

Master’s Programme in Electronics and Nanotechnology

Design of a SRAM memory controller and

interface for in-memory computing

applications

Rafał Mazurkiewicz

Master’s Thesis
2020

Copyright ©2022 Rafał Mazurkiewicz

Author Rafał Mazurkiewicz

Title of thesis Design of a SRAM memory controller and interface for in-memory

computing applications

Programme Electronics and Nanotechnology

Major Micro- and Nanoelectronic Circuit Design

Thesis supervisor Asst. Prof. Martin Andraud

Thesis advisor(s) M. Sc. Gaurav Singh

Date 05.08.2022 Number of pages 41 Language English

Abstract

 Recently, neural networks have gained much attention, due to their high ef-

fectiveness. Their operation principle is based on massively parallel calcula-

tions, which posses a challenge for classical computing architectures, based

on the Von Neumann principle, which uses separate memory and computing

units. Due to low throughput of interconnections between these two systems

(the so called Von-Neumann bottleneck) neural networks cannot be effec-

tively computed by these classical architectures. Therefore many in-

memory-computing architectures, where many computation are performed

inside memory, have been recently proposed to solve this issue. In-memory-

computing system provides efficient implementation of massively parallel

computation. However, providing necessary weights of neural networks into

the computing units poses challenges, as memory is typically too small to fit

all weights and perform all computations at once. Yet, finding efficient ways

of loading weights into this memory has not been extensively researched. For

that reason, this thesis focuses on design of memory controller, that is used

in in-memory-computing architecture for transferring weights into the un-

derlying memory. Specifically, several controller topologies are compared

and one selected design is simulated in the context of an in-memory compu-

ting matrix. In addition this thesis provides an extensive theory background

of IMC system, namely its variations, basic building blocks, advantages and

disadvantages.

Keywords in-memory-processing, in-memory-computing, computing-in-

memory, neural networks, memory controller, SRAM.

4

Contents

Preface ... 6

Symbols and abbreviations .. 7

Symbols .. 7

Abbreviations ... 7

1 Introduction.. 8

2 Theory background ... 10

2.1 In-memory-computing basics, applications, architectures and

memory types .. 11

2.1.1 Ditigal IMC arrays ... 11

2.1.2 Analog IMC arrays... 11

2.1.3 Memory types ... 12

2.1.4 Memory structures for crossbar arrays 13

2.2 Digital to analog converter .. 15

2.2.1 Types of DAC .. 15

2.2.2 R-2R MDAC ... 16

2.3 Transimpedance amplifier .. 18

2.4 Activation function ... 19

2.5 Analog to digital converter .. 19

2.5.1 SAR ADC .. 20

2.5.2 Flash ADC .. 20

2.5.3 Ramp and integrating ADC .. 20

2.6 Memory controller .. 20

3 Design ... 22

3.1 Overview of memory architectures.. 22

3.1.1 Full butterfly architecture... 22

3.2 Specific constraints related to IMC ... 24

3.3 Design assumptions .. 26

3.4 Initial designs and results ... 27

3.4.1 Results.. 30

3.5 Improved Control circuit .. 32

3.6 Design summary ... 35

4 Conclusions .. 36

5

5 References .. 37

6

Preface

I want to thank Professor Martin Andraud and my advisor Gaurav Singh for

their guidance.

Otaniemi, 5 August 2022

Rafał Mazurkiewicz

7

Symbols and abbreviations

Symbols

𝒃𝒊 ith bit

𝑬𝒐𝒇𝒇𝒔𝒆𝒕 Offset error

𝑰𝒐𝒖𝒕 Output current

𝑰𝑳𝑺𝑩 Output current for least significant bit

R Resistance

𝑽𝒓𝒆𝒇 Reference voltage

𝑽𝒐𝒖𝒕 Output voltage

Abbreviations

ADC Analog to digital converter

ANN Artificial Neural Networks

BL Bit line

BLB Bit line bar

CIM Computing-in-memory

CMOS Complementary Metal-Oxide-Semiconductor

CPU Central processing unit

DAC Digital to analog converter

DIMA deep in-memory architecture

DRAM Dynamic random access memory

GPU Graphical processing unit

IC Integrated circuits

INL Integral nonlinearity

IMC In-memory-computing

IMCU Multibit in-memory compute unit

IMP In-memory-processing

FS Full scale

LSB Least significant bit

MAC Multiply and accumulate

MDAC Multiplying digital to analog converter

MSB Most significant bit

MOM metal-oxide-metal

MOS metal–oxide–semiconductor

MVM Matrix-vector-multiplication

NN Neural network

PCM Phase-change memory

ReLU Rectified Linear Unit

RRAM Resistive random access memory

SRAM Static random access memory

TIA Transimpedance amplifier

WL Word line

WLDAC Word line digital to analog converter

8

1 Introduction
In recent years, we have witnessed the development of applications relying

on Artificial Intelligence (AI), in particular for embedded devices such as

smartphones, smartwatches and other devices from the Internet-of Things.

At the heart of these applications, artificial Neural Networks (ANNs) have

received much attention due to their wide area of application and high effec-

tivity. ANNs have proven to be powerful and successful in many disciplines,

such as image recognition and classification, illness detection, as well as a

development of game-winning strategies [1].

The operating principle of a neural network (NN) is largely based on rela-

tively simple matrix-vector-multiplication (MVM) in which an input vector

is multiplied by a matrix of network weights with the resulting vector being

the output of the network. However, modern computers, based on the well-

known Von-Neumann architecture, are inherently inefficient for this partic-

ular mathematical operation [2]. Figure 1 graphically presents differences be-

tween IMC and classical approach. Due to the central processing unit (CPU)

being separated from the main memory, the cost of transferring data between

those two subsystems causes a major bottleneck since this memory-CPU con-

nection has low bandwidth. Typical operations in a system include fetching

data from the memory, calculating, and returning the result by storing it in

the memory. Thus, for every calculation, the system transfers data to/from

the memory twice which limits the processing of large data as transferring

data to/from the memory consume significantly more energy than perform-

ing the computation [3], [4]. To alleviate this problem, many researchers

have proposed moving the computation part directly into the memory. This

concept is known as in-memory-computing (IMC), in-memory-processing

(IMP) or computing-in-memory (CIM).

IMC benefits from the underlying memory architecture structure, which

is a matrix of single bit cells, which is reminiscence of a mathematical matrix.

The operating principle of IMC, presented in Figure 2, is as follows: the In-

put vector is inserted into the memory grid horizontally. It is afterward mul-

tiplied by the neural network weights, which are stored inside the matrix. The

result vector is retrieved by measuring voltage on each of the matrix column.

IMC can be used to calculate simple binary matrices, although real improve-

ment arises due to the possibility of performing calculations in the analog

domain which significantly improves the overall speed of the system. Pres-

ently, memory is one of the costliest parts in modern integrated circuits (IC);

therefore, it is highly optimized. Unfortunately, in many cases and for proper

operation, IMC requires an alteration of currently used memory designs.

Moreover, those new architectures need modified control units which insert

weights into the memory array. However, there is a visible lack of proper re-

search in this area, which has motivated this work.

9

Figure 1 Difference between classical approach and in-memory-computing

architecture. Red arrow indicates von-Neumann bottleneck. Figure from [5].

Figure 2 Structure of the in-memory-computing architecture.

Thus, the aim of this thesis is to design a memory controller capable of

effectively transferring weights into memory by simulating and comparing

different architecture designs.

The structure of thesis is organized as follows. Chapter 2 provides theoret-

ical background. Chapter 3 briefly introduces controller architectures, pro-

vides design and simulation results. Chapter 4 is devoted to the summary of

the work.

10

2 Theory background

Artificial neural network is a broad set of computing systems, that are based

on their biological counterparts. Although NN can be divided into many sub-

types, the basic idea is depicted in Figure 3. It consists of input layer, hidden

layers (optional) and output layer. Essentially, each neuron takes its inputs

and multiply them by a constants called weights, afterward summing these

operations. The overall operation is called multiply-and-accumulate (MAC).

MAC operations are considered to be the most critical operations for the neu-

ral network, and must be optimized for energy efficiency. Subsequently

transferring this result to input of activation function (not shown in figure),

which is directly connected to output [6]. NN is massively parallel by its na-

ture, as every neuron of the same layer can be computed in parallel. Moving

into hardware realization of the neuron, each inputs and weights should be

fetched from memory, before performing the computation. Taking the exam-

ple of Von-Neumann architecture (Figure 1), the computation happens in the

Arithmetic and Logical Unit. After computation, the result is stored again in

memory. As a result, data movement between memory and computational

block accounts for a very large part of the overall power consumption of the

processor. One way to amortize these memory transfers is to perform the

computations of all neurons in parallel. This will reduce memory transfers as

all neurons share the same inputs for instance. Further, this computation can

happen directly where the weights are located, as these weights are fixed and

do not change after training. This principle is referred to as "in-memory com-

puting", which can be seen similar to computing capabilities of the human

brain [7]. Neural networks based on such architecture consists of many in-

memory-processing cores. Each of the cores corresponds to one layer in NN

and output of one of the cores is connected to input of proceeding core [4].

Example core was already presented in Figure 2 in a very simplistic manner.

Figure 3 Artificial neural network. Each node in part b) is a single neuron from

part a). Figure from [6].

11

2.1 In-memory-computing basics, applications, architec-

tures and memory types
In-memory-computing is a wide concept, it covers many different applica-

tions and operations, such as: addition, search operations (finding where ex-

actly the data is stored) , multiplication, etc. [8], [9]. Many researchers focus

on binary XNOR, AND as well as other operations [2]. Nevertheless for arti-

ficial neural network the most important is matrix vector multiplication

(MVM), also interchangeably called multiply and accumulate (MAC). Re-

garding IMC architectures, once that the computation part is brought inside

the memory, the efficiency of the MAC operation can be considered as well.

In particular, analog computing is considered to be a credible candidate, as

additions in the analog domain only consist of connecting several nodes to-

gether, summing up the current. As shown in Figure 2, output e.g. Y1 is a sum

of all input vectors (X1,X2,X3), multiplied by its corresponding weights. Mul-

tiplication of voltage (X1) by conductance (weight) results in current, which

is merged in every node vertically (following Kirchhoff's law), leading to an

output current Y1 [10].

IMC can be divided into three categories: analog IMC, digital IMC and hy-

brid analog-digital IMC, whereas the latter is only a proposal [11]. This thesis

mainly focuses on multibit analog computation of MVM, and other uses or

architectures will be only briefly introduced if any.

2.1.1 Ditigal IMC arrays

IMC based on digital circuits have several disadvantages mainly dealing with

nonidealities due to digital memory, which decrease accuracy; therefore high

amount of extra circuit is required in order to maintain system requirements

[12]. Some proposed NN accelerators uses fully digital matrix-vector-multi-

plication and additional near-memory computing circuits [9], which do not

use all the potential of IMC. However digital IMC systems perform good in

logic operations (AND, XOR, etc.), and require only minor modifications of

memory structure [4] .

2.1.2 Analog IMC arrays

Analog IMP hardware is implemented using various topologies and usu-

ally in 4-8 bit precision [12] (higher resolution systems are more prone to

analog nonidealities [10]). IMC is composed of computational units, analog

to digital and digital to analog converters [12]. Since IMC employs Kirchhoff’s

law for mathematical summing (current summing), the output is in form of

current, which needs to be converted back to a digital form. It is usually done

by the means of transimpedance amplifier followed by ADC. DAC and ADC

are one of the biggest limiting factors in MVM IMC systems, as they consume

large amount of power and require large chip area [10] [13]. There exists de-

signs where ADC and DAC is implemented as an intermediate step in CMOS

12

logic [13], but they have higher circuit complexity. Theirs advantage is that

they need less chip area. Some of the designs uses single bit converters with

shifter to reduce overall chip area, with a drawback of being slow [14]. Other

designs use pulse width modulation reducing need for conventional DAC,

though still require ADC [15] (these techniques can be called timing based

techniques). Those design do not need to implement additional MDACs, and

thus standard memory layout can be used. Its major drawback is that com-

putation time is exponentially proportional to the number of bits [16]. In case

analog sensors act as inputs for the IMC system, then DAC can be excluded

from design. Similarly for system which drives analog actuators, ADC is not

required [12].

Other set of problems, which are present in analog domain comes from

process variations. IMC is more sensitive to process variation, temperature

variation, voltage variations etc., which introduces possibility of errors not

present in its digital counterparts. To alleviate this issue some researchers

propose on-chip training of every manufactured unit to include individual

process variations [17]. However it is a comber stone and inefficient imple-

mentation as it require online training of every chip. Another issue is the par-

asitic resistance and capacitance along vertical and horizontal connections

within memory (often referred to as a crossbar array). As the memory be-

comes larger, the problem is more severe [10]. IMC, especially analog, re-

quires highly specialized hardware that is different from currently used com-

mercial memory chips.

2.1.3 Memory types

Computational units can be based on charge based memory or resistive

memory. Charge based memories rely on stored charge within cell. For ex-

ample in FLASH memory it is a charge in a floating gate. Resistive memories

use varying resistance as a mean to store data. They are often referred to as

memristors, since their underlying physical structure can be modified, which

leads to change in resistance. The structure is retained after modification,

thereby possessing memory-like effect. e.g. applying heat to phase change

memory (PCM) changes structure from amorphous to crystalline (or vice

versa), thereby changing its resistance. Memristors are non-linear devices

and can also store non-binary values.

 For charge based memory SRAM (static random access memory), DRAM

(Dynamic random access memory) and FLASH can be included, while for re-

sistive based memory PCM (phase change memory), RRAM (resistive ran-

dom-access memory) and similar can be included [8]. FLASH memory can

also be viewed as a memristor, since it can work in partly ON state where

floating gate is partly charged. Memristors have several advantages - they are

non-volatile, they store data in non-binary (continuous) form and provide

high resolution [10]. However they often require high power and are limited

by write/read lifetime cycles [8]. Many of the memristors technologies are

13

fairly still not mature and as such have low commercial availability. To add

to this, memristors cannot be produced with standard CMOS technology

[18], [2]. Major drawback of DRAM based design is that the read operation

is destructive; therefore weights needs to be stored elsewhere, which impose

additional overhead [9]. Currently, FLASH and SRAM based IMC are widely

researched, because of availability of processes and well-know behaviour.

Flash memories have read/write cycle limits, require high voltage circuit for

writing data and are power demanding when compared to SRAM [19]. The

fastest type of memory is SRAM [10]. Therefore this thesis will focus mainly

on SRAM, even though there exist successful commercial FLASH based de-

signs [20].

2.1.4 Memory structures for crossbar arrays

Although simple designs use 1 bit weight matrix it is possible to implement

this as multibit, by using e.g. MDACs (multiplying digital to analog converter)

and bit cells as control bits [12]. Design from [21] uses MOM (metal-oxide-

metal) capacitors for multiplication and summing, but has only 1 bit preci-

sion. Similar design described in [22] uses 8T SRAM, MOM capacitors but

contrary to previous, adds digital bit shifting and summing circuit to impel-

lent a 4-bit weights. Drawback of this design is the need for additional digital

circuit and 4 times more analog to digital converters. [16] Is a combination

of previous designs. It uses switched capacitor technique for MDAC and sum-

mation node. Another way is proposed by [23] The input vector is placed on

WL (word-line) of SRAM as analog voltage and then precharge circuit is en-

abled with varying pulse width in order to capture bit significance of bits

placed inside SRAM cells; thus for 4 bit precision the widths pulses of pre-

charge circuit would be 8:4:2:1 (MSB to LSB). In addition the WL is enabled

only for short period of time to reduce non-linearity caused by both bit lines

discharge rate (when bit lines reach 100 mV, discharge rate is drastically re-

duced). Discharge time is always constant.

A somewhat similar approach (called deep in-memory architecture –

DIMA) is presented in [15] and in Figure 4. Contrary to standard SRAM data

words are placed on column-wise cells instead of row-wise. Analogous as in

previous paragraph WLs are enabled with different pulse width to capture bit

significance. Precharge circuit is the same as in conventional memory. To-

gether with stored bits inside memory discharges bit lines rates are propor-

tional to input vector and NN weights. There are also techniques with pulse

height modulation and varying number of pulses, but they are not well re-

searched [24].

In [5] the MVM is computed by using 256×64 cell wide memory array,

that store weights (1 bit wide), together with local analog averaging circuit.

Each row’s average is then directed to ADC. To prevent write disturbances

across bit line columns the 10T SRAM is utilized.

14

Figure 4 DIMA architecture is shown on the left. Weights are stored column-

wise (w0-w3), and their significance is obtained by enabling word lines with

specific period (right part of the figure). Impulses can overlap. Figure adopted

from [15].

Another approach is taken by [16] and [12], where multiplying is empow-

ered by a DAC. In [12] it is resistive MDAC and the output is a sum of current,

while in [16] it is based on switching capacitors and the result is in terms of

stored charge in capacitors. [16] is also presented in Figure 5. This works fall

into two categories of MAC: current based computing based on resistive cir-

cuits and charge domain computing [25].

Lastly, design from [26] uses weighted SRAM cells. It is composed of mul-

tiply of 4 columns. Transistors in each column cell are sized in ratio 8:4:2:1,

to capture significance of bits, similarly as in previously described designs. It

consists of 8T SRAM cell in which 6T is a common base cell, that is connected

to separate read transistors of varying width.

15

Figure 5 In this IMC all word lines are simultaneously asserted high, and the

bit significance is captured by the mean of multiplying charge based digital

to analog converter called in-memory compute unit (IMCU). Figure adopted

from [16].

2.2 Digital to analog converter

Inside in-memory-computing system typically standard DAC would be used

as a word line DAC (WLDAC) and MDAC (which is a typical DAC in current

mode configuration as described in [27]) for multiplying input vector by NN

weights (the latter used only in case system is not timing based nor made of

memristors).

2.2.1 Types of DAC

There exist various different architectures of digital to analog converters;

among others: current scaling, voltage scaling and charge scaling [28].

Voltage scaling converters typically use resistors connected in series be-

tween reference voltage and ground [28]. They require high number of resis-

tors, e.g. 64 for a 6-bit converter. Thus they consume large area on chip, but

are guaranteed to be monotonic.

16

 Current scaling converters typically transforms reference voltage into a

set of current sources. Current scaling DAC can employ e.g. binary weighted

resistors to produce weighted current sources. One of the disadvantages of

this configuration is that it require large resistors value spread. This means

that in case of 6 bit resolution, MSB resistor is 32 times larger than LSB re-

sistor [29]. This issue is alleviated with R-2R DAC (presented in the upper

part of Figure 6), which is usually constructed of a set of 3 resistors of the

same value – two of them are connected in series [28]. One of the biggest

disadvantages of R-2R ladder DAC is its nonmonotonicity due to nonideali-

ties. As an advantages they are fast, require fewer elements, and have low

area usage. Output of such converter can be in terms of current or voltage,

depending on used topology. Current mode R-2R DACs output can be easily

transformed into voltage by using an amplifier connected to the output [12].

DACs based on transistors are another alternative to resistor based. They

can be made using w-2w or binary weighted. However using binary current

sources as described in [30] has a disadvantage of additional multiplying fac-

tor, that limits usefulness in IMC as MVM is depended on said factor. While

some researchers report multiplying DACs based purely on transistors [31]

their usage is limited to narrow operating region, due to nonlinearity with

larger gate-source voltages. Therefore transistor based converters are suita-

ble only for word line DAC.

Charge scaling converters have higher accuracy compared to R-2R based,

however they require large value spread, additional clock source and buffer,

which reduce usefulness [28]. They have the best accuracy.

Some researchers use other topologies, but they are less popular, e.g. used

by [5] digital to time and time to analog converters as WLDAC (in [5] named

as a global DAC) architecture is reported to perform better than e.g. PMOS

binary weighted DAC, but it needs initial calibration.

2.2.2 R-2R MDAC

For R-2R MDAC the output current is described by following equation

[28]:

𝐼𝑜𝑢𝑡 =
𝑉𝑟𝑒𝑓

𝑅
 . 1

Where Vref – input voltage,

Iout – output current and

R – resistance of binary ladder.

Addition of transimpedance amplifier (TIA) transforms current mode

DAC into standard DAC and its output voltage is given by (assuming ampli-

fier’s feedback resistor equals R):

𝑉𝑜𝑢𝑡 = 𝑉𝑟𝑒𝑓 ∑
𝑏𝑖

2𝑖

𝑁

𝑖=1

 . 2

17

Where bi is ith bit and N is the total number of bits. Another metrics is the so

called full scale (FS) value. Since DACs resolution is finite, output voltage is

not equal to reference voltage. The FS can be defined as [28]:

 𝐹𝑆 = 𝑉𝑟𝑒𝑓 − 𝐿𝑆𝐵 = 𝑉𝑟𝑒𝑓 (1 −
1

2𝑁
) 3

Current can be described similarly, for example 6bit DAC, made of 1 kΩ

resistors yields:

𝐼𝑜𝑢𝑡,𝑚𝑎𝑥 =
𝑉𝑟𝑒𝑓

𝑅
− 𝐿𝑆𝐵 =

𝑉𝑟𝑒𝑓

𝑅
−

𝑉𝑟𝑒𝑓

64𝑅
= 1.2mA − 18.75uA

= 1.18125mA
(4)

𝑤ℎ𝑒𝑟𝑒 𝐿𝑆𝐵 =

𝑉𝑟𝑒𝑓

64𝑅
= 18.75uA (5)

Multiplying digital to analog converter have to be monotonic in order to

perform correct MVM computations. DAC is inherently monotonic if integral

nonlinearity error (INL) is less than 1 LSB [29]. INL describes how much

DAC output diverges from ideal straight line and is maximal at MSB transi-

tion (during transition of binary code from 011…1 to 100…0) [32]. It is meas-

ured without taking into consideration offset error and gain error. Offset er-

ror is described as a deviation of actual output from ideal output when input

code is zero, while gain error is defined for full scale. This is also described

by following equations [29]:

𝐸𝑜𝑓𝑓𝑠𝑒𝑡 =
𝐼𝑜𝑢𝑡

𝐼𝐿𝑆𝐵
|

0…0

 (6)

𝐸𝑜𝑓𝑓𝑠𝑒𝑡 =

𝐼𝑜𝑢𝑡

𝐼𝐿𝑆𝐵
|
1…1

− 𝐸𝑜𝑓𝑓𝑠𝑒𝑡 − (2N − 1) (7)

Another way to describe converter nonideality is to use differential non-

linearity error (DNL), which is described as a maximum amount of 1 LSB de-

viation from its ideal 1 LSB step size [33]. If DNL is less than 0.5 LSB then it

is guaranteed that DAC is monotonic. Glitches in MDACs are not important,

because output S&H can be sampling at specific (correct) intervals. It is cru-

cial that resistors value spread is as low as possible. For a 6-bit converter MSB

resistor should have inaccuracy smaller than
𝑅

64
≈ 1.6%.

Switching elements of R-2R MDAC have to be sized carefully as it is copied

many times in the crossbar array, so they should as small as possible. For this

purpose NMOS transistor are more suitable as they have smaller area usage.

In addition, as suggested by [34], using differential configuration of switches

helps mitigating current surges. As a drawback it uses twice as many transis-

tors.

As an example, in Figure 6 is depicted R-2R MDAC and unit cell, that when

connected in parallel with five more adjacent cells forms 6 bit MDAC

18

Figure 6 Typical R-2R MDAC (top) and unit cell of MDAC proposed by [12].

It uses SRAM cells as an input code. N connected cells will yield N bit con-

verter. In one MDAC, cell area of switches and resistors is considerably

larger than area of SRAM cell (9 µm2, 7.8 µm2, 5.72 µm2 respectively). Fig-

ures combined from [27] and [12].

2.3 Transimpedance amplifier
In order to read a result of in memory MVM the transimpedance amplifier

(TIA), which converts current to voltage, is usually employed [35]. TIA con-

sists of amplifier in closed loop configuration and a feedback resistor RF [29].

Resistor is conventionally sized to match R-2R DAC resistors [36], however

in IMC system, where many DACs are connected to one line impedance will

vary in greater extend (impedance of DAC is dependent on digital input

code). For example if the crossbar array size is 8x8, then the actual imped-

ance of the set can be 8 times smaller than that of a single converter. There-

fore feedback resistor should have smaller value than normally. In addition

TIA should be small, as it will be multiplied across all columns. If IMC is

19

supposed to provide analog signals as outputs, TIA should preferable have

full range rail-to-rail voltage output (in case of TSMC 65nm process it is in

0-1.2V range). On the other hand if TIA stage is followed by ADC, the load

capacitance is minimal. It is important to note that TIA uses inverting con-

figuration. There is a visible lack of scientific papers, that consider this pe-

ripheral in IMC systems. As an example [12] uses a two stage miller compen-

sated differential amplifier.

2.4 Activation function
Activation function is an important part of NN, because without it, only linear

problems are solvable [37]. There are many types of activation function,

among others: Sigmoid, hyperbolic tangent (tanh) and Rectified linear func-

tion (ReLU) [38]. The most popular are Sigmoid, which is used for output

layer and ReLU, which is used for hidden layers [39]. Nevertheless ReLU is

the simplest and it is close to what neuroscience says about brain (less neu-

rons are saturated simultaneously)[37]. Activation function can be imple-

mented in a digital fashion after analog to digital conversion [9], or in analog

domain as presented in [12], where ReLU is realized using voltage-mode

MAX circuit.

2.5 Analog to digital converter
As has been mentioned earlier ADC is another bottleneck in terms of power

and chip area usage. ADC have to be duplicated across all memory columns

in order to achieve massive parallelism. Flash ADC, successive approxima-

tion register ADC (SAR ADC), Integrating ADC and Ramp ADC are some of

the possible architectures. Bit resolution is not a priority in this design [40],

thus high accuracy sigma-delta converters are not required. Another im-

portant point is that, assuming digital input vector or NN weights are not

changed during ADC conversion phase, sample and hold circuit is not re-

quired for ADC (it might however be necessary for IMC input if it is directly

taken from analog sensors. Normally, to distinguish all input level ADC

would need to have considerably large resolution e.g. crossbar memory array

composed of 8 rows with 6 bit wide input and weights yields 6 × 6 × 8 = 288

individual levels, which means converter of at least 9 bit resolution [10].

However ignoring the surplus and converting in lower resolution gives good

enough results [40] (as it has been shown by [41], weights of the neural net-

work are usually centred around zero).

In addition to aforementioned converters types there exist designs of cur-

rent-mode ADC [42], but they are not widely researched, therefore will not

be further elaborated.

20

2.5.1 SAR ADC

SAR ADC is successively approximating input value and requires several cy-

cles (number of cycles equals number of converter’s bits) to perform conver-

sion. It consists of comparator, DAC, and control logic [28]. SAR ADC brings

only minor overhead to chip area as resolution increases [40]. It is also a good

compromise between speed and resolution [43]. As an example, IMC de-

scribed in [12] uses 6 bit SAR ADC.

2.5.2 Flash ADC

6 bit Flash ADC is considerable larger in terms of area usage and energy than

e.g. SAR ADC [40] (about three times larger). Considering that it has to be

duplicated across many columns it is not suitable choice for the IMC system.

However it provides good accuracy and it is the fastest solution [28]. As an

example [40] uses low resolution 4 bit Flash ADC, which is only slightly

larger than SAR ADC.

2.5.3 Ramp and integrating ADC

 The biggest advantage of Ramp and integrating converters comes from easy

parallelization [44],[45]. Ramp column parallel ADC needs only one compar-

ator, and latch per one crossbar column. All columns share single ramp gen-

erator and digital counter. Therefore it has much smaller die area than SAR

ADC [44]. However it comes at the expense of long conversion time. In case

of 6 bit, Ramp converter takes roughly
2𝑁

𝑁
=

26

6
≈ 11 times more clock periods

than SAR based [44]. To alleviate this obstacle new designs that combine

both architectures are introduced [44], [46], however they are more relevant

to higher resolution converters. Ramp type ADC can use same ramp genera-

tor layout as WLDAC, so the linearity, process variation etc. are similar. Typ-

ical dual-slope integrating converter has two times longer conversion time

than single slope ramp ADC, but they have higher accuracy [28].

In Ramp ADC the only analog part are comparators and generator. Since

generator structure can be reused from WLDAC, comparators are the main

concern. Latch based comparator has low voltage resolution [47], therefore

it is not suitable. Two stage open-loop comparator has resolution as high as

1 mV, unfortunately response time is slow [47].

2.6 Memory controller
Memory array has to work in at least two modes: computational and standard

memory access [17],[48]. The latter is used for inputting NN weights, while

the former is used when performing actual MVM operation. Memory con-

troller can be same as in standard SRAM design [17], nevertheless many sys-

tems use custom crossbar architecture, therefore controllers have to be mod-

ified accordingly. Depending on the chip design, if the NN weights are con-

stant, or number of NN layers is low enough, the controller will be used only

21

once during boot-up. However, if weights are variable, it should be strongly

optimized.

As reported by [40] most IMC architectures assume one-time program-

ming of weights. Therefore Many researchers skip entirely the controller de-

sign e.g. [5],[49],[23],[48] to mention few. Some authors focus only on sub-

parts e.g. [15] mainly describes column multiplexing problem. On-chip train-

ing of the SRAM based systems requires peripheral circuit that will calculate

values of new weights based on previous results [40]. If SRAM is made of 8T

or 10T cells, which allow asymmetric reading and writing, the speed con-

straint is not important. Nevertheless updating data in 6T cell prevents read-

ing, so the NN will not work during this time. In addition, it is frequently

assumed that chip is large enough to store all weights, which is not always

valid. As stated by [40] 7.9 MB model would require 22 mm2 of chip area in

7nm process (SRAM); therefore larger neural networks are prone to perfor-

mance bottleneck due to frequent weights reload from external memory,

which is similar to mentioned in introduction von-Neumann bottleneck.

Chip area constraint can reduce throughput even 4 times when compared to

full size, which lefts CIM benefits questionable [50]. Architecture presented

in [51] consumes 50% of overall energy consumption for off-chip DRAM ac-

cess, because it has not enough space in internal buffers. Another reason why

memory controller should be optimized is time of memory calibration. Com-

mercially available FLASH based design is recommended to have calibration

on a daily basis, which requires one minute [20]. It is worth noting that

weights update increases energy consumption considerably [17].

22

3 Design
3.1 Overview of memory architectures
A straightforward way to implement the SRAM controller would be to design

a layout where memory peripheral controls are on two sides of memory array.

This arrangement require small area and is suitable for small memory sizes.

It is presented in Figure 7 (together with analog IMC peripherals). It is some-

times referred to as “quad butterfly architecture”.

Figure 7 Quad butterfly layout of memory controller.

3.1.1 Full butterfly architecture

However, more efficient way is to split memory array to four banks as pre-

sented in Figure 8 leading to the so called “full butterfly architecture”. The

memory controller is in the middle, thus line parasitic capacitances and re-

sistance are less severe. Therefore signal time propagation will be two times

smaller. Additionally only one bank can be selected at the time, in order to

decrease power consumption. Main drawback of this architecture is in-

creased chip area usage.

23

Figure 8 Full butterfly architecture. Control block being in the centre of

memory has optimal path to all SRAM cells.

By definition such a design has similar dimensions of SRAM array on both

bit lines and word lines. Depending on required memory size it might be

more optimal to use different aspect ratios, e.g. stack only two banks out of

four, leading to half butterfly architecture. It is to be decided based on the

application, nevertheless full butterfly scheme has the best performances.

 Even so, it might be necessary to use larger number of banks, meaning

that full butterfly architecture will not be so effective anymore. While large

numbers of smaller banks improves signal to noise ratio (SNR) of analog

computation result, it increases wiring cost, as memory banks are farther

from each other. In case of many banks, it is often organized in such a way

that each memory bank presented in Figure 8 is itself a nested, independent

unit with individual controller. For better understanding an example layout

is shown in Figure 9. It is highly hierarchical design; therefore posses a risk

of high read/write latency.

24

Figure 9 A 16 banks memory layout. It consists of 4 low level and 1 top level

full butterfly arrangement, which results in total of 5 memory controllers. Fig-

ure taken from [52].

Depending on level of system complexity controller can be designed with

aid of memory compilers such as OpenRAM [53], but even then, the layout

have to accommodate additional analog circuits. Memory compiler called

OpenRAM supports maximum of 4 banks [53], which are arranged as in Fig-

ure 8. Another project called “Asynchronous Memory Compiler” (AMC) can

provide up to 16 banks [52]. In that case memory consists of 4 blocks, as

described above. AMC is able to produce stretched layout with different as-

pect ratio, but due to larger distances it requires pipelining.

3.2 Specific constraints related to IMC
As has been mentioned earlier the layout of memory cells in IMC system

might differ from the common one. Timing based techniques use custom

word drivers and/or precharge circuit, which require additional clock gener-

ators or sources. Depending on design, if same bit line is used both for pro-

gramming and interference, then there is a large current surge [9]. To pre-

vent this, interconnections should be larger, but it leads to larger line capac-

itance. Maximal memory size of memristor array is reported to be 128x64

[54], [55]. Thus for higher size of input/output vector multi-staging is re-

quired. Crossbar array have to be splitted into smaller subarrays, so that low

resolution ADC is able to distinguish all voltage levels, which might posses

additional problems for controller design. Simulations from [26] have shown

25

that output error can reach up to 14% due to parasitic resistances (The design

is made of weighted SRAM cells and is relying on transistor conductance).

Large number of subarrays increase share of wiring in response time of the

memory. Experiments from [56] have shown that wiring cost in fully digital

IMC may account for more that half of the overall read access time (although

the authors focus on digital implementation, the numbers will be most likely

smaller in analog IMC).

Additionally depending on implemented scheme of multiplication opera-

tion, if MDAC is used, it might be beneficial to switch from the most popular

thin-cell layout to others such as wider ultra-thin-cell [57], so that space is

used evenly. Such wider cells would increase load on WL, but at the same

time column circuits could have more spare room.

IMC contrary to standard memory does not require reading data from

subsequent cells, meaning that memory controller can be simpler than nor-

mally.

Presented in [4] design focuses on convolutional neural networks, rather

than simple feedforward NN, thus the controller is substantially complicated.

Also size of the area usage of the mentioned controller and input SRAM

buffer is rather high. In 14nm process it is 0.0132 mm2 and 0.0092 mm2 re-

spectively (under assumption that chip will cooperate with 256 × 256 PCM

crossbar array). Unfortunately authors have not compared throughput with

classical GPU approach.

There are many IMC designs, that use the simplest approach, examples

are shown in Figure 10 thru Figure 12.

Figure 10 Layout of IMP presented in [58]. The schematic is also presented

in Figure 11 for clarity. This system consist of 16x4 SRAM cells 16 DACs and

4 ADCs.

26

Figure 11 IMP system proposed by [58]. Its layout is presented in Figure 10.

Figure 12 Layout of DIMA architecture described in [17].

3.3 Design assumptions
Hereafter, the memory controller designed in this particular work is pre-

sented. It is assumed that IMC is using an R-2R MDACs and WLDACs.

Therefore no changes have to be made when compared to standard memory

interface. Design is made using TSMC 65nm process.

All tests have been performed with SRAM test cell. Its size is

2.9 𝜇𝑚2 × 1.9 𝜇𝑚2 and the post-layout extracted parasitic capacitances are

27

0.2 fF for bit lines and 0.51 fF for word line. Transistors sizes are minimal

(60 nm per 120 nm), the cell ratio equal to 2 and pull-up ratio equal to 1.

Memory size is 1 kB. When using architecture from Figure 8, each bank

has size of 256 bits and by using 2:1 column multiplexing divided into 2 sub

banks of size 16×8 cells. Thus one SRAM array block has width across word

line equal to 16 cells and height across bit line equal to 16 cells. When using

architecture from Figure 7, for the sake of simplicity a similar arrangement

has been made, that is SRAM array block is composed of 8 subarrays via 8:1

column multiplexing yielding dimensions 64×16 (width per height). This ar-

rangement is arbitrary, since full column layout has not been made. Addi-

tionally analog part of IMC system has not been implemented. Therefore it is

unknown whenever multiplexing is required, but according to [59], at least

2:1 would be necessary, if the cell spacing is the same as in common non-IMC

layout.

3.4 Initial designs and results
First of all two architectures were designed for comparison purposes, that is

full butterfly and half butterfly architecture. The peripheral circuits are based

on [60] and are presented in Figure 13 to Figure 16. Controller’s schematic,

the timing generation part, is shown in Figure 17. Part of design enabling dif-

ferent memory banks is presented in Figure 18. Although reading weights

from memory is not necessary, a simple sense amplifier has been imple-

mented. Column multiplexers have been made of N type pass gate transis-

tors. Since memory size is not big, row decoders are made of AND gates, with-

out multi-staging. All transistors have minimal length (60 nm). Transistors

width in precharge, and write driver is 200nm and 3 µm respectively. Con-

troller has bidirectional data bus (8 bits wide), which is controlled by addi-

tional Read/Write pin. Therefore it needs latches for proper operation, which

are shown in Figure 19 (for visibility purposes, only a part) Address bus is 7

bits wide. In this design Reset function is implemented as simple pull-down

transistors.

Figure 13 Precharge circuit. Picture from [60].

28

Figure 14 Write driver. Figure from [60].

Figure 15 Sense amplifier. Figure from [60].

29

Figure 16 Part of schematic for row decoders implementation. Only 2 row

drivers are shown.

Figure 17 Main part of the memory controller.

30

Figure 18 Scheme of enabling different memory banks. This schematic is

present only in full butterfly architecture. Output (e.g. WL_EN_TOP) serves

as input to row decoders shown in Figure 16.

Figure 19 Design of latches on data bus.

3.4.1 Results

Results are presented in Figure 20 and Figure 21. Both architectures have

same operating scheme. Clock period is 1 ns. The operation is as follow: on

the first clock tick the controller is being initialized (time span: 0-1 ns), then

on next two clock periods the data is being write to the farthest SRAM cell,

on both word line and bit line (time span: 1-3ns).

The control block is synchronous and is using arbitrary timings, without

any feedback from SRAM. It needs 2 clock cycles both for read and write op-

eration. Controller consists of few latches and flip flops. The difference be-

tween quad butterfly and full butterfly implementation is that the latter uses

additional AND gates to select only one memory array, thus write enable sig-

nal (WE in Figure 14 and Write driver trace in Figure 21) is stronger, because

AND gates have stronger driving capabilities. Schematic of AND gates is

31

shown in Figure 18. Therefore one can see in the resulting plots, that write

enable signal has lower rise time in quad butterfly.

Figure 20 Plot results of write operation in quad butterfly architecture.

Figure 21 Plot results of write operation in full butterfly architecture.

With this design, it takes roughly 1 ns to update weights into one SRAM

word. Additionally, from turning ON write driver to flipping state of memory

cell, about 200 ps are required. Word line is 4 times longer in quad butterfly

architecture, than it is in full butterfly architecture. Thus the former has

slower rise time – 61 ps and 38 ps respectively. Rise time is not important

unless IMC system by design has long word lines. Worth noting is that in full

butterfly arrangement each column circuit and row circuit drives 2 memory

banks.

Propagation delays are highly visible. In the plots, clock signal is driven by

ideal voltage source. Since timing is based arbitrary on clock input the pre-

charge stage is longer than necessary. Waveforms named SRAM LN and

SRAM LNB are internals nodes of memory cell. As initial tests have shown

32

such logic circuit, in general, is very inefficient implementation of memory

controller.

3.5 Improved Control circuit
The controller works correctly in basic implementation described above, nev-

ertheless it has some room for improvements. New design, the logic control

part is presented in Figure 22. In the next iteration of design, writing proce-

dure has been reduced to one clock cycle. Precharge stage is now shorter, and

its length is controlled by delay chain composed of four minimum size invert-

ers. Write enable signal is now driven by logic gates instead of slower flip-

flop. Width of precharge transistors is increased to 2 micrometres. Apart

from that there was no more changes. Controller has been redesigned so that

its always active (it is visible in Figure 23), namely word line is almost always

enabled (it is turned off only during precharge stage). Write access time has

been reduced to one clock period; therefore timing constraints are now more

demanding. Worth noting is the fact that WRITE EN signal is internal to

memory controller, the one that is actually present in driver circuit is delayed.

Figure 22 Part of improved controller schematic .

It can be observed, that memory cell has flipped its state before even pre-

charge stage. This happens due to activated word line. Actual moment of

valid write time is visible as a small disturbance in cell’s internal nodes in a

timestamp around 1.4 ns. Since writing time has been reduced, from 2 ns

onward, next operation is performed.

33

Figure 23 Plot results of the improved controller design in full butterfly ar-

rangement.

In Figure 24 a slightly more advanced test is presented. The operation is

as follow. After initialization stage, 0x01 is written to address 0x00 (0.5 – 1

ns). Then it is immediately read to confirm correctness of write operation (1

– 2 ns). Afterwards, 0x04 is written to address 0x02 (2 – 2.5 ns) and 0x06 to

address 0x04 (2.5 – 3ns). After that, reading in the same order is imple-

mented to confirm validity (3 – 4 ns, and 4 – 5 ns). Reading process takes

two clock cycles. During reading, data is valid only after first clock tick, before

that moment, the data line is being left floating; therefore it has random val-

ues. Even though writing procedure is not entirely correct, the data is suc-

cessfully transferred to and from memory, and the results are correct.

Figure 24 Writing and reading data from different addresses. Data input/out-

put is driven by tri-state buffers, while address and clock inputs are driven by

ideal voltage source.

One of the drawbacks of this controller is that it has no latches on address

inputs, meaning controller relies on assumption, that external circuit pro-

vides same (valid) address during whole operation. This is not the best

34

assumption, as time window to change address is very narrow (in the plots,

address input is driven by ideal source). Also Controller has no working im-

plementation of power-down mode.

In Figure 25 ideal and actual signals are presented. Voltages on bit lines

are presented as well. It is clearly visible how SRAM responds to writing and

reading data. Neither of the signals overlap in harmful manner. For sake of

visibility, precharge enable signal was shown on all previous plots, but real

circuit requires inverted one. In the plot inverted precharge enable signal is

marked as PCHB.

 In Figure 26 simulation of different process corners and temperatures is

presented. For the fastest case writing time is less than 350 ps, while for the

slowest 600 ps. In the worst case operating frequency is
1

600 𝑝𝑠
≈ 1.67 𝐺𝐻𝑧.

Figure 25 Internal signals of controller (red) and signals which are actually

present closest to SRAM cell (blue). Figure also shows both bit lines (light

blue colour is negative node).

Figure 26 Different process corners and temperatures. Red colour is the fast-

est, green the slowest and blue is nominal.

35

3.6 Design summary
Table 1, shows a summary of results for the different designs. Write access

time is also the smallest possible clock period the controller can accept. The

difference between quad and full butterfly architecture is relatively small

(986 𝑛𝑠 − 908𝑛𝑠 = 78 𝑛𝑠). Since in second version of design word line is en-

abled too soon, exact write time is hard to distinguish and approximate value

is provided. Also in second version WL_EN signal, present in schematic in

Figure 22, has more logic gates to drive; therefore rise time of the whole word

line has worsened.

Table 1 Comparision of performance.

 Quad Butterfly Full butterfly Full butterfly

version 2

Required number of clock

periods for writing

2 2 1

Write access time 986 ps 908 ps ≈440 ps

Rise time of world line 61 ps 38 ps 42 ps

36

4 Conclusions
In-memory-computing is a prominent future architecture, which will speed-

up neural networks operation. Modern computer architectures are inher-

ently bad at parallel computing due to von-Neumann bottleneck. To fully ex-

ploit advantages of IMC, technical challenges have to be overcame. One of

such challenges is effective data update, stored inside IMC, which requires

fast memory controller. If memory is large enough such a controller is of mi-

nor interest, but that is rarely a case, as neural networks are extensive and

resource demanding.

Basic structure of IMC system, its different architectures, operation prin-

ciples, challenges and implementations were discussed in this thesis. IMC

can be designed in a variety of ways, that can be very different from each

other. This results in many possibilities of memory layout and organization.

Therefore memory controller is not universal and has to be tailored for spe-

cific system.

In this thesis, memory controller has been designed in two variants of

memory arrangement and the faster one further optimized. As has been

shown full butterfly architecture has better response time. Two consecutive

design iterations have been described.

The first version, for the sake of comparison, bears major similarities to

the controller used in quad butterfly architecture. The difference in access

time is minor, only 78 ns. The main improvement of the second version is

remodelled control logic, which requires only one clock period for writing

operation instead of two. The precharge stage is now controlled by delay

chain rather than relying on input clock (most of the timings in the first im-

plementation are generated based on input clock). In all versions two clock

periods are required for reading. In the final version the operating frequency

can reach 1.67 GHz.

After all, current design has plenty of room for further optimization. Since

this project has been carried blindly, without actual IMC architecture, the

banks arrangement, as well as memory size cannot be exactly determined. As

a further work, the design can be integrated with one of existing IMC archi-

tectures. All in all the presented design is working correctly.

37

5 References

[1] Q. Zhang, M. Zhang, T. Chen, Z. Sun, Y. Ma, and B. Yu, ‘Recent advances
in convolutional neural network acceleration’, Neurocomputing, vol.
323, pp. 37–51, Jan. 2019, doi: 10.1016/j.neucom.2018.09.038.

[2] A. Agrawal, A. Jaiswal, C. Lee, and K. Roy, ‘X-SRAM: Enabling In-
Memory Boolean Computations in CMOS Static Random Access Mem-
ories’, IEEE Trans. Circuits Syst. Regul. Pap., vol. 65, no. 12, pp. 4219–
4232, Dec. 2018, doi: 10.1109/TCSI.2018.2848999.

[3] N. Verma et al., ‘In-Memory Computing: Advances and Prospects’, IEEE
Solid-State Circuits Mag., vol. 11, no. 3, pp. 43–55, 2019, doi:
10.1109/MSSC.2019.2922889.

[4] M. Dazzi, ‘Accelerating Inference of Convolutional Neural Networks Us-
ing In-memory Computing’, Front. Comput. Neurosci., vol. 15, p. 19,
2021.

[5] A. Biswas and A. P. Chandrakasan, ‘CONV-SRAM: An Energy-Efficient
SRAM With In-Memory Dot-Product Computation for Low-Power Con-
volutional Neural Networks’, IEEE J. Solid-State Circuits, vol. 54, no. 1,
pp. 217–230, Jan. 2019, doi: 10.1109/JSSC.2018.2880918.

[6] K. Shiruru, ‘An Introduction To Artificial Neural Network’, Int. J. Adv.
Res. Innov. Ideas Educ., vol. 1, pp. 27–30, Sep. 2016.

[7] D. Ielmini and G. Pedretti, ‘Device and Circuit Architectures for In‐

Memory Computing’, Adv. Intell. Syst., vol. 2, no. 7, p. 2000040, Jul.
2020, doi: 10.1002/aisy.202000040.

[8] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou,
‘Memory devices and applications for in-memory computing’, Nat. Nan-
otechnol., vol. 15, no. 7, pp. 529–544, Jul. 2020, doi: 10.1038/s41565-
020-0655-z.

[9] S. Mittal, G. Verma, B. Kaushik, and F. A. Khanday, ‘A survey of SRAM-
based in-memory computing techniques and applications’, J. Syst. Ar-
chit., vol. 119, p. 102276, Oct. 2021, doi: 10.1016/j.sysarc.2021.102276.

[10] A. Amirsoleimani et al., ‘In‐Memory Vector‐Matrix Multiplication in
Monolithic Complementary Metal–Oxide–Semiconductor‐Memristor
Integrated Circuits: Design Choices, Challenges, and Perspectives’, Adv.
Intell. Syst., vol. 2, no. 11, p. 2000115, Nov. 2020, doi:
10.1002/aisy.202000115.

[11] M. R. Haq Rashed, S. K. Jha, and R. Ewetz, ‘Hybrid Analog-Digital In-
Memory Computing’, in 2021 IEEE/ACM International Conference On
Computer Aided Design (ICCAD), Munich, Germany, Nov. 2021, pp. 1–
9. doi: 10.1109/ICCAD51958.2021.9643526.

[12] O. Numan, ‘Integrated Circuit Blocks for In-Memory-Computing’, Mas-
ter thesis, Aalto university, 2020.

[13] Q. Zheng et al., ‘Lattice: An ADC/DAC-less ReRAM-based Processing-
In-Memory Architecture for Accelerating Deep Convolution Neural Net-
works’, in 2020 57th ACM/IEEE Design Automation Conference (DAC),
San Francisco, CA, USA, Jul. 2020, pp. 1–6. doi:
10.1109/DAC18072.2020.9218590.

38

[14] R. Xiao, K. Huang, Y. Zhang, and H. Shen, ‘A Low Power In-Memory
Multiplication andAccumulation Array with Modified Radix-4 Inputand
Canonical Signed Digit Weights’. arXiv, Jan. 07, 2021. Accessed: Jun.
09, 2022. [Online]. Available: http://arxiv.org/abs/2101.02419

[15] M. Kang, S. Lim, S. Gonugondla, and N. R. Shanbhag, ‘An In-Memory
VLSI Architecture for Convolutional Neural Networks’, IEEE J. Emerg.
Sel. Top. Circuits Syst., vol. 8, no. 3, pp. 494–505, Sep. 2018, doi:
10.1109/JETCAS.2018.2829522.

[16] R. Khaddam-Aljameh, P.-A. Francese, L. Benini, and E. Eleftheriou, ‘An
SRAM-Based Multibit In-Memory Matrix-Vector Multiplier With a Pre-
cision That Scales Linearly in Area, Time, and Power’, IEEE Trans. Very
Large Scale Integr. VLSI Syst., vol. 29, no. 2, pp. 372–385, Feb. 2021,
doi: 10.1109/TVLSI.2020.3037871.

[17] S. K. Gonugondla, M. Kang, and N. R. Shanbhag, ‘A Variation-Tolerant
In-Memory Machine Learning Classifier via On-Chip Training’, IEEE J.
Solid-State Circuits, vol. 53, no. 11, pp. 3163–3173, Nov. 2018, doi:
10.1109/JSSC.2018.2867275.

[18] N. Yadav, Y. Kim, S. Li, and K. K. Choi, ‘Stable, Low Power and Bit-In-
terleaving Aware SRAM Memory for Multi-Core Processing Elements’,
Electronics, vol. 10, no. 21, p. 2724, Nov. 2021, doi: 10.3390/electron-
ics10212724.

[19] M. A. Zidan, H. A. H. Fahmy, M. M. Hussain, and K. N. Salama,
‘Memristor-based memory: The sneak paths problem and solutions’,
Microelectron. J., vol. 44, no. 2, pp. 176–183, Feb. 2013, doi:
10.1016/j.mejo.2012.10.001.

[20] M. Demler, ‘Mythic Multiplies In A Flash’, Microprocess. Rep., p. 3, Aug.
2018.

[21] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, ‘A 64-Tile 2.4-Mb
In-Memory-Computing CNN Accelerator Employing Charge-Domain
Compute’, IEEE J. Solid-State Circuits, vol. 54, no. 6, pp. 1789–1799,
Jun. 2019, doi: 10.1109/JSSC.2019.2899730.

[22] H. Jia, H. Valavi, Y. Tang, J. Zhang, and N. Verma, ‘A Programmable
Heterogeneous Microprocessor Based on Bit-Scalable In-Memory Com-
puting’, IEEE J. Solid-State Circuits, vol. 55, no. 9, pp. 2609–2621, Sep.
2020, doi: 10.1109/JSSC.2020.2987714.

[23] M. Ali, A. Jaiswal, S. Kodge, A. Agrawal, I. Chakraborty, and K. Roy,
‘IMAC: In-Memory Multi-Bit Multiplication and ACcumulation in 6T
SRAM Array’, IEEE Trans. Circuits Syst. Regul. Pap., vol. 67, no. 8, pp.
2521–2531, Aug. 2020, doi: 10.1109/TCSI.2020.2981901.

[24] Z. Lin et al., ‘A review on SRAM-based computing in-memory: Circuits,
functions, and applications’, J. Semicond., vol. 43, no. 3, p. 031401, Mar.
2022, doi: 10.1088/1674-4926/43/3/031401.

[25] Z. Jiang, S. Yin, J.-S. Seo, and M. Seok, ‘C3SRAM: An In-Memory-Com-
puting SRAM Macro Based on Robust Capacitive Coupling Computing
Mechanism’, IEEE J. Solid-State Circuits, vol. 55, no. 7, pp. 1888–1897,
Jul. 2020, doi: 10.1109/JSSC.2020.2992886.

39

[26] A. Jaiswal, I. Chakraborty, A. Agrawal, and K. Roy, ‘8T SRAM Cell as a
Multibit Dot-Product Engine for Beyond Von Neumann Computing’,
IEEE Trans. Very Large Scale Integr. VLSI Syst., vol. 27, no. 11, pp.
2556–2567, Nov. 2019, doi: 10.1109/TVLSI.2019.2929245.

[27] W. Kester and Analog Devices, inc, Eds., Data conversion handbook.
Amsterdam ; Boston: Elsevier ; Newnes, 2005.

[28] P. E. Allen and D. R. Holberg, CMOS analog circuit design, 3rd ed. New
York ; Oxford: Oxford University Press, USA, 2012.

[29] T. C. Carusone, D. Johns, K. W. Martin, and D. Johns, Analog inte-
grated circuit design, 2nd ed. Hoboken, NJ: John Wiley & Sons, 2012.

[30] J. D. Norris and G. Von Dolteren, ‘Understanding Current Output Digi-
tal to Analog Converters’, INTERSIL, Application Note AN9845, Jun.
1999.

[31] I. Sperotto, H. Klimach, and S. Bampi, ‘MOS-only M-2M DAC for ultra-
low voltage applications’, in 2015 IEEE 6th Latin American Symposium
on Circuits & Systems (LASCAS), Montevideo, Uruguay, Feb. 2015, pp.
1–4. doi: 10.1109/LASCAS.2015.7250471.

[32] K. Vleugels, ‘EE315B VLSI Data Conversion Circuits’, Stanford Univer-
sity, Autumn 2011.

[33] H. Zumbahlenas and Analog Devices, inc, Eds., Linear circuit design
handbook. Amsterdam ; Boston: Elsevier/Newnes Press, 2008.

[34] J. J. Patel, ‘Comparative Study Of Current Steering Dac Based On Im-
plementation Using Various Types Of Switches’, p. 9.

[35] Z. Sun and R. Huang, ‘Time Complexity of In-Memory Matrix-Vector
Multiplication’, IEEE Trans. Circuits Syst. II Express Briefs, vol. 68, no.
8, pp. 2785–2789, Aug. 2021, doi: 10.1109/TCSII.2021.3068764.

[36] E. Mejia, K. Duke, and N. Kommaraju, ‘TI Precision Designs: Verified
Design ±10V 4-Quadrant Multiplying DAC’, p. 23, Oct. 2013.

[37] B. Ding, H. Qian, and J. Zhou, ‘Activation functions and their character-
istics in deep neural networks’, in 2018 Chinese Control And Decision
Conference (CCDC), Shenyang, Jun. 2018, pp. 1836–1841. doi:
10.1109/CCDC.2018.8407425.

[38] S. Sharma, S. Sharma, and A. Athaiya, ‘Activation Functions In Neural
Networks’, Int. J. Eng. Appl. Sci. Technol., vol. 04, no. 12, pp. 310–316,
May 2020, doi: 10.33564/IJEAST.2020.v04i12.054.

[39] J. Feng and S. Lu, ‘Performance Analysis of Various Activation Func-
tions in Artificial Neural Networks’, J. Phys. Conf. Ser., vol. 1237, no. 2,
p. 022030, Jun. 2019, doi: 10.1088/1742-6596/1237/2/022030.

[40] S. Yu, H. Jiang, S. Huang, X. Peng, and A. Lu, ‘Compute-in-Memory
Chips for Deep Learning: Recent Trends and Prospects’, IEEE Circuits
Syst. Mag., vol. 21, no. 3, pp. 31–56, 2021, doi:
10.1109/MCAS.2021.3092533.

[41] A. Heydari and S. N. Balakrishnan, ‘Finite-Horizon Control-Constrained
Nonlinear Optimal Control Using Single Network Adaptive Critics’,
IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 1, pp. 145–157, Jan.
2013, doi: 10.1109/TNNLS.2012.2227339.

40

[42] N. Nambiar, B. J. Blalock, and M. Nance Ericson, ‘A novel current-mode
multi-channel integrating ADC’, Analog Integr. Circuits Signal Pro-
cess., vol. 63, no. 2, pp. 283–291, May 2010, doi: 10.1007/s10470-009-
9393-8.

[43] J. Fredenburg and M. P. Flynn, ‘ADC trends and impact on SAR ADC
architecture and analysis’, in 2015 IEEE Custom Integrated Circuits
Conference (CICC), San Jose, CA, USA, Sep. 2015, pp. 1–8. doi:
10.1109/CICC.2015.7338380.

[44] M. F. Snoeij, A. J. P. Theuwissen, K. A. A. Makinwa, and J. H. Huijsing,
‘Multiple-Ramp Column-Parallel ADC Architectures for CMOS Image
Sensors’, IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2968–2977,
Dec. 2007, doi: 10.1109/JSSC.2007.908720.

[45] M. R. Elmezayen, B. Wu, and S. U. Ay, ‘Single-Slope Look-Ahead Ramp
ADC for CMOS Image Sensors’, IEEE Trans. Circuits Syst. Regul. Pap.,
vol. 67, no. 12, pp. 4484–4493, Dec. 2020, doi:
10.1109/TCSI.2020.3007882.

[46] F. Z. Nelson, M. N. Alam, and S. U. Ay, ‘A Single-Slope Look-Ahead
Ramp (SSLAR) ADC for Column Parallel CMOS Image Sensors’, in 2009
IEEE Workshop on Microelectronics and Electron Devices, Boise,
Idaho, USA, Apr. 2009, pp. 1–4. doi: 10.1109/WMED.2009.4816152.

[47] M. Madhavilatha, G. L. Madhumati, and K. R. K. Rao, ‘Design of CMOS
Comparators for FLASH ADC’, Int. J. Electron. Eng., no. 1, pp. 53–57,
2009.

[48] J. Zhang, Z. Wang, and N. Verma, ‘In-Memory Computation of a Ma-
chine-Learning Classifier in a Standard 6T SRAM Array’, IEEE J. Solid-
State Circuits, vol. 52, no. 4, pp. 915–924, Apr. 2017, doi:
10.1109/JSSC.2016.2642198.

[49] M. Yamaguchi, G. Iwamoto, Y. Nishimura, H. Tamukoh, and T. Morie,
‘An Energy-Efficient Time-Domain Analog CMOS BinaryConnect Neu-
ral Network Processor Based on a Pulse-Width Modulation Approach’,
IEEE Access, vol. 9, pp. 2644–2654, 2021, doi: 10.1109/AC-
CESS.2020.3047619.

[50] A. Lu, X. Peng, Y. Luo, and S. Yu, ‘Benchmark of the Compute-in-
Memory-Based DNN Accelerator With Area Constraint’, IEEE Trans.
Very Large Scale Integr. VLSI Syst., vol. 28, no. 9, pp. 1945–1952, Sep.
2020, doi: 10.1109/TVLSI.2020.3001526.

[51] H. Jiang et al., ‘A Two-way SRAM Array based Accelerator for Deep
Neural Network On-chip Training’, in 2020 57th ACM/IEEE Design Au-
tomation Conference (DAC), San Francisco, CA, USA, Jul. 2020, pp. 1–
6. doi: 10.1109/DAC18072.2020.9218524.

[52] S. Ataei and R. Manohar, ‘AMC: An Asynchronous Memory Compiler’,
in 2019 25th IEEE International Symposium on Asynchronous Circuits
and Systems (ASYNC), Hirosaki, Japan, May 2019, pp. 1–8. doi:
10.1109/ASYNC.2019.00009.

[53] M. R. Guthaus, J. E. Stine, S. Ataei, B. Chen, B. Wu, and M. Sarwar,
‘OpenRAM: an open-source memory compiler’, in Proceedings of the

41

35th International Conference on Computer-Aided Design, Austin
Texas, Nov. 2016, pp. 1–6. doi: 10.1145/2966986.2980098.

[54] C. Li et al., ‘Analogue signal and image processing with large memristor
crossbars’, 2018, doi: 10.1038/S41928-017-0002-Z.

[55] B. Feinberg, U. K. R. Vengalam, N. Whitehair, S. Wang, and E. Ipek,
‘Enabling Scientific Computing on Memristive Accelerators’, in 2018
ACM/IEEE 45th Annual International Symposium on Computer Archi-
tecture (ISCA), Los Angeles, CA, Jun. 2018, pp. 367–382. doi:
10.1109/ISCA.2018.00039.

[56] R. Gauchi et al., ‘Memory Sizing of a Scalable SRAM In-Memory Com-
puting Tile Based Architecture’, in 2019 IFIP/IEEE 27th International
Conference on Very Large Scale Integration (VLSI-SoC), Cuzco, Peru,
Oct. 2019, pp. 166–171. doi: 10.1109/VLSI-SoC.2019.8920373.

[57] D. Balobas and N. Konofaos, ‘Design and evaluation of 6T SRAM layout
designs at modern nanoscale CMOS processes’, p. 5, 2015.

[58] S.-J. Byun et al., ‘A Low-Power Analog Processor-in-Memory-Based
Convolutional Neural Network for Biosensor Applications’, Sensors, vol.
22, no. 12, p. 4555, Jun. 2022, doi: 10.3390/s22124555.

[59] K. Zhang et al., ‘SRAM design on 65-nm CMOS technology with dynamic
sleep transistor for leakage reduction’, IEEE J. Solid-State Circuits, vol.
40, no. 4, pp. 895–901, Apr. 2005, doi: 10.1109/JSSC.2004.842846.

[60] J. Singh, S. P. Mohanty, and D. K. Pradhan, Robust SRAM Designs and
Analysis. New York, NY: Springer New York, 2013. doi: 10.1007/978-1-
4614-0818-5.

