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Abstract 

 Recently, neural networks have gained much attention, due to their high ef-

fectiveness. Their operation principle is based on massively parallel calcula-

tions,  which posses a challenge for classical computing architectures, based 

on the Von Neumann principle, which uses separate memory and computing 

units. Due to low throughput of interconnections between these two systems 

(the so called Von-Neumann bottleneck) neural networks cannot be effec-

tively computed by these classical architectures. Therefore many in-

memory-computing architectures, where many computation are performed 

inside memory, have been recently proposed to solve this issue. In-memory-

computing system provides efficient implementation of massively parallel 

computation.  However, providing necessary weights of neural networks into 

the computing units poses challenges, as memory is typically too small to fit 

all weights and perform all computations at once. Yet, finding efficient ways 

of loading weights into this memory has not been extensively researched. For 

that reason, this thesis focuses on design of memory controller, that is used 

in in-memory-computing architecture for transferring weights into the un-

derlying memory. Specifically, several controller topologies are compared 

and one selected design is simulated in the context of an in-memory compu-

ting matrix. In addition this thesis provides an extensive theory background 

of IMC system, namely its variations, basic building blocks, advantages and 

disadvantages.  

Keywords  in-memory-processing, in-memory-computing, computing-in-

memory, neural networks, memory controller, SRAM.  
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Symbols and abbreviations 

Symbols 
 

𝒃𝒊 ith bit 

𝑬𝒐𝒇𝒇𝒔𝒆𝒕 Offset error 

𝑰𝒐𝒖𝒕 Output current 

𝑰𝑳𝑺𝑩 Output current for least significant bit 

R Resistance 

𝑽𝒓𝒆𝒇 Reference voltage 

𝑽𝒐𝒖𝒕 Output voltage 

 

Abbreviations 
 
ADC Analog to digital converter 

ANN Artificial Neural Networks  

BL Bit line  

BLB Bit line bar 

CIM Computing-in-memory 

CMOS Complementary Metal-Oxide-Semiconductor 

CPU Central processing unit 

DAC Digital to analog converter 

DIMA deep in-memory architecture 

DRAM Dynamic random access memory 

GPU Graphical processing unit 

IC Integrated circuits 

INL Integral nonlinearity 

IMC In-memory-computing 

IMCU Multibit in-memory compute unit 

IMP In-memory-processing 

FS Full scale 

LSB Least significant bit 

MAC Multiply and accumulate 

MDAC Multiplying digital to analog converter 

MSB Most significant bit 

MOM metal-oxide-metal 

MOS metal–oxide–semiconductor 

MVM Matrix-vector-multiplication 

NN Neural network 

PCM Phase-change memory 

ReLU Rectified Linear Unit 

RRAM Resistive random access memory 

SRAM Static random access memory 

TIA Transimpedance amplifier 

WL Word line 

WLDAC Word line digital to analog converter 
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1 Introduction 
In recent years, we have witnessed the development of applications relying 

on Artificial Intelligence (AI), in particular for embedded devices such as 

smartphones, smartwatches and other devices from the Internet-of Things. 

At the heart of these applications, artificial Neural Networks (ANNs) have 

received much attention due to their wide area of application and high effec-

tivity. ANNs have proven to be powerful and successful in many disciplines, 

such as image recognition and classification, illness detection, as well as a 

development of game-winning strategies [1].  

The operating principle of a neural network (NN) is largely based on rela-

tively simple matrix-vector-multiplication (MVM) in which an input vector 

is multiplied by a matrix of network weights with the resulting vector being 

the output of the network. However, modern computers, based on the well-

known Von-Neumann architecture, are inherently inefficient for this partic-

ular mathematical operation [2]. Figure 1 graphically presents differences be-

tween IMC and classical approach. Due to the central processing unit (CPU) 

being separated from the main memory, the cost of transferring data between 

those two subsystems causes a major bottleneck since this memory-CPU con-

nection has low bandwidth. Typical operations in a system include fetching 

data from the memory, calculating, and returning the result by storing it in 

the memory. Thus, for every calculation, the system transfers data to/from 

the memory twice which limits the processing of large data as transferring 

data to/from the memory consume significantly more energy than perform-

ing the computation [3], [4]. To alleviate this problem,  many researchers 

have proposed moving the computation part directly into the memory. This 

concept is known as in-memory-computing (IMC), in-memory-processing 

(IMP) or computing-in-memory (CIM).  

IMC benefits from the underlying memory architecture structure, which 

is a matrix of single bit cells, which is reminiscence of a mathematical matrix. 

The operating principle of  IMC, presented in Figure 2,  is as follows: the In-

put vector is inserted into the memory grid  horizontally. It is afterward mul-

tiplied by the neural network weights, which are stored inside the matrix. The 

result vector is  retrieved by measuring voltage on each of the matrix column. 

IMC can be used to calculate simple binary matrices, although real improve-

ment arises due to the possibility of performing calculations in the analog 

domain which significantly improves the overall speed of the system.  Pres-

ently, memory is one of the costliest parts in modern integrated circuits (IC); 

therefore, it is highly optimized.  Unfortunately, in many cases and for proper 

operation, IMC requires an alteration of currently used memory designs. 

Moreover, those new architectures need modified control units which insert 

weights into the memory array. However, there is a visible lack of proper re-

search in this area, which has motivated this work.  
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Figure 1 Difference between classical approach and in-memory-computing 

architecture. Red arrow indicates von-Neumann bottleneck. Figure from [5].  

 
Figure 2 Structure of the in-memory-computing architecture. 

 

Thus, the aim of this thesis is to design a memory controller capable of 

effectively transferring weights into memory by simulating and comparing 

different architecture designs.  

The structure of thesis is organized as follows. Chapter 2 provides theoret-

ical background. Chapter 3 briefly introduces controller architectures, pro-

vides design and simulation results. Chapter 4 is devoted to the summary of 

the work. 
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2 Theory background 
 

Artificial neural network is a broad set of computing systems, that are based 

on their biological counterparts. Although NN can be divided into many sub-

types, the basic idea is depicted in Figure 3. It consists of input layer, hidden 

layers (optional) and output layer. Essentially, each neuron takes its inputs 

and multiply them by a constants called weights, afterward summing these 

operations. The overall operation is called multiply-and-accumulate (MAC). 

MAC operations are considered to be the most critical operations for the neu-

ral network, and must be optimized for energy efficiency. Subsequently 

transferring this result to input of activation function (not shown in figure), 

which is directly connected to output [6]. NN is massively parallel by its na-

ture, as every neuron of the same layer can be computed in parallel. Moving 

into hardware realization of the neuron, each inputs and weights should be 

fetched from memory, before performing the computation. Taking the exam-

ple of Von-Neumann architecture (Figure 1), the computation happens in the 

Arithmetic and Logical Unit. After computation, the result is stored again in 

memory. As a result, data movement between memory and computational 

block accounts for a very large part of the overall power consumption of the 

processor. One way to amortize these memory transfers is to perform the 

computations of all neurons in parallel. This will reduce memory transfers as 

all neurons share the same inputs for instance. Further, this computation can 

happen directly where the weights are located, as these weights are fixed and 

do not change after training. This principle is referred to as "in-memory com-

puting", which can be seen similar to computing capabilities of the human 

brain [7]. Neural networks based on such architecture consists of many in-

memory-processing cores. Each of the cores corresponds to one layer in NN 

and output of one of the cores is connected to input of proceeding core [4]. 

Example core was already presented in Figure 2 in a very simplistic manner. 

 
Figure 3 Artificial neural network. Each node in part b) is a single neuron from 

part a). Figure from [6]. 
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2.1 In-memory-computing basics, applications, architec-

tures and memory types 
In-memory-computing is a wide concept, it covers many different applica-

tions and operations, such as: addition, search operations (finding where ex-

actly the data is stored) , multiplication, etc. [8], [9]. Many researchers focus 

on binary XNOR, AND as well as other operations [2]. Nevertheless for arti-

ficial neural network the most important is matrix vector multiplication 

(MVM), also interchangeably called multiply and accumulate (MAC). Re-

garding IMC architectures, once that the computation part is brought inside 

the memory, the efficiency of the MAC operation can be considered as well. 

In particular, analog computing is considered to be a credible candidate, as 

additions in the analog domain only consist of connecting several nodes to-

gether, summing up the current. As shown in Figure 2, output e.g. Y1 is a sum 

of all input vectors (X1,X2,X3), multiplied by its corresponding weights. Mul-

tiplication of voltage (X1) by conductance (weight) results in current, which 

is merged in every node vertically (following Kirchhoff's law), leading to an 

output current Y1  [10]. 

IMC can be divided into three categories: analog IMC, digital IMC and hy-

brid analog-digital IMC, whereas the latter is only a proposal [11]. This thesis 

mainly focuses on multibit analog computation of MVM, and other uses or 

architectures will be only briefly introduced if any. 

 

2.1.1 Ditigal IMC arrays 

IMC based on digital circuits have several disadvantages mainly dealing with 

nonidealities due to digital memory, which decrease accuracy; therefore high 

amount of extra circuit is required in order to maintain system requirements 

[12]. Some proposed NN accelerators uses fully digital matrix-vector-multi-

plication and additional near-memory computing circuits [9], which do not 

use all the potential of IMC. However digital IMC systems perform good in 

logic operations (AND, XOR, etc.), and require only minor modifications of 

memory structure [4] . 

 

2.1.2 Analog IMC arrays 

Analog IMP hardware is implemented using various topologies and usu-

ally in 4-8 bit precision [12] (higher resolution systems are more prone to 

analog nonidealities [10]). IMC is composed of computational units, analog 

to digital and digital to analog converters [12]. Since IMC employs Kirchhoff’s 

law for mathematical summing (current summing), the output is in form of 

current, which needs to be converted back to a digital form. It is usually done 

by the means of transimpedance amplifier followed by ADC. DAC and ADC 

are one of the biggest limiting factors in MVM IMC systems, as they consume 

large amount of power and require large chip area [10] [13]. There exists de-

signs where ADC and DAC is implemented as an intermediate step in CMOS 
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logic [13], but they have higher circuit complexity. Theirs advantage is that 

they need less chip area. Some of the designs uses single bit converters with 

shifter to reduce overall chip area, with a drawback of being slow [14]. Other 

designs use pulse width modulation reducing need for conventional DAC, 

though still require ADC [15] (these techniques can be called timing based 

techniques). Those design do not need to implement additional MDACs, and 

thus standard memory layout can be used. Its major drawback is that com-

putation time is exponentially proportional to the number of bits [16]. In case 

analog sensors act as inputs for the IMC system, then DAC can be excluded 

from design. Similarly for system which drives analog actuators, ADC is not 

required [12]. 

Other set of problems, which are present in analog domain comes from 

process variations. IMC is more sensitive to process variation, temperature 

variation, voltage variations etc., which introduces possibility of errors not 

present in its digital counterparts. To alleviate this issue some researchers 

propose on-chip training of every manufactured unit to include individual 

process variations [17]. However it is a comber stone and inefficient imple-

mentation as it require online training of every chip. Another issue is the par-

asitic resistance and capacitance along vertical and horizontal connections 

within memory (often referred to as a crossbar array). As the memory be-

comes larger, the problem is more severe [10]. IMC, especially analog, re-

quires highly specialized hardware that is different from currently used com-

mercial memory chips. 

 

2.1.3 Memory types 

Computational units can be based on charge based memory or resistive 

memory. Charge based memories rely on stored charge within cell. For ex-

ample in FLASH memory it is a charge in a floating gate. Resistive memories 

use varying resistance as a mean to store data. They are often referred to as 

memristors, since their underlying physical structure can be modified, which 

leads to change in resistance. The structure is retained after modification, 

thereby possessing memory-like effect. e.g. applying heat to phase change 

memory (PCM) changes structure from amorphous to crystalline (or vice 

versa), thereby changing its resistance. Memristors are non-linear devices 

and can also store non-binary values. 

 For charge based memory SRAM (static random access memory), DRAM 

(Dynamic random access memory) and FLASH can be included, while for re-

sistive based memory PCM (phase change memory), RRAM (resistive ran-

dom-access memory) and similar can be included [8]. FLASH memory can 

also be viewed as a memristor, since it can work in partly ON state where 

floating gate is partly charged. Memristors have several advantages - they are 

non-volatile, they store data in non-binary (continuous) form and provide 

high resolution [10]. However they often require high power and are limited 

by write/read lifetime cycles [8]. Many of the memristors technologies are 
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fairly still not mature and as such have low commercial availability. To add 

to this, memristors cannot be produced with standard CMOS technology 

[18], [2]. Major drawback of DRAM based design is that the read operation 

is destructive; therefore weights needs to be stored elsewhere, which impose 

additional overhead [9]. Currently, FLASH and SRAM based IMC are widely 

researched, because of availability of processes and well-know behaviour. 

Flash memories have read/write cycle limits, require high voltage circuit for 

writing data and are power demanding when compared to SRAM [19]. The 

fastest type of memory is SRAM [10]. Therefore this thesis will focus mainly 

on SRAM, even though there exist successful commercial FLASH based de-

signs [20]. 

 

2.1.4 Memory structures for crossbar arrays 

Although simple designs use 1 bit weight matrix it is possible to implement 

this as multibit, by using e.g. MDACs (multiplying digital to analog converter) 

and bit cells as control bits [12]. Design from [21] uses MOM (metal-oxide-

metal) capacitors for multiplication and summing, but has only 1 bit preci-

sion. Similar design described in [22] uses 8T SRAM, MOM capacitors but 

contrary to previous, adds digital bit shifting and summing circuit to impel-

lent a 4-bit weights. Drawback of this design is the need for additional digital 

circuit and 4 times more analog to digital converters. [16] Is a combination 

of previous designs. It uses switched capacitor technique for MDAC and sum-

mation node. Another way is proposed by [23] The input vector is placed on 

WL (word-line) of SRAM as analog voltage and then precharge circuit is en-

abled with varying pulse width in order to capture bit significance of bits 

placed inside SRAM cells; thus for 4 bit precision the widths pulses of pre-

charge circuit would be 8:4:2:1 (MSB to LSB). In addition the WL is enabled 

only for short period of time to reduce non-linearity caused by both bit lines 

discharge rate (when bit lines reach 100 mV, discharge rate is drastically re-

duced). Discharge time is always constant. 

A somewhat similar approach (called deep in-memory architecture – 

DIMA) is presented in [15] and in Figure 4. Contrary to standard SRAM data 

words are placed on column-wise cells instead of row-wise. Analogous as in 

previous paragraph WLs are enabled with different pulse width to capture bit 

significance. Precharge circuit is the same as in conventional memory. To-

gether with stored bits inside memory discharges bit lines rates are propor-

tional to input vector and NN weights. There are also techniques with pulse 

height modulation and varying number of pulses, but they are not well re-

searched [24].  

In [5] the MVM is computed by using 256×64 cell wide memory array, 

that store weights (1 bit wide), together with local analog averaging circuit. 

Each row’s average is then directed to ADC. To prevent write disturbances 

across bit line columns the 10T SRAM is utilized.  
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Figure 4 DIMA architecture is shown on the left. Weights are stored column-

wise (w0-w3), and their significance is obtained by enabling word lines with 

specific period (right part of the figure). Impulses can overlap. Figure adopted 

from [15]. 

 

Another approach is taken by [16] and [12], where multiplying is empow-

ered by a DAC. In [12] it is resistive MDAC and the output is a sum of current, 

while in [16] it is based on switching capacitors and the result is in terms of 

stored charge in capacitors. [16] is also presented in Figure 5. This works fall 

into two categories of MAC: current based computing based on resistive cir-

cuits and charge domain computing [25].  

Lastly, design from [26] uses weighted SRAM cells. It is composed of mul-

tiply of 4 columns. Transistors in each column cell are sized in ratio 8:4:2:1, 

to capture significance of bits, similarly as in previously described designs. It 

consists of 8T SRAM cell in which 6T is a common base cell, that is connected 

to separate read transistors of varying width. 
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Figure 5 In this IMC all word lines are simultaneously asserted high, and the 

bit significance is captured by the mean of multiplying charge based digital 

to analog converter called in-memory compute unit (IMCU). Figure adopted 

from [16]. 

 

2.2 Digital to analog converter 
 

Inside in-memory-computing system typically standard DAC would be used 

as a word line DAC (WLDAC) and MDAC (which is a typical DAC in current 

mode configuration as described in [27]) for multiplying input vector by NN 

weights (the latter used only in case system is not timing based nor made of 

memristors). 

 

2.2.1 Types of DAC 

There exist various different architectures of digital to analog converters; 

among others: current scaling, voltage scaling and charge scaling [28].  

 

Voltage scaling converters typically use resistors connected in series be-

tween reference voltage and ground [28]. They require high number of resis-

tors, e.g. 64 for a 6-bit converter. Thus they consume large area on chip, but 

are guaranteed to be monotonic.  
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 Current scaling converters typically transforms reference voltage into a 

set of current sources. Current scaling DAC can employ e.g. binary weighted 

resistors to produce weighted current sources. One of the disadvantages of 

this configuration is that it require large resistors value spread. This means 

that in case of 6 bit resolution, MSB resistor is 32 times larger than LSB re-

sistor [29]. This issue is alleviated with R-2R DAC (presented in the upper 

part of Figure 6), which is usually constructed of a set of 3 resistors of the 

same value – two of them are connected in series [28]. One of the biggest 

disadvantages of R-2R ladder DAC is its nonmonotonicity due to nonideali-

ties. As an advantages they are fast, require fewer elements, and have low 

area usage. Output of such converter can be in terms of current or voltage, 

depending on used topology. Current mode R-2R DACs output can be easily 

transformed into voltage by using an amplifier connected to the output  [12]. 

DACs based on transistors are another alternative to resistor based. They 

can be made using w-2w or binary weighted. However using binary current 

sources as described in [30] has a disadvantage of additional multiplying fac-

tor, that limits usefulness in IMC as MVM is depended on said factor.  While 

some researchers report multiplying DACs based purely on transistors [31] 

their usage is limited to narrow operating region, due to nonlinearity with 

larger gate-source voltages. Therefore transistor based converters are suita-

ble only for word line DAC. 

 

Charge scaling converters have higher accuracy compared to R-2R based, 

however they require large value spread, additional clock source and buffer, 

which reduce usefulness [28]. They have the best accuracy. 

Some researchers use other topologies, but they are less popular, e.g. used 

by [5] digital to time and time to analog converters as WLDAC (in [5] named 

as a global DAC) architecture is reported to perform better than e.g. PMOS 

binary weighted DAC, but it needs initial calibration.  

 

2.2.2 R-2R MDAC 

For R-2R MDAC the output current is described by following equation 

[28]:  
 

𝐼𝑜𝑢𝑡 =
𝑉𝑟𝑒𝑓

𝑅
  . 1 

Where Vref – input voltage, 

Iout – output current and 

R – resistance of binary ladder. 

Addition of transimpedance amplifier (TIA) transforms current mode 

DAC into standard DAC and its output voltage is given by (assuming ampli-

fier’s feedback resistor equals R): 
 

𝑉𝑜𝑢𝑡 = 𝑉𝑟𝑒𝑓  ∑
𝑏𝑖

2𝑖

𝑁

𝑖=1

 . 2 
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Where bi is ith bit and N is the total number of bits. Another metrics is the so 

called full scale (FS) value. Since DACs resolution is finite, output voltage is 

not equal to reference voltage. The FS can be defined as [28]: 
 

 𝐹𝑆 = 𝑉𝑟𝑒𝑓 − 𝐿𝑆𝐵 = 𝑉𝑟𝑒𝑓 (1 −
1

2𝑁
) 3 

Current can be described similarly, for example 6bit DAC, made of 1 kΩ 

resistors yields:  
 

𝐼𝑜𝑢𝑡,𝑚𝑎𝑥 =
𝑉𝑟𝑒𝑓

𝑅
− 𝐿𝑆𝐵 =

𝑉𝑟𝑒𝑓

𝑅
−

𝑉𝑟𝑒𝑓

64𝑅
= 1.2mA − 18.75uA

= 1.18125mA  
(4) 

 
𝑤ℎ𝑒𝑟𝑒 𝐿𝑆𝐵 =

𝑉𝑟𝑒𝑓

64𝑅
= 18.75uA (5) 

 

Multiplying digital to analog converter have to be monotonic in order to 

perform correct MVM computations. DAC is inherently monotonic if integral 

nonlinearity error (INL) is less than 1 LSB [29]. INL describes how much 

DAC output diverges from ideal straight line and is maximal at MSB transi-

tion (during transition of binary code from 011…1 to 100…0) [32]. It is meas-

ured without taking into consideration offset error and gain error. Offset er-

ror is described as a deviation of actual output from ideal output when input 

code is zero, while gain error is defined for full scale. This is also described 

by following equations [29]: 
 

𝐸𝑜𝑓𝑓𝑠𝑒𝑡 =
𝐼𝑜𝑢𝑡

𝐼𝐿𝑆𝐵
|

0…0

 (6) 

 
𝐸𝑜𝑓𝑓𝑠𝑒𝑡 =

𝐼𝑜𝑢𝑡

𝐼𝐿𝑆𝐵
|
1…1

− 𝐸𝑜𝑓𝑓𝑠𝑒𝑡 − (2N − 1) (7) 

Another way to describe converter nonideality is to use differential non-

linearity error (DNL), which is described as a maximum amount of 1 LSB de-

viation from its ideal 1 LSB step size [33]. If DNL is less than 0.5 LSB  then it 

is guaranteed that DAC is monotonic. Glitches in MDACs are not important, 

because output S&H can be sampling at specific (correct) intervals. It is cru-

cial that resistors value spread is as low as possible. For a 6-bit converter MSB 

resistor should have inaccuracy smaller than 
𝑅

64
≈ 1.6%.  

Switching elements of R-2R MDAC have to be sized carefully as it is copied 

many times in the crossbar array, so they should as small as possible. For this 

purpose NMOS transistor are more suitable as they have smaller area usage. 

In addition, as suggested by [34], using differential configuration of switches 

helps mitigating current surges. As a drawback it uses twice as many transis-

tors.   

As an example, in Figure 6 is depicted R-2R MDAC and unit cell, that when 

connected in parallel with five more adjacent cells forms 6 bit MDAC  
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Figure 6 Typical R-2R MDAC (top) and unit cell of MDAC proposed by [12]. 

It uses SRAM cells as an input code. N connected cells will yield N bit con-

verter. In one MDAC, cell area of switches and resistors is considerably 

larger than area of SRAM cell (9 µm2, 7.8 µm2, 5.72 µm2 respectively).  Fig-

ures combined from [27] and [12]. 

 

2.3 Transimpedance amplifier 
In order to read a result of in memory MVM the transimpedance amplifier 

(TIA), which converts current to voltage, is usually employed [35]. TIA con-

sists of amplifier in closed loop configuration and a feedback resistor RF  [29]. 

Resistor is conventionally sized to match R-2R DAC resistors [36], however 

in IMC system, where many DACs are connected to one line impedance will 

vary in greater extend (impedance of DAC is dependent on digital input 

code). For example if the crossbar array size is 8x8, then the actual imped-

ance of the set can be 8 times smaller than that of a single converter. There-

fore feedback resistor should have smaller value than normally. In addition 

TIA should be small, as it will be multiplied across all columns. If IMC is 
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supposed to provide analog signals as outputs, TIA  should preferable have 

full range rail-to-rail voltage output ( in case of TSMC 65nm process it is in 

0-1.2V range). On the other hand if TIA stage is followed by ADC, the load 

capacitance is minimal. It is important to note that TIA uses inverting con-

figuration. There is a visible lack of scientific papers, that consider this pe-

ripheral in IMC systems. As an example [12] uses a two stage miller compen-

sated differential amplifier.   

 

2.4 Activation function 
Activation function is an important part of NN, because without it, only linear 

problems are solvable [37]. There are many types of activation function, 

among others: Sigmoid, hyperbolic tangent (tanh) and Rectified linear func-

tion (ReLU) [38]. The most popular are Sigmoid, which is used for output 

layer and ReLU, which is used for hidden layers [39]. Nevertheless ReLU is 

the simplest and it is close to what neuroscience says about brain (less neu-

rons are saturated simultaneously)[37]. Activation function can be imple-

mented in a digital fashion after analog to digital conversion [9], or in analog 

domain as presented in [12], where ReLU is realized using voltage-mode 

MAX circuit.  

 

2.5 Analog to digital converter 
As has been mentioned earlier ADC is another bottleneck in terms of power 

and chip area usage. ADC have to be duplicated across all memory columns 

in order to achieve massive parallelism. Flash ADC, successive approxima-

tion register ADC (SAR ADC), Integrating ADC and Ramp ADC are some of 

the possible architectures. Bit resolution is not a priority in this design [40], 

thus high accuracy sigma-delta converters are not required. Another im-

portant point is that, assuming digital input vector or NN weights are not 

changed during ADC conversion phase, sample and hold circuit is not re-

quired for ADC (it might however be necessary for IMC input if it is directly 

taken from analog sensors. Normally, to distinguish all input level ADC 

would need to have considerably large resolution e.g. crossbar memory array 

composed of 8 rows with 6 bit wide input and weights yields 6 × 6 × 8 = 288 

individual levels, which means converter of at least 9 bit resolution [10]. 

However ignoring the surplus and converting in lower resolution gives good 

enough results [40] (as it has been shown by [41], weights of the neural net-

work are usually centred around zero). 

In addition to aforementioned converters types there exist designs of cur-

rent-mode ADC [42], but they are not widely researched, therefore will not 

be further elaborated.  
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2.5.1 SAR ADC 

SAR ADC is successively approximating input value and requires several cy-

cles (number of cycles equals number of converter’s bits) to perform conver-

sion. It consists of comparator, DAC, and control logic [28]. SAR ADC brings 

only minor overhead to chip area as resolution increases [40]. It is also a good 

compromise between speed and resolution [43]. As an example, IMC de-

scribed in [12] uses 6 bit SAR ADC. 

 

2.5.2 Flash ADC 

6 bit Flash ADC is considerable larger in terms of area usage and energy than 

e.g. SAR ADC [40] (about three times larger). Considering that it has to be 

duplicated across many columns it is not suitable choice for the IMC system. 

However it provides good accuracy and it is the fastest solution [28]. As an 

example [40] uses low resolution 4 bit Flash ADC, which is only slightly 

larger than SAR ADC. 

 

2.5.3 Ramp and integrating ADC 

 The biggest advantage of Ramp and integrating converters comes from easy 

parallelization [44],[45]. Ramp column parallel ADC needs only one compar-

ator, and latch per one crossbar column. All columns share single ramp gen-

erator and digital counter. Therefore it has much smaller die area than SAR 

ADC [44]. However it comes at the expense of long conversion time. In case 

of 6 bit, Ramp converter takes roughly 
2𝑁

𝑁
=

26

6
≈ 11 times more clock periods 

than SAR based [44]. To alleviate this obstacle new designs that combine 

both architectures are introduced [44], [46], however they are more relevant 

to higher resolution converters. Ramp type ADC can use same ramp genera-

tor layout as WLDAC, so the linearity, process variation etc. are similar. Typ-

ical dual-slope integrating converter has two times longer conversion time 

than single slope ramp ADC, but they have higher accuracy [28].  

In Ramp ADC the only analog part are comparators and generator. Since 

generator structure can be reused from WLDAC, comparators are the main 

concern. Latch based comparator has low voltage resolution [47], therefore 

it is not suitable. Two stage open-loop comparator has resolution as high as 

1 mV, unfortunately response time is slow [47].  

 

2.6 Memory controller 
Memory array has to work in at least two modes: computational and standard 

memory access [17],[48]. The latter is used for inputting NN weights, while 

the former is used when performing actual MVM operation. Memory con-

troller can be same as in standard SRAM design [17], nevertheless many sys-

tems use custom crossbar architecture, therefore controllers have to be mod-

ified accordingly. Depending on the chip design, if the NN weights are con-

stant, or number of NN layers is low enough, the controller will be used only 
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once during boot-up. However, if weights are variable, it should be strongly 

optimized.  

As reported by [40] most IMC architectures assume one-time program-

ming of weights. Therefore Many researchers skip entirely the controller de-

sign e.g. [5],[49],[23],[48] to mention few. Some authors focus only on sub-

parts e.g. [15] mainly describes column multiplexing problem. On-chip train-

ing of the SRAM based systems requires peripheral circuit that will calculate 

values of new weights based on previous results [40]. If SRAM is made of 8T 

or 10T cells, which allow asymmetric reading and writing, the speed con-

straint is not important. Nevertheless updating data in 6T cell prevents read-

ing, so the NN will not work during this time. In addition, it is frequently 

assumed that chip is large enough to store all weights, which is not always 

valid. As stated by [40] 7.9 MB model would require 22 mm2 of chip area in 

7nm process (SRAM); therefore larger neural networks are prone to perfor-

mance bottleneck due to frequent weights reload from external memory, 

which is similar to mentioned in introduction von-Neumann bottleneck. 

Chip area constraint can reduce throughput even 4 times when compared to 

full size, which lefts CIM benefits questionable [50]. Architecture presented 

in [51] consumes 50% of overall energy consumption for off-chip DRAM ac-

cess, because it has not enough space in internal buffers. Another reason why 

memory controller should be optimized is time of memory calibration. Com-

mercially available FLASH based design is recommended to have calibration 

on a daily basis, which requires one minute [20]. It is worth noting that 

weights update increases energy consumption considerably [17]. 
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3 Design 
3.1 Overview of memory architectures 
A straightforward way to implement the SRAM controller would be to design 

a layout where memory peripheral controls are on two sides of memory array. 

This arrangement require small area and is suitable for small memory sizes. 

It is presented in Figure 7 (together with analog IMC peripherals). It is some-

times referred to as “quad butterfly architecture”.  

 

 
Figure 7 Quad butterfly layout of memory controller. 

 

3.1.1 Full butterfly architecture 

However, more efficient way is to split memory array to four banks as pre-

sented in Figure 8 leading to the so called “full butterfly architecture”. The 

memory controller is in the middle, thus line parasitic capacitances and re-

sistance are less severe. Therefore signal time propagation will be two times 

smaller. Additionally only one bank can be selected at the time, in order to 

decrease power consumption. Main drawback of this architecture is in-

creased chip area usage.  



23 

 

 
Figure 8 Full butterfly architecture. Control block being in the centre of 

memory has optimal path to all SRAM cells. 

 

By definition such a design has similar dimensions of SRAM array on both 

bit lines and word lines. Depending on required memory size it might be 

more optimal to use different aspect ratios, e.g. stack only two banks out of 

four, leading to half butterfly architecture. It is to be decided based on the 

application, nevertheless full butterfly scheme has the best performances. 

 Even so, it might be necessary to use larger number of banks, meaning 

that full butterfly architecture will not be so effective anymore. While large 

numbers of smaller banks improves signal to noise ratio (SNR) of analog 

computation result, it increases wiring cost, as memory banks are farther 

from each other. In case of many banks, it is often organized in such a way 

that each memory bank presented in Figure 8 is itself a nested, independent 

unit with individual controller. For better understanding an example layout 

is shown in Figure 9. It is highly hierarchical design; therefore posses a risk 

of high read/write latency. 
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Figure 9 A 16 banks memory layout. It consists of 4 low level and 1 top level 

full butterfly arrangement, which results in total of 5 memory controllers. Fig-

ure taken from [52]. 

 

Depending on level of system complexity controller can be designed with 

aid of memory compilers such as OpenRAM [53], but even then, the layout 

have to accommodate additional analog circuits. Memory compiler called 

OpenRAM supports maximum of 4 banks [53], which are arranged as in Fig-

ure 8. Another project called “Asynchronous Memory Compiler” (AMC) can 

provide up to 16 banks [52]. In that case memory consists of  4 blocks, as 

described above. AMC is able to produce stretched layout with different as-

pect ratio, but due to larger distances it requires pipelining.  

 

3.2 Specific constraints related to IMC 
As has been mentioned earlier the layout of memory cells in IMC system 

might differ from the common one. Timing based techniques use custom 

word drivers and/or precharge circuit, which require additional clock gener-

ators or sources. Depending on design, if same bit line is used both for pro-

gramming and interference, then there is a large current surge [9]. To pre-

vent this, interconnections should be larger, but it leads to larger line capac-

itance. Maximal memory size of memristor array is reported to be 128x64 

[54], [55]. Thus for higher size of input/output vector multi-staging is re-

quired. Crossbar array have to be splitted into smaller subarrays, so that low 

resolution ADC is able to distinguish all voltage levels, which might posses 

additional problems for controller design. Simulations from [26] have shown 
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that output error can reach up to 14% due to parasitic resistances (The design 

is made of weighted SRAM cells and is relying on transistor conductance). 

Large number of subarrays increase share of wiring in response time of the 

memory. Experiments from [56] have shown that wiring cost in fully digital 

IMC may account for more that half of the overall read access time (although 

the authors focus on digital implementation, the numbers will be most likely 

smaller in analog IMC).  

Additionally depending on implemented scheme of multiplication opera-

tion, if MDAC is used, it might be beneficial to switch from the most popular 

thin-cell layout to others such as wider ultra-thin-cell [57], so that space is 

used evenly. Such wider cells would increase load on WL, but at the same 

time column circuits could have more spare room. 

IMC contrary to standard memory does not require reading data from 

subsequent cells, meaning that memory controller can be simpler than nor-

mally.  

Presented in [4] design focuses on convolutional neural networks, rather 

than simple feedforward NN, thus the controller is substantially complicated. 

Also size of  the area usage of the mentioned controller and input SRAM 

buffer is rather high. In 14nm process it is 0.0132 mm2 and 0.0092 mm2 re-

spectively (under assumption that chip will cooperate with 256 × 256 PCM 

crossbar array). Unfortunately authors have not compared throughput with 

classical GPU approach.  

There are many IMC designs, that use the simplest approach, examples 

are shown in Figure 10 thru Figure 12.  

 

 

 
Figure 10 Layout of IMP presented in [58]. The schematic is also presented 

in Figure 11 for clarity. This system consist of 16x4 SRAM cells 16 DACs and 

4 ADCs. 
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Figure 11 IMP system proposed by [58]. Its layout is presented in Figure 10. 

 
Figure 12 Layout of DIMA architecture described in [17]. 

 

3.3 Design assumptions 
Hereafter, the memory controller designed in this particular work is pre-

sented. It is assumed that IMC is using an R-2R MDACs and WLDACs. 

Therefore no changes have to be made when compared to standard memory 

interface. Design is made using TSMC 65nm process.  

All tests have been performed with SRAM test cell. Its size is 

2.9 𝜇𝑚2 × 1.9 𝜇𝑚2 and the post-layout extracted parasitic capacitances are 
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0.2 fF for bit lines and 0.51 fF for word line. Transistors sizes are minimal 

(60 nm per 120 nm), the cell ratio equal to 2 and pull-up ratio equal to 1. 

Memory size is 1 kB. When using architecture from Figure 8, each bank 

has size of 256 bits and by using 2:1 column multiplexing divided into 2 sub 

banks of size 16×8 cells. Thus one SRAM array block has width across word 

line equal to 16 cells and height across bit line equal to 16 cells. When using 

architecture from Figure 7, for the sake of simplicity a similar arrangement 

has been made, that is SRAM array block is composed of 8 subarrays via 8:1 

column multiplexing yielding dimensions 64×16 (width per height). This ar-

rangement is arbitrary, since full column layout has not been made. Addi-

tionally analog part of IMC system has not been implemented. Therefore it is 

unknown whenever multiplexing is required, but according to [59], at least 

2:1 would be necessary, if the cell spacing is the same as in common non-IMC 

layout.  

  

3.4 Initial designs and results 
First of all two architectures were designed for comparison purposes, that is 

full butterfly and half butterfly architecture. The peripheral circuits are based 

on [60] and are presented in Figure 13 to Figure 16. Controller’s schematic, 

the timing generation part, is shown in Figure 17. Part of design enabling dif-

ferent memory banks is presented in Figure 18. Although reading weights 

from memory is not necessary, a simple sense amplifier has been imple-

mented. Column multiplexers have been made of N type pass gate transis-

tors. Since memory size is not big, row decoders are made of AND gates, with-

out multi-staging. All transistors have minimal length (60 nm). Transistors 

width in precharge, and  write driver is 200nm and 3 µm respectively. Con-

troller has bidirectional data bus (8 bits wide), which is controlled by addi-

tional Read/Write pin. Therefore it needs latches for proper operation, which 

are shown in Figure 19 (for visibility purposes, only a part) Address bus is 7 

bits wide. In this design Reset function is implemented as simple pull-down 

transistors. 

 

 
Figure 13 Precharge circuit. Picture from [60]. 
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Figure 14 Write driver. Figure from [60]. 

 
Figure 15 Sense amplifier. Figure from [60]. 
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Figure 16 Part of schematic for row decoders implementation. Only 2 row 

drivers are shown. 

 

 
Figure 17 Main part of the memory controller. 
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Figure 18 Scheme of enabling different memory banks. This schematic is 

present only in full butterfly architecture. Output (e.g. WL_EN_TOP) serves 

as input to row decoders shown in Figure 16. 

 
Figure 19 Design of latches on data bus. 

 

3.4.1 Results 

Results are presented in Figure 20 and Figure 21. Both architectures have 

same operating scheme. Clock period is 1 ns. The operation is as follow: on 

the first clock tick the controller is being initialized (time span: 0-1 ns), then 

on next two clock periods the data is being write to the farthest SRAM cell, 

on both word line and bit line (time span: 1-3ns).  

The control block is synchronous and is using arbitrary timings, without 

any feedback from SRAM. It needs 2 clock cycles both for read and write op-

eration. Controller consists of few latches and flip flops. The difference be-

tween quad butterfly and full butterfly implementation is that the latter uses 

additional AND gates to select only one memory array, thus write enable sig-

nal (WE in Figure 14 and Write driver trace in Figure 21) is stronger, because 

AND gates have stronger driving capabilities. Schematic of AND gates is 



31 

 

shown in Figure 18. Therefore one can see in the resulting plots, that write 

enable signal has lower rise time in quad butterfly.  

 

 
Figure 20 Plot results of write operation in quad butterfly architecture. 

 

 
Figure 21 Plot results of write operation in full butterfly architecture. 

 

With this design, it takes roughly 1 ns to update weights into one SRAM 

word. Additionally, from turning ON write driver to flipping state of memory 

cell, about 200 ps are required. Word line is 4 times longer in quad butterfly 

architecture, than it is in full butterfly architecture. Thus the former has 

slower rise time – 61 ps and 38 ps respectively. Rise time is not important 

unless IMC system by design has long word lines. Worth noting is that in full 

butterfly arrangement each column circuit and row circuit drives 2 memory 

banks.  

Propagation delays are highly visible. In the plots, clock signal is driven by 

ideal voltage source. Since timing is based arbitrary on clock input the pre-

charge stage is longer than necessary. Waveforms named SRAM LN and 

SRAM LNB are internals nodes of memory cell. As initial tests have shown 
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such logic circuit, in general, is very inefficient implementation of memory 

controller. 

 

3.5 Improved Control circuit 
The controller works correctly in basic implementation described above, nev-

ertheless it has some room for improvements. New design, the logic control 

part is presented in Figure 22. In the next iteration of design, writing proce-

dure has been reduced to one clock cycle. Precharge stage is now shorter, and 

its length is controlled by delay chain composed of four minimum size invert-

ers. Write enable signal is now driven by logic gates instead of slower flip-

flop. Width of precharge transistors is increased to 2 micrometres. Apart 

from that there was no more changes. Controller has been redesigned so that 

its always active (it is visible in Figure 23), namely word line is almost always 

enabled (it is turned off only during precharge stage). Write access time has 

been reduced to one clock period; therefore timing constraints are now more 

demanding. Worth noting is the fact that WRITE EN signal is internal to 

memory controller, the one that is actually present in driver circuit is delayed.  

 

 
Figure 22 Part of improved controller schematic . 

 

It can be observed, that memory cell has flipped its state before even pre-

charge stage. This happens due to activated word line. Actual moment of 

valid write time is visible as a small disturbance in cell’s internal nodes in a 

timestamp around 1.4 ns. Since writing time has been reduced, from 2 ns 

onward, next operation is performed. 
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Figure 23 Plot results of the improved controller design in full butterfly ar-

rangement. 

 

In Figure 24 a slightly more advanced test is presented. The operation is 

as follow. After initialization stage, 0x01 is written to address 0x00 (0.5 – 1 

ns). Then it is immediately read to confirm correctness of write operation (1 

– 2 ns). Afterwards, 0x04 is written to address 0x02 (2 – 2.5 ns) and 0x06 to 

address 0x04 (2.5 – 3ns). After that, reading in the same order is imple-

mented to confirm validity (3 – 4 ns, and 4 – 5 ns). Reading process takes 

two clock cycles. During reading, data is valid only after first clock tick, before 

that moment, the data line is being left floating; therefore it has random val-

ues. Even though writing procedure is not entirely correct, the data is suc-

cessfully transferred to and from memory, and the results are correct.  

 
Figure 24 Writing and reading data from different addresses. Data input/out-

put is driven by tri-state buffers, while address and clock inputs are driven by 

ideal voltage source. 

 

One of the drawbacks of this controller is that it has no latches on address 

inputs, meaning controller relies on assumption, that external circuit pro-

vides same (valid) address during whole operation. This is not the best 
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assumption, as time window to change address is very narrow (in the plots, 

address input is driven by ideal source). Also Controller has no working im-

plementation of power-down mode.   

In Figure 25 ideal and actual signals are presented. Voltages on bit lines 

are presented as well. It is clearly visible how SRAM responds to writing and 

reading data. Neither of the signals overlap in harmful manner. For sake of 

visibility, precharge enable signal was shown on all previous plots, but real 

circuit requires inverted one. In the plot inverted precharge enable signal is 

marked as PCHB. 

 In Figure 26 simulation of different process corners and temperatures is 

presented. For the fastest case writing time is less than 350 ps, while for the 

slowest 600 ps. In the worst case operating frequency is 
1

600 𝑝𝑠
≈ 1.67 𝐺𝐻𝑧. 

 

 
Figure 25 Internal signals of controller (red) and signals which are actually 

present closest to SRAM cell (blue). Figure also shows both bit lines (light 

blue colour is negative node). 

 
Figure 26 Different process corners and temperatures. Red colour is the fast-

est, green the slowest and blue is nominal. 
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3.6 Design summary 
Table 1, shows a summary of results for the different designs. Write access 

time is also the smallest possible clock period the controller can accept. The 

difference between quad and full butterfly architecture is relatively small 

(986 𝑛𝑠 − 908𝑛𝑠 = 78 𝑛𝑠). Since in second version of design word line is en-

abled too soon, exact write time is hard to distinguish and approximate value 

is provided. Also in second version WL_EN signal, present in schematic in 

Figure 22, has more logic gates to drive; therefore rise time of the whole word 

line has worsened.  

 

Table 1 Comparision of performance. 

 Quad Butterfly Full butterfly Full butterfly 

version 2 

Required number of clock 

periods for writing 

2 2 1 

Write access time 986 ps 908 ps ≈440 ps 

Rise time of world line  61 ps 38 ps 42 ps 

 



36 

 

4 Conclusions 
In-memory-computing is a prominent future architecture, which will speed-

up neural networks operation. Modern computer architectures are inher-

ently bad at parallel computing due to von-Neumann bottleneck. To fully ex-

ploit advantages of IMC, technical challenges have to be overcame. One of 

such challenges is effective data update, stored inside IMC, which requires 

fast memory controller. If memory is large enough such a controller is of mi-

nor interest, but that is rarely a case, as neural networks are extensive and 

resource demanding. 

Basic structure of IMC system, its different architectures, operation prin-

ciples, challenges and implementations were discussed in this thesis. IMC 

can be designed in a variety of ways, that can be very different from each 

other. This results in many possibilities of memory layout and organization. 

Therefore memory controller is not universal and has to be tailored for spe-

cific system. 

In this thesis, memory controller has been designed in two variants of 

memory arrangement and the faster one further optimized. As has been 

shown full butterfly architecture has better response time. Two consecutive 

design iterations have been described.  

The first version, for the sake of comparison, bears major similarities to 

the controller used in quad butterfly architecture. The difference in access 

time is minor, only 78 ns. The main improvement of the second version is 

remodelled control logic, which requires only one clock period for writing 

operation instead of two. The precharge stage is now controlled by delay 

chain rather than relying on input clock (most of the timings in the first im-

plementation are generated based on input clock). In all versions two clock 

periods are required for reading. In the final version the operating frequency 

can reach 1.67 GHz.  

After all, current design has plenty of room for further optimization. Since 

this project has been carried blindly, without actual IMC architecture, the 

banks arrangement, as well as memory size cannot be exactly determined. As 

a further work, the design can be integrated with one of existing IMC archi-

tectures. All in all the presented design is working correctly.  
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