
Aalto University

School of Science

Master’s Programme in Security and Cloud Computing

Nafis Kamal

API Documentation Generator

Master’s Thesis
Espoo, August 28, 2022

Supervisors: Fabian Fagerholm, Aalto University
Raphaël Troncy, EURECOM

Advisor: N/A

Aalto University
School of Science
Master’s Programme in Security and Cloud Computing

ABSTRACT OF
MASTER’S THESIS

Author: Nafis Kamal

Title:
API Documentation Generator

Date: August 28, 2022 Pages: 56

Major: Security and Cloud Computing Code: SCI3113

Supervisors: Fabian Fagerholm, Aalto University
Raphaël Troncy, EURECOM

Advisor: N/A

The importance of Application Programming Interfaces (APIs) in contemporary
software development processes is growing. It can be challenging for developers
to rapidly comprehend how to utilize a new API; therefore, good documentation
is required.

For efficient documentation support, we must understand how developers utilize
widely available tools today. We provide the results of an exploratory study
that examined the pros and cons of observing programmers as they used a basic
application programming interface to find solutions. By utilizing an existing
API documentation, you can save time and money by not having to reinvent the
wheel when integrating with third-party enterprise systems and devices.

This thesis describes and evaluates a unique technique to meeting API docu-
mentation requirements. I present a list of standards for the documentation
of a selection of API tools based on my analysis of the existing literature and
standard industry practice. I compare and contrast the documentation processes
of Postman, Redocly, SwaggerHub, JavaDoc, and AutoREST with my own
prototype implementation, which includes sample code for interacting with the
API. I did a randomized study to establish the optimal method for determining
the significance of API documentation requirements and to identify a strategy for
simplifying documentation, with a focus on fulfilling the needs of user developers.

Using Postman, Redocly, SwaggerHub, JavaDoc, and AutoREST, I found reoc-
curring difficulties that may be minimized with the suggested documentation.

Keywords: API, Documentation, Tools, Postman, Redocly, SwaggerHub,
JavaDoc, AutoREST

Language: English

2

EURECOM

Master’s Programme in Digital Security
ABSTRACT OF

MASTER’S THESIS

Author: Nafis Kamal

Title:
Générateur de documentation API

Date: August 28, 2022 Pages: 56

Major: Digital Security Code: SCI3113

Supervisors: Fabian Fagerholm, Aalto University
Raphaël Troncy, EURECOM

Advisor: N/A

L’importance des interfaces de programmation d’applications (API) dans les
processus de développement de logiciels contemporains ne cesse de crôıtre. Il
peut être difficile pour les développeurs de comprendre rapidement comment
utiliser une nouvelle API ; par conséquent, une bonne documentation est requise.

Pour une prise en charge efficace de la documentation, nous devons comprendre
comment les développeurs utilisent aujourd’hui des outils largement disponibles.
Nous fournissons les résultats d’une étude exploratoire qui a examiné les
avantages et les inconvénients d’observer les programmeurs lorsqu’ils utilisaient
une interface de programmation d’application de base pour trouver des solutions.
En utilisant une documentation d’API existante, vous pouvez gagner du temps
et de l’argent en n’ayant pas à réinventer la roue lors de l’intégration avec des
systèmes et appareils d’entreprise tiers.

Cette thèse décrit et évalue une technique unique pour répondre aux exigences de
documentation de l’API. Je présente une liste de normes pour la documentation
d’une sélection d’outils API basée sur mon analyse de la littérature existante
et des pratiques standard de l’industrie. Je compare et oppose les processus
de documentation de Postman, Redocly, SwaggerHub, JavaDoc et AutoREST
avec ma propre implémentation de prototype, qui inclut un exemple de code
pour interagir avec l’API. J’ai fait une étude randomisée pour établir la méthode
optimale pour déterminer l’importance des exigences de documentation de l’API
et pour identifier une stratégie de simplification de la documentation, en mettant
l’accent sur la satisfaction des besoins des développeurs utilisateurs.

En utilisant Postman, Redocly, SwaggerHub, JavaDoc et AutoREST, j’ai trouvé
des difficultés récurrentes qui peuvent être minimisées avec la documentation
suggérée.

Keywords: API, Documentation, Tools, Postman, Redocly, SwaggerHub,
JavaDoc, AutoREST

Language: Anglais

2

iv

Acknowledgements
I want to thank my main supervisor Fabian Fagerholm from Aalto University and
my supervisor from EURECOM Raphaël Troncy for their good guidance throughout
the whole thesis.

I would also like to thank European Union who funds the Erasmus Mundus
scholarship for giving me the opportunity to pursue my master degree.

Espoo, 28.8.2022

Nafis Kamal

v

Contents
Abstract ii

Abstract iii

Acknowledgements iv

Contents v

Abbreviations and Acronyms vii

Chapter 1 1

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement . 3
1.3 Research Question . 4
1.4 Contribution . 4
1.5 Structure of the thesis . 5

Chapter 2 6

2 Background 6
2.1 Concept, Definition and Terms of API Documentation 6

2.1.1 API Documentation . 7
2.1.2 Classification of API User . 7
2.1.3 Quality Attributes . 8

2.2 Techniques in API Documentation . 10
2.3 Existing Documentation and Tools 11
2.4 Program Tools and Documentation 12
2.5 Measures API Documentation on the Web 13

Chapter 3 15

3 Methods and Materials 15
3.1 API Tools Overview . 15

3.1.1 Postman . 15
3.1.2 Redocly . 17
3.1.3 SwaggerHub . 18
3.1.4 JavaDoc . 19
3.1.5 AutoREST . 20

3.2 API Documentation and Comparison 21
3.2.1 Measurement and Comparison Process 22
3.2.2 Compared Parameter . 22
3.2.3 Analytical Comparison . 23

3.3 API Documentation Analysis Stage 23

vi

Chapter 4 25

4 Results 25
4.1 Comparison on API Documentation Command or Syntax 25

4.1.1 Postman . 25
4.1.2 Redocly . 27
4.1.3 SwaggerHub . 29
4.1.4 JavaDoc . 32
4.1.5 AutoREST . 34

4.2 Pros and Cons . 36
4.2.1 Postman . 36
4.2.2 Redocly . 36
4.2.3 SwaggerHub . 37
4.2.4 JavaDoc . 37
4.2.5 AutoREST . 37

4.3 User Experience: Tools . 38
4.4 Support and Teamwork . 39
4.5 API documentation Tools Limitation 40
4.6 Bugs and Issues in the API’s architecture 40

Chapter 5 43

5 Discussion 43
5.1 API Documentation Design . 43
5.2 API Documentation Management . 45
5.3 Documentation Problems . 46
5.4 Problem Study . 48

6 Chapter 6 52
6.1 Conclusion . 52
6.2 Future Work . 52

References 53

vii

Abbreviations and Acronyms
API Application Programming Interfaces
ASCII American Standard Code for Information Interchange
CLI command-line interface
CSG Constructive solid geometry
CVS Concurrent Versions System
DOC Documentation, Document
ESG Enterprise Strategy Group
GTK GIMP Toolkit
HTML Hypertext Markup Language
HTTP HyperText Transfer Protocol
IDE Integrated development environment
JSON JavaScript Object Notation
MSDN MicroSoft Developer Network
PCI Peripheral Component Interconnect
REST Representational state transfer
SaaS Software as a service
SDK Software development kit
SOAP Simple Object Access Protocol
SVN Subversion
UI User Interface
UIB User Interface Block
URL Uniform Resource Locator
VS Visual Studio
XML Extensible Markup Language
YAML Ain’t Markup Language

Chapter 1

1 Introduction
The process of telling a computer what to do in a way that allows the program to
be re-executed at a later time is known as programming. Programming is normally
accomplished via the utilization of one or more textual programming languages. The
process of programming might be challenging at times. There are a lot of different
factors at play here, and it is possible that some of these challenges are inherent
to the activity. However, additional challenges can be attributed to certain aspects
of the programming language and tools that are utilized by programmers, and it
is likely that these challenges could be considerably mitigated if the appropriate
measures were taken. The use of application programming interfaces (APIs) is one
significant source of programming complexity on which we could have a significant
impact.

Application Programming Interfaces (APIs) allow software developers to routinely
make use of the data and services offered by a variety of different programs. This
practice is commonplace. Many tasks need engineers to "weave together" functionality
that is already provided by APIs rather than creating functionality from scratch.
This is because APIs already exist [1]. The significance of application programming
interfaces (APIs) has grown substantially over the past several years due to the fact
that corporations and other types of organizations increasingly rely on the internet
to publish their data and provide their services. Every software developer is faced
with the common challenge of learning the capabilities of an API, the elements it
supplies, and how to mix these components together to bring about the necessary
functionality. This is a process that must be completed.

APIs are often published together with API references, tutorials, sample projects,
and other materials that are aimed to make the work of learning easier. However,
getting started with a new API can be difficult at times, and a lack of suitable learning
materials in the form of API documentation has been cited as a primary issue that
contributes to this difficulty. The results of an empirical study that analyzed how an
overview of API documentation is presented to developers are contributed by this
research. My work is motivated by the premise that issues with API documentation
may in part reflect usability issues, and in particular by the idea that the content and
structure of documentation may not always fit the expectations and work habits of
developers. Therefore, for API documentation to serve as a effective aid in learning
an API, we need to realize which general methods software developers use when
solving programming tasks, which information they require, and which information
resources they turn to. In addition, we need to know which information resources
they turn to [2].

2

Figure 1.1 : API users to API documents decision makers (source: Zhong Zhendong
[2])

In order to investigate these concerns, I carried out research utilizing the observa-
tional approach. We presented our developers with a series of programming challenges
using an application programming interface (API) that they were not familiar with.
This was more like a casual chat. I talked about the ideas with my current and former
developer colleagues who live in Asia and Europe and still work with APIs. I asked
them how they choose new APIs by reading the documentation and how they deal
with difficult problems to learn more about the best practices. Several people who
went to the chat gave me their thoughts on it. After that, i studied the techniques
that they used to complete the jobs, the sections of the API documentation that
they utilized, and the design characteristics of the API documentation that caused
issues [3]. On the basis of our research, we offer a number of design recommendations
that, if followed, will result in API documentation that is more efficient.

1.1 Motivation
Application Programming Interfaces (API) have been a topic of discussion in both
the scientific and business communities for many decades. Postman, Redocly, Swag-
gerHub, JavaDoc, and AutoREST are the projects that are credited with initiating
the development of modern online APIs. The principles were formed by the con-
tribution of selected API tools, and ever since then, an abundance of web APIs
have been produced over the course of the last few decades. APIs and web APIs
are used interchangeably in today’s world. In point of fact, the past ten years have
demonstrated that, first, the quantity of APIs and, second, the use of APIs have
both experienced meteoric rises. In spite of the fact that these data numbers can
only be seen for publicly accessible APIs, industry experts believe that the number
of privately held APIs is significantly higher than that of publicly available APIs.

Postman, Redocly, SwaggerHub, JavaDoc, and AutoREST are able to reach new
markets, support their business plan, and promote the creation of new inventive
solutions because they have made their APIs accessible to the external and internal
advantages of customers. Companies have to pay close focus on the quality of their
API documentation if they want to maintain a healthy profit margin from the API
economy. The ability to traverse the digital age successfully requires API documen-
tation as a core competency. The API Management constitutes a portion of the API

3

Documentation. However, this knowledge of how to build APIs that are more usable
has very little impact on the numerous APIs that are currently in widespread use and
have been released. In addition, designers have to take into account essential factors
other than usability, such as performance and future extension, which might result
in the design of APIs that are more difficult to use for perfectly valid reasons. The
creation of wrapper APIs, modifications to the integrated development environment,
and revisions to the API documentation are some of the several methods that can
be utilized in order to enhance the usefulness of current APIs that have been built
in existing programming languages. Previous research indicated that a large number
of Java developers heavily rely on documentation based on Redocly, SwaggerHub,
JavaDoc, and AutoREST. As a result of these findings, I have been investigating the
various ways in which API documentation can be utilized to enhance the functionality
of already existing APIs.

1.2 Problem Statement
Developers are increasingly reliant on API documentation. One cause for this is
the growing complexity of the programs themselves, both in terms of breadth and
the number of moving parts. As an example, word processors have progressed from
being basic text editors to sophisticated document production environments with
dozens of options. When the mouse is hovered over a button or menu, it will now
have a gradient of colors, a drop shadow, and either glow or pulse. Building these
features from scratch would require hundreds or thousands of lines of code, but they
are generally already contained in standard widgets offered by an API. As a result,
developers are becoming more reliant on APIs, as it is becoming more challenging
to build their own buttons, for example, while still giving the look and polish that
customers have grown to expect.

APIs are not merely a useful tool for facilitating reuse in programming; they are
often essential. Some features are only accessible via APIs, and cannot be reproduced
without breaching the API’s security or encapsulation. Most modern operating
systems, for instance, prohibit direct programming access to the graphics hardware,
mandating instead that developers use one of several APIs. The code that developers
produce reveals their heavy reliance on APIs. A Microsoft framework developer made
anecdotal comments on how API calls have replaced more fundamental programming
language structures like if statements, for loops, and variable declarations.

This shift toward using APIs has altered not only the coding process but also the
understanding, debugging, and maintenance of code, which in turn impacts not only
the programmer’s efficiency but also the quality of the finished software. Finding
defects that arise from APIs’ hidden requirements for example, that a method be
called only from a specific thread or that a specific return value cannot be cached can
be challenging since such requirements are not obvious from looking at the code that
invokes the APIs. As a result of the large amounts of functionality they encapsulate,

4

APIs can restrict the flexibility with which programs can be modified, sometimes leav-
ing developers with the option of restricting a feature to the capabilities provided by
an API or foregoing the API altogether and re-implementing the features from scratch.

1.3 Research Question
In the following section, a series of research questions is offered. These research
questions are formed from the problem statement that was discussed in the preceding
section, and they serve as a compass for this thesis all through the entirety of the
research.

• Why do we need to write documentation?

• Why waste time on that instead of coding it?

– Improves the experience for developers
– Decreases the amount of time spent on-boarding new users
– Leads to good product maintenance and quicker updates
– Agreement on API specs
– The API documentation can act as the central reference
– Unblocks development on different sides
– Allows identifying bugs and issues in the API’s architecture
– Decreases the amount of time spent on understanding how the API works

1.4 Contribution
To summarize, this thesis provides several important contributions to the existing
body of study in the field of software engineering, which are as follows:

1. Enhances the experience of API documentation requirements for developers,
generated from the existing body of literature and the current state of industry
practices, to be utilized by practitioners as a guide.

2. Postman, Redocly, SwaggerHub, JavaDoc, and AutoREST are examples of
unique techniques and reusable tools that employ interception to automatically
generate and maintain developing API documentation. This results in a
reduction in the amount of time that is spent on-boarding new users.

3. This results in good product maintenance and speedier updates to illustrate
the practicality of the proposed technique that API developers can follow to
improve their experiences with Postman, Redocly, SwaggerHub, JavaDoc, and
AutoREST API documentation.

5

4. The API documentation has the potential to serve as the central reference
evidence, demonstrating the typical challenges encountered by API client
developers such as Postman, Redocly, SwaggerHub, JavaDoc, and AutoREST.
These challenges can be mitigated with the help of usage examples, which will
assist in the prioritization of API documentation efforts.

5. For the selected tools, the thesis documented the documentation commands,
pros and cons, user experience, limitations.

1.5 Structure of the thesis
The rest of the thesis is organized as follows. Chapter 2 overviews the background
of API documentation. Chapter 3 discusses the methods and materials used in this
study. Chapter 4 details the results, pros-cons, limitations of API documentation.
Chapter 5 details the guidelines and problem study. Finally, Chapter 6 concludes
the thesis.

6

Chapter 2

2 Background
Programming is the process of instructing a computer to perform specific tasks using
one or more textual programming languages. Programming is difficult. Some of
these difficulties may be inherent to the undertaking. By altering the programming
language and tools used by programmers, other problems may be mitigated. APIs
are a source of programmability challenges that can be mitigated.

2.1 Concept, Definition and Terms of API Documentation
API stands for Application Programming Interface and, at a high level, defines a
framework for reusing code. Instead of beginning from scratch with every program,
code reuse enables programmers to build upon the work that other programmers
(or themselves) have already completed [4]. Copying and pasting code straight into
one’s application, often known as the copy and paste style of reuse, and invoking
pre-packaged functions that are intended to be reused are the two primary methods
of code reuse. In this thesis, these functions are referred to as libraries, frameworks,
or APIs. With APIs, programmers are able to reuse code without needing to edit,
comprehend, or even view the implementation; instead, they engage solely with the
programming interface.

Table 1: Different API-related words with corresponding examples. In this study, I
collectively refer to these as "API"

Libraries Math library, “standard" library in C
Frameworks .NET Framework, Eclipse Framework

Software Development Kits .NET Development Kit, Java Development Kit
APIs Win32 APIs, Google Map APIs

Toolkits The GIMP Toolkit (GTK), Google Web Toolkit
Source: Robillard et al. [5]

By utilizing APIs, developers may design highly complex applications with
minimal effort. This is in part due to the fact that APIs can grant access to a
plethora of features at a high level of abstraction. A web-browser widget, for instance,
allows you to embed a full web browser with a single line of code, as opposed to the
tens or hundreds of thousands of lines of code required to build the same functionality
from scratch. But this strength is not without cost [6]. APIs frequently place
restrictions on what developers may do and how they must utilize the APIs in order
to produce a successful software. However, it seems that certain APIs are far more
difficult to use than others, even when the two APIs provide the same functionality at

7

the same abstraction level. This gives us optimism that we can simplify the process
of programming by figuring out how to make APIs more approachable.

2.1.1 API Documentation

The documentation of APIs has been the subject of numerous research, all of which
offer best practices that may be applied to API documentation as well. Inadequate
documentation and other learning aids were identified to be a major barrier for
developers while learning new APIs. When it comes to API documentation, authors
stressed the need of providing clear examples, covering all bases, accommodating a
wide variety of use cases, staying on top of organization, and incorporating pertinent
design aspects [5]. The relevance of providing examples in API documentation was
explored. In order for a user to really use an API, Endrikat suggested converting the
API example scenarios into executable test cases [7].

To determine what features are essential in high-quality code examples, Nasehi et
al. conducted a case study based on conversations in JavaDoc. They suggested using
wiki-like collaboration tools with online API documentation and recommending that
API developers provide examples in the documentation. According to research by
Maalej and Martin [8] users of API documentation can interact with API creators via
social media. For the sake of user convenience, Inzunza et al.[9] suggested including
crowd sourced frequently asked questions in API documentation. Subramanian et al.
demonstrated an automated method to connect SwaggerHub’s code samples with
the API documentation of several Java and JavaScript libraries.

Software as a service (SaaS) based solutions for API documentation systems
have a number of benefits, as outlined by Watson et al.[10]. These include being
affordable while still being powerful, being platform independent and highly accessible,
having higher document quality, reusing content, having access to automated tools,
and having a well-organized, scalable documentation process. Postman, Redocly,
SwaggerHub, JavaDoc, and AutoREST are just few of the technologies available that
aid in the automatic development of API documentation for local APIs. Despite
their success in describing local library APIs, these tools have limited utility when it
comes to documenting APIs as a whole due to their inability to handle HTTP-specific
information out of the box.

2.1.2 Classification of API User

It is widely understood that APIs must be suitable for the developers who will
be using them. An API that is useful to one group of developers may not be to
another. This begs the question, though, of how API designers may best categorize
and arrange programmers into distinct communities that correlate appropriately to
the various API needs [11].

One method involves sorting programmers according to their level of expertise
and the programming languages and tools they are familiar with. A creator of an API

8

could take this approach by creating two distinct sets of APIs, one for beginners and
the other for seasoned pros. Two different sets of application programming interfaces
(APIs), say, one for Visual Basic developers and the other for C++ developers [12].

According to a related system, "professional" programmers are often software
engineers whose major work function is to code and who frequently have formal
programming education. End-user programmers, on the other hand, are those whose
primary job is not programming but rather, say, physics or administrative support [13].

Finally, "personas" for programmers are another strategy. Individuals who rep-
resent typical consumers are called "personas," and they are frequently utilized in
design [14]. simpler and clearer to work with while designing. Microsoft employs
three distinct programming personas, each of which was based on observations of
hundreds of people using Visual Studio. All popular approaches to programming are
attempted to be represented in these personas. Every programmer has the ability to
fall into any of the personas, which are typically determined by how they approach
various programming tasks. This is because, while the personas do correlate generally
with different skill levels and job types, they do not connect exactly. These characters
are meant to represent a variety of work styles rather than actual skills or expertise.
This helped us target our experiments and select the right participants. Our findings
can be extrapolated to other developers of a similar personality type because we
based them on a large sample size.

2.1.3 Quality Attributes

There are many different qualities that are desirable for APIs, though previous re-
search had not attempted to enumerate them all. We create a set of quality attributes
here, forming a hierarchy of attributes. Figure 2.1 includes a summary of these
attributes and the stakeholders most affected by each.

The two most fundamental characteristics of an API are its accessibility and
its strength. The "documentation usability" of an API refers to its attributes that
affect its use while developing and debugging code, whereas the "power" of an API
describes the boundaries of the code that may be written [15].

In terms of documentation usability should focus on how well an API matches
users’ mental models, how simple it is to use, how consistent it is, how quick it is to
learn, and how productive programmers are while using it.

9

Figure 2.1 : Quality attributes of API documentation and the stakeholders most
affected by each quality [16]

The expressiveness (what kinds of programs an API can generate), the extensibil-
ity (how users can extend the API to generate convenient user-specific components),
the evolvability the performance (in terms of speed, memory, and other resource
consumption), and the robustness and bug-freeness of the API implementation all
contribute to an API’s fomentation and power. Consumers of the resulting products
benefit from error prevention, while API users benefit from usability. API designers
are affected by the evolvability, but API users and product consumers are more
directly impacted by the power [17].

Anecdotal research suggests that API usability may also play a role in driving
user uptake. Some businesses may switch to a different API or develop less complex
functionality in-house if learning the required API would take too long. Sometimes,
it is necessary to give up one or more of these qualities in order to fully realize
another. In other situations, however, modifying the APIs may actually boost all of
the metrics or at least have no negative effects on any of them.

10

2.2 Techniques in API Documentation
Previous study frequently employed exploratory methods such as diary studies,
interviews, and questionnaires. Despite their usefulness and contribution to the
production of key findings, the fact that they dominate API documentation research
creates a number of challenges. To begin, the ability of developers to self-report
and reflect on their work habits, approach to problem solving, and shortcomings in
the documentation they use is critical to the accuracy of the answers they provide
during interviews and in response to a questionnaire. This talent could be found in
a variety of forms.

What developers claim to accomplish may differ from what they actually do,
therefore distinguishing between the two is critical when conducting interviews or
filling out surveys. According to Alvaro et al. [18], people have a poor memory for
ordinary occurrences and tend to recall only emotionally meaningful past experiences.
It has also been observed that the activities in which developers claim to be involved
are not always the same as those in which they are actually involved. Alvaro et al.
[18], for example, found that 40 percent of software developers in their survey spent
40 percent of their time reading documentation. However, data acquired throughout
the course of the observation period revealed that just 3 percent of all incidents
reported were really documentation-related. We conclude that more study is required
that goes beyond self-reporting and instead actively observes software engineers as
they interact with an API [18].

The developer portal’s home page introduces the API used in our research. This
screenshot illustrates the structure and layout of the gateway at the time the test
was run [19]. Concepts, API Reference, and Recipes are just a few of the information
kinds accessible through tabs in the major menu [19].

11

Table 2: Content categories of the API documentation utilized throughout the
examination

Category Description
Welcome page Developers’ starting point; details developer regis-

tration and sandbox access procedures and provides
links to further reading.

Concepts An overview of the Application Programming In-
terface (API), including its authentication method,
basic request structure and parameter handling, list
of supported carriers and services, license details,
pricing, and supplementary resources (integration
guide, webhooks)

Integrations Allows Ruby and other language users to gain access
to specified API integrations. Add a reference to
the GitHub repository where the integrations are
kept.

Samples Describes the most common scenarios, such as mak-
ing a new shipment, editing an existing shipment,
and requesting a quote for a shipment.

Recipes Includes illustrative use cases for and explanations
of carrier-specific services, such as weekend delivery,
pickup, and delivery to designated drop boxes.

API reference Includes a list of resources, descriptions of their
parameters and payloads, and instructions for ac-
cessing, editing, and deleting those resources.

Source: Tao et al. [20]

2.3 Existing Documentation and Tools
Methods for efficiently mining large source code repositories for useful insights have
been the subject of recent studies. Instead of relying on a central CVS repository
or a language-specific search engine, Jadeite uses code snippets found in Google’s
standard online search results. There were two main factors that led us to choose
this tactic. First, when compared to other code search engines and code repositories,
Google’s index has the most variety of examples. Second, to aim to be representative
of typical usage: many code search engines are heavily influenced by a small number
of really large open-source applications, whose use of a particular API is not always
indicative of how a regular programmer may utilize it. Unlike compilable.java files,
code snippets taken from the web are sometimes incoherent, difficult to understand,
and even wrong. This complicates the task of developing a system to harvest data
from the entire World Wide Web [21]. We still think this is the best approach for

12

large, popular APIs like the Java standard APIs. However, a different approach may
prove more efficient when using a different, perhaps proprietary API.

Cummaudo et al. [22] is one example of an API search engine that draws its
data from snippets of websites. One of the main differences between Jadeite and
these systems is that it uses a hierarchical browsing interface, similar to Javadoc,
rather than a search interface [22]. It is possible to utilize both search and browsing
interfaces together, as they complement one other well. Nonetheless, we decided to
put our efforts into developing the best browsing-based interface possible for this
project, in part because this allowed us to do our analysis in advance, allowing us to
analyze more data while avoiding latency issues during use. In addition, browsing
is a useful adjunct to search interfaces since it helps users zero in on the exact
query they need to do a search for. Automatically, jungloids figure out how to go
from one set of sorts to another. Redocly and other takes a different tack by show-
ing the most common path to building a target type from a set of possible input types.

Recent work in repository mining has recommended the most popular parts of an
API based on method popularity data. Redocly font sizes are similarly motivated,
but presentation style (font sizes) and context affect how they are displayed (lists of
classes in standard API documentation).

2.4 Program Tools and Documentation
The research confirmed the usefulness of code examples. It looks at the context of
an IDE and finds and suggests code examples to use. It does not go looking for
examples on the web or allow for direct queries, but it does solve the issue of learning
how to use APIs to accomplish a goal by examining existing code snippets. It is
unable to help programmers in situations where there is no starting point because its
example search is implicit and based on the statements already present in the code.
My tools make it easier for programmers to learn the basics of using a framework
like Postman [23].

13

Figure 2.2 : Program Tools and Documentation Procedures of Postman API [24]

Tools that automatically determine which parts of code are relevant to other
parts of code by analyzing the aggregate use patterns of programmers were another
inspiration for our tools. Tools built into integrated development environments
(IDEs) like Team Tracks make it easier for developers to access the private APIs
used by large projects. When a new team member looks at the paint() method, for
example, invalidate() will be suggested if it is frequently looked at after paint() by
other team members (). In contrast to the tools presented in this thesis, which are
better suited to learning public APIs or open source projects large enough to have
Internet discussion sites, this tool is better suited to learning private code, about
which there may be no Internet information. In this thesis, we borrow ideas from
applications like Team Tracks by using co-occurrence in web results to locate similar
classes and procedures.

Many different search engines offer code 1 -specific query options. The problem is
that it only searches a small subset of the known-good code repository. They will not
help with the vocabulary problem. Developer interactions with APIs are observed
by Nafi et al. [25], who use naive terminology because they do not bother searching
informal forums and other pages that help developers find the right terminology.
Their small size and lack of textual descriptions make it difficult for programmers to
locate methods used for a specific purpose, even when they know the name of the
method [25].

2.5 Measures API Documentation on the Web
Many programmers now rely on web searches for anything from learning new lan-
guages to referencing existing ones. When information is readily available with a
quick Google search, the identity of the source becomes less significant to the seeker.

However, things were not always so simple. Developers used to have to rely on
paper manuals, large documentation files, or their own time-pressed coworkers to get

14

the information they needed. Despite numerous initiatives aimed at encouraging the
development and upkeep of thorough documentation, such materials are frequently
either lacking or insufficient even when they do exist. Written records quickly become
obsolete. Because of this halt, distrust develops, and the documentation is rarely
referred to in actual practice. Many surveys of software development firms have
revealed that documentation is not only disregarded, but also varies widely in quality
and scope [26].

Companies and API developers may be putting their own documentation online,
but programmers are beginning to look elsewhere. A recent survey of more than
3000 MSDN developers confirmed that developers find out about new APIs primarily
through web search. Furthermore, developers are more likely to discover a response on
a blog than from that other colleague. Resulting from the widespread availability of so-
cial media and related infrastructure Growth in popularity of wikis, blogs, and online
discussion forums has resulted in an explosion of information and communication [27].

Figure 2.3: Measures of API documentation [28]

In crowd documentation, where users can send to documentation of an open
platform via social media, the value of any given contribution is less important
than the sum of all the contributions. Simply put, because you can find anything
you need on the internet with a quick Google search. Regardless of who or where
the information originated, the crowd documentation learning process treats all
input equally. For example, a programmer can post a question on stackoverflow.com
relating to almost any technical topic, and receive a detailed answer in the average
of just 10 minutes. Not only does this solve the problem for the original programmer,
but it also allows future programmers to view a curated and voted-on set of solutions
to the same problem. No community vetting or formal processes relevant to social
documentation are required for developers who contribute in just this fashion.

15

Chapter 3

3 Methods and Materials
This section will walk you through the process, decisions, and tools involved in
designing an application programming interface (API). First, I analyze the context
of these decisions in relation to other development decisions, such as the design of
the tool and the documentation. The rationale behind selecting Postman, Redocly,
SwaggerHub, JavaDoc, and AutoREST to document this particular API.

3.1 API Tools Overview
An application programming interface, or API, is a collection of software functions
and procedures that other software applications can access or execute through. When
performing API testing, software is utilized to make calls to the API, obtain output,
and log the response of the system. Because of the increased pressure that shorter
development cycles place on automated testing, API Testing is becoming increasingly
important. The following is a discussion of certain API Tools. The list consists of
tools that provide open source API documentation.

3.1.1 Postman

Postman is one of the best API automation and documentation tools available today.
Postman has evolved from its humble beginnings as a Chrome plugin to become
a full-featured API testing solution used by over 5 million developers and 100,000
businesses around the world. It has become the de facto standard for developing
business APIs and is worth dollar 2 billion on its own. According to a recent report
by ESG (Enterprise Strategy Group), the Postman API platform offers crucial tools
for businesses to facilitate the simplification and quickening of API development,
collaboration, delivery, and maintenance. Reduced risk, fewer bugs, and happier
customers are just two outcomes of a shorter time to value, which in turn creates
earlier revenue streams. As a result of using Postman, ESG estimated that a model
company could save dollar (3.6) million on API testing and dollar (1.9) million on
API development. Using Postman and adopting an API-first approach could further
cut down on development time and costs for businesses by 4.7x [29].

16

Figure 3.1: Postman Overview [30]

By using Postman, businesses can build new APIs, keep tabs on their current
ones, and conduct continuous testing to ensure that their customers never experience
any slowdowns or interruptions in service. Postman users, both solo programmers
and members of development groups, exhibited high levels of self-assurance.

Figure 3.2: Postman program introduction [31]

17

Growing pains in the API economy mean more work for programmers. Because
modern applications can interact with hundreds of APIs, the old methods of creating
and testing APIs manually no longer scale. To ensure that APIs are used to the
full potential of the business and not as a hindrance, the development, testing, and
delivery teams must collaborate. Modern API-powered applications require teamwork
and efficient operations to be successfully delivered.

3.1.2 Redocly

API documentation is a crucial component in the success of a business in today’s
interconnected economy. Redocly assists businesses in optimizing the use of their
application programming interfaces (APIs) by maintaining documentation that is
clear, up to date, and available to both internal and external clients. Redoc has
the capability to automatically generate API documentation by using the OpenAPI
specifications. It is a docs tool that is both highly effective and free, and it generates
documentation that is tidy, modifiable, and presented in an elegant three-panel layout
[32].

Figure 3.3: Redocly Open setting mode [33]

18

Following is the working procedure of Redocly.

Figure 3.4: Redocly Working Procedure [34]

3.1.3 SwaggerHub

SwaggerHub is a platform for API design and documentation that aims to help teams
enforce standards and discipline throughout the whole API development process.
SwaggerHub offers free, team, and enterprise tiers. The Enterprise plan is the only
one that may be deployed locally, however the other two are strictly SaaS. During
the trial time, you will have access to all the same tools available to paid Enterprise
plan subscribers, but if you do not upgrade to a paid Team or Enterprise plan, your
account will revert to the free plan. Unless otherwise specified, the information
presented here is applicable to any and all deployment strategies [35].

Formed in 2011, the Swagger API was initially conceived of by Tony Tam, technical
co-founder of the online dictionary site Wordnik. Automation of API documentation
and client SDK production became an enormous cause of irritation during Wordnik’s
product development. Using the adaptability of the REST architectural style and the
various features of tools developed for the SOAP protocol, Tam created a straightfor-
ward JSON representation of the API. Ayush Gupta initially introduced the idea for
the UI, noting that an interactive UI would be useful for end users who wanted to
"test out" and build against the API. The first code generator was implemented by
Ramesh Pidikiti, and the name Swagger was created by Zeke Sikelianos, a designer
and developer. In September 2011, the source code for the Swagger API project was

19

released to the public. A standalone validator, Node.js and Ruby on Rails support,
and other features were incorporated into the project shortly after its initial release.

Figure 3.5: Swagger full view mode [36]

Swagger initially gained only minor traction from smaller organizations and indi-
vidual developers. For RESTful APIs, Swagger offers a straightforward and easily
discoverable means of describing their functionality for automated systems. Tony
attended a meeting with key players in the API market, including John Demon-
strated (ProgrammableWeb), Marsh Gardiner (Apigee, now a Google product),
Marco Palladino (Kong), and Kin Lane (API Evangelist), to discuss the possibility
of standardizing API descriptions. Even though no actionable plan came out of the
conference, Swagger’s importance as a game-changing innovation in the application
programming interface (API) space was established.

Documenting APIs: The API is published as an OpenAPI document; if you
want to interact with it directly through the Swagger user interface, you can use
the open-source technology that is provided by Swagger. This body of work aims
to accomplish the provision of a method by which users can connect to operational
APIs through the utilization of an interface that is based on HTML and is not
only dynamic but also friendly to users. The user interface makes it possible to
immediately make requests and investigate available options.

3.1.4 JavaDoc

Sun Microsystems developed JavaDoc, which is currently held by Oracle Corporation,
in order to generate API documentation in HTML format from Java source code. A
major feature of the HTML format is the ability to simply build hyperlinks between
related documents. Javadoc’s "doc comments" approach of documenting Java classes
is widely recognized as the gold standard. Several IDEs, including IntelliJ IDEA,
NetBeans, and Eclipse, can generate Javadoc HTML automatically. Numerous file
editors use the Javadoc information as an internal reference to assist the user in

20

creating Javadoc source [37].

Figure 3.6: JavaDoc open mode [38]

Users can examine the framework of a Java program with the help of Javadoc’s
API for making doclets and taglets. With this, JDiff can produce reports detailing
the differences between two API versions.

In Java, Javadoc has no effect on performance because comments are stripped out
during compilation. It is important to document code with comments and Javadoc
so that it can be better understood and maintained.

3.1.5 AutoREST

The OpenAPI 2.0 and 3.0 specifications can be converted into client libraries with
the aid of AutoRest, a tool that offers a structure for code creation for this purpose.
Microsoft created it around the time the OpenAPI Initiative was established so Azure
service teams could begin developing client libraries based on the newest Swagger
and OpenAPI 2.0 standards [39].

Figure 3.7: AutoREST pipeline [40]

Microsoft developed its own code generator despite the existence of alternative
implementations, as limitations in Swagger 2.0 made it difficult, if not impossible,
to express patterns for Azure services. AutoRest, for example, built and added

21

implementations for x-ms-discriminator-value to distinguish between distinct schema
types in requests and responses and x-ms-pageable to enable response collections
to be paged via additional operation calls. The OpenAPI 3.0 specification finally
incorporated constructs such as type discriminators and response operation linkages.

Figure 3.8: AutoREST Webpage [41]

AutoRest is based on a configurable pipeline that integrates many OpenAPI input
files into a single "code model" for usage with a language-specific code generator.
These code generator add-ons will scan the code model and generate code that adheres
to each language’s particular style guidelines. Coding process for a language will uti-
lize its related Azure Core implementation for HTTP request handling customization.

3.2 API Documentation and Comparison
This section provides a description of the design process as well as the planning
procedures that were initially determined to be essential in order to begin the
data gathering process that should compare the problem that was defined. In an
effort to provide more clarity throughout the API documentation, chapter four has
been subdivided. Documentation focuses on API Postman, Redocly, SwaggerHub,
JavaDoc, and AutoREST tools that are utilized, with a primary emphasis on how to
obtain data that can be evaluated and processed.

22

3.2.1 Measurement and Comparison Process

Examining the documentation for an API allows one to see how different developers
who are experts in the API’s intended field approach typical programming challenges.
It is possible to evaluate and identify the precise problems encountered by different
users and the assumptions and methods that lead to these problems if these studies
are performed in a usability lab, recorded, and the programmers are asked to think
aloud while they work. Participants in a study on the usability of a file API, for
instance, might be invited to build code that reads and writes files. The most frequent
issues can be captured using screen capture. To give an example, certain types of
programmers may have trouble picking and choosing the right items to use when
creating a new file. They may wrongly assume the classes have a different name, or
they may anticipate to utilize a single object instead of merging the several objects
that the API tools require. These issues can be discovered by listening to recordings
of programmers’ spoken thoughts. Similar methods can be used to investigate the
usability of an API design decision; however, rather than having developers work
with a single API to complete tasks, they work with multiple APIs, each of which
implements the decision in a slightly different way.

3.2.2 Compared Parameter

I made a study that compared API tools different ways to design object constructors
so I could learn more about how to do it.

The first way was to only provide object constructors that needed all of the "syn-
tax" properties of the object as parameters. For example, ”File(Stringpath)” is the
constructor for a file object. MailMessage (MailAddress sender, MailAddress recipient,
String subject, String body) is the constructor for an email message. By only giving
out constructors that needed the right objects, these APIs could prevent certain errors
without doing anything else. For example, a programmer could write compliable code
that tried to read a file without saying which file to read or tried to send a message
without saying who to send it to. The second way was to offer "default" constructors
that did not need any parameters instead of or in addition to these constructors.
”File()” could be used to make a File object, and ”MailMessage()” could be used
to make an email message. Programmers could set the properties of an object, such
as ”file.path = ”foo.txt”” or ”mailMessage.recipient = ”cj@msn.com, ” to give
the important information, such as the file-path or the email recipient. We called
this method "create-set-call" because we started with an empty object and set its
most important properties before calling other methods (such as read or send). This
method seems to have a drawback in that it does not make the API’s dependencies
clear at compile time. For example, a programmer might not know that a mail
message needs a sender or might forget to give one.

Some other things that i kept in my mind while comparing the tools, How to
create the API documentation? Is it an automatic process or manual? How about

23

the maintenance of the documentation? Creating a document is not the whole task,
As the API will be there for a long time, the document also needs to be maintained
properly. There could be some small modifications based on the need on the API,
how easily that could be reflected in the document? What are the features and
customizable options? And also how easy it is to understand the workflow of the
API from the documentation?

Some major compared tagline of Postman, Redocly, SwaggerHub, JavaDoc,
AutoREST below are noted:

• Tags or Syntax

• Advantage and disadvantage

• Developer and User Experience

• Support and Teamwork

• Tools Limitation

• Bugs and issues in the API’s architecture

3.2.3 Analytical Comparison

Once enough information has been collected during the user experience phase, the
analysis phase can commence. The acquired data will be analyzed thoroughly,
providing some indication of the solution’s effectiveness in meeting its stated goals.
Here we will take a stab at guessing how accurate the API documentation is by
manually comparing various sources. It is only natural that this subset could be
influenced by the subjective biases of its participants. In an effort to eliminate bias,
the manual comparison has not evaluate the significance of the discoveries but will
instead establish the existence of the concepts inside the documentation pages.

3.3 API Documentation Analysis Stage
I provide a way to examine documentation evolution, which may be used to under-
take a systematic and analytical examination of API documentation. We apply the
classification schemes of Postman, Redocly, SwaggerHub, JavaDoc, and AutoREST
to the various revisions of API documentation for a given API library.

Stage 1: API documentation from the current and previous versions are com-
pared head-to-head to identify changes. What we call a "document" in the context
of API documentation is just a group of words that describe some part of an API.
It is possible to add, remove, or change a portion of the API as it develops. Since
our attention is on API documentation, we consider an API element to have been
changed whenever either its declaration or its document is updated. When there are
just minor changes between two sentences in a document, we say that there has been

24

a revision. Any changes made are classified as either: a) a sentence that has been
added; b) a sentence that has been removed; c) a sentence that has been altered.
And last, from the discovered modifications, we extract several features, such as the
occurrence of words and the position of changes.

Stage 2: Implementing a heuristic classification scheme for changes. Here, we
start with a manual analysis of a sample size of a few hundred revisions, extracting
features for different types. We develop heuristic rules specific to each category based
on these criteria. We create a heuristic technique to categorize revisions based on
their annotations, and our research shows that different sorts of annotations (such
as @systax and @report) are linked to distinct keywords with specific typefaces. I
use these heuristic API rules to categorize revisions into distinct groups. Differences
between revisions that belong to different clusters are minimal.

Stage 3: Revising and evaluating sensitive information. Here, we use an iterative
process to fine-tune our classifiers. Every time we run an iteration, we look at the
misclassified findings to see if we can improve upon our current heuristics or come up
with some whole new ones. We next repair any remaining incorrectly classified results
and examine the entire process to draw conclusions about how API documentation
has changed over time.

25

Chapter 4

4 Results
In this chapter, I examine the thesis’s development process and the tools final stand-
ing in relation to tags or syntax, pros and cons, developer and user experience, tools’
limitations, unblocks development from various perspectives, etc. Create an auto-
matic overview mechanism that displays the location and relevance of resources based
on keywords associated with the open API documentation development significant
delay caused by exploring the open API documentation. Analysis of the project as a
whole and its development as a topic of conversation.

4.1 Comparison on API Documentation Command or Syntax
4.1.1 Postman

Published Documentation: Each request and destination in the public collection
is documented in full, and sample code is provided for a number of client languages.
The available documentation is continuously updated to reflect the most recent
changes to the collection. After adding edits to the documentation, it is not necessary
to re-release it. Variables can also be used to temporarily store functions, making it
more simpler to access and use them than the data they hold. Variables can also be
used to temporarily store entire function definitions

var NameOfTheFunction = () => {
Function Definition
}
pm.environment.set(NameBywhichYouwantedtostoreavariable,

NameOfTheFunction.toString());

The eval() method is used to call a function that has been stored in a system
variable.

Postman is a powerful tool for performing API, sending HTTP queries, and
viewing their answer due to its integration of variables and JavaScript functions.
They offer a clean way to send requests through the Postman, whether through
the body, a pre-request script, or a test run after the request has been executed.
With sendRequest, one can initiate API calls from the post-execution test or pre-
requirement script. This request’s response is recorded in the function’s return
response, from which it can be retrieved and used in other requests or variables. Note
the usage example under:

26

Function to send the request

pm.sendRequest({
url: url,
method: POST ,
header: header,
body: {
mode: raw ,
raw: JSON.stringify(body)
}
}, function (err, res) {}

The response has become part of the collection and can be used by any further
requests. This functionality also facilitates request chaining, which is useful for
achieving the desired effect. To make a request stand on its own, you can produce
the data it needs and make any calls to other requests that must be made in order
to process it under the pre-requisite script section. When using a request chaining
approach, it is important to ensure proper synchronization, or the waiting period
between requests. Because JavaScript is asynchronous, pauses are required to instruct
Postman to wait for the initial request to finish before proceeding. Here is an example
of this in the code:

How to handle synchronization

setTimeout(function () {
// Operations to be performed on the completion of request if any
},Timeout)

Test Code
if (securedType!== && securedType.length>0){
postman.setNextRequest(Name of the same request);

API Body code
{

SecuredType : {{currentSecuredType}}
}

Repeated requests are sent out until the ’securedType’ variable has some infor-
mation in it. In addition, Postman has a wide variety of built-in assertions that
may be run on the API’s output. However, utilizing different JavaScript libraries,
you can make your own changes and assertions. Postman is compatible with a wide
variety of libraries. In our application, we used the moment library to manipulate
and verify dates and the arithmetic library to carry out a wide range of numerical
computations.

27

Figure 4.1: Postman generated public API documentation [29]

4.1.2 Redocly

When multiple groups are working together, Redocy API definitions can quickly
balloon out of control. Keeping the various reusable components in their own files
and referencing them with ref in the main (root) API specification is recommended.
The majority of OpenAPI tools, however, do not work with API definitions that
span multiple files and instead necessitate a single unified document. You can use
the Redocly CLI to merge multiple API definition files into a single document. The
bundle command compiles all the necessary information from an API specification
into a compact JSON or YAML file.

28

Table 3: Syntax and Option of Redocly

Options Type Description
apis [string] Names of API definition files or the identities you

gave them in the apis section of your Redocly config-
uration file. All names specified in the apis section
of your configuration file will be used as the default
setting.

–config string Specify path to the config file.
–dereferenced, -d boolean Generate fully dereferenced bundle.
–ext string Identify the file type of the bundle. Options include

json, yaml, and yml. Yaml is the default format.
–extends [string] Allows you to build on an existing setup using the

–lint option. When a new instance of Redocly is
created, its configuration file is used as the source
for its default settings.

–force, -f boolean Produce output bundles notwithstanding incorrect
conditions.

–format string Format for the output. Possible values are code-
frame, stylish, json, or checkstyle. Default value is
codeframe.

–help boolean Show help.
–keep-url-references,
-k

boolean Keep absolute url references.

–lint boolean Lint definition files. Default value is false.
–max-problems integer Truncate output to display the specified maximum

number of problems. Default value is 100.
–metafile string Path for the bundle metadata file.
–output, -o string Name or folder for the bundle file. If you do not

specify the file extension, .yaml is used by default.
If the specified folder does not exist, it is created
automatically. If the file specified as the bundler’s
output already exists, it is overwritten.

–skip-rule [string] Ignore some regulations. For information on how
to bypass a preprocessor, rule, decorator, please
refer to that section.

–remove-unused
-components

boolean Discard output bundle components that are not
being used.

–skip-preprocessor [string] Leave out particular preprocessors. For information
on how to bypass a preprocessor, rule, or decorator,
please refer to that section.

–skip-decorator [string] A few interior designers should be disregarded. For
information on how to bypass a preprocessor, rule,
or decorator, please refer to that section.

–version boolean Show the version number.
Source: Redocly official documentation [32]

29

Live API Documentation: The Redocly OpenAPI VS Code extension relies
on Redocly API docs to generate a preview of the API documentation based on the
OpenAPI document you are editing. With this feature, you can view the OpenAPI
source and the corresponding API documentation side-by-side. When you save
a change to your OpenAPI definition, the documentation in the preview panel is
automatically updated.

Figure 4.2: Redocly generated public API documentation [32]

4.1.3 SwaggerHub

Interactive API Documentation: API specifications can be used with Swagger-
Hub to create dynamic API documentation. I can use it to try out API calls in your
browser, investigate API endpoints, parameters, responses, and data models. The
name convention for API docs pages is identical to that of API and domain pages,
with the addition of a -docs suffix after the /apis (or /domains) portion of the URL:

https://app.swaggerhub.com/apis-docs/owner/name/version

https://app.swaggerhub.com/domains-docs/owner/name/version

If the version number is not specified, the following version will be displayed on
the help page:

https://app.swaggerhub.com/apis-docs/swagger-hub/registry-api

Target server for requests -

When using SwaggerHub’s "test it out" feature, your API definition must include
the host (in OpenAPI 2.0) or servers (in OpenAPI 3.0) so that queries can be sent

30

to the proper location:

swagger: ’2.0’
host: myapi.com
schemes:

- https
basePath: /v2

or

openapi: 3.0.0
servers:

- url: ’https://myapi.com/v2

Use SwaggerHub’s dummy server in place of a real one if you do not have one
yet or if you prefer not to expose your API to the public. The fake server will spit
out responses according to the response schemas and examples you provide in your
API description.

Permalinks: The API and domain documentation supports permalinks to
individual operations, tags, models, and domain components. To get a perma-
link to a specific item, expand that item, and then copy the full link from the
browser address bar: https://app.swaggerhub.com/apis-docs/swagger-hub/registry-
api/1.0.47/APIs/searchApisAndDomains

Permalinks have the following syntax:

For tags and operations:

...#/TagName

...#/TagName/operationId
For other items:
...#/ItemType
...#/ItemType/ItemName

31

Table 4: Link Operation of SwaggerHub

Example Description
.../pet Link to the pet tag.
.../pet/updatePet Link to the operation with ID updatePet

inside the pet tag.
.../models/Order Link to the Order model.
.../parameters/limitParam Link to the limitParam parameter defini-

tion in an OpenAPI 2.0 domain.
.../components/parameters/limitParam Link to the limitParam parameter defini-

tion in an OpenAPI 3.0 domain.

Source: Smart bear SwaggerHub support [46]

Figure 4.3: SwaggerHub API documentation [46]

32

4.1.4 JavaDoc

Documentation Comments: Whenever I make a declaration for a new class,
interface, method, constructor, or field, I may add comments to the code that explain
what that declaration is for (these are called "doc comments"). Each package can have
its own doc comment, and the overview can have its own, with somewhat different
syntax. An alternative name for doc comments is "Javadoc comments" (but this term
violates its trademark usage). The text between the doc comment’s opening /** and
closing */ tags is considered a comment. Additional information about the use of lead-
ing asterisks on each line follows. A comment’s text may span many lines if necessary.

/**
* This is the typical format of a simple documentation comment
* that spans two lines.
*/

To save space you can put a comment on one line:

/** This comment takes up only one line. */

Placement comments: For examples of classes, methods, and fields, respectively,
see the examples of class, interface, constructor, and field declarations. Documenta-
tion comments within a method’s actual body are disregarded. The Javadoc tool
only accepts a single documentation remark per declaration statement.

An incorrect import statement is often placed between the class comment and
the class declaration. Never do this, as the Javadoc tool will not take into account
the class comment if I do.

/**
* This is the class comment for the class Whatever.
*/
import com.sun; // MISTAKE - Important not to put import statement

here

public class Whatever {
}

After the opening delimiter /**, the main description continues until the tag sec-
tion. The initial @ character at the beginning of a line (ignoring preceding asterisks,
white space, and separator /**) marks the beginning of the tag section. A comment
can contain a tag section but no main description. Once the tags section begins, the
main description must end. A tag’s argument may be presented across multiple lines.
There is no limit to the amount of tags that can be used, albeit some tag types can
be reused while others cannot. This @see, for instance, initiates the tag section:

33

/**
* This sentence would hold the main description for this doc comment.
* @see java.lang.Object
*/

Tags are keywords used in doc comments that are recognized by the Javadoc
tool. Tags can be either block tags, written as @tag (or "standalone tags"), or in-line
tags, written as @tag> (or "curly braces"). Any leading white space, asterisks, or
separator characters will be disregarded when determining the meaning of a line that
begins with a block tag. Thus, the @ symbol is not considered to be the beginning
of a tag when used outside of the context of a tag. Use the HTML entity 064; to
start a line with the @ symbol without having it be interpreted. The text after a
block tag up to but not including the next tag or the end of the doc comment is
called "related text," and each tag has its own. The accompanying text may be long
enough to fill many lines. Anywhere normal text can go, an in-line tag can go as
well, and vice versa. The following code snippet uses the inline tag @link and the
block tag @deprecated.

/**
* @deprecated As of JDK 1.1, replaced by {@link

#setBounds(int,int,int,int)}
*/

Using HTML entities and tags are permitted, and the text itself must be written
in HTML. If your browser supports HTML 3.2, you can use that instead of the
older versions; the standard doclet was created to output HTML 3.2-compliant code
outside of the documentation comments, so you can utilize things like CSS and
frames. Because of the frame sets, we label all created files as "HTML 4.0."

For instance, the less-than () and greater-than (>) symbols’ respective entities
should be written as and respectively. It is also correct to use for the ampersand.
This example demonstrates how to use the b> tag for bold text in HTML.

Here is a doc comment:

/**
* This is a doc comment.
* @see java.lang.Object
*/

34

Figure 4.4: JavaDoc print code

4.1.5 AutoREST

Command Line Interface Documentation: Simplifying the AutoRest command
line was a priority, and many options that used to be available directly on the
command line are now stored in a configuration file, which can be overridden by the
user.

autorest [config-file.md | config-file.json | config-file.yaml]
[additional options]

AutoRest will utilize a configuration file to govern the production of source code.
AutoRest will search for a file named readme.md by default, or it can be specified
on the command line. This strategy is favored over passing all the information on
the command line. If you prefer a different name for your configuration file, you can
specify it on the command line:

autorest my_config.md

By appending a double dash (–) before a value and setting it to equals (=), you
can override a setting from the configuration file on the command line. example:

autorest --input-file=myfile.json --output-folder=./generated/code/
--namespace=foo.bar

AutoREST allows for code to be generated straight from private GitHub folders.
Choices include:

Token query parameter: When accessing a file in a private repository, after se-
lecting "Raw," append the token query parameter to the end of the repository’s URL,
such as this: https://github.com/path-on-some-private-repo>/readme.md?token
=token>. With this kind of URI in hand, AutoRest will remember the token and

35

utilize it for any future requests (e.g. querying referenced OpenAPI definitions). If
you occasionally need to run AutoRest on any sensitive data on your own, this is a
simple and efficient way to do it.

Create your own OAuth tokens in GitHub’s Settings > Personal access tokens.
Make a version that can be used throughout the repository. Set the env var GITHUB
AUTH TOKEN or use the –github-auth-token=token> option to provide it to Au-
toRest. All automation and scripts should be written in this fashion. Obviously,
you should not just type this token into your scripts without first storing it securely
somewhere like Azure KeyVault. An organization’s repository may need special
access permissions granted to the Github Token. (Near the token that reads "Enable
SSO> " Select the necessary group and then click the Authorize button.

Table 5: Common flags of AutoREST

Option Description
–input-file=FILENAME Including the specified file in the generat-

ing process’s input file list.
–output-folder=DIRECTORY The folder in which the output files will be

placed. The default location is./generated
if not otherwise specified.

–clear-output-folder Before writing your newly generated code
to our output folder, please delete all of
the existing files in that directory.

–namespace=NAMESPACE adjusts the resulting code’s namespace
–add-credential A credential will be needed before the pro-

duced client may perform network calls, if
that option was set during generation. For
details on how to verify access to our cre-
ated clients, please refer to our language
documentation.

–tag=VALUE the most favored method of setting up con-
ditional arrangements. Simply put, the
value of the tag flag VALUE determines
the value that will be applied to the input-
file in my configuration file. For more de-
tails, please review the part titled "Adding
Tags When Generating."

Source: Generating Clients with AutoREST [47]

36

Figure 4.5: AutoREST documentation [47]

4.2 Pros and Cons
4.2.1 Postman

Advantage: The fact that Postman is so easy to work with is among the program’s
many strong points. Testers can quickly create test cases by populating pre-made
forms using an intuitive interface. This saves them a lot of time. The code snippets
provided by Postman make it easier to construct scripts by providing validation
examples for response time, response code, and other aspects of responses

Disadvantage: There is currently no support for global variables in the Postman
Monitor. When we set up a Monitor, we have to make a copy of all of the global
variables and save them as local variables if we want to make use of the same values
for a variety of purposes within a freshly fashioned Environment. Only by using the
free edition of Postman Monitor can we get a sense of what capabilities it possesses.

4.2.2 Redocly

Advantage: The open-source API documentation tool Redoc serves as the foundation
for the SaaS application known as Redocly. While Redoc generates straightforward
and free API documentation, Redocly adds several elements to provide developer
portals that may be tailored to individual needs. API providers are able to document,
create example code and API references.

Disadvantage: There is no interactive playground in the free version, error
messages that are not very helpful when the OpenAPI specification cannot be parsed,
and I’m not a fan of the way that sets of request/response attributes were presented.

37

4.2.3 SwaggerHub

Advantages: Swagger provides a technique to automate the documentation, that
indicates that Swagger will pick up the methods that include attributes such as GET,
PUT, POST, and DELETE and will produce the documentation in of itself. In
addition, the documentation for Swagger is updated automatically if any changes
are applied to the system.

Disadvantages: SwaggerHub When it comes to integrations, SwaggerHub falls
short. They have integrated APIs and certain connectors, but they do not have
integration with many of the things that we use. On the other hand, they do have
integration with some connectors. For example, we were required to use third-party
scripts in order to establish a connection with SVN.

4.2.4 JavaDoc

Advantages: Good API documentation can be generated with the assistance of
the Javadoc tools, although the vast majority of Java API documentation is lacking.
The engineer is ultimately responsible for the API’s documentation because the API
itself is part of the source code. In this piece, Brian critiques the state that Java
documentation Practice is in right now and offers some advice on how to produce
Javadoc that is more helpful.

Disadvantages: It has the potential to make your code exceedingly muddled.
Therefore, you should ensure that the comments are succinct while still providing a lot
of detail. Should this not be done correctly, it has the potential to confuse everyone
and lead to errors in the code created by other developers. It is time-consuming to
write, and it is necessary to manage it when the functionality of the code evolves.

4.2.5 AutoREST

Advantages: AutoREST’s documentation is simpler, provides more human-friendly
results, and supports a wide variety of file formats. AutoREST’s stateless calls are
ideal for cloud-based apps since they require no state maintenance between REST
executions and are simple to reload and scale. If you plan on using CSG Forte
products and functions like Digital Terminal, reporting, or Forte.js, then you should
definitely go with AutoREST instead than SOAP. AutoREST is ideal for ISVs with
several merchant or third-party app developers who wish to receive and leverage our
lead to specific because it requires a developer to consume our API requests.

Disadvantages: AutoREST APIs’ potential drawback is that it is possible to
lose the capability of maintaining state via REST, such when within sessions. Also,
there can be more of a learning curve for novice programmers. Before beginning API
development, it is crucial to have a firm grasp on what constitutes an AutoREST
API and why these limitations are in place.

38

4.3 User Experience: Tools
Throughout the lifecycle of a product’s development, designers, developers, and users
rely on API documentation tools to study, design, and test prototypes of their work
in progress. Skillsets in both front-end development and user research are required
to map into the front user’s experience and optimize it for maximum efficiency.

Table 6: User Experience on API tools

Tool Name Platform Regarding tool Best for Pricing.
Postman Windows,

Mac, Linux,
and Chrome
browser-
plugin

It is an API
development en-
vironment with
good documenta-
tion support.

API testing Basic free package,
Professional plan
costs USD 29 per
month, Business
plan is USD 99 per
month.

Redocly Windows,
Mac, Linux.

Different type
APIs may be
tested for their
functionality,
security, and
load issues.

APIs and doc-
umentation for
web service se-
curity and func-
tionality were im-
proved.

Free basic package,
Standard package
costs USD 69 per
month.

SwaggerHub Chrome,
Firefox,
Safari, Edge

It is a one-stop
shop for all
your API de-
velopment and
management
needs

The tool is best
for API design-
ing.

Free individual
use, For teams
USD 90 per
month.

JavaDoc Windows,
macOS,
Linux

API, online,
desktop, and mo-
bile testing tool
for beginners
and pros.

Automated test-
ing

There is a free tier
of service, but any
additional help
will cost money.

AutoREST Cloud-based
continuous
testing

Integrates seam-
lessly with UI
documentation
generation and
automates API
tests without the
need for code

Fully automated
API testing
with codeless
automation logic,
full document
management,
and API error
monitoring and
tracking.

There is a free
trial that you can
try. Pricing Bud-
get at least USD
150 per month for
comprehensive au-
tomation of your
API, UI, database,
and mainframe.

39

4.4 Support and Teamwork
Appropriate design, development, and documentation are cornerstones of distributing
high-quality APIs. To create the ideal application programming interface (API),
members of different software development groups often work together and share
knowledge. The API development process will be iterated and deliberated upon in
teams using SwaggerHub, and Postman and AutoREST will walk through a guide
on forming and managing organizations.

The creation of an API is a collaborative effort involving many parties. In order
to build an API, you must first identify its needs. Is this an internal API used only
by the corporation to improve its own software, or is it an external API available to
the public in the hopes of boosting sales and brand recognition?

The API would determine if public or private APIs are necessary based on the
specifications provided by the product owners and level expert. In the SwaggerHub
Editor, API owners can specify exactly who can access their API.

Figure 4.6: SwaggerHub Editor [46]

The idea for a private API typically originates with technological leads and
development managers who see the value in having an internal API to streamline
the creation of new apps within the company. Discussions on public APIs, which are
available to anyone to use, are typically led by product owners, marketing managers,
and technical leads. Only until the API design and development team has thoroughly
investigated and settled upon the necessary functional technologies as documented
in JavaDoc can the API be made a reality.

Developers should prioritize the needs of their organizations when designing
and developing software. Infrastructure, deployments, firewalls, domains, licensing,
procurement, networking, and similar tasks offer no value to the business and should
not be delegated to developers. When a developer has a pleasant time with the tools
we provide, they can devote their time to improving our products and adding new
features that will make our customers’ lives easier.

40

4.5 API documentation Tools Limitation
API documentation are generally the first thing developers look at when they decide
whether or not to use a specific product. It provides weight to the cliché that an
API is only ever as good as its documentation. The API might never be released if
it does not come with solid documentation. As a result, API designers must now
devote more time and effort to this stage of the project’s creation. Hosted API
documentation from API specialists such Postman, SwaggerHub is one approach.
Designers have an advantage when it comes to releasing high-quality, fully-functional
documentation when they utilize open-source solutions like API documentation tool
packages.

• Advertisements Using the API: Unfortunately, marketing brochures can
only ever provide a high-level overview of the API. While you are showing
the documentation to someone with greater experience with API development,
they may want more in-depth information. Then, one should go with a more
comprehensive API documentation style.

• API Reference Documents: The goal of API reference guides, a specific
sort of documentation, is to provide a comprehensive overview of the API.
Information such as the API design team’s goals, commonplace themes, the
API’s endpoints and parameters, a history of changes, and a collection of
commonly asked questions can be helpful. The reference book may look like a
certain way to document the API, but it may also be seen as overly "vanilla"
or unimpressive. Users of the final product would prefer more engaging docu-
mentation, especially in light of the inventive approaches taken by competing
API design teams.

• Topical API References for Greater Depth: If business API documentation
consists solely of in-depth articles on certain topics, readers may become
overwhelmed. The guidelines’ comprehensiveness may be for naught if readers
find them too difficult to follow

• How-to Guides for Pasting in API Code: One potential drawback of
recipe-based API testing and documentation is that it may cause developers to
over-specialize in a few key areas. We must guide them to the "larger picture"
of the API, not just the functional pieces. And the API documentation as code
will only be useful if the examples are applicable to the users’ needs. The key
is adapting the system to the specifics of actual use cases.

4.6 Bugs and Issues in the API’s architecture
Neglecting to Offer Instruction: The lack of a clear path to mastery is a typical
flaw in developer-written API documentation. Libraries often provide extensive
reference documentation, but they do not always make it easy to get started with
the fundamentals, and they do not always provide guidance for moving beyond the

41

"I went through the tutorial" stage and into the "I am a wizard" stage. If busi-
ness do not give their users a way to get up to speed on the API, it will have a
much harder time being adopted and used. To begin, let us address the elephant
in the room: confusion over how to get started. It will not be easy to get rid of
an API that’s hard to learn and even harder to get started with. It is going to be
tough to get anyone to embrace an API if it takes them days to get any value out of it.

Putting Emphasis on Procedures While Ignoring Ideas: API documenta-
tion relies heavily on tutorials. They are the easiest method to begin using a new
piece of technology, and their purpose extends far beyond that of mere instruction.
Tutorials are like test drives for knowledge. It gives potential customers a chance to
experiment with their technology, learn what works and what does not, and judge
the quality of its documentation and development tools, among other things. We can
see results right away, which makes people more comfortable with given technology
and energized about what they can create with it. Even worse, tutorials that are
short on details promote copy-and-pasting code, which is a major contributor to the
proliferation of defects and poor practices. It also has the unintended consequence
of stifling innovation, engagement, and development within the community. Only
so many things can be made by only cutting and pasting, and none of them are
especially impressive.

Absence of Sample Code: One of the most common issues, and the most
aggravating for developers, is the focus on providing reference information without
supplying any code at all. It is also the most effective, typically.

It is especially problematic for developers who are just starting out with your
API (possible adopters and fans) since there is no example code available.

Typically, we picture a book or a manual when we think of API documentation.
When we are more experienced with an API, we often look to the documentation
to learn the meaning of a parameter or the value we should supply to trigger a
specific effect. Questions like "what errno values may read(2) set?" and "how does
parseInt pick what radix to use?" come to mind. However, that is just the most basic
documentation of records. Good documentation does not merely catalogue facts;
it fosters comprehension. One of the most effective methods of constructing it is
through studying existing examples of code. Many seemingly simple classes, such as
TextureBrush, actually include a lot of sophisticated features. However, take note of
how the abundant usage of sample code makes the whole thing manageable.

The Inability to Construct Anything Valuable: It is smart to count on
users’ established familiarity with the system. Having prior expertise is helpful
because it prevents you from having to waste time teaching concepts that are already
understood. Its worth lies in the fact that it contains more than just "raw" knowledge;
for example, it may contain information on what to expect from a system, what to do
in unusual situations, and so on. Even if you wouldd rather not, there are occasions

42

when you have to start from scratch. You need to take the time to document concepts
that are essential to your users’ ability to write any code at all but will never directly
result in them writing anything.

Not Thinking Outside the Box: Compiling complex libraries can be more
involved than simply executing make or pressing F9 (this is just one example). Does
your organization have a blog? Why not tell the world about the one that involves
some non-trivial setup but ultimately provides a superior development experience?
An excellent illustration can be found in JavaDoc. This stuff can be quite useful,
especially for newbies. They also help to ease transitions; working with a novel API
in one’s preferred setting makes the process feel less daunting.

43

Chapter 5

5 Discussion
In this section, I take a look back at the work that went into this thesis and evaluate
how the final product stacks up against what I covered in the first section. That
section focused on API documentation and the importance of key phrases related to
open APIs in order to solve the problem of a time-consuming delay in development
caused by the need to explore open API tools. In this section, we will investigate the
evolution of the thesis and how it relates to the remainder of API documentation.

5.1 API Documentation Design
The design of the API for rebranding is built around the use case description and the
requirements of the stakeholders. In addition, the design takes into account quality
characteristics that are regarded as being relevant based on previous research in
the field. Usability and power are the two aspects that Henning [42] see as being
important. As a result, the design ought to incorporate components that facilitate
learnability, uniformity, flexibility, performance, and error prevention. Table 7 con-
tains a rundown of the aspects of the design that contribute to the quality traits
being promoted. The design is primarily based on the bolt-on method that was
outlined by Meng [43]. It is anticipated that there is a backend system that the
APIs will be built on top of when employing this technique. The backend has been
left mostly unaltered and is kept entirely separate from the APIs and the mobile
application. In addition to this, the design makes an effort to accommodate the
requirements of the various stakeholders, which are detailed in table 8.

44

Table 7: Relationship between final product quality and design decisions

Quality attribute Design Solutions
Learnability Documentation that can be read by both

machines and humans, The API’s function
names should be consistent ,uniformity in
style

Consistency The API’s function names should be con-
sistent, uniformity in style

Extensibility Taking API architecture into account:
Which questions/fields are required?, Can
additional fields be added to the API at a
later date?

Performance Reducing the number of times slow back-
end services are called, Caching

Error prevention Error checking and recovery, Implement
proper error codes

Table 8: Primary players of APIs

Stakeholder Main Needs
API developer and designer Simplicity in design and implementation
Storage worker Program that actually does its job, free of

errors
Application
developer

APIs that are easy to learn and find, Ef-
fective and rapid application creation

Customer IT
personnel

Lower the expense of development as much
as possible.

45

The GET method is used by every resource to retrieve a copy of itself. Unit also
facilitates resource updates and additions using the PUT and POST methods. This
is essential for transferring troops across commands. It is recommended to follow the
guidelines provided by the framework when naming endpoints and URIs. Correct
use of verb tense, articles, and singular/plural nouns is essential. Lowercase letters
are used exclusively, hyphens are used in place of spaces, and there is no room for
creativity in the naming scheme.

The return sets from the rebranding API will be in JavaScript Object Notation
(JSON). Content negotiation and other markup languages may be added in the
future if they prove useful, but they are not currently supported. Table 9 describes
the HTTP status codes and their meanings.

Table 9: HTTP Status Codes for the API

Status Code Explanation
200 Used to indicate success
201 Resource was created successfully
204 No content to return
400 General return code for unspecified error
401 Problems in authentication
403 Access is denied
404 Requested resource does nott exist
405 Used method was not supported
406 Requested media type is not supported
500 Server-side error, i.e. a malfunction in the

API

The ERP system’s unit table has 130 columns, which means dozens of updates
to the API may be necessary if a new column value must be returned of Postman,
SwaggerHub tools. In the event that an API that allows 10 fields is originally
developed, this may occur. Two additional fields are discovered to be necessary and
the API is updated to reflect this. Obviously, this is not what is wanted; rather,
it is preferable that all of the columns be supported right off the get. An optional
parameter should be supplied in the implementation of the unit details API in order
to define which fields are to be returned.

5.2 API Documentation Management
To ensure the viability of the mobile app, Tieto created a number of APIs that are
now hosted on Microsoft’s Azure cloud platform. See Figure 3 for an example of an
API that deals with information about a single item, as well as APIs for managing
individual users and their orders. Currently, the APIs can be used for both simple

46

and sophisticated activities, such as retrieving information about users, orders, and
units, and transferring units between orders. The existing APIs are not included
in this thesis, but they are used as case studies in designing the administration.
Swagger is used for documenting APIs; this lets users try out the APIs and offers
information such as the request endpoint, parameters, and result and response codes.

Users may do things like monitor traffic, configure security policies, and discover
and deploy new APIs with the help of the various parts of the system, including as
the runtime, gateway, management, developer portal, and developer tools.

Figure 5.1: Simple Unit APIs [35]

API strategy definition is the first step in Tieto’s API management methodology.
Next, we will define API management policies and security-related challenges, and
finally, we will define the setup and platform for API administration. According to
Khan et al. [45], figuring out what the API does for customers is the first step. In a
similar vein, it must be specified which client requirements API management meets
[45]. It is an API management platform that facilitates API discovery, management,
and monitoring for its user base. Customers may experience issues with common API
tasks like producing use data or establishing security policies if API management is
not in place.

5.3 Documentation Problems
In Table 10 reveal instances of poor documentation that Nybom et al. [15] found.
We found that the well-documented examples provided nothing in the way of doc-
umentation [15]. These were all rationalized on the grounds that they satisfied
the developer’s informational requirements. The quality of the documentation was
therefore the primary focus of our documentation.

47

Table 10: Categorizes the ten distinct issues into their respective forms.

Problem Description
Content Incompleteness An API topic or element description was

not located where it should have been.
Content Ambiguity The description of an API component,

while detailed, was nevertheless rather
vague.

Unexplained examples There was insufficient explanation given
for a code example.

Content Obsoleteness An older version of the API was used in
the topic’s documentation

Inconsistency Not all integration documentation was on
the same page.

Incorrectness There were several inaccuracies.
Presentation bloat A subject or API element was described in

too much detail.
Fragmentation Too many different pages or sections had

different pieces of information on the same
thing.

Excess structural
information

Repetitive information about an element’s
syntax or organization that can be easily
acquired with modern IDEs was included
in the object’s definition.

Tangled information Unneeded details were mixed up in the
explanation of an API issue or element.

Contents: Documenting an API with the best of intentions does not guarantee
that you will be able to foresee every possible use case. Understanding how to utilize
an API element when it is part of a complex interaction with other API components
may require more than just an explanation of its functioning. The JavaDoc API, for
instance, includes features for configuring distributed caching over many nodes. The
Java RMI (remote method invocation) API is required for coordinating the activities
of several nodes in a distributed environment. User played around with the Postman
API in order to establish a distributed caching system in Java.

Confusion was the second issue with the material. The documentation here seems
to cover a topic of interest, but it actually glosses over key points, leaving room for
many interpretations. Ambiguity might be seen of as a sort of incompleteness, but
with crucially important details missing. The respondents’ reactions varied depend-
ing on the nature of the issue. They cited a lack of knowledge as an example of
incompleteness, and they cited ambiguity as an example of difficulty in understanding.

48

As for the third issue, missing context in the form of examples was a concern.
The majority of developers do value code samples, but some respondents found the
lack of context frustrating. Create your own Ajax programs with the help of the
Dojo JavaScript APIs. One responder appreciated the code examples provided for
numerous API functions but became upset when he or she could not figure out how to
configure a parameter in the example. Because it is a JavaScript API, Dojo requires
documentation that describes the code examples in terms of how they may be used
in a browser.

Presentation: A bloated appearance was the first type of issue that arose during
the presentation. However, when the title or header is too broad, it might be difficult
for readers to identify whether or not the content they are reading actually contains
the information they need. Fragmentation was the second issue with the presentation.
Respondents found it inconvenient that the descriptions of the functionality and
use of an API element were split out on such a granular level, requiring them to go
through numerous pages of an API document. For instance, the Redocly APIs follow
a two-layer description structure of each function, which is not standard in other APIs.

An excessive amount of structural detail was a third issue with the presentation.
Object-oriented APIs typically have a type’s description include interrelations with
other types. For instance, every class in the Java SE (Standard Edition) APIs derives
from java.lang.Object.

Confusing data was the last issue with the presentation. When asked whether
it was beneficial to learn about APIs, respondents found that explanations that
included particular examples of their use were more enlightening than those that
included examples of their use in a jumbled fashion.

5.4 Problem Study
An in-depth quantitative analysis of the development of API documentation is ur-
gently required. Due to the documentation and size of API updates, it is difficult to
do such a study.

• What Sections of the API Reference Guide See the Most Updates?

We show all possible ratios and give some instances of each. Over 2,130 ver-
sions of the java.util package and the other four J2SE libraries were compared.
In Figure 2, we classify the changes made to API documentation into three
broad categories and then break those categories down into more specific revi-
sion kinds. The three main types of edits are displayed vertically, while the
percentage of the total 2,131 edits assigned to each kind is displayed horizontally.

49

Finding: Despite their similarities, tags and annotations are treated differently
in the official Java documentation6. Tags allow library developers to add
structure and substance to the documentation (e.g., @since), while annotations
are used to alter how API elements are handled by tools and libraries (e.g.,
@Entity). In this study, for the sake of brevity, we do not differentiate between
the two definitions and instead utilize annotation to express both.

Versions are identified by the @version or @since annotation, and they consist
of a number and a date that show when an API element was generated or
modified. Whenever you make a modification to the API code, any annotation
will notify you and update the version of the affected API element. Due to
the fact that both annotations trigger consequential automated changes to
documents, they account for a disproportionate share of edits. It is still an open
topic on whether such version numbers are meaningful, given we see that library
developers systematically deleted the two annotations in the documentation of
lucene 3.0.0.

Java’s @throws annotation and @exception annotation are used to indicate
that a method of an API throws an exception. Changes to the exceptions
usually signify variations in behavior.

Since related API items are often referenced in the documentation for one API
element. The @see or @link annotations can be used to indicate the reference
relations. We find that at least two motivations push library developers to
alter reference relations. One factor is that the names of referred API items are
updated. It is also not easy for anyone, not even library developers, to figure
out which API pieces are related to one another by reference. In addition to
referencing other API components, a single document may also make use of
URL referencing to make reference to other online documents. Developers of
libraries can also change URLs between releases. For example, in the java.util.
Locale.getISO3Language() method of J2SE 1.5, the URL of ISO 639-2 language
codes is modified from one to another.

• To What Degree Do Such Revisions Indicate Behavioral Differences?

When comparing two versions of an API library, the input/output values,
capabilities, and call sequences of API elements are referred to as behavioral
differences. Changes to the API documentation can reflect certain alterations
in behavior.

Findings: Developers of a library can modify existing API methods to throw
new exceptions, and they can also create new exception documentation for

50

these methods. To introduce a new exception (NullException) and accompa-
nying documentation, J2SE 1.3 requires library developers to re-implement
the java.util.ResourceBundle. getObject (String) method. Overall, we discover
that NullException, Class CastException, and IllegalArgumentException are
the most often introduced exceptions.

Library documents have the freedom to alter API method throw exceptions
and update their documentation accordingly. The Vector. addAll(Collection)
method, for instance, throws ArrayIndexOutOfBoundsException in J2SE 1.3.
In J2SE 1.4, the thrown exception has been renamed to NullPointerException,
and its documentation has been updated to reflect this.

When an API element is deprecated, developers of related libraries may substi-
tute another API element for it. Differences in conduct are probably reflected in
revised alternatives. The org.apache.lucene.analysis.StopAnalyzer documenta-
tion is one such example. In lucene 2.9.0, the StopAnalyzer(Set) constructor has
been renamed to "Use StopAnalyzer(Set,boolean)instead." Use StopAnalyzer
(Version,Set) instead, the lucene 2.9.1 library developers wrote. As the change
notes suggest, another API method should be used in place of the deprecated
one.

Changing API call sequences probably reflect observable variances in user be-
havior. A line like "Initially invalid, until DocIdSetIterator.next() or DocIdSet
Iterator.skipTo(int) is used for the first time" may be seen in the documentation
for the org.apache. lucene.search.Scorer.score() method in lucene 2.9.2. Until
the first time DocIdSetIterator.nextDoc() or DocIdSet Iterator.advance(int) is
used, the following phrase is considered to be "initial invalid" in lucene 3.0.0.
In the updated version, programmers should use a new set of API methods.

Some API methods in documents may have their input ranges modified by
library developers, who may also update their documentation. For instance, in
J2SE 1.3.1, "The ASCII letters, tab, newline, and carriage return are written
as, t, n, and r, respectively," can be found in the documentation for the
java.util.Properties.store (OutputStream,String) method. The creators of the
J2SE 1.4.2 libraries have included a new ASCII translation for "form feed,"
changing the text to read "The ASCII symbols, tab, form feed, newline, and
carriage return are written as, t, f n and r, respectively." The change means that
additional characters (like form feed) can be inserted into the newer version.

• How Frequently Are API Elements and Their Documentation Changed?

We have looked into the extensive API documentation changes and API docu-
mentation changes that have been made. Here, we summarize the number of

51

times APIs have changed across all library versions.

Findings: The application programming interface (API) libraries of two ver-
sions that are very close together are often very different from one another.
The differences in the Application Programming Interface (API) between two
versions of a library are largely proportionate to the differences in the version
numbers of the two versions, as well as the majority of the proportions per
evolution type are accounted for by additions and alterations.

52

6 Chapter 6

6.1 Conclusion
Although it would be beneficial to programmers and package developers, doing an
evolution study of API documentation utilizing Postman, Redocly, SwaggerHub,
JavaDoc, or AutoREST tools is challenging for several reasons. As part of this
initiative, we propose a system for studying API documentation in order to draw
conclusions regarding its evolution. Using quantitative analysis, we investigate the
evolution of API documentation for five major tools. According to the findings,
API documentation is an ever-present resource. Understanding these results assists
library developers in providing up-to-date documentation and provides programmers
with a better understanding of the dynamic nature of API documentation.

Using the literature and the proposed framework, the results indicate that a
preliminary design for API documentation can be produced. The findings can
subsequently be included into API documentation tools such as Postman, Redocly,
SwaggerHub, JavaDoc, and AutoREST. Not only does it outline general ideas,
but it also provides particular advice for putting those principles into reality. The
study’s purpose of collecting data for use in comparing API documentation was met
with success. Respondents placed the resolution of five content-related issues higher
than the resolution of problems with Postman, Redocly, SwaggerHub, JavaDoc,
or AutoREST documentation because to their frequency and prevalence. It is not
surprising that the most challenging API documentation issues required the most
technical expertise to overcome. It is vital to have in-depth, authoritative knowledge
of the API’s implementation in order to finish, clarify, and revise the documentation.
This makes it difficult for non-developers and new project contributors to perform
these tasks.

6.2 Future Work
Introduction and methodology sections of the paper could have provided more infor-
mation. Both are broad areas that may benefit from greater study. These studies
are placed aside for further research.

I have basically considered REST APIs here in this work, but there is other web
APIs available as well in the market now like SOAP, GraphQL or RPC (remote
procedure call). In the future, those type of APIs could be considered besides REST.

And if some kind of web or mobile application could be developed where some
one could just come and put their requirements and it will suggest the available
options with some sort of best possible one as well, that would be great from a user’s
perspective. There also could be options for putting weights based on user’s need to
identify the best possible option for them.

53

References
[1] Shi, L., Zhong, H., Xie, T. & Li, M. An empirical study on evolution of

API documentation. International Conference On Fundamental Approaches To
Software Engineering. pp. 416-431 (2011)

[2] Zhong, H. & Su, Z. Detecting API documentation errors. Proceedings Of The
2013 ACM SIGPLAN International Conference On Object Oriented Program-
ming Systems Languages Applications. pp. 803-816 (2013)

[3] Stylos, J., Faulring, A., Yang, Z. & Myers, B. Improving API documentation
using API usage information. 2009 IEEE Symposium On Visual Languages And
Human-Centric Computing (VL/HCC). pp. 119-126 (2009)

[4] Kramer, D. Api documentation from source code comments: a case study of
javadoc. Proceedings Of The 17th Annual International Conference On Computer
Documentation. pp. 147-153 (1999)

[5] Robillard, M. & Chhetri, Y. Recommending reference API documentation.
Empirical Software Engineering. 20, 1558-1586 (2015)

[6] Treude, C. & Robillard, M. Augmenting API documentation with insights from
stack overflow. 2016 IEEE/ACM 38th International Conference On Software
Engineering (ICSE). pp. 392-403 (2016)

[7] Endrikat, S., Hanenberg, S., Robbes, R. & Stefik, A. How do API documentation
and static typing affect API usability?. Proceedings Of The 36th International
Conference On Software Engineering. pp. 632-642 (2014)

[8] Maalej, W. & Robillard, M. Patterns of knowledge in API reference documen-
tation. IEEE Transactions On Software Engineering. 39, 1264-1282 (2013)

[9] Inzunza, S., Juárez-Ramırez, R. & Jiménez, S. API documentation. World
Conference On Information Systems And Technologies. pp. 229-239 (2018)

[10] Watson, R., Stamnes, M., Jeannot-Schroeder, J. & Spyridakis, J. API doc-
umentation and software community values: a survey of open-source API
documentation. Proceedings Of The 31st ACM International Conference On
Design Of Communication. pp. 165-174 (2013)

[11] Fucci, D., Mollaalizadehbahnemiri, A. & Maalej, W. On using machine learning
to identify knowledge in API reference documentation. Proceedings Of The 2019
27th ACM Joint Meeting On European Software Engineering Conference And
Symposium On The Foundations Of Software Engineering. pp. 109-119 (2019)

[12] Petrosyan, G., Robillard, M. & De Mori, R. Discovering information explaining
API types using text classification. 2015 IEEE/ACM 37th IEEE International
Conference On Software Engineering. 1 pp. 869-879 (2015)

54

[13] Grau, J., Keilwagen, J., Gohr, A., Haldemann, B., Posch, S. & Grosse, I. Jstacs:
a Java framework for statistical analysis and classification of biological sequences.
The Journal Of Machine Learning Research. 13 pp. 1967-1971 (2012)

[14] Stylos, J., Myers, B. & Yang, Z. Jadeite: improving API documentation using
usage information. CHI’09 Extended Abstracts On Human Factors In Computing
Systems. pp. 4429-4434 (2009)

[15] Nybom, K., Ashraf, A. & Porres, I. A systematic mapping study on API
documentation generation approaches. 2018 44th Euromicro Conference On
Software Engineering And Advanced Applications (SEAA). pp. 462-469 (2018)

[16] Stylos, J. & Myers, B. Mapping the space of API design decisions. IEEE
Symposium On Visual Languages And Human-Centric Computing (VL/HCC
2007). pp. 50-60 (2007)

[17] Jansen, S. How quality attributes of software platform architectures influence
software ecosystems. Proceedings Of The 2013 International Workshop On
Ecosystem Architectures. pp. 6-10 (2013)

[18] Alvaro, A., Almeida, E. & Meira, S. Quality attributes for a component quality
model. 10th WCOP/19th ECCOP, Glasgow, Scotland. pp. 31-37 (2005)

[19] Kumar, N. & Devanbu, P. OntoCat: Automatically categorizing knowledge in
API Documentation. ArXiv Preprint ArXiv:1607.07602. (2016)

[20] Tao, Y., Jiang, J., Liu, Y., Xu, Z. & Qin, S. Understanding performance con-
cerns in the API documentation of data science libraries. 2020 35th IEEE/ACM
International Conference On Automated Software Engineering (ASE). pp. 895-
906 (2020)

[21] Parnin, C., Treude, C., Grammel, L. & Storey, M. Crowd documentation:
Exploring the coverage and the dynamics of API discussions on Stack Overflow.
Georgia Institute Of Technology, Tech. Rep. 11 (2012)

[22] Cummaudo, A., Vasa, R., Grundy, J. & Abdelrazek, M. Requirements of API
documentation: a case study into computer vision services. IEEE Transactions
On Software Engineering. (2020)

[23] Leslie, D. Using Javadoc and XML to produce API reference documenta-
tion. Proceedings Of The 20th Annual International Conference On Computer
Documentation. pp. 104-109 (2002)

[24] Postman Documenting your API. Postman Learning Center.
(2022,7), https://learning.postman.com/docs/publishing-your-api/
documenting-your-api/

https://learning.postman.com/docs/publishing-your-api/documenting-your-api
https://learning.postman.com/docs/publishing-your-api/documenting-your-api

55

[25] Nafi, K., Kar, T., Roy, B., Roy, C. & Schneider, K. Clcdsa: cross language
code clone detection using syntactical features and api documentation. 2019
34th IEEE/ACM International Conference On Automated Software Engineering
(ASE). pp. 1026-1037 (2019)

[26] Parnin, C. & Treude, C. Measuring API documentation on the web. Proceedings
Of The 2nd International Workshop On Web 2.0 For Software Engineering. pp.
25-30 (2011)

[27] Khamis, N., Witte, R. & Rilling, J. Automatic quality assessment of source
code comments: the JavadocMiner. International Conference On Application
Of Natural Language To Information Systems. pp. 68-79 (2010)

[28] Rama, G. & Kak, A. Some structural measures of API usability. Software:
Practice And Experience. 45, 75-110 (2015)

[29] Introduction. Postman Learning Center. (2022,7), https://learning.
postman.com/docs/getting-started/introduction/

[30] Exploring the Public API Network. Exploring the Public API Net-
work. (2022,7), https://learning.postman.com/docs/getting-started/
exploring-public-api-network/

[31] Postman - Introduction Postman - Introduction. (2022,7), https://www.
tutorialspoint.com/postman/postman_introduction.htm

[32] Stylish docs straight from API definitions Stylish docs straight from API defini-
tions. (2022,7), https://redocly.com/

[33] Getting started with Redocly Getting started with Redocly. (2022,7), https:
//redocly.com/docs//

[34] Redocly tutorial authoring and publishing API docs with Redocly’s command-
line tools Redocly tutorial authoring and publishing API docs with Re-
docly’s command-line tools. (2022,7), https://idratherbewriting.com/
learnapidoc/pubapis_redocly.HTML

[35] SwaggerHub Integrations SwaggerHub Integrations. (2022,7), https://swagger.
io/tools/swaggerhub/integrations/

[36] MY hub MY hub. (2022,7), https://app.swaggerhub.com/home

[37] The Java API Documentation Generator The Java API Documentation Genera-
tor. (2022,7), https://docs.oracle.com/javase/7/docs/technotes/tools/
windows/javadoc.html

[38] Create Hosted API Documentation Online With Our API Docs Generator Tool
Create Hosted API Documentation Online With Our API Docs Generator Tool.
(2022,7), https://stoplight.io/documentation

https://learning.postman.com/docs/getting-started/introduction/
https://learning.postman.com/docs/getting-started/introduction/
https://learning.postman.com/docs/getting-started/exploring-public-api-network/
https://learning.postman.com/docs/getting-started/exploring-public-api-network/
https://www.tutorialspoint.com/postman/postman _introduction.htm
https://www.tutorialspoint.com/postman/postman _introduction.htm
https://redocly.com/
https://redocly.com/docs//
https://redocly.com/docs//
https://idratherbewriting.com/learnapidoc/pubapis_redocly.HTML
https://idratherbewriting.com/learnapidoc/pubapis_redocly.HTML
https://swagger.io/tools/swaggerhub/integrations/
https://swagger.io/tools/swaggerhub/integrations/
https://app.swaggerhub.com/home
https://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html
https://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html
https://stoplight.io/documentation

56

[39] Autorest Overview Autorest Overview. (2022,7), https://www.autorest.io/
documentation

[40] Azure Core HTTP client library for JavaScript - version 1.9.1 Azure
Core HTTP client library for JavaScript - version 1.9.1. (2022,7),
https://docs.microsoft.com/en-us/javascript/api/overview/azure/
core-rest-pipeline-readme?view=azure-node-latest

[41] AutoREST API AutoREST API. (2022,7), https://autorest.io/
documentation

[42] Henning, M. API design matters. Communications Of The ACM. 52, 46-56
(2009)

[43] Meng, M., Steinhardt, S. & Schubert, A. Optimizing API Documentation:
Some Guidelines and Effects. Proceedings Of The 38th ACM International
Conference On Design Of Communication. pp. 1-11 (2020)

[44] Nasehi, S. & Maurer, F. Unit tests as API usage examples. 2010 IEEE
International Conference On Software Maintenance. pp. 1-10 (2010)

[45] Khan, J., Khondaker, M., Uddin, G. & Iqbal, A. Automatic detection of five
api documentation smells: Practitioners’ perspectives. 2021 IEEE International
Conference On Software Analysis, Evolution And Reengineering (SANER). pp.
318-329 (2021)

[46] Smart Bear Support Smart Bear Support. (2022,7), https://support.
smartbear.com/swaggerhub/docs/

[47] Generating Clients with AutoREST Generating Clients with AutoREST.
(2022,7), https://github.com/Azure/autorest/blob/main/docs/generate/
readme.md

https://www.autorest.io/documentation
https://www.autorest.io/documentation
https://docs.microsoft.com/en-us/javascript/api/overview/azure/core-rest-pipeline-readme?view=azure-node-latest
https://docs.microsoft.com/en-us/javascript/api/overview/azure/core-rest-pipeline-readme?view=azure-node-latest
https://autorest.io/documentation
https://autorest.io/documentation
https://support.smartbear.com/swaggerhub/docs/
https://support.smartbear.com/swaggerhub/docs/
https://github.com/Azure/autorest/blob/main/docs/generate/readme.md
https://github.com/Azure/autorest/blob/main/docs/generate/readme.md

	Cover page
	Acknowledgements
	Contents
	Abbreviations and Acronyms
	Chapter 1
	Introduction
	Motivation
	Problem Statement
	Research Question
	Contribution
	Structure of the thesis

	Chapter 2
	Background
	Concept, Definition and Terms of API Documentation
	API Documentation
	Classification of API User
	Quality Attributes

	Techniques in API Documentation
	Existing Documentation and Tools
	Program Tools and Documentation
	Measures API Documentation on the Web

	Chapter 3
	Methods and Materials
	API Tools Overview
	Postman
	Redocly
	SwaggerHub
	JavaDoc
	AutoREST

	API Documentation and Comparison
	Measurement and Comparison Process
	Compared Parameter
	Analytical Comparison

	API Documentation Analysis Stage

	Chapter 4
	Results
	Comparison on API Documentation Command or Syntax
	Postman
	Redocly
	SwaggerHub
	JavaDoc
	AutoREST

	Pros and Cons
	Postman
	Redocly
	SwaggerHub
	JavaDoc
	AutoREST

	User Experience: Tools
	Support and Teamwork
	API documentation Tools Limitation
	Bugs and Issues in the API’s architecture

	Chapter 5
	Discussion
	API Documentation Design
	API Documentation Management
	Documentation Problems
	Problem Study

	Chapter 6
	Conclusion
	Future Work

	References

