the mechanism for the distributed GPs.

From the perspective of two collections, one being old and another formed by new ob-
servations, if we introduce the augmented likelihood model p(y,|fs) induced by foo, the
log-marginal density over the sequential data turns to be an infinite-dimensional integral.
This can be decomposed as

Ing(yoldaynew) = IOg/p(yoldaynew|foo)p(foo)dfooa (321)

where p(foo) corresponds to the full GP prior over the stochastic process. That is, we place
a density over all instances of f(-) in the input space R?. We suppose now, that both output
data collections yo1q and Ynew are non i.i.d. but conditioned to the whole process fo. This
assumption allows us to apply conditional independence. This leads us to obtain a factorized
likelihood function of the form

p(yold; ynew‘foo) = p(y01d|foo)p(ynew‘foo); (322)

as is considered in Bui et al. (2017a) and Moreno-Munoz et al. (2020a). We remark that
both terms in the likelihood factorization are now the augmented version of the densities, and
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Figure 3.2: Illustration of the ever-increasing sequential dataset D and the relative computa-
tional cost metrics conditioned to the number of observations. New observed batches D; are
of irregular size that is unknown a priori. Darker boxes indicate the Dgjq subset at each time
step, and the clearer counterpart are Dyy. The size of boxes indicates the number of samples
in each subset. The computational cost of the ezact GP inference solution is indicated in the
right column.

also conditional independent given f.,. This idea is also used for modelling the distributed
partitions in the model of Sec. 3.1.

Then, any standard lower bound £, built from the log-marginal expression in Eq. (3.21),
would require to evaluate expectations of the form Ey(s_)[log p(Yold; Ynew|foo)], Where the
variational density is obtained from ¢(fx) = [ p(foo|tt)g(u)du as in the uncollapsed versions
of the bound (Léazaro-Gredilla and Titsias, 2011; Hensman et al., 2012). Having the previ-
ously introduced factorization between the old and new variables, the expectation term of the
bound can be divided in two, for example, Eq(s_[log p(Yold|foo )] and Eq(s_y[10g p(Ynew| foo)]-
Notice that the main problem comes from the evaluation of these two terms, as the com-
putation of the lower bound is extremely unbalanced. Mainly, due to the difference of size
between y,1q and Ypew might be huge, e.g. millions of samples vs. hundreds respectively. This
fact results in very long time computation for re-training any variational GP model with a
few more recent observations included in the ever-increasing dataset (see Fig. 3.2), due to
the dimensionality of the likelihood density p(yoid|foo)-

To circumvent this issue, we investigate potential ways for avoiding the sequential revis-
iting of old densities p(Yoid|foo), Or at least, approximating them with lower computational
cost. In the next sections, this goal is achieved for both single-output and multi-output Gp
models.

Recurrent Prior Reconstruction

A meaningful solution for avoiding the sequential evaluation of ever-increasing datasets is ap-
proximating their augmented old likelihood densities p(yola|foo) using the previously inferred
(joint) variational distribution ¢(foo|@ola) at each time-step. Here, the infinite-dimensional
notation of the variational distribution is just momentary, as we will later apply properties
of Gaussian marginals to reduce its dimensionality to the corresponding function instances
of interest.

The idea of approximating the old likelihood densities to avoid their re-visiting was first
introduced in Bui et al. (2017a), based on the similar strategy carried out within expectation-
propagation (EP) inference. Thus, if we apply the Bayes rule theorem, the variational poste-
rior distribution can be approximated as

q(foo|Pord) = D(foo|Yolds old) X P(foo)P(Yola| foc ), (3.23)
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Figure 3.3: Illustration of the input space R? in the two studied cases for treating the inducing
points w in a continual learning manner. In the explicit case, the past inducing points w;_1
are fixed in all time-steps t, and must be concatenated with the new ones u;. This makes
the model to increase the computational complexity M in every iteration. In the implicit
case, the past inducing points u;_; are integrated out, and the new ones u; explore other
regions of the input space as well as capture the uncertainty in the already learned areas.

where the equality can be inverted to give us a proportional estimate of the form

Q(foo ‘(ﬁold)
P(Yold|foo) ® == (3.24)
p (f 00)
Having this recursive approximation in Eq. (3.24) for old likelihoods conditioned on the past
parameters ¢,1q, we can use it to build a lower bound £ where the data re-visiting is avoided.

Under this strategy, the variational distribution ¢(fs|®o1a) factorises according to

q(foo|@Pord) = D(foortu|t; Pora)q(u|dola), (3.25)

where foo = {foozuUu} as in the previous Sec. 3.1. The main problem that we encounter here
is on re-using the distributions q(u|¢o1q) estimated over a (now) fized number of inducing
inputs Zyq. That is, the subset of inducing inputs Zoq = {2} used in the variational
inference run of the previous ¢-th time-step. This is the principal limiting property of the
model in Bui et al. (2017a), since a continual learning scenario does not fit well with an
ever-fixed distribution over a subset of input points Z,4q that we cannot update neither.

The particular re-visiting issue can be understood in terms of the evolution-exploration
duple of the input space RP, where a GP model is initially fitted to some region of interest
that later on, is not needed anymore. For instance, if we directly plug in g(u|¢o1q) using the
expression in Eq. (3.24), that we here refer as the explicit distribution, then the new varia-
tional inference problem will carry out with such a fixed distribution and their corresponding
pseudo observations u step-by-step. Here, we say that it is fixed due to posterior uncertainty
metrics cannot be modified anymore, i.e. variational parameters p,, and S,, are fixed, as the
old data that we observe is no longer available.

Looking to the inducing points w and their relative parameters ¢q1q, what we are doing
is to recurrently introduce a summary of our data. In terms of a rigorous continual learning
approach, this is another way of revisiting past observed samples and it also forces the Gp
model to concatenate old and new subsets w, which in the long term could be problematic.
Importantly, this point is undesired for certain tasks, i.e. high-dimensional input problems, or
due to computational complexity reasons. An illustration of this explicit variational problem
and the concatenation of subsets of inducing points is shown in Fig. 3.3.
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In this section, we introduce the proposed solution, that we also refer as the use of implicit
variational distributions for the continual learning problem in GP models.

CONTINUAL GAUSSIAN PROCESS PRIOR — Inspired on online Bayesian inference methods,
where past posterior distributions are usually taken as future priors, our main goal is recon-
struct the GP prior conditioned on the given parameters ¢,q. However, we avoid to treat
the last subset of inducing points u explicitly.

The particular construction is as follows. We take the posterior predictive distribution
from standard GP models. It is usualliy obtained by direct marginalisation of the poste-
rior probabilities p(fo|D) given the conditional distribution at test inputs p(fi|fs0), whose
output values y, we aim to predict. Typically and under the presence of sparse GP approxi-
mations, the predictive distribution integral takes the form

p(fuID) = / p(Fulw)p(ulD)du. (3.26)

In our solution, this posterior predictive formulation is the key idea for recurrently building
continual GP priors, that is, a new implicit distribution at each time-step ¢, where only the
past estimated parameters ¢q intervene. For its derivation we take the appendix A.2 of
Alvarez et al. (2009) as our starting point. Thus, we have a conditional prior of the form

P(ta|tt) = N ([ Fn Kl tt, Ko — b Kl kL), (3.27)

where wu, refers to the function evaluations of f(-) on any arbitrary input-vector Z, that
we may consider. Here, the covariance matrix corresponds to Ky, € RM*M  with entries
k(zi,z;) as zi, 2 € Zoa and kuy = [k(-,21), -+ ,k(,20m)]". In a similar manner, Ky, =
k(-,-) as in the kernel function of any Gp prior.

Having the conditional distribution in Eq. (3.27), we see that it combines covariance
matrices from both explicit and implicit distributions, e.g. Ky, and k.., respectively. Then,
based in the posterior predictive integral in Eq. (3.26), we can extend the expectation
operator to accept the variational distribution g(u|¢olq) instead of p(u|D). This makes the
conditional GP prior p(us|u) behave as the former approximate posterior density ¢ indicates.
The whole process results in a novel continual distribution, formally denoted as G(u«|¢oia),
that we obtain as

Tt o) ~ / plawnfee) gl bosa) ds, (3.28)

where we remark that variables wu, are not fixed yet. Additionally, if we assume that
the variational distribution g(u|®oa) = N (u|ptg1q, Soid), then our parameters ¢oq become
@Pold = {Mo1ds Sota}- Then, the previous expression in Eq. (3.28) leads us to a tractable inte-
gral over Gaussian distributions that results in the closed-form formula of the continual Gp
prior. Its form is

Uy ~ gp(k*uK;llLﬂoldv k** + k*uK;qi(Sold - Kuu)K;ikIu) (329)

A similar expression was derived in Burt et al. (2019), where a theoretical analysis on sparse
GP regression is performed out of the continual learning problem. This same framework was
later extended in Burt et al. (2020). In our particular case, the conditional GP prior in Eq.
(3.29) coincides with the approximated posterior process that VI on sparse GP models aims
to minimize through the KL divergence (Matthews et al., 2016).

This result is of particular interest to us, since it provides a closed-form way to introduce
Bayesian online learning into GP models, allowing us to naturally avoid any data revisit-
ing; only passing past parameters forward and fixing the posterior-prior recursion of our
framework.
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e In the vanilla GP case
with a Gaussian likeli-
hoo model and RBF ker-
nel, the hyperparam-
eters 1 would corre-
spond to the ampli-
tude o4, the length-
scale ¢ and the obser-
vation noise o, .

Continual Lower Bounds

Exact posterior inference in the continual setting is still intractable using the previous frame-
work and variational methods are still required. However, we are now able to sequentially
build lower bounds, e.g. one bound below p(y) per time-step, by only updating from a few
recent observations Dyey .

This turns the continual problem to be a recursive process where a new variational tool
appears at each iteration and inherits the previous learned uncertainty metrics. We determine
these continual lower bounds as L¢, and are obtained as follows

P(Ynew| foo)a(foo ‘¢01d)p(foo |'¢'new)
q(foo |¢)ncw)p(foo ‘@bold)

where ¢(foo|@Prnew) is the new augmented variational distribution that we want to recursively
update, and o1q and Ypew are the past and current subsets of hyperparameters of the Gp
prior, respectively. Notice that the distribution ¢(foo|@new) may also factorise according to

logp(ynewayold) < Le = /Q(fw|¢new) 1Og dfooa (330)

D(footun [ Wss Prew)q(Us|@Prew). We often use this 9 to refer both ¥oq and Ppey simultane-

ously, i.e. ¥ = {%o1d; Ynew }-

Again, to avoid the data revisiting, we have substituted the past likelihood term p(yo1d| foo)
by its unnormalised approximation, taken from the inverted Bayes rule in Eq. (3.24). A key
difference with respect to Bui et al. (2017a) appears on the factorisation of our past varia-
tional distribution ¢(foo|®o1d). Now, instead of conditioning on a fixed number of inducing
points u, we make use of the continual GP prior in Eq. (3.29), leading to

q(f®©|¢01d) (foo;éu*|u*a’l.bold) (u*|¢old) (331)

where we extended the factorisation of Titsias (2009a) to accept the augmented infinite-
dimensional function space f.,. Moreover, it now makes sense to reduce the lower bound L¢
in Eq. (3.30) by critically canceling all conditionals of the form p(fsc-u, |ux). Notice that we
use foo = { fooru. Ut} to apply I all over the augmented distributions. Further details are
provided in the appendix of this thesis. Then, we are able to obtain a triple-termed bound

Lo = [ afuclen) 08 Dol o )fe = [ aFrclbren) o ZEZ*'ZZE:Z?

Q(u*|¢old)
+/q(foo|¢ncw)logp< o)

Having this augmented version of L¢, we are now interested in the derivation of a closed-form
expression that can be evaluated on a specific number of inducing inputs Z rather than on
the infinite-dimensional integrals w.r.t. fu.

For this purpose, suppose that our new incoming samples Die,, contain a subset of input
values e Whose distance from all the previous ones x,)q is significant. It makes sense to
increase the capacity of Z in order to refine the approximate posterior (Burt et al., 2019).
As a consequence, we introduce a new set of inducing variables Z,.,, = {zm}%;ef , where the
Vector Upey of function evaluations corresponds to Upew = [u(21),- -+ ,u(2zar,.. )] . Notice
that we now aim to update the distribution ¢(tnew|®new) = N (Unew|Mnew> Snew) Where
Prow = {Hpews Snew } in this particular case.

One strategy to introduce the previous subset is that all the distributions that make
reference to the predictive variables u, in L are substituted by wnew. That is, the former
prediction at test-inputs Z, used in the implicit distribution formalism in Eq. (3.29) is now
computed at Zoy.

dfoo

dfs.  (3.32)
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Figure 3.4: Diagram of the continual GP learning mechanism. Brown-colored boxes with
D; inside indicate the observation of a new batch of samples. Lower rectangles in colors
represent the inducing points u; used during each iteration. The letter L indicates the
step where a new continual lower bound is maximised using variational inference methods.
Downside red arrows with ¢, ), variational parameters and hyperparameters respectively,
indicate the single uncertainty metrics passed to the next iteration.

In addition, except for the log-likelihood term in Eq. (3.32), distributions on f. may
factorise, for instance as ¢( foo |Pnew) = 4(footunes |Unews Pnew)P(Unew|Pnew ), particularly the
variational ones. This convenient factorisation allows us to apply properties of Gaussian
marginals, integrating all function values foou,., out of the L¢ bound.

Given the reduction of L, we are also able to obtain a closed-form expression of the bound
in Eq. (3.32) where three prior and one posterior distributions intervene. Respectively, the
key terms that we remark are:

i) the new GP prior distribution p(Unew|®Wnew);
i1) the old GP prior distribution p(Unew|®old),
i11) the continual GP prior distribution ¢(tpew|@ola) and,

iv) the variational posterior distribution g(Unew|@Pnew)-

Then, using the previous distributions, we can further simplify L¢ to be

*CC = Eq(f,,ew) [logp(ynewanew)] - KL[q(unew‘(;bnew”|p(unew|¢new)]
+ KL[Q(unew‘¢new)||p(unew|¢old)] - KL[Q(unew|¢new)||Z]v(unew|¢old)]v (333)

where ¢(foew) = [ P(Frew|Unew)q(Unew|@Prew)dUnew as in Saul et al. (2016), with frew be-
ing the vector of output function evaluations f(-) over the inouts Tpew. Importantly, the
four distributions described above are involved in the bound in Eq. (3.33) via Kullback-
Leibler (KL) divergence operators. We identify these KL terms as regularizers forcing the
new fitted variational distribution ¢(Upew|@new) to satisfy two intuitive conditions. First,

o1

® See the analytical ex-

pression of g(fnew) in
the appendix.



to be close enough from the continual GP prior due to KL[¢(Unew|@Pnew)||d(Unew|Pold)]-
Second, to be in between the new and old GP prior distributions, via the substraction
KL[g(Unew|@new) |[P(Unew|Pnew)] — KL[g(Unew|Pnew ) [[P(Unew [%o1a)]. Notice that an extra mi-
nus sign is later added to this term in Eq. (3.33).

We know from the contrastive bounds in Ruiz and Titsias (2019) that the substraction
of two KL divergences is not a divergence itself. However, having the third additive term,
this point changes. Moreover, the functional form of the bound L¢ also simplifies to the
continual learning process illustrated in Fig. 3.4, to recurrently make the following update
of parameters

¢(()t13-1) — it = arg max [Lc (DI(QW, g?ﬂ)} . (3.34)
From a practical point of view, when ¢ = 0 in the expression above, that is, in the first step, we
train the model using the bound in Hensman et al. (2015a) in order to set ¢,2%)W. The complete
recursive computation of Eq. (3.33) is detailed in Alg. 1. Moreover, to learn the variational
parameters Gnew = {Mpow> Snew |, We represent the covariance matrix as Spew = LneerTew-
As a consequence, we maximise L¢ w.r.t. the triangular lower matrix Lye, to ensure positive
definiteness when used unconstrained optimization.

COMPUTATIONAL COST — In terms of computational cost, the three KL divergence terms in
Eq. (3.33) are analytically tractable and of equal dimension, i.e. M,ey. However, depending
on the likelihood model considered for p(Ynew|fnew), as for instance, Gaussian, Bernoulli
or Poisson distributions, the expectations could be intractable. Additionally, if we observe
binary samples y,, € [0, 1], such integrals could be solved via Gaussian-Hermite quadratures,
similarly to Hensman et al. (2015a); Saul et al. (2016), as we previously did in Sec. 3.1.

SELECTION OF INDUCING INPUTS — The selection of the inducing inputs Z,,ey is of particular
importance for the consistency of the continual learning recursion. Its size, Myew, may vary
from the number M4 of previous inducing-points Z,q without constraints. Notice that, if
the incoming batch of samples D; is determined by some inputs @ey Which explore unseen
regions of RP, then Z,., should be placed to capture this new corresponding area.

Algorithm 1 — CONTINUAL GAUSSIAN PROCESS LEARNING

Initialize d)f]%)w and 1/),(1(& randomly.

1:

2: input: Observe foi)w

3: Maximise £ < logp(Dr(lg)w) w.r.t. {qsfl?w,q,bf]%)w . // standard variational inference
4. fortel,..., T do

5.  Update {(]5((:121, 'l/JS()i} — {d)r(lt&vl), I(ltc;,l)} // fitted parameters become the old ones
6:  Choose initial Z,ey // initialization of inducing points
7. Compute continual GP prior ¢(:| (()tlgl) // conditional prior reconstruction
8: input: Observe Dr(fe)w

9:  Maximise Lo w.r.t. {¢>,(f(3w, @br(lte)w . // continual variational inference
10: end for

However, due to we marginalize the former pseudo-observations ueq in Eq. (3.26) for the
continual GP prior construction, either Z,q and Z,., are not recommended to coincide on
any value. The best practice is to choose robust initializations for Z,.,. Additional con-
straints are not needed.
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Stochastic Continual Learning

Based on Hensman et al. (2013a), we assume that the likelihood model is conditionally
independent and fully factorisable across samples, that is, it holds

N

This likelihood factorisation typically leads to the conditional expectations in Eq. (3.33) that
are also valid across data observations. This allows us to introduce stochastic variational
inference (svi) methods (Hoffman et al., 2013). In our particular case, the bound L¢ is
expressed as

Nnew
Le= Z Eq(fn)[logp(yn\fn)] — KL[g(tnew|@new ) |[P(Unew|¥new)]

n=1

+ KL[Q(uncw|¢)ncw)||p(uncw|¢old)] - KL[q(uncw‘d)ncw)‘|E]v(uncw|¢old)]~ (336)

So far, under a factorized bound of this form, we are able to combine both continual learning
with stochastic optimization, splitting our new incoming subset of data Dyey in smaller mini-
batches for faster training. Intuitively, it makes the L bound applicable to a wider number
of real-world problems, particularly those ones with an extremely asymmetric sequence of
observations. That is, if the size of streaming batches is still large for training, we can apply
SVI until the next incoming batch will be observed. Thus, the combinatio of svI within
the continual learning framework leads to a best-of-both-worlds strategy, since many times
stochastic approximations can be also considered for streaming settings (Hensman et al.,
2013a). In contrast, if the number of new observations goes to the opposite limit, i.e. a
reduced number of samples per time-step t, then, the stochastic version of the £z bound in
Eq. (3.36) can be avoided, leading to solutions closer to the work in Solin et al. (2018) and
Bayesian filtering.

3.2.2 Generalization for Multi-task Models

Regarding the applicability of continual GP priors to high-dimensional output settings, we
study how to adapt the previous results to sequences of multiple output data. Concretely
in this section, we are interested in the generalisation of the continual GP scheme to accept
extremely asymmetric cases. For instance, those ones for which, in addition to an unknown
stream of observations, the order of appearance of the multi-output dimensions might be
unknown as well. Several cases of both symmetric and asymmetric observation processes are
depicted in Fig. 3.5.

We begin by considering parallel sequences with diferent size, formally denoted as chan-
nels, Dy with d € [1,...,D]. From each dth channel, we sequentially observe batches of
input-output data, such that Dy = {yy),yf),...,yff’} where yé” = {yd(:cn)i:fil} and
x, € RP. Notice that here, time steps ¢ are not necessarily aligned across different channels,
and its size N} may also vary. At this point, we initially consider the case for which each
output value y4(x,,) is continuous and Gaussian distributed. This asumption with be relaxed
later on this section.

Having a multiple output problem of this type, we want to jointly model it using multi-
output Gaussian processes (MOGP) as we did in Sec. 2.1.2 for heterogeneous likelihood prob-
lems. These models, typically generalise the flexible prediction system of GP approaches
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Figure 3.5: Illustration of the scenarios that two sequences of streaming input-output ob-
servations may belong to. Short-code for figures: (R = right, L = left). (UPPER ROW)
General cases for the two output channels: symmetric (L) and asymmetric (R) sequential
data. (LOWER ROW) Special forms of the upper cases: i) one channel is longer at time ¢ + 1
(L1), ii) channels have different frequency (12), iii) switching missing channels (R1) and iv)
both outputs sequences are in incomplete (R2).

to the vector-valued random field setup (Alvarez et al., 2012). In particular, it is demon-
strated that by exploiting correlations among different streams of outputs, or channels, they
are able to improve in the prediction for every d-th output. We aim to exploit this idea of
correlated outputs in the multi-task sequential framework. However, little work has been
done on extending MOGPs to the continual learning scenario. The most closely related works
to this idea are Cheng et al. (2017) and Yang et al. (2018). Importantly, the model to be
presented in this section is different from Cheng et al. (2017) because we allow for continual
updates of the MOGP while they focus on adding structure to the kernel functions. The work
by Yang et al. (2018) also derives tractable variational lower bounds based on the sparse
approximation, but they do not handle non-Gaussian likelihoods and the learning method
uses particle filtering with a fized number of inducing points. In this section, we present a
novel extension to perform continual learning given any MOGP model, independently of the
likelihood distributions considered.

Sequential Multi-output Formulation

Having a multi-parameter GP prior as the one described in Ch. 2, we want to model the
sequential observation process properly. Thus, suppose that we expect to observe a high-
dimensional dataset D = {x,,, ¥, }__; where we know a priori that output vectors y,, € RP*!
are composed by D features, such that y,, = [y1(zn), y2(zy), ..., yp(x,)]" with x, € RP
as in the single-output scenario. Again, we assume that the data D will be observed as a
continual flow of smaller batches Dy, Da, ..., D; with irregular size and unknown arrival time.

We also assume that the pairs of input-output observations are aligned across channels,
that is, the streaming setting is equivalent to the single-output case but considering the
output vectors y,, instead of scalars for simplicity in the derivation. Importantly, the multi-
output model presented here is also applicable to the case of asymmetric channels (see Fig.
3.5), as we will show later on this section.

The generative process of the multi-output samples is as follows. We assume that there
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exist @ latent functions ¢ that are linearly combined to produce D latent output functions
F along time, using the previous LMC formulation of Sec. 2.2.1. However, in our MOGP prior,
each one of the underlying U functions is stationary across batches D; and their output
variable y,, follows a probability distribution p(y,|f.) = Hle p(ya(xn)| falzn)).

Moreover, we also define the output vector f,, as fn, = [f', f2,..., f5]", where f, €
RPNex1 We re-use the notation from the single-output case of Sec. 3.2.1 to indicate that our
dataset is recursively partitioned, as D = {Doid, Dnew }, where Dy = Dy at each time-step
t and D,)q ever increases. When training this MOGP model for exact inference, the prob-
lem is analogous to the continual GP case of Sec. 3.2.1. This is, we encounter a recurrent
computational cost that now also includes D, the number of outputs, such that O(D3N}),
O(D3(Ny + No)3),...,0(D3N3?). Even if we avoid the use of non-Gaussian likelihoods for
every output, where exact posterior inference is intractable, such computational cost is still
unfeasible.

SPARSE APPROXIMATIONS FOR CONTINUAL MOGP MODELS — We introduce inducing vari-
ables within variational inference methods for a reason of scalability. Sparse approximations
have been already used in this context Alvarez and Lawrence (2009); Alvarez et al. (2010);
Moreno-Muiioz et al. (2018). The subtle difference from the single-output case of Sec. 3.2.1
lies on the fact that pseudo-observations are not taken from the output functions F but from
the latent ones U instead. Consequently, the extra layer that the multi-output Gp adds for
correlating latent functions is also used here for the sparse approximation. This induces a
two-step conditioning on the model. For instance, the output function values are conditioned
to the latent functions and at the same time, latent function vectors are conditioned to the
subset of pseudo-observations in a chained form.

Under this setting, we define @ sets of M, inducing variables, one per function wu,(-),

such that z = {zm}ﬁ]\f“:1 and z € RMaXP_ Tt is important to remark that these subsets are
not restricted to take the same values z,, across dimensions and neither the sample size M,
must be equal for every g¢-th function. However, we do consider all M, to be identical and
equal to M in this work, mainly for simplicity in the notation. We also denote the vector
ug = [ug(z1),uq(22), ..., uq(za)] " as the LF evaluations given the u, process. Additionally,
we set w = [u] ,uqg,..., ug]T and u € RM>1 for the whole set of functions . Notice that
here, we have the sparse GP notation transformed for the multi-output problem.

Given D output functions F and the @ latent functions U, we now aim to build our
joint prior to be p(F,U) = p(F|U)p(U|1p), where once again, we use 9 to refer the subset of
hyperparameters involved in the MOGP prior. Using the infinite-dimensional approach that
we introduced in the previous single-output case, we now can factorize by conditioning on
the finite number of inducing points w. That is,

pU[Y) = pUsu|u, P)p(ulp), (3.37)

where U, refers to all latent function values U not including that ones explored in u, that is,
U = Uz, Uu. The prior distribution over u also factorizes across latent functions, as p(u|y) =
Hqul p(ugl9p) with u, ~ N(0,K,). Here, K, € RM*M corresponds to ky(2;, z;) with entries
z;,2z; € z. The dimension of K, varies within the number of inducing points evaluations,
determining the model’s maximum complexity. This last point plays an important role when
the input domain is incremented within the appearance of newer observations.

Continual Multi-output Inference

Our primary goal is to obtain the posterior distribution p(f,u|D), that we know a priori
is intractable under the presence of inducing points and potential non-Gaussian likelihoods.
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If we consider the variational approach, once again, as in the approach of Titsias (2009b),
where we can approximate our posterior with an auxiliary Gaussian distribution ¢(-,-), we
may consider the following factorisation as in Alvarez et al. (2010),

D

Q
p(f,ulD) ~ q(f,u) = p(flu)g(u) = ] p(falu) [T a(u,), (3.38)

d=1 qg=1

where we have used a product of @) Gaussian densities, one per qth latent process, with
q(uq) = N (ug|pty,, Su,) and where the conditional probabilities p(fa|u) are given by

p(falu) = N(fd\deuKZiua Kyafa = deuKZiK}du)- (3-39)
The cross-covariance matrices Ky,,, € RYX@M are obtained by direct evaluation of the
correlation between f,(x) and u,(z). We also denote Ko, € RYM*QM a5 the block-diagonal
matrix formed by the K, terms.

Avoiding Revisiting Multiple Likelihoods

When using variational inference methods, we fit the auxiliary distribution g(u,) by max-
imising a lower-bound £ of the log-marginal likelihood p(D). In the MOGP literature, this
marginal is also written as logp(y) and in our case, we express it also as 1og p(Ynew, Yold)-
Given the previously defined sparse MOGP model, this probability distribution can be de-
composed as a double integral operator,

10g p(Ynew Yold) = log / / P(Ynew, Yold|F)p(F,U)dFdU, (3.40)

where we now consider the finite set of output values yo1q and ynew to be conditioned on the
infinite-dimensional domain of the set of functions F, as is done in Bui et al. (2017b) and
Moreno-Munoz et al. (2020a), but in the multi-output counterpart. Due to this assumption,
we have a double expectation over both F and U, where we can also apply conditional
independence (c1) in the main likelihood term of Eq. (3.40). This cI leads us to obtain
D(Ynew, Yold | F) = P(Ynew|F)P(Yora|F)- For simplicity, we will denote both terms as the new
and old likelihoods respectively.

As it was previously mentioned, when dealing with variational inference, any lower bound
L over Eq. (3.40) requires to sequentially evaluate expectatons given former log-likelihood
terms log p(yoia|f). However, under the assumption of a multi-output GP model, the re-
current evaluation of expectations even worsens. In particular, due to the factorization of
LPFs, it is necessary to compute, at least, D integrals over the dimensions of the old data
vectors yo1q- Notice that each d-th dimension might be characterized by a different likelihood
function, that we also aim to estimate. Fortunately, the solution in Bui et al. (2017a) still
yields in the multiple channel setting. As in Sec. 3.2.1, we can approximate all probabilities
p(Yola|f) by means of the Bayes rule. We have that as long as,

q(F,U) = p(F,U|Yolds Tola) < p(F,U)p(Yord|F), (3.41)

we can invert the Bayes rule to obtain an unnormalized estimate of the past likelihood term

P(Yord| F) as
q(F,U)

p(F,U)

P(Yora| F) = : (3.42)
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Importantly, the two given distributions that intervene in the quotient of Eq. (3.42) factorise
according to

a(F,U) = p(FIU)pUsu|tt, thowa) (3.43)

il :ja

Q
p(F,U) = p(FIU)pUzu|w, Poa) H (uq|tPora), (3.44)

where both variational posterior distributions ¢(-) and priors p(-) are evaluated over the
inducing points given by the respective ) latent functions. This fact makes easier to obtain
separated KL divergence terms in the future continual lower bound for multi-task problems.
Additionally, if we introduce the aforementioned expression in Eq. (3.42), as a sequential
estimator of the multiple old likelihood terms, we can reformulate Eq. (3.40) to be

10g p(Ynew, Yola) ~ log // ynew|f)(](__ ) U)gl7,U) dFdu, (3.45)

where both prior densities p(F,U) in the quotient differs between them due to different
subsets of hyperparameters, i.e. ©¥o1q VS. Ynew. Having an approximated log-marginal distri-
bution of this form, we can build the lower bound via Jensen’s inequality, that is,

P(Ynew| F)p(F,U)q(F,U)
4(F,U|pnew)p(F,U)

L= / A(F, U|ew) 10 dFdlU. (3.46)

In this MOGP setting, there is also a problem related to the use of past explicit distributions
in the bound in Eq. (3.46) as we saw in Sec. 3.2.1. This issue remains as we have to propagate
past subsets of instances uoq forward, for each latent function, in order to approximate the
likelihood probabilities. To avoid it, we also adapted the continual GP model within the
predictive expressions presented in this section.

Algorithm 2 — MULTI-CHANNEL CONTINUAL GP LEARNING

1: Initialize ¢new and wnez,v randomly.

2: input: Observe Dnew

3: Maximise £ < logp(Dr(le)w) w.r.t. {¢neW7 wr(l(é)w . // standard variational inference
4. fortel,...,T do

5:  Update {d)(()tl)d, ((i)i} — {(;Sl(rlte;vl), ,(fe;,l)} // fitted parameters are repurposed
6: forqgel,...;Q do

7 input: Observe Dr(l?w

8: Choose initial Z,cw // initialization of inducing points
9: Compute continual GP priors ¢(- |¢old) // conditional prior reconstruction
10:  end for

11:  Maximise L¢ w.r.t. {q[)new7 I(lte)w . // continual variational inference
12: end for

Consider an additional set of inducing inputs Z,, that we will use as instances of the
latent functions U in the MOGP prior. Thus, assuming that p(u|D) ~ ¢(u), the predictive
distribution p(U|D) can be approximated as [ p(Us|u)g(u)du. Here, we use the variable U,
to denote the LF instances taken on Z,. While g(u) factorises accross the @ latent function
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vectors ug, the conditional MOGP prior p(U,|u) is analogous to the one presented in Eq.
(3.27). This means that we can apply the same predictive mechanism to build continual
MOGP priors, that now works in the subset of LFs before the mixing.

As a consequence, for each g¢-th latent process u,, we obtain a continual GP prior of
the form g(u|pola) = [ p(us]ug)q(uq|Poia)duy. Additionally, due to the latent processes are
independent, having their own covariance functions, the continual update is also independent.
In particular, we assume the existence of () parallel continual processes of the form

Ug,x ™~ gp(k*qu;:uqll'q,olda k** + k*qu;qluq (Sq,old - Kuquq)K;;uqk;ruq)v (347)

where ki, = [kg(-,21),"-- ,k:q(-,qu)]T refers to the values taken by the corresponding
kernel. The development of the multi-output continual bound is now feasible. If we use the
predictive GP equation to factorize ¢(F,U) = p(F|U)pUzu|tq,«, Yoid) HqQ:1 q(ugq,+), then we
can introduce g« = Ug new recursively. This leads to

_ p(ynew|]:)p(unew|1/]new) a'(unew“bold)
L= // q(]:7U|¢HEW) log Q(unew‘(ﬁnew) dFdu + // q(}-JJ{) log p(unewhbold) ardd,

that we also rewrite in a more recognizable form, as

D Q
L= Z Eq(fdynew) [logp<yd,new|fd,new)] - Z KL [q(uq,new‘d)new”|p(uq7new|¢new)] (348)
d=1 q=1
Q Q
+ Z KL [Qnew(uq,new|¢new)||p(uq,new|¢old)] - Z KL [Q(uq,new|¢new)|‘a(uq,new‘¢old)] 5
qg=1

1

Q
I

where ¢(finew) = Eq(upen|dnew) P(fdnew|Unew)] is the approximate marginal posterior for
every fanew = fd(@new) that can be obtained analytically via

q(fanew) = N (Fanew K newtinen K tinon Btinew s K £ now Finew (3.49)

—1 —1 T
+ de,newunew Ku,,ewunew (Sunew - K‘unewunew )Kunewunew Fd.newUnew )’

where ., = [ll’;l;l,ncw7 e u;';@mw] and S, .. is a block matrix whose elements are given
by Ku, ... The intepretability of Eq. (3.48) is of particular interest in our work. In the
standard GP case, both expectations and divergence terms refer to the same layer of compu-
tation. This is, integrals calculate the uncertainty on the output function instances of f(-),
the one which parameterises the likelihood densities. However, in the MOGP setting, it is
different. Particularly, the expectation term in Eq. (3.48) is focused in the observations and
the parameter output functions. On the other hand, the three KL divergences affect exclu-
sively to the layer of latent processes U. This point makes the continual method applicable to
asymmetric scenarios or where, for instance, one of the output channels might be unobserved
at a time-step ¢. This will be analyzed in the experiments.

Moreover, in Alg. 2, we present all necessary computations for the continual learning of
the model. The algorithm is analogous to the one presented in Alg. 1, but in this case, we
require () extra iterations over the LFs.

3.3 Evaluation of Continual and Distributed Inference

We now examine the empirical performance of the GP models for continual and distributed
inference. In the first case, we evaluate the continual GP model in both single-output and
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multi-output scenarios. Results of evaluations are presented in two forms, one more visual
via the representation of the GP test prediction in the input area of interest, and another
based on predictive error metrics, e.g. negative log-predictive density NLPD. Further details
about the general implementation of experiments, initial setting of hyperparameters or access
to data, are provided in the appendix of this thesis. The implementation of both models is
publicly available in the repository https://github.com/pmorenoz/.

3.3.1 Recyclable GP Simulations

In this section, we present the simulations for analising the performance of our distributed
framework for multiple recyclable GP models and data access settings. To illustrate its
usability, and also in the context of this thesis, we show results in three different learning
scenarios: 1) regression, ii) classification and iii) heterogeneous data. Performance metrics are
given in terms of the negative log-predictive density (NLPD), root mean square error (RMSE)
and mean-absolute error (MAE). The experiments were programmed in Pytorch!, which
allows to learn the GP ensembles in an automatic manner as well as the baseline methods
used. Importantly, we remark that data is never revisited and its presence in the ensemble
plots is just for clarity in the presentation of results.

Concatenation Test with Toy Data

For the first experiment, whose results are illustrated in Fig. 3.6. We generated K = 5
subsets of observations in the input-space range € [0.0, 5.5]. Each subset contains Ny, = 500
uniform samples of xy. These were later evaluated as instances f(&)pias. The expression of
the true function is

15
F(@)bias = f() + 32 — —, (3.50)
where the expression for the used unbiased mapping is
9 3m . (437 3
flx) = 5 co8 <27m: + 2) — 3sin <1Om + 10) . (3.51)

Having the local values of the true underlying function fi = f(xy), we generated the true
output targets using additive Gaussian noise, such that y, = fi + €x, where e ~ N(0,2).
For each local task, the number of inducing-inputs Z; was My = 15 and their initialization
was equally spaced in the corresponding local input regions. For the global GP prediction,
we used M = 35 inducing-inputs Z,, initialized in the same manner. In Fig. 3.6, we show
three of five tasks united in a new GP model. Tasks are fitted independently with N = 500
synthetic data points per distributed GP. Notice that the variational ensemble tends to match
the uncertainty of the local approximations.

Distributed Gaussian Process Regression

We provide error metrics for the recyclable ¢p framework compared with the state-of-the-art
models in Tab. 3. The training dataset is also synthetic in this experiment and generated
using the expressions above. For the case with 10K observations, we used K = 50 tasks with
N = 200 data-points and My = 3 inducing variables in the sparse GP. The scenario for
N = 100K is similar but divided into K = 250 tasks with Ny = 400. Our method obtains
better results that the exact distributed solutions due to the ensemble bound searches the

1PyTHON framework with auto-differentiation available at https://pytorch.org/.
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Figure 3.6: Recyclable Gps with toy data.

Distributed task (k = 1)

Distributed task (k = 3)

Distributed task (k = 5)

Table 2:

Performance metrics
for distributed GPs with the so-
lar physics dataset. (std. x10?)

g o
; 5 MoDEL NLPD RMSE
g, ¥ BCM - 17.25
& PoE 1.51+£0.01 1.08
............................................. = GPoE 1.51 £0.07 1.08
RBCM 1.53+0.01 1.11
5 g This work 1.68+0.14 1.17+0.12
B
20 Ko K= X Xm Km Ko Ko 3 e 3 D D =X D =X =X =X =X = XK= X = Ko Ko Ko Ko Ko XK X 2 =X 2 K X=X =X =
' Ill[)ll}. T
DATA SIZE — 10K 100k M
MoODEL NLPD RMSE MAE NLPD RMSE MAE NLPD RMSE MAE
BCM 2994+0.94 11.94+18.89 205+1.31 3.51+0.73 233+£0.96 1.34+1.03 NA 9.56 +14.87 1.194+0.86
PoE 2.79 £ 0.16 2.32 £0.22 1.86£0.22 2.82+0.67 2194+091 1.71+£0.84 291+0.63 1.98+0.61 1.32+0.05
GPoE 2.79 £+ 0.56 2.43 £0.52 1.96+£048 2.73+0.72 2194091 1.71+£0.84 272+0.52 198+0.61 1.32+0.05
RBCM 2.96 £+ 0.51 2.49 £ 0.51 2.024+0.46 3.03+£0.86 251+1.12 1.994+1.04 2.56+0.06 1.82+0.02 1.37+0.03
This work 2.71+0.11 1.56 +0.04 0.974+0.05 2.89+0.07 1.73+0.01 1.23+4+0.02 287+£0.09 1.87+0.07 1.344+0.09

Acronyms: BCM (Tresp, 2000), PoE (Ng and Deisenroth, 2014), GPoE (Cao and Fleet, 2014) and RBCM
(Deisenroth and Ng, 2015).

Table 3: Comparative error metrics for distributed GP models. Best values are underlined.

average solution among all recyclable GPs. The baseline methods are based on a combination
of solutions, if one is bad-fitted, it has a direct effect on the predictive performance.

We also tested the data with the inference setup of Gal et al. (2014), obtaining an NLPD
of 2.58 4 0.11 with 250 nodes for 100K observations. It is better than our approach and the
baseline methods, but without any GP reconstruction, only distributes the computational
cost of products of matrices or/and their inversions.

Recyclable Ensembles

For a large synthetic dataset, for instance N=10°, we tested the recyclable Gps with K =
5 - 102 tasks as shown in Tab. 3. However, if we ensemble large amounts of local GPs,
e.g. K>>103, it is problematic for most of baseline methods, due to partitions must be re-
visited for building predictions and if one-of-many GP fails, performance decreases. Thus,
we repeated the experiment in a pyramidal way. This is, building ensembles of recyclable
ensembles, inpired in the approach of Deisenroth and Ng (2015). Our method obtains
{NLPD = 4.15,RMSE = 2.71,MAE = 2.27}. The results in Tab. 3 indicate that our model
is more robust under the concatenation of approximations rather than overlapping them in
the input space. The pyramidal experiment was formed by two layers, that is, we joined
ensembles twice as shown in Fig. 3.8.

Solar Physics Dataset

We also tested the framework on solar data (available at https://solarscience.msfc.
nasa.gov/), which consists of more than N=10% monthly average estimates of the sunspot

60


https://solarscience.msfc.nasa.gov/
https://solarscience.msfc.nasa.gov/

Layer 0 50 x N =200 10k
—_——

ENSEMBLE

l

Layer 1 1 x 10 100K
N e’
ENSEMBLE

l

Layer 2 1 x 10 1M
N—————
ENSEMBLE

l

global GP

Figure 3.8: Graphical depiction of the pyramidal structure for ensembles of GP ensembles.

counting numbers from 1700 to 1995. We applied the mapping log(1l + y,,) to the output
targets for performing Gaussian regression. Error metrics are provided in Tab. 2, where std.
values were sufficiently small, so we do not include them. The performance with K=50 tasks
is close to the baseline solutions, but without storing all distributed subsets of data. The
number of global inducing-inputs used for the ensemble was M =90, whist we used M;=6 for
each distributed approximation.

Pixel-wise MNIST Classification

For this experiment, we took images of ones and zeros from the well-known MNIST dataset,
inspired in the MNIST experiments in Van der Wilk et al. (2017). To simulate a pixel-wise
unsupervised classification problem, true labels of images were ignored. Instead, we threshold
the pixels of images to be greater or smaller than 0.5, and labeled as y, = 0 or y, = 1
afterwards. This is, we turned the grey-scaled values to a binary coding. Then, to simulate
a pixel-wise scenario, we used each pixel as an input-output datum whose input «,, contains
the two coordinates (x; and x5 axes). Plots in Fig. 3.9 illustrate that a predictive ensemble
can be built from smaller pieces of GP models, four corners in the case of the number zero
and two for the number one.

Compositional Number Prediction

As an illustration of potential applications of the recyclable GpP approach, we build a number
eight predictor using exclusively two subsets of the approximations learned in the previous
experiment with the image of the number zero. We used the K = 4 distributed tasks of the
experiment with number zero and replicated the objects & twice. Then, the final input list
to the ensemble was {&€1,...,&4,E5,...,Es}. The set of partitions {&s,...,E s} was identical
to the previous ones but we shifted their corresponding inducing-inputs Zj by adding 1.2 in
the vertical axis. This is, with smaller distributed tasks of two number zeros, we generated
an ensemble of a number eight. We remark that this experiment is purely illustrative to show
the potential uses of the framework in compositional learning applications.
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Banana Dataset

The banana experiment is perhaps one of the most used datasets for testing GP classification
models. We followed a similar strategy as the one used in the MNIST experiment. After
removing the 33% of samples for testing, we partitioned the input area in four quadrants,
i.e. as shown in Fig. 3.9 (). For each partition, we set a grid of M}, = 9 inducing-inputs and
later, the maximum complexity of the global sparse model was set to M = 25. The baseline
GP classification method also used M = 25 pseudo-observations and obtained a NLPD value
of 7.29 £7.85-10* after ten trials with different initializations. Our method obtained a test
NLPD of 7.21 4+ 0.04. This difference is understandable as the recyclable GP framework used
a total amount of 4 x 16 inducing-inputs, that captured more uncertainty than the 16 of the
baseline classifier.

MNIST GP Ensemble Recyclable GP B MNIST GP Ensemble
X ~

0.0-

-1.0 —1.0;

/
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x1 input 1 input 21 input 1 input 1 input
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Q

D Compositional number-eight from recyclable GPs
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Figure 3.9: Recyclable aps for {0,1} MNIST (A-B), banana
(¢) and compositional number eight (D) experiments.

-1.0 -0.5 0.0 0.5 1.0
1 input

3.3.2 Continual Multi-task GP Simulations

Our experiments in this section aim to examine the empirical performance of the continual Gp
approach. The results are focused in three main topics that demonstrate the utility and per-
formance of the model, in particular over synthetic and real-world datasets. The three topics
are: 1) performance of the continual single-output GP model given streaming observations,
ii) resistance to the error propagation when refitting variational approximations, including
the appearance of new tasks, non-Gaussian observations and heterogeneous multi-output
settings, iii) the applicability to real-world problems with multivariate online data, poten-
tially configured as asymmetric channels. The experiments are also organized into several
sub-topics, related to regression, classification, multi-view settings and last, heterogeneous
likelihood problems.
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For all experiments, we used a modified version of the PYTHON code released within
Moreno-Munoz et al. (2018) that presents similar features of scalability and adaptibility to
multi-output and non-Gaussian data. For the optimization process w.r.t. continual lower
bounds, we make use of the LBFGS-B algorithm (Zhu et al., 1997). If the stochastic coun-
terpart was necessary, we considered ADADELTA instead (Zeiler, 2012), which is included in
the climin library (Bayer et al., 2016). Further details about the general setting of experi-
ments are included in the appendix of this thesis. Moreover, we provide a public repository
(https://github.com/pmorenoz/ContinualGP/) where all scripts for simulations are pro-
vided for a reason of reproducibility.

Continual GP Regression

In this subset of experiments, we evaluate the performance of the continual GP model
in single-output scenarios where streaming data is real-valued and assumed Gaussian dis-
tributed. Our goal is to perform sequential non-linear regression. We first setup a synthetic
experiment with two different configurations in the way of appearance of incoming samples.
These are denoted as i) streaming and ii) overlapping data. In the first case, we have a
sequence of ¢ = 10 non-overlapping partitions that are exclusively delivered to the learning
system. Each partition in the collection avoids revisiting the previously explored input area.
Second, we relax this assumption to consider partially overlapping tasks where certain re-
gions in the input space a revisited by the new observations. Importantly, we always model a
single-output latent function to link the likelihood parameters 6,,. This is, we avoid solutions
similar to chained GPs (Saul et al., 2016), where several functions are used for parameter-
ization for a reason of flexibility. However, this approach could be also considered to the
current experiment with continual Gps.

). STREAMING — The streaming data experiment consists of ¢ = 10 partitions that are
observed in a sequential manner. In this case, we consider that batches have an approximately
equal size, so the scenario is not irregular. We setup the initial number of inducing inputs to
be M = 3. This number sets the maximum complexity of the model. It is increased following
the rule M (t) = 3t. The synthetic dataset has N = 3000 input-output samples, where 30%
of them are used for testing errors.

In Fig. 3.10, we show three captions of the iterative learning process. Concretely, the
initial step at ¢ = 1, the intermediate one at ¢ = 5 and the final step at ¢ = 10. We remark
that the posterior predictive computation of curves does not employ any past parameters,
only the ones learned in the most recent iteration. The last trained model, whichs avoids to
revisit data, is the one that predicts all along the input space explored so far. Additionally,
in Tab. 3.3 we include the NLPD error values obtained at each iteration and sequential data
collection. All posterior predictive densities are estimated via Monte-Carlo methods. The
performance of the continual model is evaluated in three different ways. First, we evaluate
test predictions at the new-observed input area. Second, we look to the decay of the predictive
precision in the tth past seen input partitions. Finally, we evaluate which is the GP prediction
quality along the whole input space in the experiment.

For instance, in the case of the column at ¢/ = 1 in Tab. 3.3, the GP is trained at time
steps t = 1,2,3..., until ¢ = 10 (rows). Then, the continual process is evaluated on the test
input data first seen at ¢ = 1. This is, we want to evaluate how much precision is lost over
the testing data stored at t = 1, t steps forward in the sequential learning. Therefore, the
columns at ' = 4 and ¢’ = 8 have a similar interpretation. The GP model first trained at ¢t = 5
and then updated at t = 6, 7,8, ..., until ¢ = 10 are tested on the data first observed at t = 4.
One can see how the red error metrics remain approximately static around an average NLPD
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Figure 3.10: Results from continual GP regression applied to toy streaming data. Sequential
batches correspond to non-overlapping partitions. The sequence consists of ¢ = 10 consecu-
tive subsets of observations that the model acquires recursively. Red elements represent the
GP predictive posterior over the newer input domain while the blue ones refer to the past
visited input space. Train and test data samples are plotted as colored crosses and dots re-
spectively. Black crosses indicate the position of the inducing inputs at each time-step. The
magenta line corresponds to the limit between the past and the new input domain explored
by the continual GP.

value of 13.29 x 102, which is slightly less than the initial fitting precision obtained at the
time that the collection was first observed. Initially, the model obtained 13.13 x 10~2. This
means that, although the continal variational approach suffers a small decay in the predic-
tive precision once past training samples are never revisited, the accuracy w.r.t. the test data
remains constant nine steps after. This is, the GP has been rebuilt nine times via nine op-
timization processes where the uncertainty metrics are nor overwritten and neither forgotten.

11). OVERLAPPING — In this version of the single-output experiment, we study potential
difficulties of the GP regression model to accept overlapping partitions in a sequential manner.
Here, we refer to overlapping partitions as the case where a few samples in the sequential
collection revisit the previosly observed input space. As in the previous experiment, we
consider sequences of ¢ = 10 batches, and the sparse GP approximation is initialized with
M = 4 points instead. We also limited the learning optimizer to a maximum of ¢ = 100
iterations per run and importantly, the initial step of the continual process is trained using
the standard variational bound of Hensman et al. (2015a); Saul et al. (2016); Moreno-Muioz
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Table 3.3: i) Streaming single-output data. Test-NLPD metrics (x1072). (COLUMN NEW
BATCH) Predictive error values obtained in the new observed input area at each time-step
(' = t). (COLUMNS OLD BATCH) Predictive error values obtained in the past observed
input areas at time-steps (¢’ = 1,# = 4 and ¢’ = 8). Colored values correspond to the GP
prediction on the same test-samples at the ¢-th iteration. (COLUMN GLOBAL) NLPD values

over the test-samples all along the input domain at each time-step t¢.

NEW BATCH OLD BATCH OLD BATCH OLD BATCH

step =t t'=1 t'=4 =8 global

t=1 13.13+0.10 - - - 13.13+0.13
t=2 1250+0.13 13.24 +0.10 - - 25.74 +0.23
t=3 1254+0.08 13.29+0.13 - - 38.48 £0.27
t=4 11.594+0.04 13.33+0.12 - - 52.26 £ 0.28
t=5 11.34+0.05 13.284+0.10 11.34+0.06 - 63.78 £0.32
t=6 11.56+0.06 13.29+0.11 11.33+0.06 - 75.35 + 0.46
t=7 12.71+0.09 13.29+0.12 11.34+0.08 - 88.09 £ 0.55
t=8 11.92+0.05 13.29+0.13 11.34+0.06 - 100.01 £0.62
t=9 13.554+0.08 13.294+0.09 11.34+0.08 11.98+0.06 113.60 4 0.58
t=10 11.734+0.06 13.30+0.14 11.34+0.07 11.974+0.04 125.34 4+ 0.68

et al. (2018).

In Tab. 3.4, we show similar NLPD results to the ones included above in Tab. 3.3. The
first column corresponds to the NLPD metrics obtained over the recently new samples at each
tth time-step. Intermediate columns show the predictive GP accuracy over the past visited
data. The last column represents the global fitting value, which augments as more test data
is added to the evaluation.

Robustness to Propagation Errors

Additionally, we are particularly interested in the demonstration of the effect that the con-
tinual GP update has on the whole model. This is, how robust the sparse approximation can
be as t — co. Typically, the introduction of variational posterior densities ¢(-) as new prior
beliefs into a Bayesian online scheme seems the most natural strategy to treat sequential
observations using approximation methods. However, this approach is usually discarded in
the literature due to the assumption that repetitive approximations may accumulate errors
as the number of time-steps increases (Nguyen et al., 2018), something that usually happens
with other probabilistic models. One of the main objectives in this experimental section
is to beat this assumption, performing continual variational learning for signal processing
applications with thousands of instances.

SOLAR PHYSICS DATA — Based on filtering experiments for signal processing applications, we
obtained an astrophysics dataset which consists of the monthly average of sunspot counting
numbers from 1700 to 1995. Particularly, we used the observations made for the analysis
of sunspot cycles by the Royal Greenwich Observatory (Us)2. For avoiding the use of non-
tractable likelihood densities in the GP model, we transformed the strictly positive numbers
into the real domain via the mapping log(1 + y). Our primary goal is to demonstrate that
the predictive process of the continual model remains stable as ¢ — oo, all over the input

2Solar physics data is publicly available at https://solarscience.msfc.nasa.gov/.
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Table 3.4: ii) Overlapping single-output data. Test-NLPD (x1072). (COLUMN NEW BATCH)
Predictive error values obtained in the new observed input area at each time-step (¢’ = t).
(CoLUMNS OLD BATCH) Predictive error values obtained in the past observed input areas
at time-steps (' = 1,t/ = 4 and ¢ = 8). Colored values correspond to the GP prediction
on the same test-samples at the t-th iteration. (COLUMN GLOBAL) NLPD values over the
test-samples all along the input domain at each time-step t. In this experiment, input areas

are overlapped with the previous one.

NEW BATCH OLD BATCH OLD BATCH OLD BATCH

step t' =t =1 t'=4 =8 global

t=1 13.26+0.29 - - - 13.26 +0.29
t=2 11.70+£0.20 12.234+0.10 - - 23.94 £ 0.30
t=3 13.60£0.12 12.264+0.11 - - 37.58 £0.31
t=4 12.63+0.13 12.08+0.17 - - 50.37 £ 0.50
t=5 14504036 12.07+0.12 12.66+0.11 - 64.93 £ 0.77
t=6 13.684+0.16 12.04+0.07 12.774+0.10 - 79.38 £0.63
t=7 13.80+0.10 12.244+0.09 12.75+0.12 - 92.86 £ 0.73
t=8 13.45+0.09 12.034+0.09 12.67=+0.11 - 106.21 £ 0.93
t=9 12.644+0.09 12.09-+0.08 12.694+0.06 13.78+0.09 119.04+1.01
t=10 12.844+0.15 12.08+£0.11 12.714+0.08 13.65+0.09 131.93+1.01

space, e.g. it does not forget past visited regions. In Fig. 3.12, we show three captures of the
continual learning process until a maximum of ¢ = 102 iterations. We remark that we used a
one-sample update rule, so the experiment consisted of 10® consecutive optimization trials.
For preserving tractability, we setup an initial number of M = 10 inducing inputs for the
warm up period and later it was increased with one new point every 100 new samples. A
demonstrative visualization of the whole experiment can be found at https://www.youtube.
com/watch?v=j7kprudYrcQ.

(t=1) (t=2)

Real Input

Real Input Real Input Real Input Real Input

Figure 3.11: Performance of the continual GP learning approach under non-Gaussian data
for binary classification tasks. Past samples are plotted in a grey scaled version. Black
curves represent the frontier between positive and negative predictions w.r.t. the output
values. Additionally, the last r.h.s. plot shows the final prediction of the model over the
entire 2-dimensional input space, within the last training data seen so far (sharp colors).

Continual GP Classification

Since the approach presented in this paper is also valid under the presence of non-Gaussian
likelihood distributions, we introduced an additional experiment for binary data. Partic-
ularly, we chose the banana dataset, widely used for demonstrative results of scalable Gp
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Figure 3.12: Results for single-output regression on solar physics data with one-sample up-
dates of the continual sparse GP model. Pink colored signal corresponds to the warm up
observations in the batch mode. Greyed blue signals correspond to the former visited obser-
vations while the blue cross is the new incoming one. Black colored curves correspond to the
mean function and the 95% confidence interval of the predictive GP distribution all over the
input-space, computed at each time iteration. Black dots are the inducing variables at each
time-step.

classification tasks (Hensman et al., 2015a; Bui et al., 2017a).

The banana dataset consists of N = 5200 pairs of input-output observations, where we
selected a 30% for testing the predictive error metrics and the rest for training. All input
objects have a dimensionality p = 2. The experiment was divided into four steps of inference,
depicted in Fig. 3.11. The final NLPD and error rates (ER) are provided in the appendix. We
can see that the performance of the continual method is similar to standard GP classification.
The precision remains constant in the input areas where training data is never revisited.

Continual MOGP Channels

As we discussed in Sec. 3.2.2, the MOGP framework introduces two layers of inference. One
is linked to the LFs U, where the sparse approximation lies, while the other focus in the
observations and the parameterization of their likelihood densities via F. This two-layer
structure makes the continual multi-output learning process work in a different way w.r.t.
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the marginal lower bound. Now, the expectation terms are decoupled from the regularization,
which is only focused on the distributions over the LFs. The key property of this approach
is that we may consider extremely irregular problems, where for instance output sequences
are completely assymetric. An example is shown in Fig. 3.5. Two experiments with both
real-world and synthetic data are provided in the appendix.

3.4 Discussion

We have described novel inference methods for GP models under the presence of sequential
data and distributed scenarios. In the continual case, we have presented an approach that
extends the existing posterior-prior recursion of online Bayesian inference to the infinite-
dimensional framework of GP models. The key principle behind is the reconstruction of
implicit GP priors over the space-of-functions conditioned to the past posterior densities via
the GP predictive equation. The model is adapted for sparse approximation and variational
methods as well as we applied it to the MOGP setting. Additionally, we introduced a second
Gp framework for building global approximations from distributed GP models. The main
contribution of this approach is the construction of the ensemble bound which accepts tasks
from regression, classification and heterogeneous problems. Experimental results show evi-
dence that both statistical methods are robust in the scenarios considered. Online inference
is also revisited in the next Ch. 4, where we discuss its implications for change-point detection
problems.
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CHAPTER 4

‘ CHANGE-POINT DETECTION

NCE a probabilistic model is learned in a data-driven manner, the problem of detecting
O changes or anomalies given that model and its adjacent parameters appears in many
scientific disciplines, e.g. ECG/EEG analysis (Agudelo-Espana et al., 2020), DNA segmentation
(Braun et al., 2000), spatio-temporal modeling (Knoblauch and Damoulas, 2018) or econo-
metrics (Chen and Gupta, 1997). The traditional question use to be if newer observations
conform or not to the expected behavior indicated by the already fitted model. Moreover, the
problem can be looked from two perspectives that are interrelated, one more oriented to the
characterisation of a single observation as an outlier, typically named as anomaly detection,
and another focused in refreshing a learning model that no longer fits to the sequence of new
data. This last problem, widely known as change-point detection (CPD) is the main core of
this chapter of the thesis.

We begin in Sec. 4.1 by reviewing the principles behind ¢PD methods, and in particular,
the probabilistic approaches based on the Bayesian perspective. After analysing the main
drawbacks that this sort of solutions may lead to. In Sec. 4.2, we present a novel extension
within latent variable models, named hierarchical CPD. The experimental results on this side
remark the utility of locating the change-point problem in a low-dimensional manifold where
performing Bayesian inference is significantly easier.

Once the hierarchical version of Bayesian CPD is presented, two more extensions of the
approach are developed. In Sec. 4.2.4, we consider the case of unfixing the dimensionality
of the discrete latent variables, that is, let it increase until a potentially infinite number
of classes. This solution is strongly related to Bayesian nonparametrics (BNP) (Antoniak,
1974), and more in detail, to the well-known chinese restaurant process (CRP) (Pitman, 2002).
Whilst the infinite hierarchical CPD model is included in this chapter, the general idea for
inference in a continual learning setup is also motivated by the framework described in the
preceding Ch. 3. As we describe in Sec. 4.2.5, the sequential inference of the surrogate latent
variable model can also be improved. Hence, we increase the robustness of the hierarchical
model by introducing a novel methodology based on a simple multinomial sampling method.

The results described in this chapter were presented in three main pieces of work. The
first one, Moreno-Munoz et al. (2018), was accepted in the Pattern Recognition Journal and
it is currently awaiting for its formal publication. The second one, Moreno-Munoz et al.
(2020b), was presented at the IEEE 2020 International Conference on Acoustics, Speech and
Signal Processing (1cAssP). Finally, in collaboration with L. Romero-Medrano, Romero-
Medrano et al. (2020), was presented in the 2020 IEEE International Workshop on Machine
Learning for Signal Processing (MLSP) as an oral presentation.

4.1 Bayesian Change-point Detection
Change-point detection (CPD) usually refers to the problem of locating abrupt transitions in
the generative model of a sequence of data observations. Detecting these abrupt transitions

or change-points (CPs) has been long studied and appears in a vast amount of real-world
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e At this point, we
avoid to define the nat-
ural domain of x; as we
will later generalize the
solution for both con-
tinuous and discrete
random variables.

scenarions. To name a few, for instance, investment strategies, the analysis of social networks
or cognitive radio in signal processing.

The problem of CPD is typically faced from two statistical perspectives, one probabilistic
and another more oriented to frequentist methods. Both of them usually require a model
defined a priori, or alternatively, the introduction of model-free methods. The main idea
behind frequentist methods is to derive a measure of discrepancy, often based on likelihood
ratio tests (Kuncheva, 2011), between the pre-change and post-change distributions. Once
the values of discrepancy are estimated, these are compared to some threshold value and a
decision is taken accordingly. On the other hand, probabilistic approaches, and particularly
those ones based on the Bayesian principles aim to assign a prior distribution over the cPs,
or a proper surrogate, and derive a posterior distribution given the data. This last strategy
is the one that we analyze and expand in this chapter.

Short Review of Bayesian CPD Methods

Typical approaches to CPD focus on batch settings (Harchaoui et al., 2009; Fearnhead, 2006),
where the number of partitions is often unknown. In contrast, two online CPD methods
were introduced, via particle filtering (Fearnhead and Liu, 2007) and conjugate exponential-
families (Adams and MacKay, 2007). In the online case, the data are obtained incrementally
over time, and inference updates are required each time that a new object is observed. Both
works infer the location of change-points for univariate time-series using MAP estimation.
A different approach is developed in Li et al. (2015), where the changes are detected in
sequences whose time-horizon can be either fixed or not. Additionally, there has been a
considerable effort to apply these methods on different statistical domains. For instance,
Hohle (2010) introduced an online cumulative-sum detector that finds changes in categorical
sequential data. Other approaches are able to model multivariate collections using undirected
graphical models (Xuan and Murphy, 2007).

Following the Bayesian perspective, several extensions of the Bayesian online CPD (BOCPD)
model of Adams and MacKay (2007) have been developed. These include adaptive sequential
methods (Turner et al., 2009) and Gaussian processes (Saatgi et al., 2010). This last work
extends the BOCPD algorithm to locate change-points from observations with an arbitrary
temporal structure. Moreover, unlike previous methods, the non-exponential CPD model
in Turner et al. (2013) explored the application of BOCPD to new families of distributions,
where computing posterior probabilities is intractable and variational inferences is therefore
required. However, there is a general lack of methods that address the problem of CPD in
heterogeneous data collections where observations might be of different statistical data types.

Besides the heterogeneity problem, there is another key challenge in the state-of-the-
art to scale up cpD for high-dimensional data. This has not been considered much in the
past. One exception is the work of Xie et al. (2013), which considers that data belongs to
a low-dimensional manifold embedded in some high-dimensional ambient space. A similar
work based on introducing latent structure into the Bayesian model is Agudelo-Espana et al.
(2020), which uses HMMs. These last ideas are similar to the ones presented in this section
since they reduce the computational cost by focusing the change-point analysis to some latent
space of interest.

4.1.1 Bayesian Online Change-Point Detection

We start by considering a time series, with observations 1. = {x1,®2,..., 2}, that are
divided into non-overlapping partitions. Each partition is denoted by p; with ¢ = 1,2,...
Since the division of such partitions is assumed to be non-overlapping, we assume that a
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cP is the point between two of them. Based on Adams and MacKay (2007), we assume
that the data within each partition p; is independent and identically distributed (i.i.d.)
according to some generative probability distribution p(x|@,,), where the parameter vector
0,, is unknown a priori. Under this assumption, one may determine the change-points in an
intuitive manner as the changes in the parameters:

le, t < CPq,
9p27 cp; <t < CPa,

%:=140,, opy<t<cr,

(4.1)

The main idea introduced in Adams and MacKay (2007), is the run-length r¢, which is defined

as a discrete random variable that counts the number of time-steps since the last cp. That
is,

0 CP at time ¢

e i, s "

r + 1, otherwise,

and might be seen as a proxy for the true position for change-points. The general objective
of the Bayesian online change-point detection (BOCPD) algorithm is to recursively compute
the posterior distribution over such run-length p(r¢|z;1.¢), from which ones aims to identify a
cpP if the probability mass accumulates near r; = 0. That is, the number of time-steps since
the last CP is almost zero and hence, a new partition is assumed to begin.

The posterior distribution p(r:|®;.+) is directly obtained by marginalization of the discrete
values of r; seen so far at the time-step ¢ in the joint distribution p(r¢, 1.+). The computation
of this last joint distribution is indeed obtained from the following recursive factorization,

p(re, 1) = Z p(re,ri—1, @1:0)

re—1

= Zp(Tt|7"t—1)p(SUt,Tt—17901:t—1)
re—1

= p(relre-)p(®elre—1, @1 1)p(re—1, 14-1), (4.3)

re—1

where the conditional run-length prior p(r¢|r:—1) is given by

h(ri—1+1), ry =0,
p(relri-1) = (re—1 +1) ! (4.4)
1 —h(’l‘t_l —l—l), re =121+ 1,

and h(-) is the hazard function that we consider to be constant along time with a given time-
scale hyperparameter 7, also fixed. On the other hand, the posterior predictive distribution
p(@¢|ri—1,®1.4—1) is perhaps the most important term for us in the recursive factorization.
Given the underlying predictive model (UPM) in the change-point detection method, that
is, having established a likelihood function of the form p(x;|6;), one exploits the update of
parameters 6; to see if the new datum x; fits or not to the previous inferred model. This
process is naturally handled by the predictive integral

p(wt|7“t71,$1:t71) = /P(wt|9t)p(9t|7"t71,$1:t71)d9t7 (4'5)

whose predictive values are typically set at each time-step t as \IJET'). To clarify this point,

the parameter estimation and predictive mechanism are depicted in Fig. 4.1, where several
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e We often refer to
the threads of inference
as the process of esti-
mating parameters 6
from different subsets
of data in the sequence.
A potential synonym
would be just to say
partition hypotheses.

Os|re = 5,14
9t|7"t == 4,w1;t

Tt 9t|n = 3,w1:t

9t|'rt =2,T1:¢

/ 9t|7"t =1,214

1 X2 T3 Ty T n

Figure 4.1: ITllustration of the parallel inference mechanism for the recursive estimation of 8;
conditioned on the run-length r; given the sequence x1.;.

threads of inference work at the same time. The conditioning on the run-length variable ry
implies that a new observation x; will be evaluated for each parallel thread, whose parameters
0;|ry, x1.¢ are slightly different.

In the original idea of Adams and MacKay (2007), the estimation of p(0¢|ri—1, 1.4—1) dis-
tributions was carried out via exponential family likelihoods (Wainwright and Jordan, 2008)
and their corresponding conjugate priors. Under this convenient form of recursive inference,
only a small number of sufficient statistics from each new data point x; are necessary to
update the posterior estimates. However, in those cases where the use of conjugate systems
is not possible, the problem of recursive inference worsens.

Once we obtain the joint distribution p(re, @1.+), the posterior over r; can be directly
found as

p(mlzt)
where we must compute the marginal likelihood or evidence as p(x1.) = Zn p(re, T1:1).
Additionally, if the run-length variable is not of interest for the full inference process in a
given scenario, it also can be marginalized. This point lead us to obtain a predictive distri-
bution that is no longer conditioned to the CP hypothesis. To find the marginal predictive
distribution, we just marginalize over r; as

p(relee) = (4.6)

p(@ia|@re) = Y p(@eia|re, @r)p(rila@s), (4.7)

Tt

which might be of interest for online prediction when the underlying task is always changing
or the task segmentation is not the final goal, e.g. in the case of continuous meta-learning
(Harrison et al., 2019) problems.

High-Dimensional Issues

A natural problem arises in Bayesian CPD when the observations x; become more and more
complex, i.e. high-dimensional and/or of different statistical data-types. The first intution
tell us that larger a datum «; is, higher is the number of 6; parameters needed. Due to
the recursive nature of the posterior p(ri|®;.;) computation, the BOCPD algorithm may be
unable to accumulate enough probability mass on low values of r; when the time between
cps becomes of the order of magnitude (or less) of the number of model parameters 6.
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This fact makes almost impossible to detect CPs in a reliable manner from high-dimensional
observations.

From a simpler inference perspective, the problem of high-dimensionality in Bayesian CPD
is similar to other scenarios in probabilistic machine learning. As the number of parameters
0, needed for modelling the data @1.; increases, the curse of dimensionality (Bellman, 1961)
forces us to observe more samples to be certain on our posterior discoveries. However, in
a sequential setup as the one considered in Adams and MacKay (2007), the observation of
a higher order of data samples is no longer possible as the position of each CP is fixed at
some time-step ¢t. As a consecuence, the posterior distribution p(60¢|x;.:) will be of higher
uncertainty, leading to noisy \Ily) or predictive probabilities. In the end, the whole CPD
process will tend to fail in the detection as the number of parameters increases and the
number of data points (hence information) between CPs cannot be augmented.

4.2 Hierarchical Change-Point Detection

The problem of high-dimensional data in Bayesian CcPD, and particularly within the BoCPD
algorithm, leads to complex generative models can be overcome by introducing hierarchy into
the model. To overcome the limitation imposed by the large number of parameters 6;, one
may assume that even if the data are high-dimensional, they belong to a low-dimensional
manifold as follows

p(:]6:) = / P 2)p(2:]00)dz, (48)

where z; is the vector of latent variables corresponding to the observation x;. An important
assumption is that parameters that change between change-points now parameterize the
generative distribution p(z:|6;) of the latent variable. Since the dimensionality of z; is
designed to be significantly smaller than the one of x;, then the total size of 6; is also
reduced.

A preliminary idea is to consider that the latent variable z; may be either continuous or
discrete, and the conditional distribution p(x¢|z;) is assumed to be fixed and known a priori.
Given this sort of hierarchical model, we are still interested in the run-length variable r; and
its posterior distribution p(r¢|zi.;), which in turn will indicate us the location of each cp.
To appropiately adapt the problem to the underlying latent sequence z.; in the recursive
factorization of Eq. (4.3), we should look for the joint distribution p(r¢, ®1.¢, Z1:, 0¢). It can
be also reduced to the result in Eq. (4.6) as

P(anht) = //p(Ttvwl:hzlzt»et)detdzl:t- (4~9)

For any familiar reader with latent variable models in sequential problems, this procedure
can seem quite involved. Mainly, due to the integrals in Eq. (4.9) are typically difficult to
compute and it is not trivial to achieve a recursive expression as in Adams and MacKay
(2007). However, to obtain the required recursivity, we know that the joint distribution
p(rt, 1.4, 1.4, 0;) must factorise as

(e, @1, 2120, 01) = p(@1:4|21:0)D(7e, 2104, 01), (4.10)

where we have exploited the previous assumption where the conditional p(x;|z;) is fixed and
known. Perhaps the easiest point of this derivation is the marginalisation of parameters 6,
in Eq. (4.9), which yields

P(Tt, Z1:ts wl:t) = P(w1:t|21:t)29(7"t7 Zl:t)~ (4~11)
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A priori, it seems obvious that the recursive nature of the algorithm is still there, as a direct
consequence of the factorization in Eq. (4.3), that leads to

p(re, 21:6,00) = Y p(relre-1)p(z:100)p(Orlre—1, z14-1)p(re—1, 214-1), (4.12)

re—1

where the sequence z7.;—1 is now part of the recursive predictive mechanism depicted in Fig.
4.1 instead of the previous observations. Importantly, the last term in the previous expression
is also a result of integrating the parameters, and can be obtained as

P(re—1, 21:0-1) = /p(rt—laZl:t—laet—l)dat—la (4.13)

and indeed, would lead to the same expression of Eq. (4.3), where the posterior predictive
distribution p(z;—1|ri—1, 21.t—2) lies on. Having said this, and under the combination of all
previous results, the probability p(r, z1.¢) of interest also factorizes and becomes

pre, z1:6) = ) plrelre—1) Oy plre—1, 214-1), (4.14)

re—1

where the predictive over the underlying predictive model focuses now on the latent coun-
terpart, that is

U = p(zefre1, 2101) = / p(2:100)p(Os|re_1, z1:0—1)d6;. (4.15)

So far, we have preserved the recursive mechanism of the original BOCPD but adapted to
the introduction of latent variable models. However, we might face the first problem in Eq.
(4.9) due to the marginalizaion of 8, at each time-step. Notice that the exact evaluation of

\Ilgr) is often intractable when the underlying latent variable model chosen is non-Gaussian.
Eventually, this may require to introduce approximate or numerical methods, which in turn
reduces the efficiency of the cPD algorithm.

The second problem that we must overcome is the marginalization over the unknown
sequence of latent variables z;.; in Eq. (4.9). To address this point, we propose to use a
simple latent class model, where the variables are given by z; € {1,2,..., K}, with K being
the total number of classes. Moreover, this choice also results in a small number of unknown
parameters 8; and hence, a better performance of the hierarchical cpD algorithm.

The introduction of latent class model also has an additional purpose, that we previously
developed in Chap. 2. The use of an hierarchical approach in CPD simplifies the interpretabil-
ity of the algorithm under the presence of high-dimensional, heterogeneous or missing data.
To sum up, the observation x; has now a single discrete representation z;, which indicates
the true latent class that it belongs to. The general objective now to perform CPD is to infer
the univariate sequence z1.; = [21, 22,..., 2] of indicators.

Sequential Marginalization of Latent Variables

An intuitive strategy in probability-based models is to marginalize those variables that are
uncertain or simply difficult to infer given the data. In the particular case of hierarchical CPD,
where the secuence of latent variables z;.; is introduced to reduce the parametric complexity
of the model, we aim to marginalize out every z; in a sequential manner. However, due to the
recursive dependence in Eq. (4.14), marginalizing the whole sequence of latent class variables
yields a hard combinatorial problem, which can be computationally challenging.
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Figure 4.2: Graphical representation of the original (LEFT) and simplified (RIGHT) hierarchi-
cal models. Shaded nodes correspond to observed variables and the dashed line denotes how
the posterior probabilities of z; are observed by the change-point model (blue). The variable,
2y is a point estimate which takes the z; value with highest probability. Additionally, ¥
denotes the fixed hyperparameters from the corresponding priors placed on ;.

Concretely, for a sequence zj.; of length T, with K classes, the explicit evaluation of
p(re, 1.4) requires O(KT) operations. Thus, it may not be possible to compute it for long
observation periods T, and/or large number of classes K.

In the next sections of this chapter, we develop a solution for the hierarchical cPD model
that overcomes the problem of a computational complexity that grows exponentially fast as
T and K increases.

4.2.1 Point-Estimate Observations

Having introduced an hierarchical model in the original BOCPD algorithm of Adams and
MacKay (2007), we now face the problem of computational complexity. Among the possible
latent variable models to consider, we propose to use latent classes z;, such that the generative
distribution of our i.i.d. data can be rewritten as

K
p(@|0:) = D pl@ilz)p(=4]00), (4.16)

zi=1

where z; is a categorical r.v. and K its dimensionality. This sort of latent class model can be
also seen as mixture model. As we have shown, under the presence of such latent variables,
the natural recursive integration of the CPD method becomes unfeasible very quickly as T’
and K increase. However, we are still interested in maintaining such latent representation
z¢ in the context of change-points. In the previous Sec. 4.2, we saw that the main factor of
this complexity is the sum all over the combinations of z7.;_1.

To avoid the marginalization while keeping the latent variable methodology, we simplify
the previous hierarhical model by considering an alternative strategy. If collapsing the entire
latent domain is too costly, we propose to observe it (Nazdbal et al., 2016). That is, we can
explicitly observe point-estimates of z;, which were hidden before. In particular, instead of
marginalizing the sequence z1.;, we directly plug in the point-estimate values taken by z; at
each time-step.
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To adapt the hierarchical model to the new pseudo-observed latent variables, we take the
set of point-estimates 27,; as the input data to the detector. We further assume the likelihood
distribution to be p(z}|0;), that is, we are directly modelling the changes on the sequence of
point-estimates. Particularly, these variables are given by the mazimum a-posteriori (MAP)
criterion. That is,

z; = argmax p(z¢|@t), (4.17)

Zt

for which we need to previously derive the posterior distribution p(z:|x:). In this chapter,
we assume that it is given as long as we focus in the particular task of cpPD. To obtain
this posterior distribution, we presented the latent variable models for high-dimensional,
heterogeneous and corrupted data in Chap. 2 and several alternatives for inference in the
previous Chap. 3. The graphical model included in Fig. 4.2 shows the complete details of
this point-estimate observation (PEO) approximation.

To perform hierarchical ¢PD on the simplified version of the algorithm, we first choose
the likelihood function for p(z;]6;) to be a categorical distribution with natural parameter
7. We also place a Dirichlet prior on 7r; with a single hyperparameter ~ for preserving the
conjugacy. Then, the generative model turns to be z; ~ Cat(m;) and w; ~ Dirichlet(y),
where m; € 8K and v € Rf , with S& and Rf being the K-dimensional simplex and the
positive orthant, respectively. Interestingly, this choice for the prior distributions allows us

to still compute the predictive probabilities 7T§T) in a closed-form manner, which are given by

(r)
") = p(ef|re1, 2y 1) = =g, Vr e {1,2,.., 1}, (4.18)

25:1 'Yl(;)
(r)

where 7, is the kth component of the vector parameter -, of the Dirichlet prior distribution
computed for the partition hypothesis indicated by the run-length r;. The expression, which
is a direct consequence of the Dirichlet-categorical conjugate system, provides a significant
reduction in the computational complexity and results in a very simple method. Finally, the
parameters are updated following the rule ’y,(:) — ’y,(:) + I{zr = k}, with I{-} being the indi-
cator function as in the latent-class models previously considered. The PEO model is effective
in terms of computational cost, while at the same time, it provides a good performance. We
depict an example with synthetically generated data in Fig. 4.3.

4.2.2 Sampling Alternatives for Approximate Inference

As a second approximation to the hierarchical model and also based on Nazébal et al. (2016),
we may use the full vector of the posterior probabilities from latent variables, p(z:|x:). Simi-
larly as Nazabal et al. (2016) does, multivariate pseudo-observations can be considered. That
is, the approximation would take the new observable inputs Z; = p(z¢|x;), where 2, € SK
to satisfy Zszl ZF = 1. The main advantage of this approach is that even if the true latent
class z; is unknown, we are able to detect CPs from the sequence of posterior probabilities.
Intuitively, and similarly to the previous simplified model, the cost of marginalization is
avoided. We denote this approximation as the full posterior observation (FPO) model.

The likelihood function should be p(Z;|@), which is taken to be a Dirichlet distribution
with natural parameters n\. This decoupled parametric form simplifies the inference process
to learn the inverse variance n € R, and the mean vector A € SX. This decomposition
allows us to choose a Gamma prior for n and a second Dirichlet distribution for A. Then, we
may rewrite the probability model of the FPO approximation as

Z; ~ Dirichlet(nA), (4.19)
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Figure 4.3: Performance of the PEO simplified model. (TOP ROW:) Sequence of posterior
probability vectors p(z|x;) where K = 3 and T' = 100. Three change points are placed
at t = {25,50,75}. (MIDDLE ROW:) Sequence of point estimates z} = argmax, p(z:|x;) as
1-of-K encoding. (BOTTOM ROW:) Ground truth of change points (blue), CP estimation r}
from PEO model (red).

where n ~ Ga(k,v) and A ~ Dirichlet(3), with 8 € S¥ and k,v € R,. Now, to obtain

the joint distribution p(r¢, Z1.¢), similarly as we did in Eq. (4.14), we need to compute the

predictive integral ﬂt(r). Notice that it is equivalent to the one presented in Eq. (4.15).

To compute this integral, a strong requirement is to first obtain the posterior distribution
p(0¢|ri—1, Z1.4.—1). Without the help of any conjugate exponential system, it takes the form

Tt—1

p(Oc|re—1, Z1:0-1) = (e, Ae|re—1, Z14—-1) o< p(ne)p(Ae) szr|77m A7) (4.20)

Tt—1

= Ga(nt|’€7 V)Dlr()‘t|/6) H Dir(27|n’ra )"r)» (421)

T=1

where we have used the two prior distributions defined above with fixed hyperparameters
k,v and B. Thus, the predictive integral that we look for, becomes

Wt(r) = p(Z¢|re—1, Z1:4-1) = /p(étmtu)\t)p(nh}\t|rt71721:t71)d77td>\t' (4.22)

However, as we already pointed out, this integral is analytically intractable. Instead, we
propose to solve it via Markov chain Monte-Carlo (McMC) as follows

S
52 Pz, A7), (4.23)

where {17, A;}5_; are the corresponding samples of {n;, A;}, with S being the total number
of samples. Particularly, we use a Gibbs sampler to draw realizations from the conditional
distribution p(n:, A¢|ri—1, Z1.4—1). The equations for the conditional probabilities are given
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Algorithm 3 — Hierarchical cPD within FPO model

1: Input: Observe x1.; — obtain Z1.; = p(z1.¢|®1.¢)
2: for z; in 2,.; do
3: for r,_1 =1totdo

4: Evaluate Wt(r) =1 Zle p(Z¢| A, mi)
5: end for
6:  Compute growth probabilities: p(r: = re—1 + 1, Z1:¢)
7:  Compute change-point probabilities: p(r: = 0, Z1.¢)
8:  Compute p(21:1) = >, p(re, Z1:¢)
9:  Compute p(r|Z1:¢)
10: forr;y=1tot+1do
11: Sample 7§ ~ p(n:| A1 reo1, Z1.t)
12: Sample A{ ~ p(A¢|ng, Te—1, Z1.¢) using the RW-MH algorithm
13: end for
14: end for
by

S

Pmlre—1, Zre—1, A1) o p()p(Zr—a |1,y AT
Tt—1
= Ga(n|s,v) [ ] Dir(Zln; =" 257, (4.24)

T=1

and

Pre—1s Zr—1, ) o DA)P(Zr—t e, m AT
Tt—1
= Dir(A(|B) [] Dir(z-n; ™", A7) (4.25)

T=1

where 7771 and Aj ™! are the realizations drawn in the previous iteration of the Gibbs sam-
pler. Moreover, since there is no direct way to obtain samples from the conditionals in Eq.
(4.24) and Eq. (4.25), we propose to the use the Gibbs-within-Metropolis Hastings sampler
presented in Martino et al. (2015, 2018). The main idea behind is to employ the random-
walk (Rw) version of the Metropolis Hastings (MH) algorithm (Martino and Elvira, 2017) to
generate samples from Eq. (4.25), as this distribution typically becomes extremely narrow
when the number of latent classes, K, is large. On the other hand, samples from the condi-
tional distribution of Eq. (4.24) may be obtained in a simpler manner from the standard MH
sampler with a Gamma proposal.

The complete CPD algorithm within the FPO inference model, including the Gibbs sampler
and its versions, is summarized in Alg. 3. An important detail to consider within the present
FPO approach is that given a huge number of latent classes K, the inference process could
be still time-demanding as a consequence of approximating Wt(r). The particular issue could
be the need of a large amount of samples S, at each time-step t.

4.2.3 Robustness to Missing Data

The PEO model also allows us to consider missing temporal data. Particularly, we assume that
all missing observations in the sequence x1.; are of type MCAR, that is, missing completely
at random, which only denotes the lack of correlation among them. We denote each missing
sample as x}*. Moreover, samples that are fully observed are denoted as . The division of
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Figure 4.4: Change-point detection on the simplified hierarchical model with missing data.
(LEFT TOP ROW) Fully observed sequence z%., of point-estimates (1-of-K encoding) with
K =10. (LEFT MIDDLE ROW) Sequence z},, with random missing entries (red) (25% rate).
(LEFT BOTTOM ROW) True 7y (grayed blue), MAP estimation of change points from the
complete sequence (blue) and from the incomplete sequence (red). (RIGHT) Evolution of
change-point detection delay as the number of consecutive missings increases.

the observational set into two subsets also translates the problem to the sequence of latent
variables. In this case, we divide them into lost variables 2}, where all components of x; are
missing, and observed variables zy, which correspond to the rest of cases.

Following a Bayesian approach, we marginalize the missing latent variables z{" out in
the hierarchical ¢pPD model. Then, the corresponding predictive probability is therefore
reduced to \I!(T) f p(2*|ri—1, z1.4—1)dz{* = 1. This still allows us to maintain the recursive
methodology and hence, to compute the posterior distribution p(r|®1.+-1), even if a certain
z; is missing. Moreover, this recursivity remains unaltered since p(r¢|r;—1) is always evaluated
in a sequential manner. The corresponding expression for the joint distribution is as follows

p(re, 21:4) = Z p(relre—1)p(re—1, 21:0-1)- (4.26)

re—1

This approach for incomplete sequences presents good performance if the missing entries do
not appear as long chunks. If that were the case, the time-step ¢ for detection would only
be delayed, as the influence of very old data in p(r, z1.+) in Eq. (4.26) decreases with the
apparition of missing samples. This fact is illustrated in Fig. 4.4 where we compare the
standard PEO version of the hierarchical model with and without missings. Additionally, we
included an analysis of the CPD robustness to periods of consecutive missing observations.
The results are also included in Fig. 4.4. Thus, we can confirm with this that the hierarchical
method is robust under the presence of an arbitrary number of consecutive missing samples,
with an approximately similar delay as in the fully observed case. If more missing data
appeared, the delay would augment linearly in the same order as the increment of lost
observations.
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Algorithm 4 — INFINITE-DIMENSIONAL HIERARCHICAL CPD

1: Input: Observe z; and initialize ¢x,_,.

2: Sample z: ~ p(z¢|27.4-1)

3: if Zt = Kt—l + 1 then

4: Initialize ¢r, _,+1

5: end if

6: Compute p(z: = k|27.,—1),Vk < Ky—1 + 1

7: Compute E[[{z; = k}|zt.—1, w0, @0 V],V < Kio1 + 1
8: Update parameters {@k}f:t;ﬁ_l using Eq. (4.31)

9: Calculate z{ = arg max(p(z¢|21.t_1, Tt, {c,bff)}f:tjﬁl)
10: if zf = K;—1 + 1 then

11: Ki=K;_1+1

12: end if

13: for s =1 to t do

14:  Evaluate \Ifgr) using Eq. (4.29)

15:  Calculate p(r+, 27.¢)

16:  Obtain p(zi.) = >_,, p(re, 21.1)

17:  Compute p(r¢|z7.¢)

18:  Update m](fz — m,(f’zfl +{zf =k}

19: end for
20: Return: r; = argmax p(r¢|z].;)

4.2.4 Infinite Hierarchical Change-Point Detection

A general problem of the hierarchical cPD approach presented in the previous Sec. 4.2 is that
the number of latent classes, K, must be known and fixed a priori. That is, K is not allowed
to vary over time, which can be a stringent condition in several scenarios. For instance, in
continual learning setups. In this section, we consider the more interesting case where K is
unknown and can be time-varying, e.g. new latent classes z; may appear as t — oo. Then,
we cannot select the order of the latent model in advance.

A naive idea would be to fix an upper bound on K and proceed as in the previous
described methodologies. However, this upper bound could not be available and, even if it
is, the performance could be poor due to the high number of parameters 8; set from the very
beginning. Therefore, the idea is to present a method for unbounded and time-varying K,
that is, a maximum size K that is incremented only when unseen events are observed.

Using a potentially unbounded number of classes in the hierarchical CPD model results in
the following problem when one integrates over 6, to compute ¥'” in Eq. (4.15). Assuming a
Dirichlet distribution as the prior p(@), which is the natural choice as conjugate-exponential
system for categorical distributions, yields a tractable integral for the predictive posterior
distribution. However, the evidence p(z;) — 0 as K grows. To overcome this issue, we can
consider an exchangeable distribution of the form

p([z14]) = Z p(214), (4.27)

z1.4€[21:¢]

where [z1.4] is a given division of classes, independent of the temporal assignments chosen. For
instance, z1.3 = {1, 2,2} would correspond to the same division of objects as z1.5 = {2,1,1}.
This is often known as the exchangeability property (Kingman, 1982; Pitman, 2002) and
is a safe assumption in the hierarchical cPD framework as we are only interested in the
probabilities of each z;, rather than in the particular indexes of the sequence zi.;.
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Chinese-Restaurant Process for CPD

The latent class model with an unbounded number of dimensions can be addressed via
the Chinese-restaurant process (CRP) (Pitman, 2002), which is a Bayesian nonparametrics
method (Orbanz and Teh, 2010). The CRP is based on the metaphor where clients (ob-
servations x;) are assigned to different tables (latent classes z;) in a sequential manner.
The assignment of classes to objects in the CRP is exclusively determined by the predictive
posterior distribution, which is given by

Mek,t—1
AL k< Ky,
p(zt:k’|21,...7zt1):{75—(114-(1 kat b
= K;_ ,

t—1+a”

(4.28)

where my, ;1 counts the number of assignments to each kth class up to time ¢ — 1. On the
other hand, K;_; is the number of classes associated with m;;—; > 1 and « is a hyperpa-
rameter, which corresponds to the natural parameterization of a symmetric Dirichlet prior
distribution. It controls how likely is the appearance of a new class in the sequential model.
Exploiting the aforementioned CRP construction, one may still compute \I/y) in Eq. (4.14),

and it is given by
U = p(af = Klrees, 21 1), (4.20)

where we now count the number of MAP estimates, z;, equal to k£ up to time ¢ — 1. Notice
that this expression is analogous to Eq. (4.28) for a given run-length, i.e. for each parallel
thread in Fig. 4.1. Then, we may proceed to compute p(r¢|z3.,).

One key comment is that, so far, we have derived a tractable recursive method to introduce
infinitely large latent class models into hierarchical cPD. However, nothing has been said
here about the process of computing MAP estimates in a sequential fashion, required in Eq.
(4.14). As the reader should note, this point has a connection with continual learning. This
task is inspired in the previous Chap. 3 and presented in the next section.

Continual Learning of the CRP

The goal now is to compute MAP estimates of z; in an online and recursive fashion. This
task also involves the estimation of {ka}kK:tl, which are the parameters of the mapping
between observations latent class variables, that is, p(a:|z; = k) = p(@i|z: = k, o). Here,
the number of classes K; increases if when sampling from the CRP predictive equation, the
results is K;_1 + 1. That is, at the beginning of each iteration, we create a new class with
emission probability given by Eq. (4.28), which is only kept if the MAP estimate indicates
zf = Ky—1 + 1. Since mixture models do not usually have closed-form solutions for the
estimates of parameters, it is necessary to resort to the EM algorithm. Importantly, the prior
distribution p(z.;) factorizes according to

p(21:4) = p(2e|z10-1)P(20-1|21:0—2) - - - p(21)- (4.30)

where we applied the chain-rule based on the contruction of the CRP. In addition, we have
slightly modified the EM algorithm to accept the proposed continual learning framework.
Concretely, the estimation of the parameter at each step is simply performed by taking one
iterate of the steepest descent method, yielding a stochastic M-step (Cappé and Moulines,
2009). The E-step amounts to

* o —1 * A —1
E[l{z = kY21, @0, @y V] = p(ze = klzty_1, 2o, @)

o plme|z = k@Y~ )plz = klzty 1),
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where gb,(;) is the estimate of ¢y at time ¢, and we have also exploited Eq. (4.28). In the

M-step, the estimate of the parameters {gok}fztl is updated based on the gradient:

¢§<‘t) A ¢§:_1) + nk,tvvkE['C(p(wlzh Zl:t)]7 (431)

where 7, ; is the (adaptive) learning rate for the kth class at time ¢. In this expression, we
have assumed that the same initial learning rate is chosen for the parameters of a given class,
but it is possible to select multiple learning rates per class. Once we have the E- and M-steps,
we can compute the posterior of z; and maximize it to obtain 2} as in Sec. 4.2. Finally, in
Alg. 4 we present all the necessary computations of the proposed recursive method at each
time instant .

4.2.5 Robust Hierarchical Change-Point Detection

The full derivation of the joint distribution p(rs, z1.t), given the hierarchical cPD model is
explained in the previous Sec. 4.2, and its particular case for a potentially infinite number of
classes K is developed in Sec. 4.2.4. However, working with sequences of MAP point-estimates
zy in both versions of the hierarchical CPD model might be sometimes problematic. It could
lead to false-alarm or missing detection problems when the underlying inference process and
particularly, the posterior distribution p(z;.¢|x1.¢) is extremely flat. That is, it presents more
uncertainty than expected. One may notice that if MAP estimates do not coincide with the
true assignments, then the CPD method will be much more noisy, leading to undesired results.

In this section, we describe a robust extension of the hierarchical CPD model to address a
better characterization of the underlying distribution at each time-step ¢, when it is not well-
fitted. For this task, we can generate pseudo-observations of the latent variables by drawing
S i.i.d. samples of the posterior distribution as z,gl), z§2), e ,z,gs) ~ p(zt|xs) Y, rather than
working with a single point-estimate z; as we do in Sec. 4.2.

The new approach addresses the question of how to deal with a subset of S samples
instead of just one (the point-estimate z}) at each time-step. A potential idea would be
to consider Monte-Carlo (MC) approximations, but it would imply to draw S x t samples
at each iteration. In the long term, this would be unfeasible for an efficient CPD method.
Alternatively, we propose to draw samples from a multinomial distribution, which in our case
preserves the original prior-conjugacy of Adams and MacKay (2007) while at the same time
is consistent with the new hierarchical version in Moreno-Munoz et al. (2018).

Multinomial Sampling for Posterior Characterization

A multinomial distribution with parameters 8; € SX and N, measures the probability that
each class k € {1,..., K} is observed n; times over N categorical independent realizations
with success probabilities 8;. This model allows us to perform an augmentation of the pseudo-
observation set, with the cost of introducing one single parameter in the model: N = S, the
total number of samples drawn from the posterior distribution p(z;|®:).

Given the sampled vector z; = [zgl),zﬁz), . .,zt(s)]T, with z; € {1,2,..., K}°, we can
define its associated counting vector as ¢; € ZX where we also add ¢} = Zle ]I{zt(s) =k} Vk.

Thus, we have that Zle c¥ = S. Having the subset of samples at each time-step ¢, we can see
the vector ¢; as an i.i.d. observation of a multinomial likelihood distribution. In particular,
it would be parameterized now by the natural parameters 8, € S that are of our interest,
and also with a parameter S € N that we already know.
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With the previous notation in the hand, we assume the following generative model,

0; ~ Dirichlet(a), (4.32)
¢ ~ Multinomial(6y, S), (4.33)

where o € Rf and the likelihood function for ¢; is

|
p(ci]0,S) = (ct7c?7...,ctK|0t75’) = L' Hzf. (4.34)

K
[Ti=s Cf

The update rule of the posterior distribution parameters has the following closed-form o' =
a + ¢;. This allows us to directly update them every time a new sample z,gs) is observed.
Notice from the Lh.s. term in Eq. (4.34) and the formal definition of ¢; that we are not
working with probabilities over the S-dimensional sampled vectors, but over their permuted
classes instead. That is, two sampled vectors are equivalent 2§ ~ 2% , iff their associated
counting vectors satisfy cs, = ¢g,. Thus, the vector 2z must be a permutation of the vector
z5 .
1For performing hierarchical CPD, we now wish to infer the parameters 6; conditioned to
each run-length hypothesis r; and its associated data @xy.,. To carry out with the inference
methodology depicted in Fig. 4.1, we need to find the predictive posterior distribution for
each r;_ variable, that is, partition hypothesis. A first step is to marginalize out the natural

parameters 6;, then we have

plerlres, 7)) :(/}xcﬂenxeﬂrpd,cﬁid>d0m (4.35)

(r)

where the predictive term is now U’ := p(e¢|ri—1, cgft)_l), and has not closed-form solution.

However, it is a function of the statistics of the model and its computation is straightforward,

NS+, Tl Dk +af )
TTis T(cf + 1) TTiey Tlaf )T(S + Sa)’

o) = (4.36)

where we have previously defined S, := Zszl af ;. Additionally, using both the binomial
coefficient definition and the Gamma function property I'(n+1) = n! for n € N, we transform
the previous expression in the following one:

S\ T E kol —1
\IIET) _ (S-FSSa ) H (Ct +O;tkfl ) (4.37)
t

k=1

The term S, grows linearly with S per time-step, leading sometimes to numerical instabilities
in the Lh.s. term of Eq. (4.37) for large values of ¢. Therefore, we consider the following
alternative, that is numerically more stable and is a result of the manipulations on the terms
of Eq. (4.37), it is

K ci—1 k ; (k—1) .
af,+7  Se +j+1
ol = -l , 4.38
,CI_IUI_IOS AR B (438)

with S (k=1 k, 1 ct for k =1,2,..., K. Importantly, notice from the previous expres-
sion and the general hierarchial cpD model of Eq. (4.14) that the computational cost always
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Algorithm 5 — Robust Hierarchical cpD

1: Input: Observe x: — obtain p(z:|y, x+)
2: Sample zt(l), zt(Q), R zt(s) ~ p(z¢|, 2+)
3: Count and build ¢,

4: for r, =1 to t do

5. Evaluate U") using (4.37)

6:  Calculate p(r¢, c1:t)

7:  Obtain p(e1:4) = Zm p(re, C1:t)

8:  Compute p(re|eci:t)

9:  Update af, =af +¢cf VEke{l,.., K}
10: end for

11: Return: r; = arg max p(r¢|ci:t)

grows linearly with S. This is the main advantage of the method, a better characterization
of the posterior p(z¢|x;) with no extra complexity. Finally, in Alg. 5, we present all steps
that must be followed to obtain the run-length estimates r} from the initial sequence of
high-dimensional observations xj.;.

The variable r} corresponds to MAP point-estimates of the run-length at each-time step
t. It is the variable that we will later use to show the performance of the CPD model, and it
recursively represents the most likely CP in the sequence.

4.3 Evaluation of Hierarchical CPD Models

In this section, we evaluate the performance of the hierarchical ¢CPD model (Sec. 4.2) and
its adjacent versions presented in this chapter. In particular, they are both the infinite-
dimensional adaptation of Sec. 4.2.4 and the robust hierarchical cPD model of Sec. 4.2.5.
For the evaluation in this chapter, we will focus on synthetically generated data that we use
for proving the performance of the models. The empirical validation on real-world data, i.e.
with application to human behavior learning and behavioral change detection, is included in
Chap. 5.

4.3.1 Hierarchical CPD Simulation

In the first experiment of this experimental section, we validate the hierarchical CPD method
using synthetic data. Particularly, we generate discrete sequences of known latent variables
z1.¢ with T = 500 instances and a dimension of K = 5 classes (future z; true assignments).
In this sequence, we introduce four change-points. Then, the generative parameters 7
for each partition are generated by sampling 7, ~ Dir(a/5,...,a/5), where we fixed a =
25. The resulting sequence zp.; is used to generate pairs of multivariate Bernoulli-Gaussian
observations following the heterogeneous latent-class model described in Chap. 2.

In this particular experiment, we only observe the given stream of binary and real-valued
observations, never the true sequence of latent variables z;.; that we now aim to infer.
To obtain the posterior probabilities over the class assignments, p(z;|®;), we apply the EM
algorithm described in the previous Chap. 2 and Chap. 3. Importantly, as we use here the
circadian covariance function model (Sec. 2.1.4), when learning from samples, we truncated
the number of Fourier coefficients to C' = 3, while the data was initially generated with C' = 2.
Later, from the sequence of posterior probability vectors, p(z1.¢|®1.¢), point-estimate pseudo-
observations were taken using the map estimator of Sec. 4.2.1. We run the whole process for
multiple initializations and K classes in the Gaussian-Bernoulli latent class model.
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Figure 4.5: Results for the synthetic experiment. Each observation x; modelled by z; was
heterogeneous, i.e. real-valued and binary features, with a dimensionality D = 24. (FIRST
ROW) Sequence of true latent variables. (SECOND TO FOURTH ROWS) Sequence of MAP
estimates of the latent variables for K = 3,4, and 5. (LAST ROW) Ground truth of cp
segments and MAP-CPD traces of r} for K = 3,4, and 5 latent classes.

ORDER  Q/LOG-LIK. (av. + std.) BIC AIC

K=2 —920.87 x 103+ 23.83  —21.11 x 10® —20.97 x 103
K=3 —20.36 x 10° £158.45  —21.11 x 103 —20.92 x 103
K =4 —20.35 x 10° £146.30  —21.10 x 103 —20.88 x 10

K=5 —20.26 x 103 + 56.41 —20.77 x 103 —20.46 x 10°
K=6 —20.27 x 10% + 27.22 —20.86 x 102 —20.49 x 10°
K=17 —20.24 x 10° + 62.18  —20.99 x 10®> —20.56 x 10°

Table 4.1: Average log-likelihood, and largest BIC and AIC metrics for 10 initializations. Best
BIC and AIC models are underlined.

In Fig. 4.5, we show the resulting estimates z; as well as r; for K = {3,4,5} and the
ground-truth of partitions. The proposed hierarchical method is able to detect with high
accuracy, although, as the number of categories K decreases, the detection presents a longer
delay. Our hypothesis is that, as long as the circadian model gets a sufficiently large number
of latent classes (e.g. it becomes more flexible and representative), the CPD model better
identifies adjacent partitions. Moreover, it is possible to choose the model order, K, in the
hierarchical cPD method using the Bayesian and Akaike information criterion (BIC, AIC).
In Tab. 4.1, we show the average and standard deviation per order, which in this case, it
indicates the correct dimensionality of the discrete latent space.
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Comparison with CPD Alternatives for High-Dimensional Data

This section shortly evaluates and compares the performance of the proposed method with
alternative CPD techniques in the literature. Particularly, we consider: i) the Bayesian online
change-point detection (BOCPD) algorithm, ii) principal component analysis (PCA) prepro-
cessing followed by BOCPD (PCA-CPD), iii) optimal partitioning (OP) (Jackson et al., 2005)
and iv) binary segmentation (BS) (Scott and Knott, 1974). Since the BOCPD and the PCA-
cPD methods work directly on the observational set xy.;, in the comparison with proposed
detector, we have considered only Gaussian observations. On the contrary, the op and Bs
methods work directly on 27.,, and we can therefore use the Gaussian-Bernoulli model of Sec.
2.1.2. Moreover, for the BOCPD algorithm, we have assumed a diagonal covariance model,
since a full-covariance matrix would present extremely poor detection performance as the
dimensionality increases and CPD cannot obtain enough evidence. Precisely this problem is
what we try to avoid by combining the BOCPD with a dimensionality-reduction step based on
PCA as in the second case. We keep the two components with largest variance, which yields
a transformed observation sample with only two dimensions. Then, we use the diagonal
covariance model within the BOCPD algorithm. The spirit of this dimensionality reduction
idea is similar to the one proposed in the hierarchical ¢PD framework. However, it considers
a continuous low-dimensional manifold with an orthogonal linear projection instead.

We evaluate the performance of each one of the CPD methods and the resulting metrics are
included in Tab. 4.2. Particularly, results are given for Gaussian observations of dimension
D, (with acronym Np) and the Gaussian-Bernoulli model. Here, each kind of heterogeneous
observation is also of dimension D (with acronym N'Bp). Then, in the latter case, the data
samples have a total dimensionality of 2D. Additionally, we considered two metrics, delay
and CP detection rate, for which we assumed that a CP is detected iff the method identifies
the cp location at the time-step it appears or afterwards. The data in all these runs were
synthetically generated as in the previous experiment. We set five CPs every ¢ = 100 steps.

The results in Tab. 4.2 show that the proposed hierarchical CPD method presents higher
detection rate than the competitors with sufficiently small delay. Moreover, its main strengths
compared to the original model of Adams and MacKay (2007), is that it allows to consider
extremely high-dimensional data, with heterogeneous features with arbitrary statistical data-
types and even circadian structure without decreasing the detection performance.

4.3.2 Infinite Hierarchical CPD Simulation

In this section we evaluate the performance of the proposed method. We apply the infinite-
dimensional hierarchical cpPD algorithm to real-world data, and in particular, to a sequence
of raw nuclear magnetic response measurements taken during a well-drilling process. These
data have been previously used in the context of time-series modelling and CPD analysis by
Adams and MacKay (2007); Fearnhead and Clifford (2003); JK and WJ (1996). The data
consists of 4500 real-valued univariate observations taken at a fixed sampling frequency. In
the following, we assume that the time-steps are discrete and ordered for simplicity.

To apply the proposed model, we first choose p(x:|z: = k, ¢},) to be Gaussian distributed
with unknown mean and variance, that is, ¢, = {p, 0,%}. Moreover, the model has two extra
hyperparameters that we need to select. The first one, which is related to the CPD method,
is the parameter A of the hazard function that is used as the conditional prior, p(rs|ri_1).
In the experiments, we have selected A = 10%. The second one is the parameter «, which is
involved in the CRP construction, and controls how likely is the appearance of a new unseen
class. We set it to a = 1.0. For the stochastic M-step, we use two different adaptive learning
rates for the mean and variance whose initial values are given by 7, = 1.0 and 7, = 0.02.
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BOCPD PCA-CPD HIERCPD

model delay rate delay rate delay rate

No 22.30 £20.02 0.92 24.35+25.51 0.68 22311879 0.88
N; 18.414+£9.88 096 2042+13.57 0.76 1256+6.51 1.0
Nio 10.54 £885 096 14.45+£12.21 0.8 8.71+4.83 0.96
Noag 742+£761 0.84 1545+10.22 0.88 8.76+5.35 1.0
Nso 9.06+£297 076 11.81+£1049 0.8 8.39£3.34
Nioo 6.36£1.93 0.76 13.75+13.47 0.8 9.56 £7.10
Nago 4.41+£1.18 0.6 12.06 £9.45 0.64 13.39+£12.27 1.0

opP BS HIERCPD

model delay rate delay rate delay rate

NBy 4.26 + 6.06 0.6 1.254+0.95 0.16 25.754+21.26 0.8
NBs 2.07£232 0.56 1.02+1.22 0.2 15.19+£9.98 0.84
NBg 0.83+1.21 072 201+£182 0.16 13.86+7.32 0.92
NBayg 1.06+1.38 0.64 250+1.73 0.16 13.08+10.35 1.00
NBsx 1.01£0.97 0.68 1.01£1.58 0.36 11.21+6.67 1.00
NBio 191+£326 084 0.77+£083 036 13.83+£13.58 0.96
NBag 1.61+2.06 084 3.04+5.81 0.36 13.54+891 0.96

Table 4.2: Hierarchical CPD (HIERCPD) vs. benchmark of change-point detection methods:
Bayesian change-point detection (BOCPD), principal component analysis (PCA-CPD), optimal
partitioning (OP) and binary segmentation (BS). The upper table shows the results for
Gaussian observations with different dimensionality (ANp), and the lower table shows the
case with heterogeneous data Gaussian-Bernoulli (MBp). Best delay and rate metrics are
underlined.

Importantly, we made both learning rates decrease at a rate of 2% per time-step if z; = k
was selected as the most likely latent class. This choice avoids adapting very old parameters
with new incoming data.

Fig. 4.6 shows the results obtained for t = 4500 iterations.! The unbounded model is
compared with the hierarchical cPD approach with an upper bound on the number of classes
K = 10. In the upper figures in Fig. 4.6 we can see the well-drilling signals, as well as the
latent-class assignments in different colors for both approaches. As can be observed, the
final number of classes inferred by the CRP was K500 = 7. In the bottom figures we show
the MAP estimates of the run-length, r;. These figures show that the MAP estimation of the
run-length is well aligned with the signal transitions. Furthermore, it should be noted that
the proposed method is more robust to outliers as can be seen for ¢ = 200 and ¢ ~ 600, where
the outlier is captured by the latent class assignment but a CP is not declared. In fact, the
MAP estimate of the run-length is noisier for the method with a fixed number of classes than
for the unbounded model.

In addition, the latent-class assignments look more consistent in the case of the infinite-
dimensional hierarchical CPD algorithm, where both the initial and final samples of the well-
drilling signal are assigned to the same latent-class. The main two advantages of the method

LA video demonstration of the complete simulation of the algorithms is available at https://www.youtube.
com/watch?v=ymZPNURhtIc.
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Figure 4.6: Upper row plots show the well-drilling univariate signal for the unbounded latent
variable model (left) and the hierarchical cPD method (right) with fixed K. The colours
represent latent-class asignments. Bottom row plots show the MAP estimates of the run-
length.

can be observed from the empirical results. First, the method uses past learned parameters
to infer assignments over very recent data, that is, assignments coincide along time. Second,
the CRP is able to discover new unseen latent-classes without fixing the model complexity
a priori and avoids the overlapping with previous discovered classes. For instance, if a new
latent class k* appears, it would not coincide with the previous learned ones, and neither
their parameters.

4.3.3 Robust Hierarchical CPD Simulation

In this section, we evaluate the performance of the proposed multinomial sampling extension
for hierarchical cpp. Particularly, we study the improvements of the method (named here
Multinomial cPD), over synthetically generated data. The core idea of the experiment is that
we may increase or decrease the quality of inference artificially over the latent variables to
prove that detection is still reliable. In all the experimental results, we consider that a CP is
detected at a time-step ¢t = t’ iff there is an abrupt decrease from r},_; to r},, which means
that the CP ocurred at instant ¢t = ¢’ —r},. We set r} < r;_; as the condition for detection.

The Multinomial ¢PD model has been applied to sequences of synthetic data and the
results have been summarized in Fig. 4.7 and Tab. 4.3. In the these cases, we evaluated the
performance of the method for several sampling sizes S, drawn at each time-step and for
different levels of flatness given the generative posterior distribution.

We have also fixed the number of CPs on the latent sequence to five, that is, six partitions.
Each one occurring every 100 time-steps. Moreover, we have run the algorithm for a total
period of T' = 600. In this experiment, the posterior distribution p(z;|®;) over the latent
variables is simulated. For each partition p, we generated a set of 100 K-dimensional vectors
0,, from a Dirichlet distribution with natural parameters 3,. At the same time, these 6
subsets of parameters 6, were sampled from an uniform distribution in the interval (0,7).
Here, the hyperparameter n defines the flatness of the synthetic posterior distribution. Intu-
itively, a lower 1 value would imply a flatter generative distribution of the simulated posterior
probabilities. The hyperparameter K was fixed to 20 classes for the whole experiment. In
the proposed model, each S-dimensional vector is sampled from a distribution Mult(8,, S),
where 8, is the vector previously presented.

The conditional prior probability of the run-length r; is a function of the hyperparameter
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S =10 S =50 S =100 HIER.
n CPD RATE CPD RATE CPD RATE CPD RATE
2.0 - 0.12 0.32 -
3.0 0.52 0.88 0.84 0.2
4.0 0.88 0.96 1.0 0.76
10.0 0.96 1.0 1.0 0.96
S =10 S =50 S =100 HIER.
7 DELAY DELAY DELAY DELAY
2.0 00 5.33+2.30 5.37+1.59 o0
3.0 530+£209 568+3.01 4.204+2.17 10.04+7.87
40 3574215 3284253 2.304+0.96 5.27+2.00
100 2.06+1.77 1324039 1.31+0.40 3.524+2.00

Table 4.3: Multinomial cPD vs. Hierarchical CPD metrics. All delay values (x10). Best delay
and rate metrics are underlined.
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Figure 4.7: Comparison between the multinomial CPD, based on sampling from the latent
class posterior, and the baseline hierarchical cPD method. The resulting cps (bottom figures)
are considered as jumps over the MAP estimates (solid lines) of the run-length r; V¢t. Dashed
lines indicate the true change points. (LEFT COLUMN) Each row represents an example with
a more or less flat posterior distribution (upper figures) indicated by 1. Colors of the 7, lines
indicate the number of samples S used. (RIGHT COLUMN) Results for cPD from different
point-estimate pseudo-observations 27, (upper figures).

A~!, which controls the initial probability of a change. Thus, the higher ) is, the less probable
a change is. For this experiment and having the Multinomial CPD model, we have defined it
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as a function of the number of samples A = 10° to make both comparable the terms involved
in Eq. (4.14) and also the results in the experiment for different number of samples. The
intuition behind this choice is that, for high values of S, we want the prior probability of
a CP to be almost zero. So that the CP occurrence is mainly determined in a data-driven
manner. However, more accurate results could be found if we tune the hyperparameter \ at
each particular case. For the comparison in Tab. 4.3 with the hierarchical cPD version, we
have consired the same setupt except for A. It has been fixed to 10?0 for stability purposes.

In Fig. 4.7, we compare the Multinomial cPD approach (left column) for different number
of samples S = {10,50, 100,150,200} with the hierarchical cPD method (right column).
Additionally, we tried several levels of flatness in the simulated posterior distribution p(z¢|x:)
via n = {3.0,10.0,50.0} (rows). In the upper figures, we show the posterior distributions of
the latent variables z; or their MAP assignments in the left colum case. In the lower figures,
the MAP point-estimates of the run-length r; are jointly shown within dashed lines indicating
the true location of CPs.

We have also summarized the delay and detection metrics of running the method under
several initializations in Tab. 4.3. Each result is given for pair of values (5, 7). In particular,
we show the average metrics of precision, defined as the ratio of cps detected for each pair
(S’,n'), and the mean and std. deviation of the delay. This is defined as the number of
time-steps between the detection event ¢t = ¢’ and the cP location ¢ = ¢ — r}, indicated. For
instance, if a CP is detected at ¢ = 150 and r}5, = 30, it would mean that the CP occurred
at t = 120, and the delay would be of 30 steps.

4.4 Discussion

In this chapter, we developed a novel generalization of the well-know Bayesian change-point
detection method of Adams and MacKay (2007), the BOCPD algorithm. Particularly, the new
framework handles heterogeneous high-dimensional observations with any arbitrary combi-
nation of likelihood functions as well as an unknown periodic structure. The set of proposed
techniques makes two main contributions to the state-of-the-art. The first one, that we de-
note as the hierarchical detector, is the probabilistic extension of the Bayesian ¢PD method
to accept latent variable models. The main benefit of this strategy is that the cPD method
now works with less complex discrete data, as the CPs are easier to be detected in the latent
representation. In the second case, our infinite hierarchical method prevents the limitation
of fixing the order of the latent variables. This is, we introduced the CRP to allow for an un-
bounded number of classes. In the context of human behavior learning, this is a key point of
contribution as we will discuss later in Ch. 5. Finally, we introduced a multinomial sampling
method that improves the detection rate and reduces the delay when using the hierarchical
cPD. The experimental results show significant improvements in the detection as posterior
estimates become less certain if high-dimensional data is difficult characterize. Interestingly,
even under good performance, the multinomial sampling method reduces the detection delay,
what in practice is a key point for its application to human behavior in medicine.
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CHAPTER b

BEHAVIOR CHANGE DETECTION

HE fundamental idea behind the application of probabilistic modelling to human behavior
T characterization is the problem of change in medicine. As we previously explored in Ch.
4, once a model is accurately learned in a data-driven manner, one can also detect anomalies,
outliers or changes given its adjacent fitted parameters. This way of determining whether or
not a point of variability exists is of particular importance in the medical applications that
we may consider in this thesis. Thus, the application of the technical contributions developed
in the previous chapters (Ch. 2, Ch. 3 and Ch. 4), and particularly change-point detection
(cpPD), is directly oriented to mental health applications in this chapter and particularly, to
the passive detection of events.

Here, we focus on psychiatric patients, in those clinical cases with severe affective disorders
with higher prevalence, i.e. depression or bipolar diseases. As long as this sort of diseases
become chronic, the life conditions of sufferers show patterns of perpetual disabilities in social,
labour and residential domains. This problem even worsens as they can be unaware of their
own disability or the symptoms that are harbingers on an imminent crisis. Our purpose in
this chapter is to provide an unobtrusive early detection methodology for relapses, which
is based on both statistical modelling and change-point detection. The final goals can be
summarized in: i) building intepretable representations of daily patients behavior for a better
comprehension and assisstance to clinicians, ii) detection of critical events, e.g. change-points
in the sequence of low-dimensional representations and iii) validation of the detected events
within clinical data from interventions in hospitals and urgencies.

We begin in Sec. 5.1 with the presentation of the first approach. We identify the mobility
patterns given a first collection of five data records. Additionally, in Sec. 5.1.1, we describe
the development of the EB2 study and the monitoring system for patients, which we will
later use for obtaining the indicators of the behavioral and clinical changes in a tool-based
manner. In the next Sec. 5.2, we extend the previous results to a wider range of patients
as well as we accept less pre-processed data. The final outcome is a unobtrusive system
that deals with both heterogeneous statistical data types and missing values. We also obtain
early indicators of crisis events from raw monitoring traces. These were recorded from mental
health patients with at least one previous suicide attempt registered. The previous estimates
are validated in Sec. 5.3, where we compare the detected change-points with the ¢rue events
registered by clinicians in their hospitalary systems.

The main core of the work in this chapter have been previously presented as peer-review
papers in both venues and journals. The first one, Berrouiguet et al. (2018), was published
in the Journal of Medical Internet Research (JMIR), in the section of MHealth and UHealth.
This work was also a collaboration with D. Ramirez and several clinicians from mental health
departments, both national and international. Particularly, we remark the collaboration
with the team led by Dr. E. Baca-Garcia and Dr. Sofian Berrouiguet from the CcHRU C.
V. University Hospital of Brest. The second piece of work, Moreno-Munoz et al. (2020c),
was recently presented in the Machine Learning for Mobile Health (ML4MH) Workshop at
the international conference NeurIPS in December 2020. This was also a collaboration with
several post-graduate colleagues, including A. Moreno, L. Romero-Medrano and J. Herrera.

91



5.1 Behavior Change Detection: A First View

The recent development of mobile electronic devices such as personal smartphones or wear-
ables has gained important attention in healthcare applications due to their ubiquitous con-
ditions for pervasive sensing. It is currently known as electronic health (e-Health) in the
literature. Particularly, the disruption of smartphones afforded new opportunities (Miller,
2012) to obtain objective, reliable and real-time monitoring data of patients outside the
ambulatory domain where standard assessment methodologies cannot be driven in a daily
manner.

However, the use of mobile electronic devices for medical studies, and particularly behavior-
oriented, is not new. For about 20 years, researchers have been performing advances on this
side. To name a few, some type of studies in collaboration with telecommunications compa-
nies gathered aggregated location traces, meta-data of call records, dial numbers and even
their duration. This valuable information helped to model the social interactions of users as
well as their routines of mobility (Calabrese et al., 2011; Gonzalez et al., 2008; Song et al.,
2010). Others initially designed their own monitoring hardware (Garbarino et al., 2014) for
getting higher precision and quality of data; these devices were usually personal digital as-
sistants (PDAs) or adapted recorders. Before the disruption of smartphones around the year
2010 worldwide, it is worthy to mention the studies in Mehl et al. (2001) for the analysis
of daily voice records, in Bolger et al. (2003) for explaining variability in the diary reports
of individuals and in Choudhury et al. (2008) for activity recognition while protecting the
privacy of users.

In the case of psychiatric applications, the principal advantage of personal mobile devices
is that their embedded monitoring systems are completely unobtrusive. This avoids direct
interactions with patients, that are often time-consuming, and limits potential counfounders
due to the self-representation. This last point is sometimes the cause of subjective data gath-
ering, strongly dependent of the true sufferer mental state. Moreover, it has also motivated
the apparition of electronic mental health (e-Mental Health) protocols, that nowadays is an
emergent field (Osmani, 2015; Firth et al., 2016; Barrigén et al., 2017; Larsen et al., 2015;
Saha et al., 2016; Marzano et al., 2015). Moreover, over the past years, both traditional am-
bulatory assessment (AA) and ecological momentary assessment (EMA) methods in clinical
psychopatology, initially in the form of paper-and-pencil questionnaires, have accepted the
presence of digital systems while keeping the idea of tracking patients behavioral dynamics.

Quantitatively, understanding how a mental patient behaves and the characteristic changes
reflected in their smartphone metadata, location traces or communication logs has appeared
as a fundamental contribution in mental health (Madan et al., 2010), that often require the
existence of ground truth metrics. In syntomatic individuals, the initial systems required
interaction with devices, e.g. text their mood state regularly, which appeared to be prob-
lematic in certain scenarios. In Canzian and Musolesi (2015), they mix both answers to
questionnaires with the periodic information about mobility and the location of patients.
Importantly, it is demonstrated that there exists an underlying correlation between the be-
havioral mobility dynamics of patients and their mood state. Indeed, they first predict
changes in the behavioral patterns of sufferers with depression from their mobility data. In
this section, we follow the spirit of this last work.

Regarding the comprehension (and modelling) of human circadian dynamics and their
adjacent digital phenotypes (Madan et al., 2010; Aledavood et al., 2015a) in affective dis-
orders, the novel pervasive services are ideally suited for capturing the behavioral states of
patients. Mainly, the objective is to capture their routines during their daily life. Existing
approaches have already explored the analysis of human behavior from numerous modali-
ties of information, such as activity recognition from wearable sensors (Sano et al., 2015;
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Taylor et al., 2017), communication registers (Aledavood et al., 2015b), app usage (Torous
et al., 2018b), text and voice recognition (Yamashita et al., 2019) and more similarly to ours,
mobility metrics (Canzian and Musolesi, 2015).

Changes in Digital Phenotypes

The detection of relapses and early intervention systems in mental health diseases have been
previously investigated in several existing approaches, mostly focused on its application to
schizophrenia (Barnett et al., 2018; Torous et al., 2017). More recent works have already
installed specialized software on mobile devices and have been successfully used to monitor
and improve medication adherence in chronic patients with mental disorders (Barrigén et al.,
2017), to detect changes (Berrouiguet et al., 2018) or even for digital phenotyping, such as in
Onnela and Rauch (2016).

The ideas presented in this chapter are related to four different scopes of research and their
applications: i) early detection of changes, often understood as relapses by doctors, ii) human
behavior modeling, iii) mobility analysis and, more technically, iv) online learning. In terms
of relapse prediction and the detection of significant changes, the method in Barnett et al.
(2018) addresses this problem using anomaly detection methods, which finds outliers using
a statistical error test. The main difference with the approach discussed in this thesis is that
we study probabilistic methodologies for change-point detection instead. In our scenario,
this family of detection models has the advantage of handling with high-dimensional and
heterogeneous data.

On the other hand, human behavior modeling and digital phenotyping via smartphones
have been largely studied since the first works related to circadian routine analysis from
longitudinal data in Pentland and Liu (1999) and, more recently, in Begole et al. (2003);
Eagle and Pentland (2009); Aledavood et al. (2015a). Our approach approximates each
individual behavior by means of their mobility patterns, similarly to Canzian and Musolesi
(2015), where they first used location traces to monitor individuals affected by depressive
mood disorders. Additionally, the understanding of mobility’ singular mechanisms in human
behavior is studied in Lima et al. (2016); Joseph et al. (2011) or Barnett and Onnela (2020).
This last one is also related to our recognition method and learns trajectories from latitude-
longituded traces even in presence of missing samples.

5.1.1 The Evidence-Based Behavior (eB2) Study

The starting point for the development of an unobtrusive detection system is the modeling of
the circadian patterns of mental health patients. To do that, we monitored their daily digital
registers thanks to a medical study approved by the Ethics Committee of the Psychiatry
Department at the Universidad Hospital Fundacién Jiménez Diaz in Madrid, Spain. The
digital information is gathered by the Evidence Based-Behavior (eB2) monitoring app, which
was also used in the study of Berrouiguet et al. (2018).

Concretely, the app under the study collects data from a wide range of sensors equipped
in patients’ smartphones, for instance, actigraphy, GPS location traces, metadata from the
Google location API, app usage logs, registers of nearby WIFI stations and Bluetooh devices.
In some cases, if activity recognition is needed, inertial measurements are also gathered.
Moreover, the app was developed to run in the background and patients do not interact
with the system, only during the initial configuration. It was also designed with battery-safe
considerations, like non-continuous storage of raw traces, automatic sleep and wake modes,
and self-relaunch if the program is shut down by the user or the smartphone is turned off on
purpose or accidentally.
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In this preliminary study, we were specially in-
terested in analysing mobility metrics from location
information, which is demostrated to be a primary
indicator of the behavioral state of an individual, for
example, of his/her depressive symptoms (Canzian
and Musolesi, 2015), and also allows for easier clini-
cal interpretation. Thus, we used traces of latitude-
longitude coordinates irregularly recorded every 3-5
minutes to build reliable representations of the pa-
tient’s mobility. This degree of temporal precision
is sufficient to capture whether a patient is active
or inactive during the main stages of a day, that is,
morning, afternoon, evening or night.

Figure 5.1: Example of the collection
of location traces recorded in the ini-
tial study for one patient. Longitude-
latitude pairs are preprocessed for pri-

In this study, we also proposed to fuse two types yacy preservation. Mobility metrics are
of mobility data. One is a distance-based metric, htained from the raw data.

e.g. kilometers travelled from the previous point,

and the other is based on the patient’s location. This is, whether a patient is near or in
some registered place of interest (Eagle and Pentland, 2009). We also assume that the
mobility phenotypes for every day can be accurately represented using time-slots of at least
one hour. These slots could be even reduced to 30-15 minutes if more precision is required in
our mobility metrics. However, the reader should notice that higher frequencies yield larger
dimensionalities, which in turn, would be in the order of hundreds and would also include
more missing values.

Raw Mobility Data Preprocessing

Based on Canzian and Musolesi (2015) and Eagle and Pentland (2009), we use the moni-
tored raw traces of latitude-longitude pairs to calculate all distances, in kilometers, between
sequential locations. For this task, using the haversine formula, we first transform every
coordinate into an euclidean projection onto R?, which is easily measurable. Moreover, to
overcome the irregular sampling of input location points, we establish a set of hourly frames
H = [ho, h1,--- , ha3], where each h; = {latn,longn}nNil collects all latitude-longitude pairs
if the timestamp is in that particular frame, e.g. 00:00-00:59 for hyg.

For each partition h; in a given day t, we compute a real-valued variable x;;, which
represents the logarithm of the sum for all wandered distances in the particular jth frame.
Together, these variables shape the observation vectors Tea € R”, that correspond to the
total log-distance covered by a patient during every single day. In this case, we assume
D = 24. Additionally, for the location-based variables, we follow a similar strategy, but
instead, we compute distances between every latitude-longitude pair in h; given a fized
location. In this case, the location used is the patient’s home or position of reference. If
one of the new values is less than a small quantity e, say 50 meters, we may assume that
the patient has been in that particular location during that moment of the day. Therefore,
we can also define the binary vectors xni, € {0,1}, where 1 and 0 mean respectively, the
presence and absence at home. Together, both @ e, and xpi, are part of the heterogeneous
daily representation x; of a patient’s mobility. An example of this multivariate representation
is depicted in Fig. 5.5.

94



5.1.2 Detailed Analysis of Selected Patients

In the initial results presented in Berrouiguet et al. (2018), an unsupervised detection method
was performed within a qualitative analysis by clinicians of a first trial sample of 5 patients
out of the 38 patients enrolled in the eB2 study between April 6th and December 14th of 2017.
The duration of the eB2 study was even larger for 2-years and controlled by the Fundacion
Jimenez Diaz and particularly, by the clinicians (doctors, clinical psychologists and nurses)
from the team led by Dr. E. Baca-Garcia.

Short Description of the Study

The participants recruited in the initial study are sufferers from the outpatient mental health
center of the Psychiatry Department in the Fundacién Jimenez Diaz, in Madrid, Spain. This
department is also part of the National Health Service and provides service to around 420,000
people in the Madrid area. The inclusion criteria for the patients in the study was to be either
male or female, more than 18 years old, already diagnosed with mood disorders and coping
with depression. Additionally, patients must be own a smartphone with Internet conection
and ANDROID or i0OS operating system.

Participants were excluded if they were underage, illiterate or enrolled in other studies
or clinical trials in the hospital. The participants had to attend, at least, to 2 appointments
with doctors before the study. The initial recruitment of the study in 2017 was of 38 patients,
and 5 of them were specifically analised with the present behavior change detection tool in
Berrouiguet et al. (2018).

The baseline characteristics of the clinical counterpart of the study were, first, to record
in-person interviews with clinicians a priori. The variables collected during the interviews
were sex, age, Patient Health Questionnaire-9 (PHQ-9) score (Kroenke et al., 2001), diagnosis
and treatment. The clinical diagnoses were made by psychiatrists and coded according to
the 1¢D-10 scale (World Health Organization et al., 1992) for mental disorders. Thus, during
each appointment, the psychiatrist in charge administered the PHQ-9 questionnare to assess
depression. These metrics were later introduced into a secured electronic health record. Each
patient was identified by a numeric code which ensured her/his anonymity. There were not
a control group in this study.

Unsupervised Modeling of Behavioral Profiles

The unsupervised modelling of profiles and the posterior detection of changes from them was
comprised in two main algorithms. The first one, was the heterogeneous latent class model
presented in Ch. 2, Sec. 2.1.2. We applied it according to the mobility metrics described
above, and the latent class estimate is what we later assume to be the hidden behavioral
profile. In the case of this study, the mobility metrics could show, for instance, whether a
patient was more active in the morning, afternoon or evening, or even non active at all. The
average mobility function during the 24h of a day is clearly seen in Fig. 5.2. Vertical axes are
on logarithmic scale, so large mobility values (more than 10km per hour) are likely vehicular
transportations, e.g. car driving, train or flights in the case of holidays. However, this last
case was not observed in our data collection.

All aggregated distances were stacked in 24-dimensional vectors, and each vector corre-
sponds to one single day per patient. We remark that the observations from different patients
were not mixed, so the modelling tool was completely personalized. The inference process of
the latent behavior as well as the learning of mean and covariance parameters was performed
using the EM algorithm. The mean vector parameters are the ones plotted in both Fig. 5.2
and Fig. 5.3. Results from patients ¢, D, E were omitted of this thesis for a reason of clarity
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e As a kind reminder,
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refers to the ability
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to identify changes
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ables rather than the
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in the manuscript. They can be found in Berrouiguet et al. (2018). Additionally, the mean
vectors, called mobility profiles by the clinicians, were used for the analysis of changes and
symptoms of patients.

In a few cases, the preprocessed data contained missing values that we also estimated. For
this task, the EM algorithm is also valid due to it can be extended under the assumption that
lost dimensions are also latent variables. We used the approach of Ghahramani and Jordan
(1994) in all the missing scenarios of the present chapter, for both Bernoulli and Gaussian
likelihood densities. Additionaly, one final detail must be signaled. The selection of the order
in the latent discrete densities modifies the output prediction of the behavioral states. That
is, how many profiles a patient may take during the period under the study. This selection
depends on the number of observations taken, e.g. number of days monitored. Hence, we used
an automatic selection procedure, based on the minimum description length (MDL) criterion
(Murphy, 2012). Later in the next versions of the tool, other selection methods were included,
for instance, Bayesian information criterion (BIC) and Akaike information criterion (AI1C). In
all cases, the maximum number of behavioral profiles rarely was larger than K = 10, even
having patients with 2-3 years data at the end of this thesis.

Unstable Behavioral Dynamics

Regardless of whether a mental health patient in the eB2 study was stable or not, the modelled
profiles might suffer changes and variabilities of different type. For example, one class may
be associated with a profile of higher variance parameter. We named this as intrinsic profile
variabilities. Moreover, we see that the largest observed behavior also includes changes from
day to day owing to weekends or public holidays. This observation led us to assume the main
behavioral pattern is not a single profile itself but an arbitrary combination of likely profiles.
This idea is the one that makes us different from other similar approaches in the literature,
for instance, in Barnett et al. (2018). This understandable as we are agnostic with respect
to the evaluation of one profile or another, and our interest lie exclusively on the transition
between profiles, not the profile.

Hence, to detect changes in mobility patterns, it is not suffice to identify changes in the
sequence of latent behavioral profiles or just unexpected outliers. Instead, we look for abrupt
transitions in the generative distribution of these profiles, that is, changes in the natural
parameters of the densities. To detect the sudden transitions or shifts, we apply change-
point detection methods. Here is where we establish the connection with the hierarchical
CcPD models presented in Ch. 5.

The key properties of the CPD detection framework developed is that it handles i) high-
dimensional data, ii) latent class assignments and iii) missing variables in the recorded col-
lections. In this preliminary study, the hierarchical detector is linked to the latent model
given mobility data. This approach will be later extended to other types of data registers
and presented in the following sections of this chapter.

Initial Assessment and Clinical Description

The pilot study showed us that the methodology could aid clinicians in the mental health
practice to detect critical relapses or other clinical changes in an unobtrusive, passive and
quick manner. However, one should notice that the events pointed by the detector lack of
interpretability, what must be done by an expert clinician. Having said this, we remark that
the initial study illustrate the potential applications of the eB2 system in the future, as an
assistance tool for patients with depressive disorders.
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Figure 5.2: (UPPER PLOT) Distance traveled profiles of patient A. The maximum number of
behavioral profiles is set to K = 8. All profiles except from the black colored show highest
activity during the diurnal hours, with differences in the intensities and the last and first
hour of mobility between the resting period. (LOWER PLOTS) Representation of changes in
mobility patterns identified by the detection method and the corresponding features dring
the study participation. Grey colored bars indicate days that are missing.

In the following lines, we shed light on the findings and results, with a few detailed anal-
yses for patients (A) and (B) and their behavioral dynamics. We remind that the clinical
assessment was assisted by the PHQ-9 questionnaires.

PATIENT A) — Patient A was a diagnosed 56-years-old woman with recurrent depressive
mood disorder and fibromyalgia. She was prescribed with a daily oral medication. She also
described regular bedtime and wake-up hours during the medical study. During the previous
clinical assessments, the patient showed high scores of depression in the PHQ-Q questionnaire,
concretely on dates April 6, 2017 and May 31, 2017. She began her participation in the
study on April 6, 2017 and continued until February 28, 2018. Her smartphone device was a
Samsung Galaxy S7 which ran on ANDROID system.

In Fig. 5.2, we plotted the mobility profiles as well as the inferred behavioral sequence
within a change-point analysis. In the lower plots, we see that five events are detected. The
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Figure 5.3: (UPPER PLOT) Distance traveled profiles of patient B. Mobility values are approx-
imately below the threshold of 10km per hour. (LOWER PLOTS) Representation of changes
in mobility patterns identified by the detection method and the corresponding features dring
the study participation. Changes are not identified by the detector, so a single behavioral
pattern is assumed to persist along the monitored time.

days between consecutive CPs are {17,15,95,54,9,113}. The days with noted changes were
April 26, May 31, August 19, September 3, October 27 and November, 5.

PATIENT B) — Patient B was a 45-years-old woman with diagnosed dysthymia. She was also
prescribed with a daily oral medication. The clinical assessment via questionnaires indicated
a trend of improvement in her depressive symptoms. Particularly, on June 7, 2017, her PHQ-9
score was 20 and on July 5, 2017 she showed a PHQ-9 of 8. Additionally, her medical records
showed an improvement during the evaluations. She initiated her participation in the study
on June 7, 2017 and finished on January, 30 of the same year. Similarly as Patient B, she
owned a Samsung Galaxy smartphone with ANDROID system.

In this case, the behavior modelling tood identified five latent profiles of mobility during
the monitored period. Fig. 5.3 shows that the method did not identify any change-point and
a single behavioral pattern persisted. The most common distance function indicates that the
most likely profile is of low-mobility, (any single hour with a distance travelled >1km). The
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findings on this particular patient are correlated with the reduction in the main symptoms
expressed in cognitive areas during evaluation.

5.1.3 Principal Findings

The pilot study on human behavior learning from mobility data showed evidence signs that
the (initial) proposed method could aid to detect relapses or clinically relevant events. This
type of events are indicated by the ML model as change-points. However, a fundamental step
for the potential use of the tool in clinical settings of mental health is the task of interpreting
the results. We remark that the model facilitates the clinical interpretation by doctors, as
the final output consists of latent discrete indicators (profiles), associated with higher or
lower mobility. The idea is to maintain this sort of structure for an easier comprehension in
a medical environment, while at the same time, incorporating new sources of data. We will
see this in the following sections of the present chapter.

Clinical Contextualization

Interestingly, the detected events of change and their adjacent profiles represented different
clinical scenarios in the study. For instance, patient B showed no change-points, whereas for
patient A, the shifts of behavior represent a worsening. In particular, the algorithm detected
this worsening on April 26, 2017 (first CP in Fig. 5.2). The PHQ-9 depression score increased
between the beginning of the study on April 6, 2017 and May 31, 2017. The participant
did not show up for the clinical interview in September 2017. Although, she continued with
the protocol and the eB2 monitoring activated, so we cannot establish clinical correlations
during that period of the study. A CP event was detected on September 1, 2017, which might
be related to the absence, but clinicians did not establish any conclusion.

Additionally, the other three patients in the study (C, D, E) represent conditions of both
improvement and worsening, depending on the specific participant. In patient D, the absence
of CPs indicates a stability in the symptoms. However, for patient E, a progressive lost of
daytime activity profiles was correlated with a clinical worsening. On the other hand, the
results obtained from patient B are an example in which the sequence of behavioral profiles
did not show any abrupt change, but there was indeed a clinical improvement. Our hypothesis
in this last case is that extra sources of information could help in the identification of this
improvement, but this analysis was out of the scope of the work at this point of the initial
study.

5.1.4 Short Conclusions of the Study

One important conclusion of the system is that both the appearance or disappearance of high
mobility profiles could be indicators of the worsening of a patient. This is important for the
study, as long as we are interested in the technical contribution of the ¢PD models, which
only indicate the presence of shifts in the underlying densities. Hence, we cannot directly
analyze the properties of profiles, something that should correspond to the clinicians. Hence,
the purpose of this preliminar work was first, to make an initial implementation of the ML
tool within mobility data from patients and second, to obtain an evaluation from doctors
about the correlation between CPs and clinical events. Both objectives were successfully
achieved. The eB2 study shows that the application of probabilistic modelling within the
cPD methods developed in Ch. 4 is feasible, advancing in the implementation of unsupervised
ML approaches in mental health.
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So far, only location-based data were used, which led to an easier preprocessing stage of
the observations, feature design and allowed for a quicker clinical interpretation. However, it
is crucial to fuse more behavioral data from additional sources, e.g. activity, social networks,
communications, in order to obtain a larger representation of the daily state of chronic
patients. As we will show in this chapter, there are specific areas of psychiatric science
were this tool has a potential impact for the well-being of sufferers, for example, in suicide
prevention.

5.2 Suicide Attempt Prevention

Severe affective disorders with high prevalence, such as depression or bipolar diseases, are
mental health illnesses that affect about 2% of the world’s population (James et al., 2018;
World Health Organization, 2019). In the worst cases, more than one million people world-
wide commit suicide every year. Particularly, 33,000 suicide deaths ocurred every year in
the U.S. between 2001 and 2009, and it is considered among the top five causes of death for
adults under 45-years-old in the same country (Office of the Surgeon General (US) et al.,
2012). Despite the efforts of national healthcare systems for reducing the number of suicide
attempts, it is still a growing problem than requires effective and efficient methods for pre-
vention. The principal strategies are usually focused on both the detection and treatment of
depression by clinicians, something than unfortunately remained unchanged during the first
decade of the century (Kessler et al., 2005).

In practice, the degree of risk and disability has been traditionally assessed by clinicians
using periodic patient reports, structured questionnaires, e.g. PHQ-9 for assessing depres-
sion symptoms, the assistance of caregivers or time-consuming evaluations during periodic
appointments. However, risk assessments of suicide involve to consider both static and non-
static factors. In the case of the dynamic factors, we may consider alcohol/drug substance
abuse, evolution of mental health disorders, post-hospitalization transition to daily routine,
social support, behavioral changes and access to clinical environments (Torous et al., 2018a).
Assessing those risks at a single point in time does not capture the dynamics of the patients.
Smartphones and new mobile electronic devices, e.g. wearables, offer a new horizon in suicide
prevention methods.

In particular, the ubiquitous conditions of smarpthones in the pockets of patients have
motivated plenty of advances in the passive assessment of mental health sufferers with high
suicide risk factors. Examples are Torous et al. (2015); Berrouiguet et al. (2019) and Robinson
et al. (2016) in the analysis of social media. In this context, we remark the apparition of new
techniques in psychiatric science based on the idea of evaluating patients out the hospitalary
areas within computerized methods. This family of methods are often referred to as ecological
momentary assessment (EMA) (Stone et al., 2007), and they aim to capture symptoms at
the moment they occur very shortly thereafter. This spirit is also seeked in the recently new
technologies developed for suicide attempt prevention.

5.2.1 Machine Learning for Suicide Events

However, it does not suffice to only monitor and record real-time variables from the daily lifes
of patients. The second step for accurate suicide prediction and prevention is the capability
of these new digital systems to analyze large collections of data. The final objective is to
generate easily interpretable summaries of the risk factors that patients are suffering via
machine learning and stastistical modelling. Several methods already achieved this goal
in a supervised manner. For instance, in Simon et al. (2018) authors use more than 300
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demographic variables recorded from the previous 5 years prior to the first suicide attempt
as the input data to a penalized logistic regression model. Another example, presented in
Barak-Corren et al. (2017), uses a similar setup to predict suicidal behavior directly from
electronic health records (EHR) with years in advance. Finally, and more similar to the
sequential scenarios considered in this thesis, Peis et al. (2019) introduces recurrent neural
networks (RNNs) to predict suicidal ideation from both EHR and EMA data.

In this section, we extend the detection model presented in Sec. 5.1.1 to develop a novel
ML methodology for the automatic assessment of daily behavioral features of mental health
patients with at least one suicide attempt. Also, we present an early detection tool of the
behavioral instabilities captured by the latent variable model. The smartphone-based system
is both passive and personalized, similarly as in the eB2 study previously described. It consists
of three main blocks depicted in the diagram of Fig. 5.4. These ones are:

i) the analysis and pre-processing of app usage and mobility raw data from patients’
mobile devices,

i1) the Bayesian modelling of high-dimensional observations within the heterogeneous
likelihood functions of Ch. 2, for obtaining discrete latent indicators of the daily
behavioral profiles of patients (as in Sec. 5.1.1),

i11) the online detection of change-points in the low-dimensional sequence of latent
behavior identifiers.

The output of the system is validated within the clinical data provided by clinicians from
urgencies and hospital interventions. The validation results are presented in the last section
of this chapter.

Passive monitoring

app logs pre-processing CPD Detection

Bluetooth
pedometer T*
location traces | B 7 I - I A7 I 2 t
00:00 12:00 23:59 >
24 hours t—1 ¢ t+1
model

Figure 5.4: Illustrative diagram of the proposed mobile-based tool for the early detection
of behavioral changes in the context of suicide attempt prevention. CPD is the acronym of
change-point detector. The x; shaded box represents the process of stacking data attributes
for building up the high-dimensional observations from raw data. The saw-tooth red line
indicates a change at time ¢.

5.2.2 Mobile Health Data

We have already reviewed in this chapter how mobile electronic devices, particularly smart-
phones and wearables, have a pervasive presence in our daily lifes. Hence, we can define
the behavioral footprint as the implicit projection made by us into the digital data that we
generate at every moment. In this secondary stage of the behavior learning approach for
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mental health, we are mainly interested in this behavioral footprint. To extend the prelimi-
nary study in Berrouiguet et al. (2018), we now take advantage of this ubiquity, and all the
available resources recorded by the eB2 monitoring app of Sec. 5.1.1. The idea is to build now
high-dimensional representations of one day, stacking more longitudinal data that the ones
captured only via mobility metrics. We remind that the medical study allowed (under the
supervision of clinicians) periodic records of actigraphy sensors, anonymized location traces,
app usage logs, nearby WIF'T stations and seen BLUETOOTH devices.

Notice that stacking new data features from several sensors turns the modelling problem
into the heterogeneous scenario, presented in Ch. 2, as long as we now have a multivariate
problem with different types of statistical variables. However, we maintain our strategy of
learning a latent discrete structure, whose interpretability for psychiatry clinicians is easier
and fits particularly well within the surrogate ¢PD method.

LONGITUDINAL DAILY REPRESENTATIONS — The first stage on the process of design the het-
erogeneous latent variable model begins now with the pre-processing of the daily behav-
ioral registers from the monitored patients. The sensed data has been stored using time-
slots of half-hour in this case. This precision for the data collection is chosen for having
~200 features per observation vector, which is of higher dimensionality than the model in
the previous medical study. To obtain a reliable representation of one day or time step
t in the sequential scenario, we choose two behavioral areas: mobility and social activity.
For the mobility features, we use the steps
count and the location traces. The last sub-
set of variables are the ones considered in
Berrouiguet et al. (2018). We also compute
the distance travelled between consecutive
points as we did in the previous Sec. 5.1.1.
Then, we generate two real-valued vectors,
one subset per data-type, ;.o € R, that
represents the total log-distance and log-
steps monitored. In this case, we considered
D = 48, so we increased the number of slots
per day.

Sequence of heterogeneous data-points @i.;

log-distance

log-steps  @home (yes/no)

For the social activity variables, such
as phone usage and home-presence indica-
tors, we obtained two binary vectors, Zuin € Figure 5.5: Multi-sensor daily representations
[0,1]”, where 1 indicated the mobile-phone  of the heterogeneous data gathered by smart-
usage and presence at gome, respectively. phones.

The metrics related to app usage are based

on the ones considered in the experiments

for heterogeneous GP models in Ch. 2. Together, the continuous and discrete variables, @y eal
and @y, compose the heterogeneous daily representation x; of a patient. An example of the
sequence of high-dimensional observations is shown in Fig. 5.5, where white bars represent
the missing features in some of the features. This partial observation problem will be trated
in the following section. Finally, we must remark the circadian pattern of the patient, visible
accross the different statistical variables. We also referred to it as the behavioral footprint
in the smartphone generated data.

@whatsapp (yes/no)

one-day data vector x;
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5.2.3 Passive Detection of Behavioral Shifts

In this scenario, to early detect abrupt changes in the sequence of behavioral observations
from psychiatric patients, we also project the observations in a lower-dimensional manifold z.
Thus, we are interested in converting the high-dimensional sequences x1.; into interpretable
discrete representations using the latent class model in Sec. 2.1.2. For this task, we infer the
underlying sequence of discrete indicators zi.; from the heterogeneous variables presented
above. Notice that this generative model corresponds to a Gaussian-Bernoulli mixture like-
lihood with ~100 dimensions per statistical data type.

Heterogeneous Behavior Modelling

In this stage of the tool, we infer the latent categorical variables z1.; that represents the type of
routine or daily circadian profile of the patient given the heterogeneous data collection. Based
on the type of circadian models described in Moreno-Muiioz et al. (2020) and in Sec. 2.1.3, the
individual likelihood terms p(@;ea1|€@) and p(@pin|0@) are multivariate Gaussian and Bernoulli
densities, respectively. We now build the covariance matrices of the Gaussian distribution
from the periodic non-stationary kernel functions in Sec. 2.1.4. The idea is to express the
short-term correlations, e.g. between daily hours, with this sort of periodic mappings. If
we assume that there are a maximum number of K behavioral profiles z; € [1,2, -, K],
generated a priori as z; ~ Cat(m;), then the vector observations are given by

wrcal,t‘zt NN(.fkaEk), (51)

Thin,t|2e ~ Ber(py,),

where p, € [0,1)2P, with D = 48, and X} as defined in Sec. 2.1.4. Thus, the likelihood
distribution model considered takes the form

K M

p($t|2t, {allm AR Ol]cw}é(:l) = H Hp(wﬂei){l‘%:kh (53)

k=1j=1

where M is now the number of heterogeneous components. To infer the sequence of latent
class variables as well as model parameters {Bk}le and the prior density hyperparameters,
we use the EM algorithm. Furthermore, the model also handles partially missing observations
and even unobserved features. We point out the three existing types of missing information
in the behavioral data from patients:

1) MISSING HOURS — Given the multivariate observation vector @, it is already possible to
find missing components randomly, e.g. time slots with no location data due to the signal
lost or low battery. To simplify the exposition, we split each sample as @; = {x?, "}, where
missing (m) values have a dimensionality dim(x}*) < J and for the observed (o) ones, the
dimensionality is dim(«?) = J — dim(«}*). Here, we use J as the total dimension of the
daily vector ;. Under the assumption that the model is MCAR (Rubin, 1976), we follow the
approach of Ghahramani and Jordan (1994) in this scenario. Hence, the missing values x}"
are treated as latent variables at each time-step ¢ and iteration of the EM algorithm.

2) MISSING REGISTERS — A practical example of this sort of missing features can be seen
in Fig. 5.5, where the binary home-presence indicators and the log-distance metrics are lost
at a few consecutive time-steps. This is understandable, as we fuse longitudinal data from
multiple sensors and information sources that are typically independent. In some cases, if
the signal is lost, location traces become null, but others as the pedometer and some apps in
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the cellular might continue working. In this case, we do consider the same approach as in the
previous example 1). Hence, a latent profile indicator z; is still obtained and lost registers are
treated as latent variables that the EM algorithm estimates and interpolates at every iteration.

3) MISSING DAYS — A subtle difference from the previous case is that now an entire day
t may be completely unobserved, i.e. the smartphone is turned off, leading to an entire
lost observation x;. The problem comes when one tries to apply EM in this case for the
interpolation of values, which is not possible as the expected values are considered to be
conditioned on the observed features. Thus, if all features in the vector x; are lost, then,
performing expectation operations does not work. Then, instead of addressing the estimation
of unobserved values " in the heterogeneous mixture model, it is preferable to directly
consider the latent class assignment z; as missing. In this case, we apply the CPD variant in
Sec. 4.2.3. An example of these lost days is shown in Fig. 5.6 as white bars in the upper plot.
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Figure 5.6: Analysis of behavioral changes for two patients in the studied population. Vertical
green and black lines indicate the frue clinical events. Upper plots show the probabilities of
each behavioral profile per day. White spaces indicate missing days. Patient A has a likely
routine profile (k = 4). Patient B turned off the smartphone after the clinical event.

The final goal of this stage is to obtain the posterior probabilities p(z1.¢|€1.¢,0) given
the heterogeneous observations, that we will later use for the detection of the behavioral
change-points in the next section.

Detection of Behavioral Shifts

We take the behavioral output sequence of circadian profiles z;.; for a certain patient, and we
aim to directly estimate the abrupt transitions in their generative distribution. An example
based on the previous definitions would be to think about a patient whose most likely routines
combines ”high-mobility” with periodic social interactions. Suddenly, if this profile becomes
less usual and it is alternated with several days of ”low-activity” across all registers, we may
consider that proportions are inverted. In the context of mental health diseases, we must be
aware of these transitions as they might be warning signs of an imminent crisis. These are
the change-points that we aim to detect, as we did in Sec. 5.1.1 with the mobility data.

In this case, the hierarchical cPD model adopted is the extended version in Romero-
Medrano et al. (2020), that we developed in the previous Ch. 4 (in Sec. 4.2.5). The main
assumption is that we cannot observe the true discrete sequence zi.; of circadian profiles z;,
but its posterior density p(z:|x;) previously computed. Then, based on Romero-Medrano
et al. (2020), we draw S i.i.d. realizations of the latent variable, such that
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zgl), zt(z), ol zgs) ~ p(z¢|xt, 0), Vi,

to fully characterize the probability over the discrete latent classes. This process leads us to
consider a multinomial probability model for the CPD, where we define the associated counting
vectors as ¢; € Z . Each ¢-th component comes from ¢ := Zf:l ]I{z,gs) = k}. Further details
on the inference process can be found in Sec. 4.2.5. Moreover, this multinomial model has
shown to increase the precision rate and to reduce the delay in the detection while keeping
low computational cost, which is a key property for the considered application.

We continuously infer the posterior probability p(r¢|z1.t) at each time step ¢, where ry is
the run-length variable in the ¢PD method. We remind that it counts the number of steps
since the last CP occured. As a consequence, we obtain a measure of uncertainty of the last
CP location given the sequence of profiles until that particular moment. For example, the
posterior density p(ri50 = 5|21.150) would indicate the probability of observing a change in
the underlying distribution of profiles happened 5 days ago, so at ¢t = 145.

Having the posterior densities p(ri|z1.1) for every patient and time-step t, we define a
mechanism for detecting shifts between different behavioral dynamics. We use the sequence of
mazimum-a-posteriori (MAP) estimates r; = arg max p(r¢|z1.¢), that are shown in red in the
Fig. 5.6. They represent, for a particular ¢, the most likely day in which the behavior changes.
From its proper definition, the optimal values r; takes values from 0 to ¢. Importantly, we
only consider that a behavioral change is detected at time step ¢t = t’ if there is an abrupt
decrease from r},_; to r;,. Based on the experiments, we set r}; ~ 0 as the condition for the
detection.

In Fig. 5.6, we included two demonstrative examples of the behavior change-point detec-
tion. In the upper plots, we can see the probabilities of belonging to one behavioral profile
or another per day. In the left-hand case, there is a likely profile £ = 4 that dominates
during the first two years (until ¢ = 700). In the meantime, there are also apparitions of
unseen profiles that the CPD indicates. It is also interesting to analyze how the combination
of behavioral profiles changes after the second event. In the case of Patient B, there is an
event next to ¢ = 100. The reader should notice the presence of white bars in the latent
profile estimation. This is due to the smartphone was turned off after a suicide attempt,
probably due to an hospitalization. Thus, the lack of monitored data avoid any prediction
since attributes are not available. Importantly, the principal event was detected a priori
within a week. The noisy behavior of the red CPD curves depends on the setup of the hyper-
parameters. We provide insights of the better configuration of the tool in the next section
within the experimental results on validation.

5.3 Clinical Validation of Events

In this section, our purpose is to validate the accuracy of the smartphone-based ML tool for
detecting the behavioral changes in mental health patients with at least one suicide attempt.
The experiments carried out typically consists of three parts: i) the modelling of behavioral
profiles from the heterogeneous data with missings, and the analysis of the sequence of
posterior probabilities p(z1.¢|x1.t,0) as in the upper plot in Fig. 5.6, ii) the application of
the cPD method, which in this case is the Multinomial extended version from Sec. 4.2.5, and
iii) the characterization of false-alarm and sensitivity rates from the timestamps of events
provided by clinicians. The data collected from patients for this clinical validation of the Cps
comes from a medical study that is described in the next section.
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Figure 5.7: Scheme of the data detection pipeline for four patients in the collection. From
left to right, up to down: {Patient #76, Patient #535, Patient #886, Patient #1823}. Green
and black vertical lines indicate the ground truth of critical events, e.g. suicide attempt or
intervention in urgencies. Patient #1823 turned off the smartphone after incoming in the
hospital.

106



5.3.1 The Smarcrises Study Protocol

The Smartcrisis study (Berrouiguet et al., 2019) is a cross-national comparative study with
outpatients from the Psychiatry Deparment in the Hospital Fundacién Jiménez Diaz (Madrid,
Spain) and the University Hospital of Nimes (France). The objective of the study is to screen
the digital footprints of mental health patients for their clinical management and to determine
the relationship between wish to die, suicide attempts as well as sleep quality.

The eligibility of the patients for the study was similar to Berrouiguet et al. (2018)
and builds on the results provided by previous psychiatry studies in the application of e-
Health tools for suicide assessment (Husky et al., 2014; Berrouiguet et al., 2014). In this
case, patients were assigned to intervention or control groups if they had a personal history
of suicide attempts or not. Patients with a current suicidal behavior disorder (according
to DSM-5), are always assigned to the intervention group. These ones have had a suicide
attempt during the last year. If there is no clinical history of suicide, patients in the study
were assigned to the control group.

The patients in both groups were monitored by two smartphone apps. One collects EMA
data (Barrigén et al., 2017) and the other is the same one used in the EB2 study. The initial
proposal for recruitment included 1000 patients between the two cross-national sites. The
main idea was to capture around 100 suicide re-attempts during the follow up period with
the monitoring systems.

Dataset Description

The final data used for the validation consists of a total of 301 outpatients clinically diagnosed
during an average period of 346 days per patient. The input attributes to the cPD model
are the ones described in Sec. 5.2.3 previously. The total missing rate was 29%, with a rate
of 25% missing values per patient. The total number of days monitored in the collection
was ~104k, and the largest register had 1492 days, a bit more than 4 years. These cases
longer than the Smartcrisis study (which began in 2018) are due to the EB2 app makes
queries to third-party installed software, e.g. of fitness type, GOOGLE maps, or the system
memory. Sometimes, these ones return data from additional moments out of the follow-up
period, which is also pre-processed for privacy preservation. Importantly, the total number
of events attempts ocurred during the monitored time was 111. The dates correspond to two
types of suidical events: i) registered attempts and ii) urgency interventions due to crisis or
self-harm. These dates are the ones used for the validation of cPs. Examples can be found
in Fig. 5.6 and Fig. 5.7, where are signaled in green and black-colored curves.

5.3.2 Performance Characterization Metrics

The detector achieves an area-under-the-ROC (AUROC) metric of 0.71 in a completely passive
and unsupervised manner. The CPD error metric of the tool is significantly over the random
guessing threshold. A key aspect of the approach is that a minimum of false-alarm rate is
required, due to the psychological costs to sufferers and caregivers in this clinical scenario.
This point causes that higher rates of detection are difficult to achieve. Additionally, we
remark that some of the suicide attempts in the collection are undetectable, since there are
cases where the timestamps correspond to missing dates. We remark that these drawbacks
make the obtained AUROC metric even more promising.

The tool can be also personalized to higher or lower probabilities of CP via the A hyper-
parameter of the CPD method. Particularly, this parameter regulates the conditional prior
density p(r¢|ri—1). We recommend to revisit Sec. 4.2 for this aspect. In addition, we choose
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a window of one-week as the warning period, that is, a CP at time-step ¢ placed six days or
less before a suicide attempt is considered a true positive. This can be also tuned to have
longer or shorter detection windows if required. In Fig. 5.8 we show three examples of the
characterization curves for the CPD model. Both the number of behavioral profiles K and
samples S have a strong aconditioning on the computational cost of the statistical method,
so extremely high values could not be considered.

Figure 5.8: Characterization curves of the behavior cPD model. (LEFT) ROC and AUROC
value under the curve. We integrated both hyperparameters in the circadian mixture model
and the hierarchical cpD method. (MIDDLE) Evolution of the sensitivity rates w.r.t. the
number of behavioral profiles considered and the probability of having a cP, A. (RIGHT)
Evolution of the sensitivity w.r.t. the number of samples used in the multinomial version of
the hierarchical cPD method and .

5.4 Discussion

This chapter developed several version of an unobtrusive ML system that can capture data
from the native sensors of patients smartphones. The preliminary results within the EB2
study and its app showed the feasibility of unsupervised detection methods in the context
of human behavior for mental health. This initial work also confirmed the insights shown
by previous studies related to mobility data, that we also aimed to extend. Using patients
data and the clinical registers provided by clinicians in the Smartcrises study, we introduced
a novel extension of the CPD tool for the detection of behavioral shifts with application to
suicide attempt prevention. In this case, we built high-precision representations of the mo-
bility and social activity from their personal smartphones. The technical advances presented
in the preceding Ch. 4 are put into practice in the detection of CPs from the sequence of
discrete behavioral indicators. The use of the multinomial type of CPD model guarantees the
robustness of results. Validation experiments on a population of ~300 psychiatric patients
shed light on the potential use of this sort of detection methods in a clinical scenario
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CHAPTER O

CONCLUSIONS AND FUTURE WORK

HE preceding chapters developed a detailed analysis of four main areas of study. Three
T of them (Ch. 2, 3 and 4) presented key technical contributions, particularly on advanced
statistical methods for different problems in the context of human behavior learning. One last
chapter (Ch. 5) put on practice the core advances achieved for the application of probabilistic
models in mental health. In this last case, we even considered fundamental contributions to
medical problems, as the task of suicide attempt prevention. In this last chapter, we survey
the principal contributions of the doctoral thesis, outlining the main results obtaining and a
detailed presentation of the main points for future research development.

6.1 Summary of Methods and Contributions

Human behavior learning from smartphone generated data, at this moment the best digital
representation of our circadian routines, presents several challenges that we have faced in
this thesis. During the doctoral project, we have identified three of these problems that limit
direct applications of state-of-the-art statistical methods on them. The first problem is the
stochastic component of our behavior and hence, of the data. Here is where probabilistic
models make their apparition, as long as they can be robust to wide variations in the high-
dimensional observations and, at the same time, maintain a well-fitting of the model for
future prediction. In addition to the existing variabilities in the behavioral records, we
believe that the assumption of regularly sampled data with homogeneous characteristics is
not realistic in this context. The blessing of the smartphone’s unobtrusive monitoring also
leads to some drawbacks. In our case, we are concerned with the flow of observed data from
differently engineered sources (and sensors), from mobile devices whose Internet connection
or power load is not always guaranteed. This idea makes us to consider an irreqular data
scenario, where data might be heterogeneous, that is, of different statistical data types, either
discrete or continuous. Also we consider a notorious presence of missing features and even
missing observations, that cannot be ignored by the model if we want a certain quality in
the performance for medical applications. Together, this irregular data conditions shape
the second problem that we identified in this thesis. Finally, the third challenge is related
to the availability of the observed objects. Motivated by mental health applications, we
consider that massive storage of sensitive data and long-time delays for producing predictive
results is not possible in our context. This consideration opens the door to the adaptation
of probabilistic models to both distributed and continual scenarios. We say distributed data
as long as we expect to deploy statistical methods that do not require to access data in
a centralized manner, e.g. perform computation directly on the smartphone, for preserving
privacy of patients and also faciliting the data preprocessing stages. The term continual
refers to the particular case of online statistical methods that allow for recursively updating
models in a sequential manner while at the same time accept the apparition of new unseen
tasks. This last topic is also connected with the final technical contribution of this thesis. We
are not only interested in modeling human behavior, but also in detecting abrupt transitions,
e.g. change-points or significant parameter shifts, under the aforementioned irreqular data
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setups.

We examine these themes, which are specifically fitted to the particular problem of hu-
man behavior learning but are also general to the actual settings in modern machine learning.
The first part of the thesis considers probabilistic methods, e.g. latent variable models, for
the problem of irregular data, and particularly, introduces several methods based on hetero-
geneous likelihood densities. This is deeply explored in the context of Gaussian processes.
We formulate the first multi-output GP model that addresses different likelihood models per
output function. The model is scalable thanks to the application of approximate inference
methods, particularly variational ones. Moreover, the ideas used for GPs are extended to
other areas of study, and we also provide a set of auxiliary properties to adapt latent class
models to heterogeneous data with 24h periodic components. These works are the central
contributions of the Ch. 2.

The second part of the thesis, which is focused exclusively on inference methods, begins by
developing a new inference scheme for Gaussian processes where the training data collection
is assumed to be distributed. In this case, the model is based on the idea of recycling already
trained GPs. Applying properties of Gaussian marginals within the infinite-dimensional in-
tegral operators, that are needed for building lower bounds in GP models, we are able to
build different global models (or ensembles) from the locally trained ones. This approach
allows to save models rather than data once these are well-fitted. Then, without the need
of revisiting any sample, new GPs can be directly obtained. It is empirically evaluated with
state-of-the-art methods and its precise performance announces promising advances on this
type of inference. In the Ch. 3, we continue with a similar setup, but now oriented to the
sequential learning problem. Particularly, the heterogeneous MOGP approach is extended to
accept collections of streaming data. This continual GP model is presented for both single-
output and multi-output scenarios. We define a new inference mechanism where inducing
points, that are typically assumed to be fixed once the sparse GP approximation is fitted, can
be re-located and even augmented in a recursive way. This adaptation keeps the encoded
uncertainty in the parameters, while at the same time, improves prediction in new areas of
the input domain.

Turning to the human behavior applications, the final part of the thesis is focused on the
problem of change, which is technically developed in Ch. 4 and its applications to mental
health reviewed in Ch. 5. This part of the thesis begins with the presentation of the change-
point detection problem. Despite that this family of statistical methods is well-known and
studied in the literature, particularly in signal processing, we consider Bayesian approaches
where new likelihood models can be introduced. Then, we analyze the main drawbacks that
sequentially estimating parameters may lead to if we consider the high-dimensional irreqular
data previously introduced. The resulting method introduces hierarchy into the change-
point detection formulation, developing a consistent latent variable model in the underlying
predictive mechanism of the method. Connected with the previous advances on irreqular data
and particularly on heterogeneous observations, the hierarchical cPD algorithm now makes
possible to detect change in multivariate sequences of different statistical nature. Several
extensions for improvement are also applied to this model, which is finally used as a medical
tool in the last chapter of the thesis.

Regarding the application side of the CPD algorithm, we dig into the medical problem of
detecting change from behavioral data. After presenting the main strategies for the passive
assessment of mental health patients with chronic affective disorders, e.g. depression or bipo-
lar diseases, we provide the details about the preliminary eB2 study. In this medical scenario,
we first applied the CPD algorithm over mobility data from raw location traces recorded by
smartphones. This initial study sheds light on the possibility of detecting abrupt transitions
in the behavioral patterns of patients during their daily life, with a potential impact on
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their quality of life. Based on this initial approach, the work is extended for suicide attempt
prevention, where the heterogeneous likelihood functions are put into practice within the
hierarchical ¢cPD model previously developed. Finally, a validation study of the detected
events within the ground truth from interventions in hospitals and urgencies is provided.
Importantly, the characterization of the tool demonstrates the viability of the method to be
deployed in clinical scenarios.

6.2 Suggestions for Future Research

We conclude this thesis by discussing future directions and open research problems that have
not been considered yet in the literature and are also related with the doctoral project. As
long as the thesis provides contributions in three main technical themes (heterogeneous data
models, GP inference and CPD methods) and one more applied to mental health, we briefly
survey the potential implications of models for new domains in the following sections.

6.2.1 Heterogeneous Likelihoods

The heterogeneous MOGP model in Ch. 2 links at least one output function to each parameter
of the likelihood densities considered. In cases where such likelihood functions requires more-
than-one output function, e.g. heteroscedastic Gaussian distribution or the chained Poisson
likehood model in Saul et al. (2016), a portion of the model is more conditioned by their
parameters than others. If we want to consider, for instance, larger categorical densities with
K>1K parameters, then other linking schemes must be assumed. Despite the problem of
modelling categorical data with GPs is currently under study in the literature, we find an
interesting application of Ruiz et al. (2018) in this context. More generally, one can intro-
duce the latent variable augmentation to alleviate the computational cost and hence, reduce
the number of latent output functions in the likelihood density. If this strategy turns to
be successful, then the heterogeneous MOGP could become ubiquitous in machine learning
modelling, for example, in classification of documents, language models or recommendation
systems. Additionally, in future work, it would be interesting to employ convolutional pro-
cesses (CP)s as an alternative to the LMC in the multi-output GP prior. Also related with
the GP setup, we may consider to automatically discover the heterogeneous data types in
advance (Valera and Ghahramani, 2017). It would avoid to type hand-made definitions of
the likelihood densities a priori and would consists of an input block in the main setting of
the tool.

6.2.2 New Perspectives for GPs

In Ch. 3, we have developed two novel inference processes for sparse GP models. In future
work for the distributed setting, it would be interesting to extend the GP prior to accept
convolutional kernels Van der Wilk et al. (2017). The idea is to introduce convolutional
structures for a better characterization of the input-space, as it is done in neural nets. This
method also accepts inducing inputs and preserves the variational sparse approximation. In
terms of distributed inference and model recycling, its contribution to image processing could
be much higher. Moreover, the framework could also adopt the functional regularisation in
Titsias et al. (2020) for continual learning applications. Precisely, we find that the continual
GP in Sec. 3.2 has important connections with other recent approaches in variational inference
methods. For example, with Ruiz and Titsias (2019) and their contrastive divergence (VCD)
based on three KL divergence terms. This idea of a triple regularized bound also emerges
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naturally in our continual learning scenario, particularly from the Bayes rule when we avoid
revisiting data. Future research lines on this side are, to substitute the multi-output Gp
prior as in the case of the heterogenous model and even consider non-linear mappings as
the mixing operator between latent functions. Moreover, the continual single-output method
could be used as the latent baseline in the multivariate time series imputation of Fortuin
et al. (2019, 2020). They use a GP to capture temporal dependencies between real-valued
latent variables that are later connected to a deep sequential variational autoencoder (VAE)
Kingma and Welling (2013). Another promising strategy would be to study the need of
increasing the number of inducing inputs M as the input domain augments sequentially. It
could be firstly specified via the recent bounds for sparse approximations proposed in Burt
et al. (2020). Finally, we may adapt both the single and the multi-output continual model
to accept non-stationary latent functions similarly to Zhang et al. (2019) or even an infinite
number of them via mixture of experts (Pradier and Perez-Cruz, 2018).

6.2.3 Latent Structures for CPD

Ch. 4 develops new adaptations of the Bayesian CPD algorithm where latent variable models
can be introduced. Due to computational purposes and the problem of interpretability in
clinical scenarios, we focused primarily in the case of discrete latent variables. However, the
hierarchical cPD framework also accepts new latent variable structures, e.g. feature-based
as in Griffiths and Ghahramani (2011). The key issue to overcome is the sequential update
of the inference, which in the case of latent variable models is not easy. We believe that a
first step forward would be to consider binary cases, and then, augment the representation
to accept even vector components. Notice that this idea also preserves the interpretability
properties that are fundamental for the quick comprehension by clinicians. Interestingly, in
Sec. 4.2.4 we made an effort for obtaining an unbounded ¢PD method in the dimensionality
of the latent structure. This would be also required if other models are considered. Finally,
we also propose factorial models, highly non-linear parametrizations (e.g. neural nets as in
Rezende et al.) or even disentangled variables.

6.2.4 Behavior Modelling in Mental Health

While we have focused on modelling tasks for irregular data, the statistical methods devel-
oped in this thesis can be also applied to multiple medical scenarios. As we discussed in Ch.
5, there is a significant interest for deploying unobtrusive detectors in the smartphones of
patients with severe mental health disorders. In particular, we developed a passive detec-
tion tool for suicide attempt prevention, that in our case, recorded data from four registers,
(log-distance, steps, presence and app usage). Importantly, there is a clear evidence that
the larger daily representations are, the better the characterisation of behavior is. Having
said this, it would be interesting to extend such representations via newer data sources and
sensors of several time scales. If privacy is well preserved, adding logs of app usage, com-
munications or text messages could be of key importance. Language models have been also
applied in the mental health context, and future evolutions of the tool could also introduce
these advances.
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APPENDIX A

HIERARCHICAL CHANGE-POINT DETECTION

A.1 Derivation of Run-length Posterior Distributions

The factorization of the joint probability distribution p(ry, 21.¢, 1.4, 0;) is recursive, and is
based on the original derivation of Adams and MacKay (2007). We first expand the joint
distribution p(r¢, 21.¢, €1.¢,0;) by marginalizing over all values of the previous run length
711, that is,

p(rt7z1:t7w1:t70t) - Zp(rtaTt—lazl:tamlzhat)

Tt—1

= Zp(rhrt*l;Zt7z1:t717wt7m1:t7179t)7 (A]-)

Tt—1

where we have divided x1.; and z1.; to simplify the derivation. The last term can be rewritten
as

p(rtyrtflathlztfhwhwl:tflaat) =
= (7, 2, T4, O¢|Te—1, Z14—1, ®1:0—1)P(Te—1, Z1t—1, T1:0—1).  (A.2)

where the right-hand side term is

P(Te—1, Z1:—1, T1:¢—1) = /P(Tt—laZ1:t71,$1:t71,9t71)d9t71, (A.3)

with p(ri_1, 21.4—1, ®1.t—1, 0:_1) being the factorized joint probability distribution at ¢ — 1.
Since the current run length 7, is only conditioned by its previous value r;_1, Eq. (A.3)
can be written down as

p(rtv Z1:ty L1:ty 075) -

= Zp(Tf,|7"f,—1)P(Zt,mt,9t|?”t—1,Z1;f,—1,$1:t—1)p(rt—17Zl:t—l,5131#,—1), (A.4)
Tt—1
where p(r¢|r:—1) is the change-point prior. Note that useless conditioned variables have been
omitted. At the same time, we may decompose
p(zhwtaatlrtflvzlztflvwl:tfl) = p(wt|Zt)p(zt‘0t)p(0t|rt717zl:tfl)a (A~5)

where we have taken into account that x; is only conditioned by its latent representa-
tion z;, which is modeled by the likelihood term p(z:|60;) given the posterior distribution
p(0¢|ri—1,21.4—1) on the parameters.

The resulting recursive expression is

p(rhzl:hwl:taet) =

o Z P(re|ri—1)p(@e] 20 )p(2|04)D(Ot|re—1, Z1:0—1)P(Te—1, Z1:0—1, T1:0—1), (A.6)

Tt—1

and can be calculated sequentially at each time step t.
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A.2 Gaussian Likelihood with Missing Data

The Gaussian distribution requires to handle missing or partial observations in this problem.
Thus, based on Ghahramani and Jordan (1994), we rewrite the likelihood as follows

real _ o,real _m,real _ -'137? 0° Zz" sz
P8, = p(af" . ] |wJ—Af<L¢} o] |[5he mim| )o@

where the blocks of the covariance matrix are given by

mmﬂw=%ww>+qﬂ[ '], (A.8)
(S0 e = g™ ™) + 07 T[T = t™] (A.9)
(S gor = g (7,87, (A.10)
(S0 o g = g (%, 4™, (A.11)

with ¢° being the time index of an observed variable and ¢™ the time index of a missing
variable.

A.2.1 Expected Complete Heterogeneous Log-Likelihood

The expectation of the complete log-likelihood, which we denote by Q, can be obtained as

t K
Q=E.pap, Lol =Y Y E. [H{Zi - k}} log 1
zjl k;l
+ 30 B [z = kY| B | logp(a?, 2716))|. (A.12)
=1 k=1

Substituting p(x¢, x*|6)) by the Bernoulli-Gaussian mixture, we obtain

Q= zt: iEz []I{zl = k}} log Ty, + Z ZE []I{zl = k}} { - glog(%’)

=1 k=1 =1 k=1
1 real,o T oo\—1 _real,o
~ Slog(I%)) - 5 (50) (=) a

real m mo 1 _real,o
E real,m |: } ) x,

( real, o) Eom wrml . {x?cal,m}

[ 3

1
2
1
2
1 —

— B [fﬂ“”] (Zp) ™ Bgrentn |27

(3

1
+ itr( LCov(@ ™)) + Egpin,m [ bin, m} log pj*
+ (1 — Ebinm [:c?in’mD log(1 — pp")

+ &P log pf + (1 — )™ O) log(1 — ug)} (A.13)
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A.2.2 Derivatives of the Heterogeneous Log-Likelihood

Let us denote the set of hyperparameters of the periodic non-stationary kernel gi(t,t’') as
i = [lk, a,;r, b,;r]T. Additionally, we refer to all variables = as the ones whose missing values
x™ have been replaced by the expected ones at each E-step, similarly to the convention
adopted in Ghahramani and Jordan (1994). The derivatives of Q w.r.t. ¥ and o are
respectively

aQ 78 ! t S 1 : = real T "'real
RN D S SYTWETEES 55 e
k k i=1 k=1 =1 1
0 [1 &
- — fZZrktr(E 'Cov(x 7”))1
61’bk 2i:1 k=1
Ly 0%\, 1 >
o n k o — o — k
= 5 3t (e~ ) k) + 5 Do (95142 )
1=1 =1

and

P 9 t K t K N _
f = [; 2D rhlog(IZ]) - %ZZr;’kaz 1}

(5 apis) k). (A1)

where oy, = E;lii, with

real,o ) om

~real T, old __ 0 0

€ = g s A . A.15
3 |:Emrea1,m [mlireal,m,]:| |:Omo COVOId (wykn):l ( )

and Cov®d(.) is the covariance sub-matrix of the given missing dimensions. Here, we have
used that

0%, 0K,
_ 7 A16
T O, (A.16)
and
0%, 0D
87 —_ 87. (A.l?)
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A.2.3 Derivatives of the Periodic Non-stationary Kernel

In this appendix, we present the derivatives w.r.t. i, a; and by, which are given by

g (t,t’ 5 o sin?(7(t — t/ sin?(7(t — t/
) o (- <<;2 YD) (st 01T

dgr(t,t') 2sin®(7(t —t')/T) ,
B P sk(t)sk(t") exp ( ) (sk(t) + s(t'))
t)sk

(rjgff(tﬂf/):2exp<—28in tt/T%)
(o (5 >
(-

aank
2 t —t")/T)
sin? )/ > (D)se(t’

(e uarem(Er)

é)gk (t,t)
8bnk
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APPENDIX B

HETEROGENEOUS MOGP DERIVATIONS

B.1 Derivation of Heterogeneous Multi-output Lower Bounds

logp(y) = 1o [ p(ulHp(Flwpwdfdu
~ 1 o PUHP(F (@) .
= 1 g/q(ﬁ ) o(f ) dfd (B.1)
_ o) 1og PYIHP(Slp(a) o
c = / a(f.u)tog PRI RO g
L (ylf)Hd I p(faslw)p(w)
= lu)g = dfdu
/dl_[ul_[lp Ju Hd 1H; 1 p(fajlw)g(u) d
D Jg Q
= [ TL I ptfaslwpatu) logplul s — > KL(a(ws)lp(w)
d=1j=1 g=1
D Jg Q

= [TLI [ tfaslwatu)dutogstyl s — > KLa(ws)lp(u)
d=1j=1 q=1
- / a(f) log p(y| F)df — Z KL (q(u) [p(u,))
D _ " Q
- / a(F)S oz p(yal Fa)df — 3 KL(g(uy)p(u,))
d=1 qg=1

D Q
-3 / a(Fa)og pyal f)dF — > KL (gl

D Q
= Z]Eq(fd) log p yd|fd Z q(uq)|lp( uq)) (B.2)
d=1 q=1
B.2 Gradients w.r.t. g(u)
First, the bound derivatives w.r.t. p,, are
) 29 - i)
a#uq L = dz:; mEq(fd) [1ng(yd|fd)} - alluq KL(Q(uq)Hp(uq))v (B.3)
VE part KL part
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where the KL part w.r.t. po,, is

0
Opty,

KL (q(uq)|p(tg)) = K, fhu,, (B.4)

and the VE part w.r.t. p,, yields

0 ~ 0 ~ . O0my
%Eq(fd) [log p(yalfa))] = Eq(Ft)[aifdlogP(ded)] Db, (B.5)
See Likelihoods
Secondly, the bound derivatives w.r.t. Sy, are
] 29 - 0
9Su, L = ,12::1 Wquq(fd) [log p(yal fa)] — W%KL(q(uq)Hp(uq)), (B.6)
VE part KL part
where the KL part w.r.t. S, is
9 ki — K- Ldiag(K ) — <! B.7
g KL(a(uollo(ur) =K'= jding(K;") 3. (B.7)
and the VE part w.r.t. S, yields
0 ~ 1 0? ~ .7 0Uqg
98, Catio [logp(yalfa)] = iEq(fd)[?ﬁlogp(ydlfd)] 78w, (B.8)
[ —

See Likelihoods

where m,4 and v4 are the corresponding mean and variance of the variational distribution
q(f4). Each one of the variational expectations on the functional derivatives is different for
a given heterogeneous likelihood (see below). The gradients identities in (B.5) and (B.8) are
similar to the ones used in Opper and Archambeau (2009); Hensman et al. (2013a); Saul
et al. (2016). This means to use

) P

55 ENGlnen [[(@)] = Exine 52/ @), (B.9)
D ey F@)] = SEnais g /(@) (B.10)
o N (z|p,02) |J\T T g NGl g2 z)]- ’

B.3 Gradients w.r.t hyperparameters

Applying the chain-rule and assuming the matrix derivatives %—‘g‘ and ‘g—‘% given for any arbi-
trary matrix A dependent on the hyperparameters, we must compute the following gradients:

oL oL and oL
0K, 0Ky, ju, Odiag(Ky, ; 1a;)

(B.11)

In this section, we denote Kgy = Ky, ju, and Kaiag = diag(Ky, 5, ;) for simplicity in the
following expressions. Then,
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Q

oL 0
K, ~ Z o, ot [logp(val )] (a(ug)llp(uy)),  (B.12)
q :
oL D Ja g -
K ZZ@?Eq(fd)[Ing(yﬂfd)]» (B.13)
dq d=1j=1 " rdq
oL D Ja
K +: = ZZ 8K q(fd)[logp(yd|fd)] (B.14)
diag d=1j—1 diag
where
0 1 - B B - -
g KL (a(ug)llp(ug)) = 5 < — (K 'S0, Ko T = (K ) T g, (K T+ (K 1)T> :
q
(B.15)
and
9 3 om
aKqEqdd)[lng(yﬂfd)] = I E, 7, [log p(yal fa)] 8Kd (B.16)
0 ~ 1 0vg
+ av, B [log p(yalfa)] oK,
9 r 0 8md
a?dqlfiq(fd)[logp(ydzlfd)] = 7y [og p(yal fa)] o K, (B.17)
0 re ﬁvd
+ T%Eq(ﬁi)[logp(yd\fd)}@,
9 r3 0 e vy
8KdiagEq(fd)[logp(yd|fd)] = %Eq(fd)[logp(yd\fd)} TKaing

B.4 Likelihoods and link functions

To include any new distribution, we must derive the following expressions for each heteroge-
neous likelihood p(yq|fs):

1. Log-Likelihood function log p(yq] fd) for VE and the predictive distribution.

2. First order derivatives % log p(ya| fd) for VE in gradients.
3. Second order derivatives —~ log p(ya|fa) for VE in gradients.

4. Mean E[yq] fd} and variance var [y,| fd] for predictive point-estimates.

B.4.1 Heterogeneous likelihood syntaxes

In our code, we implemented a simple manner to define the heterogeneous likelihood for
combinations of an arbitrary number of likelihood functions. The assignment of LPFs to
parameters is done automatically. Some examples are given below:

e likelihood_list = [Gaussian(), Gaussian(sigma=0.5), Exponential()]
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Table B.1: List of the used linking transformations between latent parameter functions

(LPFs) f and the heterogeneous likelihoods. Note that many other valid mappings between
parameters and LPFs are allowed.

LIKELIHOOD LINKED PARAMETERS Number of LPFs f
Gaussian wlx) = f, o(x) 1
Heteroscedastic Gaussian w(x) = f1, o(x) = exp(fa) 2

; _ _exp(f)
Bernoulli plx) = Trexn(F) 1
; _ exp(fx) _
Categorical pr(x) = T T exo(F) K-1

Exponential B(x) = exp(—f) 1
Poisson Ax) = exp(f) 1
Gamma a(x) = exp(f1),b(x) = exp(f2) 2
Beta a(x) = exp(f1),b(x) = exp(f2) 2

e likelihood_list [HetGaussian(), Bernoulli(), Categorical (K=3)]

e likelihood_list

[Gamma (), Categorical(K=5)]
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APPENDIX C

RECYCLABLE GAUSSIAN PROCESSES

C.1 Detailed Derivation of the Lower Ensemble Bound

The construction of ensemble variational bounds from recyclable GP models is based on the
idea of augmenting the marginal likelihood to be conditioned on the infinite-dimensional
GP function fo. Notice that f,, contains all the function values taken by f(-) over the
input-space RP, including the input targets {z;}Y , the local inducing-inputs {Z;}%_ | and
the global ones Z,. Having K partitions of the dataset D with their corresponding outputs
vy ={y1,Y2,...,Yx}, we begin by augmenting the marginal log-likelihood as

log p(y) = logp(y1, Y2, ..., Yx) = log/p(y,foo)dfoo, (C.1)

that factorises according to

log / (Y. foo)dfro = log / Dy Foo)D(foo) Ao (C2)

where p(y|feo) is the augmented likelihood term of all the output targets of interest and
p(foo) the GP prior over the infinite amount of points in the input-space RP. This last
distribution takes the form of an infinite-dimensional Gaussian, that we avoid to evaluate
explicitly in the equations. To build the lower bound on the log-marginal likelihood, we first
introduce the global variational distribution q(wu.) = N (u«|p«, Sk) into the equation,

g\ U
lozp(u) = ot [ p(ul ol =105 | S0l Frdpl )
_ q(u)
= log 2w )p(y\foo)p(foo;éu*Iu*)p(u*)dfoo#u*du*- (C.3)
Notice that the differentials df., have been splitted into dfscy,du«, and at the same
time, we applied properties of Gaussian conditionals in the GP prior to rewrite p(fs) as
P(foostu. [t )p(us). When the target variables u, are explicit in the expression, our second

step is the application of the Jensen inequality twice as it is done in the reparameterisation
of (Gal et al., 2014), that is
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10gp(y) = log // Z(Z:;p(yUoo)p(foo;éu*|u*)p(u*)dfoc;éu*du*

—10g [ [ )l el )2 o

= log (Eq(u*) [Ep(foc;éu* lus) [p(y|f°°)§(;t:)} })

(ux)
> Equ.) [log (Ep(fw#“*'“*’ [p Wif) p(u*)m

q(ux)

pPlUx
+ s [Bies [ (1 22| <o (0
q(us)
Then, if we have Eq. (C.4), which is the first version of our ensemble lower bound Lg, we
can use the augmented likelihood term p(y|foo) to introduce the local approximations to f
instead of revisiting the data. This is,

Le= Eq(u*) {Ep(fo#u* lws) {Ing(mfoo) +log <§EZ:§)H

=Eq.) |:]Ep(f00¢u* lus) [logp(y|fso)] — log (Q(’u*) ):|

p(u)
K q ’u,*
=Egu.) |Ep(foopunun) [Z logp(yklfoo)] log <p () ]
k=1
S a(us)
=Eq(u.) L;E (oo, |un) 108 D(Yk|foo)] — log (p(U*)) , (C.5)

where the log-ratio q(u«)/p(u«) acts as a constant to the second expectation Ep¢_ . |u.)[']
and we applied conditional independence (CI) among all the output partitions given the latent
function fo. That is, we introduced p(y|fs) = Hszl p(Yx|foo) to factorise the expectation
term in Eq. (C.5) across the K tasks.

Under the approximation of p(yx|fs) obtained by inverting the Bayes theorem, we use
P(Yk|foo) = qr(foo)/Pr(foo) to introduce the local posterior distributions gx(-) and priors
pr(-) in the bound Lg. This leads to

L= Eq(u*)

K
Y Ep(fap. ) 108 P(Yr] fo)] — log <ZEZ;>]

k=1
5t o (45)] e ()]
s b () e (22

where we now have the explicit local distributions gi(ug) and pg(ug) on the subsets of
inducing-inputs {Z;} ;. The cancellation of conditionals is a result of the variational
factorization (Titsias, 2009a). Looking to the last version of the bound in Eq. (C.6), there is

~ Equ.)

, (C.6)

122



still one point that maintains the infinite-dimensionality, the conditional prior p(foosw, [t+)
and its corresponding expectation term Epr_ . |u.) []. To adapt it to the local inducing
variables uy, we apply the following simplification to each k-th integral in Eq. (C.6) based
in the properties of Gaussian marginals (see next sections),

Ep(fupu lus) [log (q’“(uk)ﬂ = / P(foortu. [u) log (W) dfoortu.

pr(ur) Pr(uk

qk(uk))
= o, up)s Wk|Us) 1o Af cotfu, uydu
//p(f £ g} Wk |Ws) g(pk(uk) Foort{un up y AU

_ /p(ukm*) log <qk(“’“)> dutg, = By, ) {log (q’“(“”“))] . (@)

Pr(ug) Pr(ur)

This is the expectation that we plug in the final version of the bound, to obtain

St ()] v ()]
- e e o (829 B o (223

£5 = ]E‘I(u* )

Pr(uk) p(ux)
_ éEq(u*) i [log (2 ] - L gt )

= Ege(un log au(ur) — log pr(up)] — KL [g(us)|[p(us)],  (C.8)
k=1

where gc(uy) is the contrastive predictive GP posterior, whose derivation is provided in
the next section C.1.2. Importantly, the ensemble bound in Eq. (C.8) is the one that we
alm to maximise w.r.t. some variational parameters and hyperparameters. For a better
comprehension of this point, we provide an extra-view of the bound and the presence of
(fixed) local and (unfixed) global parameters in each term. See section C.1.3 for this.

C.1.1 Gaussian marginals for infinite-dimensional integral operators

The properties of Gaussian marginal distributions indicate that, having two normal-distributed
random variables a and b, its joint probability distribution is given by

X X
,b — N Ha , aa ab:|) ,
pla.b) <[I~tb] |:Eba by
and if we want to marginalize one of that variables out, such as [ p(a,b)db. It turns to be

/ p(a,b)db = p(a) = N (e, Sa).

This same property is applicable to every derivation with GPs. In our case, it is the key
point that we use to reduce the infinite-dimensional integral operators over the full stochastic
processes. An example can be found in the expectation Ep¢_ . |u.) [] of Eq. (C.6). Its final
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derivation to only integrate on wuj, rather than on fuo ., comes from

u*) :p(foo;é{u*,uk,}7uk|u*)
— N <|:mfoo¢{u*,uk}lu*:| |: Qfoo;e(u*,uk}\u* Qfoo¢{u*,uk}7uk|u*:|>

Moy |un Quk,foo#u*,uk}lu* Quklu*

p(foo#u*

and if we marginalize over foo—.{u, u,}|t«, ends in the following reduction of the conditional
prior expectation

B sy o)) = / D(Fooran [162)9(t)d F o,
= //p(foo;é{u*,uk}aUk|u*)g(uk)dfoo;£{u*,uk}duk

- / Pk ) g (), = By l9(us)], (C.9)

where we denote g(uy) = log (qr(uk)/pr(ux)) and we used

/p(foo;&{u*,uk}vuk’|u*)dfoo7é{u*,uk} = p(ug) = N(muklu*quklu*)'

C.1.2 Contrastive posterior GP predictive

The contrastive predictive GP posterior distribution gc(uy) is obtained from the nested
integration in Eq. (C.8). We begin its derivation with the Lh.s. expectation term in Eq.
(C.8), then

k
55t s (3]t
:é / ( / q(u*>p<uk|u*>du*)log (%) duy,, (C.10)
ge (uk)

where the conditional GP prior distribution between the local inducing-inputs uj and the
global ones ., is p(ur|ux) = N (ug|my)., Qy.) with

T -1
my = K Koy us,

T pe—1
Q)+ = Ky — K, K K,

and where covariance matrices are built from [Ku.l,, ,, = k(zm,2n) With 2m,2, € RP.
Finally, the contrastive predictive GP posterior g¢(u) can be computed from the expectation
term in Eq. (C.10) as

/ 0w p(ur ) dun = g (uz) = N (wilme, Sc), (C.11)

where the parameters m¢ and S¢ are
mec = KIkK;*lu’*ﬂ
Se =K, - KL K18, — KK K.

124



C.1.3 Parameters in the lower ensemble bound

We approximate the global approximation to the GP posterior distribution as ¢(f) =~ p(f|D).
Additionally, we introduce the subset of global inducing-inputs Z, = {2,,}M_; and their
corresponding function evaluations are u,. Then, the ezplicit variational distribution given
the pseudo-observations uy is q(us) = N (4|4, Si). Previously, we have obtained the list
of objects & = {&1,&,...,Ek} without any specific order, where each & = {¢k, Vr, Zi},
¢ being the corresponding local variational parameters py and Sk.

If we look to the ensemble lower bound in Eq. (C.8), we omitted the conditioning on both
variational parameters and hyperparameters for clarity. However, to make this point clear,
we will now rewritte Eq. (C.8) to show the influence of each parameter variable over each
term in the global bound. We remark that {¢x, 1, 7, are given and fixed, whilst {¢., 1.}
are the variational parameters and hyperparameters that we aim to fit,

K

Le(Durthx) = D Boeunlesp) 108 @(un|dr) —og pi(welth)] — KL [g(u]ds ) [p(ex]tp)]
k=1

We remind that the global variational parameters are ¢, = {ft«, S« }, while the hyperpa-
rameters would correspond to v, = {{,0,} in the case of using the vanilla kernel, with ¢
being the lengthscale and o, the amplitude variables. The notation of the local counterpart
is equivalent.

The dependencies of parameters in our Pytorch implementation (https://github.com/
pmorenoz/RecyclableGP) are clearly shown and evident from the code structure oriented
to objects. It is also amenable for the introduction of new covariance functions and more
structured variational approximations if needed.

C.2 Distributions and Expectations

To assure the future and easy reproducibility of our recyclable GP framework, we provide the
exact expression of all distributions and expectations involved in the lower ensemble bound
in Eq. (C.8).

C.2.1 Distributions

The log-distributions and distributions that appear in Eq. (C.8) are logq(uy), logp(us),
q(us), p(us) and gc(ug). First, the computation of the logarithmic distributions is

-1

1 1
log q(ux) = log (N (ur|pr, S)) = — 5wk — p) " S (e — ) — 5 log det(27Sy),

1 _ 1
log p(uy) = log (N (ur]0,Kpx)) = — =) Kl ug — B log det (27 Ky ),

2

while q(u.) and p(us) are just g(us) = N(w|pes, Sx) and p(us) = N(u.]0,K,x). The
exact expression of the distribution g¢(uy) is provided in the section C.1.2.
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C.2.2 Expectations
The K expectations in the Lh.s. term in Eq. (C.8) can be rewritten as

K

Z ]ch(uk) [log qk (uk) — log pi (uk)}
k=1

Mx

Ege (ur) 108 @k (ur)] — Eqe (uy) log pre(ur)]]

) [(

where the k-th expectations over both log ¢x(ur) and log pi(ug) take the form

k:l

- <10gpk(uk)>qc(wj . (C.12)

qc (ug)

<10g qk(uk)> f% (Tr (S,;lSC) + (m¢ — uk)T.S'k_l(mC — pi) + logdet (278%)) ,

qc (uk)

1
<10gpk(uk)> =-3 (Tr (K,:lec) + mgK;klmc + log det (27?Kkk)) .

qc(uk)

C.3 Combined Ensemble Bounds with Unseen Data

As we already mentioned in the manuscript, there might be scenarios where it could be not
necessary to distribute the whole dataset D in K local tasks or, for instance, a new unseen
subset k+ 1 of observations might be available for processing. In such case, it is still possible
to obtain a combined global solution that fits both to the local GP approximations and the
new data. For clarity on this point, we rewrite the principal steps of the ensemble bound
derivation in section A but without substituting all the log-likelihood terms by its Bayesian
approximation, that is

K
q
Le =Equ) |Ep(fooru, us) [Z log p(Yx | foo) +10gp(yk-+1|foo)] —10g o ]
k=1
K
q
=Eq(u.) [ZE (Foorn [u) 108 P(Yk|foo)] + Ep( £ oy, i) 108 P(Yrot1|foc)] — g(p ﬂ
k=1
= ar (ur) q(u
=E, Epias lu.) |10 H)]—HE w.y [lo 10( )
q(wx) |J; (k| *)|: g(pk(uk) P(Frot1l *)[ gp(yk-l-l'fk-i-l g p
K Ni41
Z g (ur) 108 ar(ur) — log pr (u)] Z Eqs.) ogp(yil fi)] — KL [q(u.)[[p(u)]
- (C.13)
where ¢(f;) is the result of the integral ¢(f;) = [ ¢(u«)p(fi|us)du, and we applied the

factorisation to the new (k + 1)-th expectation term as in Hensman et al. (2015a).
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APPENDIX D

LCONTINUAL MULTI-TASK GAUSSIAN PROCESSES

D.1 Complete derivation of continual lower bounds

To derive the continual lower bound for each iteration of the sequential process, we use the
following expression

log p(y) = log / (@l foo)p(foc)dfoe = log / D(Yows Yot foo )P foo ) df
=108 [ Dt o )pltiral fc ) > Lo (D.1)

where we applied the Jensen’s inequality. Then, the integral of the logarithmic distributions
is

Le= / 108 P (news| foe )P (Hod | foc )P (foo )l

P(Ynew| foo )P(Yold| foo)P(foo)

[ e tog Pl P I ) gy

P(Ynew! foo)q(foo|Potd)P(foo| Pnew) df
P(fool®o1a)d(fos|Pnew) =

p(ynevv‘fw) (foc;ﬁu ‘u*a"pold) (u*|¢01d) (fOO"‘:bnew)df
(foowjold) (fOC‘(bneW) =

p(ynew‘fOO) (fomﬁu ‘u*ﬂbold) (u*|¢old) (fwiu*‘u*v¢neW)p(u*|¢neW)

(foo;é'u, Iu*a'wold) (u*|'¢'01d) (foo#u*‘u*a¢new)Q(u*|¢new)
(ynew‘fOO) (u*|¢old) (u*|"7bnew)

Q(fmld)neW) log

q(foo|@new) log

q(foo|Puew) log

dfoo

= oo |Pnew 1 df
q(f |¢ ) (u*"‘j"old (u*‘(bnew) f
_ _ q(u*|(r/)new)
= [ ¢(fool®new) 108 P(Ynew| foo ) df o /Q(fOO|¢)HGW) log (% |[mow) df oo
CA)
q(foo|Pnew) log P(enlPod) df o

Q(.foogé{fncw,u*}v fnewa U |¢new) 1ng(ynew|fnew)foo;aré{fr,cw,u,,‘}d.fnewd'l"/*

g\ U ‘d)ncw)
PlUx |'lpnew)

(

(

Q(u ‘d)old)
P(u*llbod)dfm#u s

q(.foo;éu 7u*|¢ncw) IOg d.foo;éu,«du*

_|_

Q(fooiu* ; Use|Prew) log

Q(u* ‘(ﬁnew)
D [Prew) g0,
p(U* |¢new) “

duy, (D.2)

Q(u* ‘d)new)p(fnew |u*) log p(ynew|fnew)d.fnewdu* - / Q(u* |¢new) log

q(u* ‘(ﬁncw)a(u* |¢old)
q(u* |¢new )p(u* ‘wold)
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where we assumed u, to be the new subset of inducing-points uyey, then

Q(unew | ¢new)

= new 1 new | J new d new new new 1 7(1 new
[ 108Dt Fu ) = [ (0 o) o S Coe

q(unew|¢new) . q(unew|¢new)
- / q(Unew|Pnew) log Pt Pora) dUnew / q(Unew|Pnew) log Tt [Bora). dUne,
= EQ(.fnew) [logp(yncw|fncw)] - KL[q(uncw|¢ncw)||p(uncw|¢ncw)]
+ KL[Q(unew|¢new)||p(unew|’lpold)} - KL[Q(unew|¢neW)|‘E]V(unew|¢new)}- (D3)

It is also important to rely on the variational expectation terms for the likelihood distributions
where ¢(frew) intervenes. Particularly, we can take the explicit vector values upey for the
implicit inducing points notation w,. Then, the general expectation integral takes the form

]Eq(fuew) [IOg p(ynew ‘ fnew)] = / Q(u* ‘ ¢new)p(.fnew |u*) log p(ynew | fnew)dfnewdu*
= / Q(unew | Grnew )p(.fnew |unew) 10g p(ynew ‘ fnew)dfnewdunew
= / Q(uncw | ¢ncw )p(fncw |uncw)duncw 10g p(yncw | fncw)dfncw

- / 0(Faon) 108 D(news| Faow)dFcs (D.A)

and considering we denote ¢(fnew) as the expected variational distribution over the output
vector f.w, that can be analytically calculated as follows

Q(fnew) = /Q(unew|¢new)p(.fnew|unew)dunew

= N( Suew | K f,ewtinew K'l_zjewunew Fnews K £ ow faow
+ K.fnew'l"fnewI<_1 (Snew - I<unewunew)K_1 K—frnewunew)' (D5)

Unew Unew Unew Unew

D.2 Dimensionality reduction of p(f.) via Gaussian marginals.

We use the properties of Gaussian marginals to reduce infinite dimensional distributions
p(foo) in the continual approach. This process is applied for both GP priors p(f), one
w.r.t. hyperparameters 1,e and other w.r.t. ¥4, and the Gaussian variational distribution
q(foo). We also assume that if the generative process of the latent functions is f ~ p(feo),
then it also holds

[f 0w

unew

:| ~ p(foo#unewa unew)v

where the multivariate Gaussian distribution p(foo) = P(foounew s Unew) has the following K
and p parameters

in K K
p(f#unewy unew) — N( [Nfof)zé f'u‘new:| , I: .foo;éuncw foo;éuncw .foo;éuncw unew:| ) ,
Unew

and we therefore, may apply the marginalization p(uney) to obtain the target Gaussian
distribution

unewfoo#unew Unew Unew

/p(.focséumw uneW)dfowfunow = p(unevv) = N(Hunowa Koupewtinew )
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APPENDIX E

ADDITIONAL EXPERIMENTS

E.1 Continual Multi-output Synchronous Channels

In this additional multi-output experiment with toy data, we are interested into jointly
performing multi-task non-linear regression over two output Gaussian channels with different
likelihood noise parameters. The underlying linear mixing of the latent functions is assumed
to follow a LMC structure that we also aim to infer it in an online manner. The number of
true latent functions is () = 2 and we generate them using a linear combination of sinusoidal
signals. In this case, we have artificially split the dataset into five batches of non-overlapping
samples that are delivered sequentially at the same time-step on both channels. In Fig. E.1,
we show three captures of the learning process for this experiment.

E.2 Continual Multi-output Asynchronous Channels

This experiment is of particular importance for the demonstration of the multi-output model
performance under asymmetric incoming channels. Particularly, we consider the same dataset
as in the synchronous scenario but introducing an asymmetric observation process over the
incoming channels data by the learning system. That is, at each time-step, only one of
the two channels delivers output-input samples. In the next step, the observation channel
switches and new incoming data appears on the other one. This observation procedure is
depicted in Fig. E.2.

The continual inference process is possible due to the latent functions I lie in a different
layer than the output observations. Hence, the inducing points can be positioned across
the input domain within the emergence of new samples in any of the output channels. The
number of initial inducing points is M, = 4 per channel, and double per time-step iteration.

E.3 Multi-channel sensors for Human Motion

For the last experiment of this thesis on multi-output regression with real-world data, we
consider the MOCAP dataset.! The data consists of raw multi-channel traces from sensors
monitoring human motion. In particular, we select the first individual (id. number 01) in
the walking activity example. We aim to exploit the benefits of multi-task GPs rather that
using a single-output GP per sensor. It is demonstrated that by exploiting such correlations
between channels, multiple-output data are better modelled (Bonilla et al., 2008). From all
available sensors in the human body, we consider three of them whose oscillation phase does
not coincide: the left wrist, the right wrist and at the right femur. Each channel provides a
number of NV = 343 samples corresponding to the vertical axis values recorded by the sensors.
For the experiment, we setup an initial amount of M = 10 inducing inputs in order to obtain
a reliable precision. We increase the M twice per recursive iteration. Moreover, the number

IMocAP datasets are available at http://mocap.cs.cmu.edu/.
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Continual Multi-output Gaussian Process Regression
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Figure E.1: Results for temporal modeling of multi-output real-valued data. Two channels
are jointly model using the continual learning approach aforementioned for multi-output GP
regression. The pink line indicates the limiting point between the novel observed samples
and the past data that we avoid to revisit. All inducing inputs are positioned over the @
underlying latent functions that are later combined to obtain the output parameter functions.
Both channels are trained together in a synchronous manner. The @ subsets of inducing-
inputs are not plotted for a reason of clarity.

Continual Multi-output Gaussian Process Regression

Real Outputs

Real Inputs.

Real Inputs

Figure E.2: In contrast to Fig. E.1, we apply the continual GP approach to model multi-
channel sequential data that is observed in an asynchronous manner, that is, samples might
appear at different time steps from different outputs in unobserved input regions. From
left to right and from top to down, we represent the learning process at four consecutive
time-steps (t =2, t =3,t =4 and t = 5). Past data is plotted using grey scaled colors.
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Figure E.3: MOCAP dataset. Multi-output GP regression over three sequential channels. Each
channel corresponds to the Y axis output values of a sensor in a walking motion capture
experiment. Black curves correspond to the mean of the posterior predictive distribution
at each time-step for the whole input space. Gray scaled colors correspond to non-revisited
data samples.

of latent functions in the multi-output GP prior is @ = 3. Both latent function values and
the underlying linear mixing coefficients are initialized at random at each time-step.
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