
The Resilience of Deep Learning
Intrusion Detection Systems for
Automotive Networks

Ivo Zenden

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.
Stockholm, Sweden 16.7.2022

Supervisor

Prof. György Dán (KTH)

Advisors

Yeongwoo Kim (KTH)

Rolf Blom (RISE)

Han Wang (RISE)

Copyright © 2022 Ivo Zenden

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Ivo Zenden
Title The Resilience of Deep Learning Intrusion Detection Systems for Automotive

Networks
Degree programme ICT Innovation - EIT Digital
Major Autonomous Systems Code of major ELEC3055
Supervisor Prof. György Dán (KTH)
Advisors Yeongwoo Kim (KTH), Rolf Blom (RISE), Han Wang (RISE)
Date 16.7.2022 Number of pages 127+14 Language English
Abstract
This thesis will cover the topic of cyber security in vehicles. Current vehicles contain
many computers which communicate over a controller area network. This network
has many vulnerabilities which can be leveraged by attackers. To combat these
attackers, intrusion detection systems have been implemented. The latest research
has mostly focused on the use of deep learning techniques for these intrusion detection
systems. However, these deep learning techniques are not foolproof and possess their
own security vulnerabilities. One such vulnerability comes in the form of adversarial
samples. These are attacks that are manipulated to evade detection by these intrusion
detection systems. In this thesis, the aim is to show that the known vulnerabilities
of deep learning techniques are also present in the current state-of-the-art intrusion
detection systems.

The presence of these vulnerabilities shows that these deep learning based systems
are still to immature to be deployed in actual vehicles. Since if an attacker is able
to use these weaknesses to circumvent the intrusion detection system, they can still
control many parts of the vehicles such as the windows, the brakes and even the
engine.

Current research regarding deep learning weaknesses has mainly focused on the
image recognition domain. Relatively little research has investigated the influence of
these weaknesses for intrusion detection, especially on vehicle networks. To show
these weaknesses, firstly two baseline deep learning intrusion detection systems were
created. Additionally, two state-of-the-art systems from recent research papers were
recreated. Afterwards, adversarial samples were generated using the fast gradient-sign
method on one of the baseline systems. These adversarial samples were then used to
show the drop in performance of all systems.

The thesis shows that the adversarial samples negatively impact the two baseline
models and one state-of-the-art model. The state-of-the-art model’s drop in perfor-
mance goes as high as 60% in the f1-score. Additionally, some of the adversarial
samples need as little as 2 bits to be changed in order to evade the intrusion detection
systems.
Keywords Vehicle Security, Deep Learning, Controller Area Network, Intrusion

Detection System, Adversarial Samples

Acknowledgments | i

Acknowledgments
I would like to thank Rolf Blom and Han Wang who acted as my supervisors
at RISE for their guidance and teachings during the project. Additionally, I
would like to thank Alfonso Iacovazzi who was able to provide help regarding
any machine learning related questions. At KTH, I thank my examiner György
Dán andmy supervisor Yeongwoo Kim for answering questions and reviewing
my documents. And finally, I want to thank Arash Vahidi, who acted as my
original supervisor at RISE for the first part of the thesis.

Additionally, I wish to thank the authors of [1] and the publisher Elsevier
for providing a copyright license for the use of their images in this thesis report.

Stockholm, July 2022
Ivo Zenden

ii | Acknowledgments

Contents | iii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem . 2

1.2.1 Original problem and definition 2
1.3 Purpose . 3
1.4 Goals . 3
1.5 Research Methodology . 4
1.6 Ethical aspects . 4
1.7 Delimitations . 5
1.8 Structure of the thesis . 5

2 Background 7
2.1 Vehicle Specification and Security 7

2.1.1 CAN specification 8
2.1.2 Vehicle and CAN weaknesses 10
2.1.3 Vehicle security . 11

2.2 Machine Learning and Deep Learning 12
2.2.1 Machine Learning techniques 12

2.2.1.1 Logistic Regression 12
2.2.1.2 Decision Tree 13
2.2.1.3 Support Vector Machine 13
2.2.1.4 K-Nearest Neighbors 14
2.2.1.5 Naïve Bayes 14

2.2.2 Deep Learning techniques 14
2.2.2.1 Neural Network 14
2.2.2.2 Convolutional Neural Network 15
2.2.2.3 Recurrent Neural Network 15

2.2.3 Weaknesses . 16
2.2.3.1 Perturbations 16

iv | Contents

2.2.3.2 Transferability 18
2.2.4 Defenses . 19

2.3 Anomaly and Intrusion Detection 20
2.3.1 Anomaly Detection 21
2.3.2 Intrusion Detection 22
2.3.3 Network Intrusion Detection Systems 23

2.4 Related work . 23
2.4.1 Intrusion Detection Systems for Vehicle Networks . . 24

2.4.1.1 Hardware Features 24
2.4.1.2 Software Features 25

2.4.2 Attacks on Intrusion Detection Systems 29
2.4.2.1 Poisoning 29
2.4.2.2 Evasion 30

2.5 Summary . 31

3 Methods 33
3.1 Research Process . 33
3.2 Data Collection . 34

3.2.1 Survival dataset characteristics 34
3.2.2 Preprocessing . 36

3.3 Experimental design . 37
3.3.1 Attacker Model . 37

3.3.1.1 Attacker’s knowledge 37
3.3.1.2 Attacker’s capabilities 38
3.3.1.3 Attack scenario 38

3.3.2 Test environment . 38
3.3.2.1 Machine Learning Models 39
3.3.2.2 Attack method 41

3.3.3 Hardware/Software to be used 42
3.4 Validity of the methods . 43
3.5 Planned Data Analysis . 43

3.5.1 Performance Analysis Technique 43
3.5.2 Perturbation Analysis Technique 45

3.6 Evaluation framework . 45

4 Code and Implementation details 47
4.1 Fast Gradient-Sign Method 47
4.2 Datasets . 51

4.2.1 Training and Testing 51

Contents | v

4.2.2 Adversarial datasets 52
4.2.2.1 Full adversarial 52
4.2.2.2 DoS adversarial 53
4.2.2.3 Fuzzy adversarial 53
4.2.2.4 Malfunction adversarial 54

4.2.3 SOTA-CNN datasets 55
4.2.4 SOTA-LSTM datasets 57

4.3 Models . 58
4.3.1 BL-DNN . 58
4.3.2 BL-Ensemble . 59
4.3.3 SOTA-CNN . 61
4.3.4 SOTA-LSTM . 66

5 Results and Analysis 69
5.1 Model performance . 69

5.1.1 BL-DNN . 69
5.1.1.1 Full dataset 69
5.1.1.2 DoS dataset 70
5.1.1.3 Fuzzy dataset 71
5.1.1.4 Malfunction dataset 72

5.1.2 BL-Ensemble . 72
5.1.2.1 Full dataset 73
5.1.2.2 DoS dataset 73
5.1.2.3 Fuzzy dataset 74
5.1.2.4 Malfunction dataset 75

5.1.3 SOTA-CNN . 75
5.1.3.1 Full dataset 76
5.1.3.2 DoS dataset 76
5.1.3.3 Fuzzy dataset 77
5.1.3.4 Malfunction dataset 78

5.1.4 SOTA-LSTM . 78
5.1.4.1 Full dataset 79
5.1.4.2 DoS dataset 79
5.1.4.3 Fuzzy dataset 80
5.1.4.4 Malfunction dataset 81

5.1.5 Performance Analysis 81
5.2 Perturbation Analysis . 83

5.2.1 Iterations and Size 83
5.2.2 Feature Analysis . 85

vi | Contents

6 Discussion 89

7 Conclusions and Future work 91
7.1 Conclusions . 91
7.2 Limitations . 92
7.3 Future work . 93

7.3.1 Fixing limitations . 93
7.3.1.1 Adapting to recurrent models 93
7.3.1.2 Other IDS models 93
7.3.1.3 Other attack methods 94
7.3.1.4 Different test environments 94

7.3.2 Future research . 94
7.4 Reflections . 95

References 97

A Code 111
A.1 Fast Gradient Sign Method 112
A.2 SOTA-CNN Frame Builder 114

B Dataset Parameters 116
B.1 Full dataset . 117
B.2 DoS dataset . 118
B.3 Fuzzy dataset . 119
B.4 Malfunction dataset . 120

C CNN Implementation 121

List of Figures | vii

List of Figures

2.1 Schematic of CAN and ECU network topology [11] 8
2.2 CAN data frame . 9
2.3 Misclassification due to perturbation [28] 17
2.4 Data with outliers [38] . 21

3.1 CAN log . 35
3.2 Log of CAN messages with Fuzzy attacks 35
3.3 Comparison of the work flow of FGSM and gradient descent . 42

4.1 Legend for included and excluded features 52
4.2 Included features for FGSM for Full Dataset 53
4.3 Included features for FGSM for DoS Dataset 53
4.4 Included features for FGSM for Fuzzy Dataset 53
4.5 Included features for FGSM for Malfunction Dataset 54
4.6 BL-DNN schematic . 59
4.7 BL-Ensemble schematic . 60
4.8 SOTA-CNN schematic . 62
4.9 SOTA-CNN Stem block . 63
4.10 SOTA-CNN Inception-ResNet-A block 64
4.11 SOTA-CNN Reduction-A block 64
4.12 SOTA-CNN Inception-ResNet-B block 65
4.13 SOTA-CNN Reduction-B block 65
4.14 SOTA-LSTM schematic . 67

5.1 BL-DNN performance on Full dataset with and without
perturbations . 70

5.2 BL-DNN performance on DoS dataset with and without
perturbations . 71

5.3 BL-DNN performance on Fuzzy dataset with and without
perturbations . 71

viii | List of Figures

5.4 BL-DNN performance on Malfunction dataset with and
without perturbations . 72

5.5 BL-Ensemble performance on Full dataset with and without
perturbations . 73

5.6 BL-Ensemble performance on DoS dataset with and without
perturbations . 74

5.7 BL-Ensemble performance on Fuzzy dataset with and without
perturbations . 74

5.8 BL-Ensemble performance on Malfunction dataset with and
without perturbations . 75

5.9 SOTA-CNN performance on Full dataset with and without
perturbations . 76

5.10 SOTA-CNN performance on DoS dataset with and without
perturbations . 77

5.11 SOTA-CNN performance on Fuzzy dataset with and without
perturbations . 77

5.12 SOTA-CNN performance on Malfunction dataset with and
without perturbations . 78

5.13 SOTA-LSTM performance on Full dataset with and without
perturbations . 79

5.14 SOTA-LSTM performance on DoS dataset with and without
perturbations . 80

5.15 SOTA-LSTM performance on Fuzzy dataset with and without
perturbations . 80

5.16 SOTA-LSTM performance on Malfunction dataset with and
without perturbations . 81

5.17 Bar plot of f1-score drop . 82
5.18 Heatmap of the perturbation features 87

B.1 All parameters for FGSM for Full Dataset 117
B.2 All parameters for FGSM for DoS Dataset 118
B.3 All parameters for FGSM for Fuzzy Dataset 119
B.4 All parameters for FGSM for Malfunction Dataset 120

C.1 SOTA-CNN Stem implementation 121
C.2 SOTA-CNN Inception-ResNet-A implementation 122
C.3 SOTA-CNN Inception-ResNet-B implementation 122
C.4 SOTA-CNN Inception-ResNet concat layers implementation . 123
C.5 SOTA-CNN Reduction-A implementation 123
C.6 SOTA-CNN Reduction-B implementation 124

List of Figures | ix

C.7 SOTA-CNN final layers implementation 124

x | List of Figures

List of Tables | xi

List of Tables

3.1 Example confusion matrix 44

5.1 BL-DNN Performance on Full dataset 70
5.2 BL-DNN Performance on DoS dataset 71
5.3 BL-DNN Performance on Fuzzy dataset 72
5.4 BL-DNN Performance on Malfunction dataset 72
5.5 BL-Ensemble Performance on Full dataset 73
5.6 BL-Ensemble Performance on DoS dataset 74
5.7 BL-Ensemble Performance on Fuzzy dataset 75
5.8 BL-Ensemble Performance on Malfunction dataset 75
5.9 SOTA-CNN Performance on Full dataset 76
5.10 SOTA-CNN Performance on DoS dataset 77
5.11 SOTA-CNN Performance on Fuzzy dataset 78
5.12 SOTA-CNN Performance on Malfunction dataset 78
5.13 SOTA-LSTM Performance on Full dataset 79
5.14 SOTA-LSTM Performance on DoS dataset 80
5.15 SOTA-LSTM Performance on Fuzzy dataset 81
5.16 SOTA-LSTM Performance on Malfunction dataset 81
5.17 Statistics of perturbation size and iterations for Full dataset . . 83
5.18 DoS perturbation statistics with and without failed samples . . 84
5.19 Fuzzy perturbation statistics with and without failed samples . 84
5.20 Malfunction perturbation statistics 85

xii | List of Algorithms

List of Algorithms

1 Fast Gradient Sign Method 48
2 FGSM Loop . 50
3 Frame Builder for the SOTA-CNN model data (Part 1) 55
4 Frame Builder for the SOTA-CNN model data (Part 2) 56
5 Fast Gradient Sign Method Python 112
6 FGSM Loop Python . 113
7 Frame Builder for the SOTA-CNN model data Python (Part 1) 114
8 Frame Builder for the SOTA-CNN model data Python (Part 2) 115

List of acronyms and abbreviations | xiii

List of acronyms and abbreviations

AE Autoencoder
AGRU Attention-based Gated Recurrent Units
ANN Artificial Neural Network

BIM Basic Iterative Method

CAN Controller Area Network
CIDS Clock-based Intrusion Detection System
CNN Convolutional Neural Network
CRC Cyclic Redundancy Check

DBN Deep Belief Network
DL Deep Learning
DLC Data Length Code
DNN Deep Neural Network
DoS Denial of Service
DT Decision Tree

ECU Electronic Control Unit

FGSM Fast-Gradient Sign Method

GAN Generative Adversarial Network
GRU Gated Recurrent Units

HIDS Host Intrusion Detection System
HMM Hidden Markov Model

IDS Intrusion Detection System
IoT Internet of Things
IT Information Technology

JSMA Jacobian-based Saliency Map Attack

KNN K-Nearest Neighbor

xiv | List of acronyms and abbreviations

LR Logistic Regression
LSTM Long Short-Term Memory

MAC Message Authentication Code
ML Machine Learning
MLP Multi-Layer Perceptron

NIDS Network Intrusion Detection System

OCSVM One-Class Support Vector Machine

PCA Principal Component Analysis

RBM Restricted Boltzmann Machine
RF Random Forest
RNN Recurrent Neural Network

SVM Support Vector Machine

VIDS Voltage-based Intrusion Detection System

Introduction | 1

Chapter 1

Introduction

This chapter provides the initial goal and scope of the thesis. First,
summarized background information will be described. This will be followed
by the problem statement and the corresponding goals of this thesis. Next,
a summary of the methodology used to reach these goals will be given, as
well as the ethical aspects of the thesis and the methods. A description of the
delimitations of the thesis will be provided, stating what will be outside of the
scope of the thesis. Finally, the structure of the rest of the thesis will be shown.

1.1 Background
Modern cars use increasingly more software and electronics.The number of
lines of code reaches the tens of millions, and the amount of computers,
called Electronic Control Units (ECUs), lies around the 70 on average [2].
These ECUs work together to control the car by communicating over the
Controller Area Network (CAN). The increase in electronics allows for
more functionality and other improvements such as comfort, however it also
increases the number of security vulnerabilities of cars.

These vulnerabilities result from the increase in attack surfaces [3] as
well as inherent security weaknesses of ECUs and CAN [4, 5]. The specific
vulnerabilities will be elaborated on later in the thesis. An attacker is able
to leverage these vulnerabilities to send messages on the CAN bus and even
gain full control over the ECUs [5]. This in turn enables the attacker to do
everything from rolling down a window, to blocking the brakes and/or killing
the engine [5].

To address these vulnerabilities, several techniques and methods have
been introduced. These range from adding message authentication codes [6],

2 | Introduction

to including a security module with cryptographic capabilities [7]. One of
the proposed solutions is an Intrusion Detection System (IDS), which is a
technique that is already widely used in standard Information Technology (IT).
This technique is able to look at the behaviour and messages of a system, and
detect any anomalous activity.

An IDS is an application of anomaly detection and can be implemented
in various ways. Older techniques include statistical and probabilistic models.
While newer techniques focus more on machine learning methods such as K-
Nearest Neighbor (KNN), Support VectorMachine (SVM) andRandomForest
(RF) [8]. A recent trend is the use of Deep Learning (DL) approaches such as
Convolutional Neural Networks (CNNs) and Autoencoders (AEs) [9]. Since
DL techniques have achieved substantial results in several fields, it makes them
an attractive option for researchers in this field.

However, even DL-based IDSs are not foolproof. As always, the security
field is an ongoing battle between attackers and defenders trying to out-do
each other. So the attackers will try to find and utilize the weaknesses of the
DL-based IDS to circumvent it and perform their intended attacks. Therefore,
to improve the safety of vehicles and their passengers, it is of importance to
investigate and be aware of the weaknesses of DL-based IDSs.

1.2 Problem
In standard IT networks, the presence of security measures such as IDSs
is a necessary factor to ensure the correct and secure workings of such
networks. In vehicle networks, these measures have an additional importance
in guaranteeing the safety of the passengers as well as bystanders. Therefore,
good performance of such systems in the presence of adversaries is a
requirement. Currently, there are many papers describing DL-based IDS
systems which achieve a stellar performance in detecting attacks on the
networks. However, the number of papers which include attacks on the IDSs
themselves is extremely limited. So it is unclear how these state-of-the-art
IDSs will perform while being targeted by adversaries.

1.2.1 Original problem and definition
The specific research question of this thesis is as follows:
What are the weaknesses of DL techniques that are still present in the state-
of-the-art DL-based IDSs for CAN? Do these weaknesses influence their

Introduction | 3

performance when leveraged by attackers?

The corresponding hypothesis is as follows:
The weaknesses of the DL techniques will be present in the state-of-the-art
IDSs. The performance will decrease when these weaknesses are leveraged.

How this performance is measured will be described later in Chapter 3.

1.3 Purpose
The presence of attackers in standard IT networks provides many issues
regarding the security of systems using these networks. Due to the
implementation of similar networks in vehicles these issues obviously follow.
However, in addition to security issues, there are also several safety issues
that can occur due to attackers. In order to increase the security and safety
of modern vehicles RISE, in cooperation with other companies such as Volvo,
started a large project focused on ”Cyber Resilience of Vehicles”. This project
focused on multiple security angles of vehicles, and this thesis is one of these
angles. The purpose of this larger project, and in extension this thesis, is to
increase the reliability and safety of modern vehicles. This will reduce future
risks of vehicle manufacturers and help keep users of these vehicles safe.

If the goals of this thesis are reached, it will bring light to the current
limitations of the DL-based IDSs. This in turn will hopefully inspire other
researchers to mind these limitations when designing new IDSs. Thus setting
the first step to further improving the security and safety of our modern
vehicles.

1.4 Goals
As mentioned previously, the goal of this project is to show the weaknesses
and limitations of current state-of-the-art DL-based IDSs for CAN. This goal
has been divided into the following four sub-goals:

1. Create two baseline DL-based IDSs

2. Re-create two state-of-the-art DL-based IDSs for CAN

3. Implement an attack that leverages a weakness of DL techniques

4 | Introduction

4. Show the effect of the implemented attack on the performance of the
IDSs

These goals will be visible in the following deliverables. For each IDS, a
Jupyter Notebook will be created which includes the model architecture and
the parameters used during training. The code for the attack will be included
in the notebook of one of the baseline IDSs. Finally, a detailed description of
all models, the attack and the results will be visible in this thesis report.

1.5 Research Methodology
The first step in the methodology of this thesis performs an extensive literature
research. This covered various topics such as vehicle security, anomaly
detection and properties of DL techniques. After the literature research is
finished, an empirical approach will be taken for the practical part of the
thesis. Firstly, a public dataset containing CAN messages with attacks on
the network will be chosen. Afterwards, the baseline IDSs will be designed
and implemented. Next, an appropriate attack method will be selected and
implemented on one of the baseline models. Following this, two state-
of-the-art models will be determined and recreated. Finally, the attack
implementation will be tested on all models that are implemented.

1.6 Ethical aspects
The ethical aspects of this thesis revolve mainly around the issues and benefits
of publicizing weaknesses in security systems. Identifying and publicizing
potential weaknesses raises awareness such that solutions can be found for
these weaknesses. This in turn will increase the security and in this case also
safety of the system and its users. Publicizing weaknesses unfortunately also
makes attackers aware of these weaknesses. This could allow the attackers to
misuse the findings of this thesis. So it is imperative that the methods used
during the thesis allow for the identification of weaknesses in the DL-based
IDSs, without allowing further exploitation of these weaknesses in actual
vehicles.

Introduction | 5

1.7 Delimitations
The goal of this thesis is purely to show the current limitations of DL-based
IDSs for CAN. No methods to overcome these limitations will be tested and
no new model architecture will designed. Possible improvement using known
methods will be discussed, however implementing and testing these methods
will be left for future research.

Additionally, all the results will be based solely on the available datasets.
There will be no tests on actual vehicles due to the lack of resources. Once
again, these tests will be left open for future research.

1.8 Structure of the thesis
The rest of the thesis will have the following structure. Chapter 2 presents
relevant background information about ”vehicle networks and security”,
”anomaly detection”, and ”deep learning techniques and weaknesses”.
Chapter 3 describes the methodology and method used during the thesis.
Chapter 4 shows the execution of the steps mentioned in the methodology.
Next Chapter 5 will cover the relevant results with respect to the original
research question. These results and their implications will then be discussed
in Chapter 6. And finally, the conclusion of the thesis and potential future
work will be covered in Chapter 7.

6 | Introduction

Background | 7

Chapter 2

Background

This chapter will provide the necessary background information for the three
areas relevant to this thesis. The first area is that of vehicles. The specifics
regarding CAN and ECUs will be described. Additionally, an overview of
security issues regarding modern vehicles will be given. The second area
revolves around Machine Learning (ML) and DL techniques. The workings
of the techniques that will be used in the thesis will be described. In addition,
known weaknesses and defenses will be covered. In the third area, anomaly
detection and intrusion detection will be described. A description of different
applications and standard techniques will be presented. After the background
of each area is given, a selection of related works will be summarized.

2.1 Vehicle Specification and Security
As mentioned previously, modern vehicles contain a large amount of
electronics. While most functionality in the past was handled using
mechanical methods, such as the brakes, currently there is almost no
functionality that is not managed by electronics in some form. The small
computers that manage these functionality are called ECUs. Current vehicles
contain dozens of these ECUs, each of which manage specific parts of the
vehicle, ranging from the windows, the infotainment system to the engine and
the brakes.

To handle the complex functionality of vehicles, these ECUs are required
to communicate with each other and work together. To facilitate this
communication, several different networks are implemented in vehicles.
These networks include LIN, MOST, FlexRay and CAN [10]. Each of these
networks have their own applications and protocols. LIN is used to connect

8 | Background

sensors and actuators. MOST focuses on media and other infotainment data.
FlexRay is used for Drive-by-Wire functionality and the safety systems of
the vehicle. Finally, CAN is used for the communication regarding the
main functionality of the vehicles. This thesis will also focus on the CAN
communication due to its importance with respect to the functionality of the
vehicle [10] and its relative simplicity regarding its protocol. The reason
the protocol has to be simplistic in comparison to standard IT networking
protocols, is due to the limited computational resources available in vehicles.
In Figure 2.1 a schematic image of a standard CAN and ECU network can
be seen. Several ECUs are connected to CAN busses, and these busses are
connected to each other via a gateway ECU.

Figure 2.1: Schematic of CAN and ECU network topology [11]

2.1.1 CAN specification
In this section, a description of the CAN specification will be provided as
described in [4]. Note that this description will be limited to the aspects
that are relevant to this thesis. For example, while the CAN protocol defines
four different types of messages: Data frame, Remote frame, Error frame and

Background | 9

Overload frame. Only the Data frames will be considered since they are used
for the majority of the communication on the CAN bus.

CAN
Data frame

SoF Arbitration field Control field Data field CRC field Ack EoF

Figure 2.2: CAN data frame

A CAN data frame consists of the following fields:

• Start of Frame (SoF): a bit signalling that a data frame message is
starting on the CAN bus

• Arbitration field: a field consisting of 11 Identifier bits and 1 Remote
Transmission Request (RTR) bit. The Identifier bits provide each
message with a specific ID. The RTR bit is only enabled for a Remote
frame.

• Control field: a field consisting of a 4 bit Data Length Code (DLC) and
2 reserved bits. The DLC defines how many data bytes will be present
in the data field.

• Data field: a field consisting of 0 to 8 bytes, containing the content of
the message.

• CRC field: a field containing a Cyclic Redundancy Check (CRC) of the
message used to detect bit errors during transmission.

• Ack field: a field containing an Acknowledgment bit, used by receivers
of messages to signal that they received the message successfully.

• End of Frame (EoF): a sequence of 7 bits signalling the end of the
message.

Additionally, the CAN specification also includes Extended Data frames.
The only difference is that the extended frames contain a 29 bit Identifier
instead of an 11 bit identifier.

As can be seen from Figure 2.2, CAN messages do not include a sender
or receiver field, which are generally used in standard IT network protocols.
Instead, each message has a specific ID (the Identifier bits), signalling what
type of information is included in the message. The sender of the message,
broadcasts its message over the CAN to all other ECUs. Then each ECU can
decide whether to process or discard the message based on the message ID.

10 | Background

This ID also plays a role in the arbitration rule for the CAN protocol. An
arbitration rule is necessary when multiple ECUs are sending their message
at the same time on the network. Since if multiple messages are sent
simultaneously, they will interfere with each other on the bus. The arbitration
rule specifies which ECU or message will gain access to the bus whenmultiple
messages are being sent. The arbitration rule is as follows: the lower the
message ID, the higher the priority. So if two messages are being sent
simultaneously, the one with the lowest ID will be allowed to continue.

2.1.2 Vehicle and CAN weaknesses
As mentioned earlier, ECUs manage various functionalities of vehicles, some
of which are critical to the safety of the vehicle. As such, each ECU has a
different level of risk regarding safety and security. A detailed risk analysis
can be found in [12], which shows that especially the ECUs concerning the
powertrain and the safety systems carry a high risk in case of attacks.

The reason that ECUs are so vulnerable to attacks comes from the
limitations/simplicity of the CAN protocol [13]. First of all, CAN messages
do not use any form of authentication or encryption because of the limited
resources in vehicles. This means that if an attacker has access to the CAN bus,
they can freely read and inject messages without having to decrypt/encrypt
anything. Note that the CRC field does not prevent the injection or alteration
of messages, since it can be changed to match the altered message. This allows
an attacker to easily perform Fuzzy attacks, where they send messages with
random IDs and data in order to find potentially dangerous combinations.
Secondly, due to the lack a sender and receiver field in the messages, the
authenticity of a message cannot be guaranteed. Thirdly, since all messages
are being broadcasted, there are no restrictions for ECUs to send messages
to other ECUs. Finally, the simplistic arbitration rule makes the CAN bus
extremely vulnerable to Denial of Service (DoS) attacks. As long as many
malicious messages with a low ID are sent, the actual messages (with a higher
ID) will be denied from the CAN bus.

Additionally, most in-vehicle networks are connected via a gateway ECUs.
Their role is to facilitate communication between ECUs on different networks
by forwarding messages. Several researchers have shown that after they
compromised one ECUon a network, they can use it to gain access to a gateway
ECU and then to other networks [5]. This meant that the researchers only
needed to compromise a single ECU, which then provided them full access to
all ECUs and, as a consequence, full control of the vehicle.

Background | 11

Initially, these risks were manageable since getting access to that first ECU
was not easily done. It usually required a longer period of time with physical
access to the vehicle. However, due to all the innovations in vehicles that
increased their connectivity, there are now several ways to gain access to the
ECUs. Checkoway et al. [3] covered several of these attack surfaces. From
indirect physical access (e.g. via the entertainment systems), to short-range
wireless access (e.g. via bluetooth) and even long-range wireless access (e.g.
via cellular networks). For each attack surface, several vulnerabilities and
attacks were identified.

2.1.3 Vehicle security
Thus, compromising a single ECU may give an attacker access to the full
vehicle, and there are several ways to gain this initial access. To secure
vehicles against these types of vulnerabilities, research has been performed
for both preventive and reactive measures [14]. Where preventive measures
intend to stop possible attacks before they happen, usually via some form
of authentication or access control methods. While reactive measures focus
on detecting and then handling attacks, this is generally done using intrusion
detection techniques followed by recovery actions.

For preventive measures, research has mostly focused on cryptography
based solutions. Wolf et al. [10] focused on ensuring authentication by
introducing public and secret key cryptography, as well as guaranteeing
integrity and confidentiality by using symmetric key cryptography and
firewalls. In another work, a full security module was described to protect
both hardware and software using cryptography, which even enabled potential
future business opportunities [7]. Finally, Nilsson et al. [6] proposed
replacing the CRC fields of CAN messages with a Message Authentication
Code (MAC). By authenticating four messages simultaneously and choosing
resource efficient algorithms, they were able to present a solution that adheres
to the resource constraints of the vehicle system. This is an important factor,
since the standard cryptography algorithms used in general IT use too many
resources for the automotive IT field.

Asmentioned, the reactive measures aim to detect the attacks once they are
happening. The main goal is to differentiate normal behaviour in the system
from adversarial behaviour. This can be done by defining a set of rules which
specify the expected behaviour of the system, as was done in [15]. If messages
should break these defined rules, they will be classified as adversarial. In
standard IT, one of the main reactive measures are IDSs. These IDSs are a

12 | Background

well established measure, which can be implemented using various techniques
(further explanation follows later). However, they still face some challenges
in the automotive field [16]. One of the challenges was mentioned earlier: the
limited amount of resources. This makes IDSs that use large databases with
attack signatures unusable. Additionally, the consequences of having a lower
detection rate and a high false positive rate are more severe. In standard IT
there will be a lot of inconvenience should an attack happen, but generally no
safety issues will occur. While in automotive IT, a successful attack could
cause grave safety issues for the driver and their surroundings.

2.2 Machine Learning and Deep Learning
The goal of this thesis is to show the weaknesses of DL-based IDS for vehicle
networks. To do this, several ML and DL techniques will be discussed and
implemented. Therefore, this section will first provide a quick explanation of
the techniques that are used in the later models. Note that this section will only
provide a general understanding of these techniques. This means that certain
details may be left out, but these details were deemed irrelevant to the thesis.
Afterwards several weaknesses and defenses against these weaknesses will be
described.

2.2.1 Machine Learning techniques
2.2.1.1 Logistic Regression

Logistic Regression (LR) is a statistical model that predicts the probability
of an event happening based on the input variables [17]. Since the outcome
is a probability, the value is limited between 0 and 1, with 0 being the event
not occurring, and 1 being the event always occurring. The model can be
represented by the following function:

p(x) =
1

1 + e−(β0+β1x)
(2.1)

In this equation, the betas represent the parameters that are learned/opti-
mized by the model. Currently only one input variable is used in the formula,
however it can be extended to include more variables by adding more factors
to the exponent. During the fitting (training) of a LR model, generally the
beta parameters are computed using the maximum likelihood estimation. This
method tests various values for the beta parameters to find the values which

Background | 13

best represent the distribution of the data.

2.2.1.2 Decision Tree

A Decision Tree (DT) is a tree-like structure that is used to classify inputs by
sequentially performing decisions on the input data [18]. A DT consists of
several elements: the decision nodes and the end nodes or leaves of the tree.
In the decision nodes, a (binary) decision is executed on one or more of the
input variables. Based on the result of this decision, the next decision node
or leaf node is determined. Leaf nodes contain the final classification for the
input. So a new input starts at the root of the tree, which is the initial decision
node. After following a sequence of decision nodes, the input will finally reach
a leaf node, which holds the corresponding classification for the input.

In a DT, the parameters that are learned, are the decisions in the decision
nodes. This is done by evaluating for every decision node, what decisionwould
result in the highest information gain. Simply put, what decision results in the
cleanest split for a group of inputs with different classifications. For example,
if 5 inputs arrive at the decision node. Two of which have class 0 and the other
three have class 1, what decision should be made to divide these two groups.

An extension of DTs are Random Forests (RFs). For this technique, several
smaller DTs are created on the original dataset. These are then combined
as an ensemble method to create a single classifier for the dataset. This
usually results in a better performance without exponentially increasing the
computation time.

2.2.1.3 Support Vector Machine

A Support Vector Machine (SVM) aims to define the optimal decision
boundary between the data points of two different classes [19]. Specifically, if
all the data points are plotted, what line (decision boundary) would split these
two classes of data points with the largest margin. To determine the line which
provides the highest margin, support vectors are used. These are vectors from
the data points closest to the line, orthogonal to the line. By optimizing the
size of these support vectors, the SVM is able to find the optimal decision
boundary.

Originally, a SVM was only able to act as a linear classifier. This means
that the decision boundary was a linear function on the input variables.
However, by applying a ”kernel trick”, a SVM is also able to act as a non-linear
classifier. A kernel can be used to map the input data into a high-dimensional
feature space. The goal here is to map the input data to a specific feature space

14 | Background

in which it is linearly separable. Applying the SVM to this higher dimensional
feature space, they are able to act as a non-linear classifier.

2.2.1.4 K-Nearest Neighbors

The K-Nearest Neighbors (KNN) technique, classifies new input samples
based on the k closest known samples [20]. The training phase of this
technique consists solely of storing the training samples. Then when
classifying new samples, first the k closest neighbors to the new sample are
determined. This is done using a distance or similarity measure, such as the
Euclidean distance. Then the classes of these k neighbors are retrieved, and
the class of the majority of the samples is then assigned to the new sample.

2.2.1.5 Naïve Bayes

The Naïve Bayes technique is a probabilistic classifier [21]. During training,
the classifier determines the distributions and the probabilities of the classes
and input variables. Then by looking at the probabilities retrieved from the
training data, the classifier is able to compute the probability of new samples
belonging to each class.

There are several variants of the Naïve Bayes classifier, depending on what
method is used to describe the distribution of the input data. For example,
Guassian Naïve Bayes is used for continuous input variables, and Bernoulli
Naïve Bayes is used for independent binary input variables.

2.2.2 Deep Learning techniques
2.2.2.1 Neural Network

Themost well known form of DL is that of Artificial Neural Networks (ANNs)
also called Deep Neural Networks (DNNs) [22]. The main premise is that
using artificial neurons, the computer is able to emulate the workings of the
human brain. A neural network is comprised of multiple layers of neurons.
These neurons perform various computations on their inputs. Each neuron
has a set of weights, one for each input. The inputs are multiplied with these
weights and then added together. Afterwards, this summation is then fed to
an activation function. There are currently many different activation functions
that are often used, such as the logistic function, hyperbolic tangent and ReLu
[23]. The resulting value is then send to the neurons on the next layer, or
returned as output if it is the final layer.

Background | 15

The training of a neural network works as follows. First, there is training
dataset which has various input samples with corresponding output values.
These input samples are given to the neural network, which returns a predicted
output. The goal of the neural network is for this output to be as close to the
actual output as possible. The actual output and the predicted output are given
to a loss function, which computes a loss value based on the difference between
the actual and predicted output. Afterwards, gradient descent via backwards
propagation is performed on this loss value. The gradient of the loss function
is computed with respect to the weights of the neurons. This means that the
contribution of each weight to the loss is computed. Based on this gradient,
the weights are then updated. The update amount depends on the respective
gradient and the learning rate, which is a value that determines the size of the
update steps. After all the weights are updated, the process is repeated. This
repeats either for a certain amount of epochs, or until some stopping criteria
is met.

2.2.2.2 Convolutional Neural Network

Over time, various variations on neural networks have been designed. One
of these is the Convolutional Neural Network (CNN) [24]. These CNNs are
mostly used for analyzing images. This is because they use several shared
weights among neurons called filters. These filters look at a region of input
variables (for example 3 x 3 pixels), and are moved along all the inputs. This
way the input is transformed into several feature maps. These filters have
several benefits. By sharing the weights, the computational requirements are
reduced. And since these filters are moved over the entire input, they are ”shift-
invariant”. Thismeans that the features in the data will always be detected even
if they are shifted to another location.

2.2.2.3 Recurrent Neural Network

Another variation on the neural networks are Recurrent Neural Networks
(RNNs) [25]. These RNNs are suited for time sequence data, since they
possess a form of internal memory. While normal neurons receive input and
forward their output to the neurons on the following layer. Recurrent neurons
also forward their output to themselves for the next input. This self-connection
allows RNNs to take previous data points into account when handling new data
points.

One downside of these self-connections, is that the resulting networks are
more vulnerable to the ”vanishing gradient” problem. This is a problem that

16 | Background

occurrs during the backpropagation process, where if the gradients become to
small, no update to the weights will take place. This means that the learning
capabilities of the model will stop. To combat this problem, the Long Short-
Term Memory (LSTM) model was designed.

The LSTMmodel implements internal memory using various gates and an
internal cell state. The three gates included are the input gate, output gate and
the forget gate. The information regarding the previous data inputs is saved
in the cell states, and the gates determine what data from the new input is
added or removed from this cell state. The forget gate decides based on the
input and the previous hidden state, what information should be removed from
the cell state. Next, the input gate determines what new information should be
included in the cell state. After the cell state has been fully updated, the output
gate determines what information from the cell state should be returned as
output.

2.2.3 Weaknesses
While DL algorithms have provided good results and even potential
breakthroughs in several fields, their weaknesses that can be exploited should
not be overlooked. These weaknesses become especially relevant in the
security field, where the consequences can be quite severe. Current research
has highlighted several weaknesses such as data poisoning and the possibility
of reverse engineering [26], however this thesis will focus on the following
two weaknesses of deep learning algorithms:

1. The susceptibility to adversarial perturbations.

2. The transferability of adversarial samples.

Both of these were first mentioned in [27], however the main focus of that
paper was on the perturbations.

2.2.3.1 Perturbations

Perturbations are small changes to an input of a DL algorithm, which cause
the algorithm to misclassify the input. The most well known example comes
from [28], where an image classification network initially classifies the input
as a panda with 57% confidence, and after adding the perturbation the input
is classified as a gibbon with 99% confidence (see Figure 2.3). Additionally,

Background | 17

Figure 2.3: Misclassification due to perturbation [28]

the perturbation is so small that the the original and the perturbed input are
indistinguishable to the human eye.

Currently, many methods to compute these perturbations have been
proposed, such as the Fast-Gradient Sign Method (FGSM) [28], the Jacobian-
based Saliency Map Attack (JSMA) [29] and DeepFool [30]. The general
idea behind most of these methods is doing the opposite of how deep learning
algorithms train. When training a DL algorithm, an input is fed to the network,
which then returns an output. This output results in a certain loss when
compared to the desired output. Next the gradient of this loss is computed
with respect to the weights of the DL algorithm. Afterwards, the weights
are updated according to this gradient in order to minimize the loss. For the
perturbations, the steps up to computing the loss are the same. However, after
this the gradient is computed with respect to the input instead of the weights.
Next the input is altered according to the gradient in order tomaximize the loss.
So during training, theweights of the network are updated tominimize the loss.
And for perturbations the input is updated to maximize the loss. Once these
perturbations are added to the input, the resulting inputs are called adversarial
samples. Most research so far revolved around computing perturbations for
image classification [27, 28, 30], however other fields such as cyber security
[31] and malware detection have also seen research regarding adversarial
samples [32]. In the rest of the thesis, the terms perturbations and adversarial
samples will be used interchangeably.

18 | Background

2.2.3.2 Transferability

The second weakness revolves around the transferability of these adversarial
samples. This entails that an adversarial sample that is generated for one deep
learning model, is also capable of causing a misclassification in other deep
learning models. As mentioned, the initial paper covering this weakness is
that of [27], however more extensive research has been performed in [33]. This
paper shows the transferability of adversarial samples not only in models using
the same machine learning technique (”intra-technique”), but also between
different techniques (”cross-technique”). For intra-technique, a full dataset
was split into five disjoint datasets. Then a model was trained for each of
the datesets. Afterwards, adversarial samples were created for each of the
different models, which were then tested on the other models. This experiment
was repeated for the following model types: DNN, LR, SVM, DT, KNN.
The results of these experiments showed that at least 19% of the adversarial
samples were misclassified when transferred intra-Technique. And especially
DNN and LR models were susceptible, with respectively a minimum of 49%
and 94% of misclassified samples.

For the cross-technique transferability, one model was created for each
technique (DNN, LR, SVM, DT, KNN) and one ensemble model was created.
Each model was then trained on the full dataset. Next, adversarial samples
were generated for each model, which were then tested on the other model
types. The DT was the most vulnerable to cross-technique transferability,
with around 80% of the adversarial samples being misclassified. While the
DNN was the most resistant, with an average of 6% being misclassified.
Additionally, the ensemble method was not more resistant to the adversarial
samples, with the misclassification percentages lying between 5% and 44%.

This showed a significant weakness, which enables various attacks, such
as a black-box oracle attack showcased in the paper [33]. Generally, attackers
will at most have oracle access to an employed model. This means that they
have no knowledge regarding the model architecture, parameters and training
data. However, they can provide selected inputs and receive the outputs from
the model. This allows the attacker to create their own substitute dataset.
After this, the attacker can create their own model trained on the substitute
dataset. This resulting model can then be used as a substitute for the employed
model when generating adversarial samples. Due to the transferability of
adversarial samples, these samples generated on a substitute model will then
also affect the employed model. The paper showcased this attack on classifiers
ran on Amazon Web Services and Google Cloud Prediction, and reached

Background | 19

misclassification percentages of 96% and 88% respectively. This shows that
attackers only require oracle access to classifiers in order to effectively create
adversarial samples for these classifiers.

2.2.4 Defenses
To increase the resilience of DL methods against adversarial samples, the
following solutions have been proposed:

• Re-training on adversarial samples

• Defensive distillation

• Denoising techniques such as autoencoders

The first defense is relatively straightforward. The model is designed
and trained as usual using the desired dataset. Afterwards, a second dataset
containing adversarial samples is created by generating the adversarial samples
on the initially trained model. The model is then re-trained on this adversarial
dataset. By applying this technique, the model will become more accustomed
to adversarial samples and the underlying decision-boundary will become
robust towards such samples. In [29], training on adversarial samples
reduced the success rate of such samples by 7%. Additionally, generating
the new adversarial samples required a larger perturbation size for them to be
successful. The networks in the DeepFool paper [30] were also made more
robust by re-training using the adversarial samples generated by DeepFool.
Note however, that this paper also showed an adverse affect on the robustness
if the perturbations were too large. Similarly, the authors of [32] looked into
testing different ratios of adversarial samples in the datasets and showed that
adding adversarial samples to the training dataset does not always increase
robustness. They showed that adding a limited number of adversarial samples
decreased the misclassification rate. However adding more samples than
a certain threshold will increase the misclassification rate. This threshold
is dependent on the model architecture as well as parameters used during
training.

Distillation to counteract adversarial samples was first introduced in [34].
For a standard DL classification algorithm, training is done on a dataset with
inputs and classification labels as outputs. These labels are in the form of a list
of mainly zeros and a single one, where the position of the one corresponds
to the correct output class. Once a new input is provided to the model, it
computes the probabilities of the model belonging to each of the classes. The

20 | Background

class with the highest probability is returned as the final output of themodel. In
distillation, a second model is introduced which is trained on the original input
dataset. However, for the outputs, the probabilities of the first model are used.
So instead of the hard labels (e.g. [0, 0, 1, ..., 0]) that the first model is trained
on, the distilled model is trained on the soft probabilities (e.g. [0.1, 0.1, 0.7, ...,
0.1]). Hence, making the model less likely to learn a hard decision boundary.
This in turn increases the robustness of the model to adversarial samples. In
the paper [34], they show the effect of distillation on two DNN model which
reduces the misclassification rate from 95% to 0.5% and from 87% to 5%.
There has however also been research regarding attacks that break defensive
distillation [35]. They show that even distilled networks are still susceptible
towards adversarial samples.

The final defense revolves around denoising or reconstructing the input
data. The idea is similar to the Principal Component Analysis (PCA), where
the goal is to reduce the dimensionality of the data. By compressing the data
to a lower dimensionality and afterwards recomputing the original data, small
changes or errors in the data can be recovered. In deep learning applications,
this is generally done either with an AE or a Restricted Boltzmann Machine
(RBM). These models are able to learn the distribution of the data and thus
recreate their inputs. The hidden layers of these models have less neurons
than the input and output layers, which forces them to encode the data to
a lower dimensionality, followed by decoding them back to the original
dimensionality. These techniques help against adversarial data by learning
the distribution of the unperturbed data [36]. This way, once they encounter
adversarial data, after encoding and decoding the data, most of the changes
made by the perturbations will be removed, since they do not follow the
original data distribution.

2.3 Anomaly and Intrusion Detection
Intrusion detection is an application of anomaly analysis/detection, also called
outlier analysis. Outliers are data points that lie outside of the distribution
defining the normal data points [37]. The presence of these outliers generally
indicates something unexpected and/or undesirable is present in the system
generating the data. By detecting and analyzing these outliers, the unusual
behaviour can be identified and possibly mitigated. An example of data with
outliers can be seen in Figure 2.4.

Background | 21

Figure 2.4: Data with outliers [38]

2.3.1 Anomaly Detection
Various techniques have been used for anomaly detection [37, 38]. Initially,
anomaly detection was mainly researched with respect to the statistics field.
Therefore, the most researched methods are probabilistic and statistical in
nature. Most of these methods aim to define the underlying distribution
of the data, and subsequently find data points that do not adhere to these
distributions. Other techniques revolve around the proximity of data points to
others, an example is KNN. The aim of these methods is to define data points
based on their surroundings and identify anomalies by using either distance or
similarity thresholds. Machine learning methods have also been extensively
researched, such as DT, SVM and ensemble methods. By providing labeled
data that represents the actual system, these techniques can learn how to
distinguish between standard data and anomalies on their own. Following
machine learning techniques, DL techniques have gained a lot of attention and
have shown a similar or even better performance [9]. The ability to handle large

22 | Background

datasets of high dimensional data, and the adaptability to different applications
has resulted in a high popularity of DL techniques.

In addition to various techniques, anomaly detection also has applications
in several fields from fraud detection to medical diagnosis, and also in
intrusion detection for cyber security [37, 38]. The most known example for
fraud detection is that of credit card fraud. Where the goal is to define the usual
usage behaviour of the credit card owner, and then detect purchases that do not
fit this behaviour. Medical diagnosis usually focuses on finding anomalies that
signal the presence of injuries or diseases, such detecting cancer tissue using
a MRI scan. In case of cyber security, the goal is to identify unusual and
malicious behaviour on the system. This is generally the result of an attacker
trying to make the system perform actions that are usually not allowed.

One thing to keep in mind is that simply detecting the anomaly does not
resolve the reason why it occurred. For example, in the fraud detection case,
either a supervisor has to be informed to block the card, or the owner has
to be informed whether they performed the suspicious behaviour or not. In
the medical field, the source of the anomaly, for example cancer tissue, does
not disappear on its own after being detected. The doctor has to initiate
the corresponding treatment. Similarly, in Cyber Security, implementing
an IDS does not make the system secure or solves the actual intrusion.
According to [39], which proposes an ”Anti-Intrusion Taxonomy”, intrusion
detection is only one of six steps required to secure a system. These steps
include: prevention, preemption, deterrence, deflection, detection and counter
measures. Anomaly detection only shows the presence of an anomaly, it does
not prevent it and it does not resolve it.

2.3.2 Intrusion Detection
Intrusion Detection Systems can be further defined in host or network IDSs,
and in whether they are signature or anomaly based [8]. The distinction
between host and network IDSs revolve around what part of a system the IDS
is monitoring. In a Host Intrusion Detection System (HIDS), the IDS looks at
internal behaviour within a system, such as file access or system commands.
The goal is to prevent any unauthorized actions in the system itself. In a
Network Intrusion Detection System (NIDS), the IDS monitors the network
between different systems. In this situation, usually one of the systems on the
network is compromised by an attacker, and the goal of the IDS is to flag any
abnormal or malicious messages that appear on the network.

The way that IDSs detect intrusions can be separated into signature or

Background | 23

anomaly detection. In signature-based detection, the IDS is trained on known
attacks and forms a form of signature database for these attacks. Then when
new messages appear, these messages are compared to the signatures to see if
it matches any of the known attacks. Signature-based IDSs are very proficient
in detecting known attacks with a low false alarm rate. However, these IDSs
are generally incapable of detecting any attacks that they have not seen before.
Meaning that attacks it was not trained on, or newly developed attacks will
not be detected by this IDS. For anomaly-based IDSs, the IDS is trained on
standard/normal behaviour of the system. These IDSs form their interpretation
of normal behaviour and will then flag any messages that do not follow this
interpretation. This type of IDS is capable of detecting previously unseen
attacks, in contrast to signature-based IDSs. However, the downside is that
previously unseen authorized behaviour is also flagged as an anomaly. This
generally results in a higher false alarm rate than signature-based IDSs.

2.3.3 Network Intrusion Detection Systems
NIDSs have been applied in several IT fields already. Most research has been
done regarding standard computer networks and their protocols (e.g. TCP).
Because these are some of the most used networks, which means that they
encounter many attacks and that numerous datasets are available. Here the
increased use of machine learning and deep learning in the IDSs also applies.
Generally, a deep learning technique such as AEs [40, 41, 42] or RBM [43]
are used for the feature selection, afterwards more standard machine learning
techniques such as SVMs and DTs are used to make the actual classification
[44]. Other algorithms used include bayesian networks, clustering, ensemble
methods and Hidden Markov Models (HMMs), as mentioned in [8]. The
increase of Internet of Things (IoT) and wireless sensors has also prompted
the application of IDSs for these fields. For example, the paper [45] proposes
the use of a Deep Belief Network (DBN) using RBMs for wireless sensor
networks. And the paper [46] introduces their IDS SVELTE, which uses
a combination of a rule-based IDS and a specialized firewall to detect and
prevent intrusions in IoT networks. The survey [47] covers several different
methods for intrusion detection in IoT, including SVM, ANN and RF.

2.4 Related work
This section will cover several papers that cover topics that are relevant to this
thesis. The research can be divided into two main areas. That of IDSs for

24 | Background

vehicle networks, and attacks on these IDSs.

2.4.1 Intrusion Detection Systems for Vehicle Net-
works

Due to the growing number of vulnerabilities and attack surfaces of vehicles,
the research regarding IDSs for in-vehicle networks has been increasing. The
methods proposed vary greatly regarding techniques used, which data features
are focused on, and what attacks are aimed to be detected [48, 49, 50]. For the
data features, the following initial split can be determined: Hardware/physical
features versus Software/digital features.

2.4.1.1 Hardware Features

Hardware features mainly focus on physical characteristics of the ECUs
connected to the CAN. The goal of these IDS is to create a profile of each
ECU and match them to specific CANmessage IDs. This way, once a message
is sent with a specific ID that does not match the profile, the IDS is able to
determine that an intrusion happened. This basically allows the IDS to perform
sender confirmation, which is not included in the standard CAN specification.
These profiles are based one of the following physical features: clock-skew
and voltage profiles.

Clock-skew is the difference of a clock’s frequency with the frequency
of a true clock [51]. Every ECU has their own internal clock mechanism
which is used to determine when to send their next message. These internal
clocks however are not perfect. Their frequency differs slightly from a true
clock, meaning that they run slightly faster or slower than a true clock would.
Additionally, this clock-skew is unique and constant for each ECU. This
allowed the authors of [51] to introduce their Clock-based Intrusion Detection
System (CIDS), which fingerprints each ECU according to their clock-skew
which can then be used to detect intrusions in the system. They were able
to detect various attacks such as suspension and masquerade attacks. An
additional feature is that by tracking the clock-skew of the intrusion, allows
CIDS to determine which ECU is compromised.

Similar to the clock-skew, each ECU has their own voltage characteristics.
This originates from various factors, such as small differences in the internal
transistors and voltage regulators, the length of the wire between the ECU and
the measuring point and even the temperature of the vehicle, wires and ECUs.
The papers for VoltageIDS [52] and VIDEN [53], propose Voltage-based

Background | 25

Intrusion Detection Systems (VIDSs) which use these voltage characteristics
to create a profile for the ECUs. These profiles are then used to detect
intrusions in a similar manner as the previously discussed CIDS. Both IDSs
were able to effectively detect intrusions and additionally identify from which
ECU the intrusion originated. Additionally, VIDEN introduced a ”profile
adjustment” feature, which allowed the ECU to periodically update the voltage
profiles for the ECUs. This is helpful since these profiles will change over time
due to various factors such as battery level and temperature. And if the profiles
do not match the actual ECUs, the false alarm rate will increase significantly.

2.4.1.2 Software Features

While the hardware features focused on the characteristics of the ECUs, the
software features focus on the characteristics of the CANmessages themselves.
The corresponding IDSs use the various features from theCANmessages, such
as the ID, DLC and Datafields. Additionally, the timing between messages
of the same ID are often used for attack detection. Currently proposed IDSs
rarely focus on all features, since each technique used has features that aremore
compatible as well as features that are less compatible. This also connects to
which attacks the IDS aims to detect, since these attacks all have features in
which they are more apparent than others. Generally, the IDS are either more
payload based, or more timing based.

Payload Based
In payload based IDSs, the focus is mostly on the datafields of the
CAN messages, usually in combination with the message ID. These IDSs
learn which message payloads and IDs are considered standard behaviour.
Additionally, certain methods focus on the flow of the messages. Particularly,
they focus on whether a sequence of messages has a logical flow or not. This
allows these IDSs to detect various attacks which interrupt this flow, such as
injection, fuzzing and replay attacks.

To describe standard message behaviour, the researchers of paper [54]
proposed using Hamming distance to specify a ”normal” range of values.
For each message ID, they computed the Hamming distance between all
consecutive messages and collected the minimum and maximum value.
The range defined between these values would then designate the normal
behaviour, and any message that would later be detected to be outside of this
range would be classified as an intrusion. In [55], a deep learning method is
applied in order to learn the standard behaviour. The method in question is a

26 | Background

DBN, whose outputs are used by an ANN to classify intrusive messages.
IDSs that aim to detect the interruption of the flow of messages are

generally RNNbased. This is because RNNs posses a form of internalmemory
which allows them to make connections between current inputs and previous
inputs. This makes them proficient for many sequence dependent applications.
The paper [56] proposes and LSTM based method. For each message ID, a
separate LSTM model is created. These models learn the message flow of the
messages corresponding to their respective ID. These LSTMs use the payload
of the current message in order to predict the message of the next message.
Then depending on the difference between the predicted next message and the
actual next message, the system determines whether the actual next message is
an intrusion or not. Similarly, the paper [57] proposed a LSTM based IDS for
attack classification. However, here the LSTM part of the model was followed
by several dense layers with the aim to classify which attack was happening.
So instead of explicitly predicting the next message, the model looks at the
current sequence of messages and classifies it either as benign or as a specific
attack type. Finally, the CANnolo IDS [58], proposes and LSTM AE IDS.
The IDS takes a sequence of messages as input, and using the LSTM based
AE tries to recreate this sequence. Then similar to [56] the difference is used
as a base to determine whether the sequence contains an intrusion or not.

One downside of most payload based IDSs is that they require to describe
the normal behaviour for each message ID separately. In [54], this required
creating an Hamming range for each ID. This is not that resource intensive,
however for the LSTMbased IDSs, a separate IDS is required for eachmessage
ID. This can result in a decent amount of memory and computational resources
necessary when employed in a vehicle. And with the limited amount of
resources available, it is something to pay attention towhen choosing a payload
based IDS. Additionally, it is impossible to learn any connective behaviour
between message IDs (e.g. a message with ID A will always be followed by a
message with ID B).

Timing Based
For timing-based IDSs, the most important features are the message ID and
the arrival time of the message. Generally, the IDSs either look at the time
interval between messages of the same ID to see whether additional messages
have been added or messages have been dropped. Or the IDS looks at the
messages which arrived within a certain time frame, and determine whether
an attack is included based on the number of messages of each ID within that
time frame. The reason that this is a valid measure to detect attacks is that most

Background | 27

CAN messages are periodic. This means that each ECU sends their required
messages at regular intervals.

The IDS in [59] is an One-Class Support VectorMachine (OCSVM)which
looks at several statistical features of the CAN messages. These features
included the mean time difference between successive messages, the variance
of the time difference and the number of packets sent amongst others. Using
these statistical features, they were able to train their OCSVM to identify
message injections and erasures. The paper [60] introduced their Generative
Adversarial Network (GAN) based IDS (GIDS) to detect both known and
unknown attacks. They turn the CANmessage IDs into image data by one-hot
encoding the hexadecimal values in the IDs. Since each ID consist of three hex
values, the resulting one-hot encoding is of the shape 3 x 16. Afterwards, the
IDs of several consecutive messages are concatenated to create a full input
image. Their IDS consist of two separate ”discriminators” which classify
whether the input contains an attack or not. The first discriminator is trained
in a standard way using a dataset containing known attacks and labels. The
second discriminator is trained using inputs generated by a ”generator” which
is a GAN. A GAN is a deep learning network that generates fake inputs that
resemble actual inputs. By training the second discriminator on inputs created
by the generator, it learns to detect attacks it has not seen before (which is
normally one of the weak points of supervised methods). The final IDS first
feeds its input to the first discriminator, which determines whether it contains
an attack or not. If it does not detect an attack with high confidence, the input
is then forwarded to the second discriminator. This way known attacks are
filtered out by the first discriminator, and potential unknown attacks can still
be detected by the second discriminator.

Next, the paper [1] uses a similar method to transform message IDs into
image data. Instead of one-hot encoding the hexadecimal values, this paper
uses the binary representation of the message IDs and creates a ”frame” of
29 consecutive messages. They choose 29 since their CAN messages use the
extended format where the message ID consists of 29 bits instead of 11. These
frames are used as an input for their IDS, which is a reduced version of the
Inception-ResNet model. This is a state-of-the-art convolutional model used
for image classification. They are able to detect various attacks such as DoS
and spoofing using this method. Finally, the paper [61] proposes a graph based
IDS. A window of 200 CAN messages is turned into a graph by turning the
message IDs into nodes and connecting the IDs of consecutive messages with
edges. Afterwards, several properties are extracted from the graph such as
the adjacency lists and the degrees of the nodes. These properties are then

28 | Background

compared to an attack free graph using the Chi-Squared test. This method
allows the IDS to see if there are any anomalies in the number of messages
of a specific ID as well as the order of messages in the 200 message window.
Attacks such as DoS, Fuzzy and Replay can be detected using this method.

One downside of timing-based IDSs is their inability to successfully learn
the behaviour of standard aperiodic CAN messages. Additionally, attacks that
do not interfere with the normal timing of the CANmessages also tend to evade
these types of IDSs.

Hybrid
Recently, research has started to investigate IDS models that are able to look
at all CAN features. This allows them not only to detect a larger portion of the
known attacks, but it also makes them more likely to detect unknown attacks.
In [62] the IDS CANTransfer is introduced. This IDS uses convolutional
LSTM layers, which combines the advantages of CNN and LSTM layers,
allowing the model to effectively model multivariate time series data (data
where multiple variables change over time). The main feature of CANTransfer
is its potential regarding One-shot learning [62]. This entails that the model
can learn to detect new attacks after being trained on only a single data sample
of that attack. In the paper they show this ability by training the model
only on DoS attacks and testing it on other attacks before and after One-shot
learning. The model is able to increase its f1-score with 81% for the unknown
attack after One-shot learning. While this still makes the model vulnerable
to unknown attacks initially, it can be quickly adapted to detect this attack as
soon as a single sample is available.

Other research has focused on including the interaction between messages
with different IDs, such as [63] and [64]. CANet, proposed in [64], first uses
a LSTM part for each message ID, similar to other methods discussed earlier.
But instead of using the outputs directly, each LSTM output is saved in a ”joint
latent vector”. Once a new message arrives only the part of the latent vector is
updated that corresponds to the message ID. This latent vector is then fed to an
AE part which aims to reconstruct the messages of all IDs. Then based on the
reconstruction error, it is decided whether the message is an attack or not. By
using information regarding all message IDs in the latent vector, dependencies
between messages of different IDs can be captured. CANIntelliIDS from
paper [63] also aims to link the messages with different IDs. This model
starts with several convolutional layers followed by layers of Attention-based
Gated Recurrent Unitss (AGRUs). The CNN part is able to retrieve various
features from the inputs, afterwards the AGRU part can learn sequential and

Background | 29

contextual information. This allows CANIntelliIDS to learn both information
regarding the flow of data within a single message ID, as well as contextual
information of this data when compared with other message IDs. Using these
techniques, CANIntelliIDS is able to outperform several other models when
detecting attacks such as DoS, Fuzzy and Impersonation.

2.4.2 Attacks on Intrusion Detection Systems
There are numerous attack types that adversaries can use in order to prevent
IDSs from performing their tasks [26]. These types differ depending on the
goal of the attacker. ”Overstimulation” attacks aim to create messages that
deliberately cause the IDS to raise an alarm. This will cause whatever system
or supervisor that is monitoring the IDS to be overwhelmed. Attackers can try
to gain information regarding the IDS in order to apply ”Reverse Engineering”
to recreate the employed IDS. This would allow them to create more advanced
and specific attacks against this IDS, which would increase their success rate.
Finally, attackers can aim to go unnoticed by the IDSs by either employing
”Evasion” or ”Poisoning” attacks. Both of these attack types aim to make the
IDS misclassify their adversarial message as benign.

2.4.2.1 Poisoning

Poisoning attacks revolve around adding adversarial samples to the training
data of the IDSs in order to lower their accuracy. These samples are created
by using the original input data but matching them with incorrect labels. This
way attack messages can be disguised as benign messages, which forces the
IDS to learn these attacks as benign. Once the IDS is employed and actually
encounters similar attack messages, it will misclassify them as benign. The
main challenge of this type of attacks is that it is hard to gain access to the
training data of a model while/before it starts training. That is why this attack
type is mostly used against systems that perform online re-training. These
systems perform re-training while employed to adapt to newly discovered
attacks or changes in the general message behaviour. During these re-training
instances, the IDSs are vulnerable to potential poisoning.

The paper [65] proposes a form of poisoning for VIDSs. As mentioned
earlier, a VIDS creates a voltage profile/fingerprint for all the ECUs in
order to detect whether a CAN message was sent by the correct ECU or
not. Additionally, they periodically update these fingerprints since changes
can occur due to various factors such as battery-life or temperature of the
vehicle. During these updates, the IDS is vulnerable to potential poisoning

30 | Background

of the voltage fingerprints. The attack method proposed in [65] involves two
compromised ECUs working together to corrupt the voltage fingerprint of
a victim ECU. During the re-training of the voltage fingerprints, the victim
ECU and one of the attacker ECUs start sending a message with the victim’s
message ID at the same time. Since the messages are identical no error is
detected on the CAN bus, however the voltage signal is now different from
what it would be if only the victim was sending a message. At one point
during transmitting the victim ID the attacker stops sending the message, since
it cannot know the exact content of the victim’s message to keep sending
an identical message. At this point, the voltage fingerprint of the victim
is successfully corrupted. Afterwards, when the attacker wishes to send a
message using the victim’s ID, it performs the exact same steps, however now
the second attacker ECU is pretending to be the victim ECU and sends the
injected message.

2.4.2.2 Evasion

While poisoning focuses on reducing the accuracy of the IDS before
deployment (or during re-training), evasion attacks aim to reduce the accuracy
after deployment. This is generally done by learning how to emulate normal
behaviour better, or by leveraging the weakness of machine learning models to
perturbations. An example of better emulating normal behaviour is shown in
[66], where they propose an advanced masquerade attack that evades CIDSs.
In a standard masquerade attack, the messages with a certain victim ID
are dropped and an attacker injects messages with this ID instead. While
these attacks do take the periodicity of these messages into account, they
do not factor in the different clock-skews of the victim and attacker ECU.
These standard masquerade attacks are therefore easily detectable by CIDSs.
However, the authors of [66] noticed that the clock-skews that the CIDS use
are purely computed based on the timing between messages. Since CAN is a
broadcast channel, this computation can also be performed by the attacker and
afterwards be manipulated. So the attacker can estimate the clock-skew of the
victim with respect to their own clock, which can then be used to send their
own messages to the IDS without being detected.

Research that shows the possibility of evading IDSs by exploiting the
weakness to perturbations has been performed in standard networks [67] as
well as in automotive networks [68]. In [67], the authors show that the
accuracy of a Multi-Layer Perceptron (MLP) for standard network intrusion
detection can be reduced by at least 20% by using the JSMA. The paper

Background | 31

[68] showcases their LSTM model for CAN intrusion detection, which is able
to detect intrusion with 98% accuracy. Afterwards, they create adversarial
samples using the FGSM and the Basic Iterative Method (BIM). These
adversarial samples reach a success rate of 98% and 99% for each method,
respectively. Following this, they are able to increase the robustness of
their LSTM model towards these samples by performing re-training on these
samples.

2.5 Summary
To summarize, modern vehicles include a large amount of electronics.
However, due to the increase of connectivity and the simple network protocols,
several security issues have emerged. To combat these issues, various
solutions have been proposed from encryption methods to IDSs. These IDSs
are an application of anomaly detection, where the goal is to detect abnormal
behaviour on the Controller Area Network.

Several different types of IDS have been researched, focusing both on
physical and digital features regarding CAN communication. Recently, the use
of DL techniques for IDS have increased in popularity. But these underlying
DL techniques are not invulnerable. They include several weaknesses,
including a sensitivity towards perturbations and the transferability of these
perturbations.

Research has shown various DL based IDSs for CAN. These IDSs use
various techniques such as CNNs, LSTMs and AEs. Several papers have
shown the presence of the previously mentioned weaknesses in DL based IDSs
for networks such as standard IT and IoT networks. In contrast, the research
regarding the weaknesses DL based IDSs for CAN is still limited. There are
papers covering the weaknesses of the IDSs that focus on hardware features,
such as the evasion of CIDSs. However the weaknesses of IDSs that focus
on software features for CAN are not considered. This will be the main focus
point of this thesis.

32 | Background

Methods | 33

Chapter 3

Methods

This chapter will describe the research methods used during the thesis. First,
the different steps in the research process will be covered. This is followed by a
description of the source of the datasets, and a description of the characteristics
of the datasets. The experimental design of the thesis will be presented,
including hardware and software used, as well as what models and attacks
were tested. Next, the reliability and validity of the presented methods will
be evaluated. The methods and metrics used to quantify the results from the
experiments will be shown. Finally, a description of how these results will be
evaluated for future conclusions is presented.

3.1 Research Process
The research process can be divided into the following steps.

Step 1 Dataset collection and preprocessing

Step 2 Creation of baseline models

Step 3 Implementation of attack method and adversarial samples

Step 4 Re-creation of state-of-the-art models

Step 5 Execution of test runs

Step 6 Evaluation of results

Step 1 focuses on investigating various public datasets. Several factors
were of importance during the final selection of the dataset. These factors
included: whether the data came from real vehicles or simulations, what
network attacks were included and the format of the datasets. After the

34 | Methods

final dataset was selected, several preprocessing steps were executed to make
the data more suitable for DL. The details regarding the dataset and the
preprocessing steps can be found in Section 3.2.

Step 2 revolves around creating two baseline models. These models
have two functions. Firstly, their performance can provide a comparison to
see whether the state-of-the-art models behave differently in the presence of
adversarial samples than standard models. Secondly, the first baseline model,
which will be described in Section 3.3, is used to generate the adversarial
samples on.

In Step 3 the chosen attack method is implemented and adjusted to better
adhere to the CAN specifications. This method is then used to generate the
adversarial samples on the first baseline model.

Step 4 aims to re-create the state-of-the-art models. These models have
been chosen to include different DL techniques. Additionally, both models
focus on different data features, which may or may not help them in protecting
against adversarial samples.

Next, in Step 5 the adversarial samples are tested on all the models. And
the resulting performance of each model is collected. These results are then
evaluated during Step 6 of the research process.

3.2 Data Collection
RISE guided me to various public datasets that were used in at least one
paper. They suggested several different datasets because there currently is
no benchmark dataset for CAN intrusions, such as there is for standard IT
networks (think of KDD-99 dataset [69]). These datasets included the ORNL
dataset [70], a dataset created by the Technical University of Eindhoven [71]
and several datasets from the Hacking and Countermeasure Research Lab
of South Korea [72, 60, 73]. The dataset that was eventually used was the
Survival dataset presented by the Korean research lab in [73].

3.2.1 Survival dataset characteristics
The Survival dataset contains several logs of CAN traffic for three different
vehicles: a HYUNDAI YF Sonata 2010, a KIA compact SUV Soul 2015, and
a CHEVROLETmini-compact vehicle Spark 2015. For each of these vehicles,
four different log files were recorded. One with only normal CAN traffic, one
with DoS attacks, one with Fuzzy attacks and the final one with Malfunction
attacks.

Methods | 35

For the DoS attacks, several messages with the ID 0 were injected. This
would result in other messages being pre-empted as per the arbitration rule
described previously. For the Fuzzy attacks, messages with random IDs and
random message data were injected. The goal of these attacks is to find out
what combinations might have useful effects for the attacker. Finally, for the
Malfunction attacks, specific message IDs were targeted, and by altering the
message data unexpected behaviour resulted in the vehicles.

The format of the log files can be seen in Figure 3.1. The first field is a
timestamp for when the message came in. Then the message ID is recorded
in hexadecimal. This is followed by the DLC. Next, 0 to 8 data bytes are
recorded, again in hexadecimal. Finally, a label of either R or T signalling
normal and attack messages respectively. An example of the log file can be
seen in Figure 3.2.

CAN
Log

Timestamp Hex ID DLC Hex Data field Label

Figure 3.1: CAN log

Figure 3.2: Log of CAN messages with Fuzzy attacks

36 | Methods

3.2.2 Preprocessing
The current format of the CAN messages is not directly suitable as inputs for
DL techniques. To transform the data, several preprocessing steps were taken.
First, all the hexadecimal values were translated to decimal values and later to
binary values. The reason behind representing the values in binary, is that they
will also be sent as binary values over the CAN bus. Additionally, this makes
it easier to determine the size of the perturbations later during the thesis.

After all the values were translated to binary, a new data feature was added:
delta Time (or dTIME). This feature was computed using the timestamps of
the messages. The dTIME measured the time between the current message
and the last message with the same ID. This feature was added since raw
timestamps do not provide much information. However, the time between
messages of the same ID provides much more information, especially since
most CAN messages are periodic.

Next, the R and T labels were mapped to 0 and 1 values. Additionally, the
labels for the normal data log were added, since they did not include any labels
at all.

Finally, the various data logs were re-balanced. Since the number of attack
messageswas heavily outnumbered by the number of normalmessages. If such
a skewed dataset is used for the training of DLmodels, the resulting model will
be biased towards the normal messages. Since it can get a high accuracy by
simply predicting all the messages to be normal. For this re-balancing, random
undersampling was used. This means that from the majority class (in this case
the normalmessages), only a subset is selected, such that the number of normal
and attack messages is equal. Note that for the re-balancing, the SMOTE
methodwas considered to up-sample the attackmessages [74]. However, since
SMOTE synthesizes new samples, this means that the values of the attack
messages are different from the original attack message values. But since
these values were specifically defined to create working attacks (except for the
Fuzzy attacks), the SMOTE method was deemed unsuitable. Oversampling
the attack messages by copying them was also ruled out since it could lead the
models to overfit on the specific values of the attacks instead of the underlying
characteristics.

Methods | 37

3.3 Experimental design

3.3.1 Attacker Model
During the thesis, several assumptions regarding the attacker are made. The
assumptions revolve around what actions are allowed and what information is
available to the attacker during the creation of the adversarial samples. These
assumptions represent the attacker model. This model helps substantiate the
decisions made during the project.

The attacker model of this thesis is based on two different attacker
modelling schemes for NIDSs [75, 76]. These schemes use different factors
to describe the attacker’s knowledge and capabilities.

3.3.1.1 Attacker’s knowledge

The attacker’s knowledge covers several aspects of the implemented IDS,
such as what model type is used, the specific architecture and what data
features it is trained on. Generally, the knowledge of an attacker is divided
into three categories: white-box, gray-box and black-box. White-box means
that all information regarding the model and architecture is known to the
attacker. This would allow an attacker to makemore sophisticated and targeted
attacks. In black-box, none of themodel specifications is known to the attacker.
Gray-box lies in between black and white-box, meaning only a part of the
characteristics of the model is known to the attacker.

In the thesis, it is assumed that the attacker has white-box knowledge of the
first baseline model, while they have black-box knowledge of the other models
(the specific models will be expanded on later). This assumption is made to
simulate a ”oracle black-box” attack, such as described in [33]. In such an
attack, the attacker has oracle access to the target system, meaning they can
provide their own input to the target system and receive corresponding outputs.
However any other information of the target system is unknown. By using the
oracle functionality, the attacker can create their own substitute dataset which
they can use to train a substitute model. Since all information of the substitute
model is available to the attacker, they can use it to generate an attack, which
can then potentially be transferred to the target system. In this situation, the
attacker has white-box knowledge of their substitute model, but black-box
knowledge of the target system. To match this oracle black-box attack, during
the attack generation only the model parameters of the first baseline model can
be accessed, while the parameters of the other models are off limits.

38 | Methods

3.3.1.2 Attacker’s capabilities

The attacker’s capabilities are once again based on [76, 75] and it covers
several aspects. Firstly, the type of access the attacker has to the system, in this
case the vehicle. Secondly, the type of access the attacker has to the datasets
used for training or testing and the IDS. Regarding the system, the assumption
is that the attacker has compromised a single ECU and is now able to inject
messages on the CAN bus. As mentioned previously, researchers have shown
that an attacker only needs access to a single ECU to then gain control over the
full vehicle [5]. For the datasets and the IDS, it is assumed that the attacker
has no access to the training data, which will therefore not be altered during
the perturbation generation. The reason that the training set is assumed to
be inaccessible is to make the attack scenario of this thesis more realistic [76].
The training dataset is usually one of the company secrets and several measures
are taken to keep it secret. This makes it difficult for an attacker to gain access
to the training dataset. The assumption is made that the attacker will have
access to a separate test set, since the deployed IDS can be used as an oracle to
generate a test set as described earlier. Note that no restrictions on the oracle
capabilities are assumed, such as a limited number of oracle requests. This is
due to time constraints and to limit the scope of the thesis.

3.3.1.3 Attack scenario

This section will provide a potential attack scenario which shows how the
experiments of this thesis can correspond to a real-life attack. The scenario
starts with the attacker having compromised a single ECU in the target vehicle.
The attacker uses the ECU to read CANmessages and inject messages such as
DoS or Fuzzy attacks. This allows the attacker to use the IDS in the vehicle as
an oracle, as describe earlier. After sending several messages and collecting
the corresponding labels, the attacker can create a substitute dataset. Using
this dataset, the attacker implements their own DL-based IDS. The attacker
then uses their method to compute perturbations on their own IDS, and creates
adversarial samples by adding these perturbations to the attack messages.
Finally, he can use the compromised ECU to send the adversarial samples
on the CAN bus.

3.3.2 Test environment
This section will provide a description of the chosen models and the attack
method. The focus will lie on the theory behind these models and attack

Methods | 39

method as well as the role they play. Chapter 4 will provide the full description
regarding the implementation details. Additionally, the different adversarial
datasets and the reasoning behind them will be explained.

3.3.2.1 Machine Learning Models

Asmentioned, four different model architectures were implemented during the
thesis. The first baseline model is a standard DNN, from now on referred to
as BL-DNN (short for BaseLine DNN model). The role of this model was to
gain insights into the workings of IDSs and provide a baseline regarding the
performance for future comparison betweenmodels. This model implemented
several techniques that prevent overfitting on the training data, in order to make
it as robust as possible. These techniques will be elaborated upon in Chapter 4.
In addition, the adversarial datasets were all created on this model.

The second baseline model is an ensemble model consisting of 5 different
ML techniques, from now on referred to as BL-Ensemble (short for BaseLine
Ensemble model). These techniques are Logistic Regression, Decision Tree,
Support Vector Machine, K-Nearest Neighbors and Naïve Bayes. These
different techniques would each classify an input sample, thus voting for a
certain class. The class with the most votes would then be returned as the
output. The role of this model is to act as a second baseline regarding the
performance. Additionally, it provides potential insights whether ensemble
methods are more or less resilient towards adversarial samples.

The first state-of-the-art model is initially introduced in [1] and uses
a deep convolutional network architecture. The model will be referred to as
SOTA-CNN (short for State-Of-The-Art CNN model) to distinguish it from
general CNN models. The architecture of this model is a reduced version of
the Inception-ResNet model proposed in [77]. To use a CNN based model
for the CAN messages, a certain transformation has to be implemented. The
authors of this paper transformed several messages into frames. This was done
by taking the message IDs of 29 consecutive messages and creating a matrix of
these IDs. They used 29 messages, since their dataset used the extended CAN
format, meaning that each message had a 29 bit ID. This resulted in square 29
x 29 frames.

These frames of message IDs allowed their model to detect various attacks
based on their ID and timing. These attacks included DoS attacks, Fuzzy
attacks and two types of ID spoofing. This paper focused primarily on the
Error Rate and False Negative Rate for their metrics. The Error Rate is
the opposite of the Accuracy, where the percentage of misclassifications is

40 | Methods

measured. While the False Negative Rate can be computed as 1 − Recall.
While the Recall metric looks at the percentage of positive predictions with
respect to all positive samples, The False Negative Rate looks at the percentage
of negative predictions with respect to all positive samples. They additionally
showed the precision, recall and f1-score of their model on the different
attacks. The model performed well in detecting the various attack types,
especially on the DoS, and Spoofing attacks.

The Inception-ResNet model is based on two different CNN techniques,
inception modules [78] and residual learning [79]. The idea behind inception
modules is to replace fully connected convolutional layers with sparse layers.
This would significantly reduce computational resources required. These
sparse layers are actualized by using different smaller convolutional layers
instead of single larger layers. The second technique of residual learningworks
as follows. Generally, a neural network aims to approximate a mapping from
the inputs to the desired outputs. However, in residual learning, the mapping
that is learned is the residual that remains from subtracting the inputs from the
original mapping. This is done by introducing shortcut connections, where
(intermediate) inputs are fed forwards without going through any neurons to
be added to future intermediate values. These residual mappings are easier
to optimize and allow for better performance on deeper networks than non-
residual mappings.

The second state-of-the-art model is based on an LSTM and was
proposed in [56]. This model will be referred to as SOTA-LSTM (short for
State-Of-The-Art LSTMmodel) from now on. The SOTA-LSTM architecture
is divided into two parts. The first part includes the LSTM layers and aims
to predict the next input in a sequence given the current input. This part is
trained in a unsupervised manner, by only providing it with normal message
data and letting it predict the desired next message. The goal is to minimize
the difference between the predicted next input and the actual next input. The
second part of the model performs the actual classification. An input is given
to the first part of the model, which then returns the predicted next input. The
error between the predicted and actual next input is then compared to a certain
threshold. If the error is above the threshold, the input is classified as an attack,
otherwise the input is classified as a normal message. This threshold is set to
the 99th percentile of the errors that originated from the training phase.

In contrast to the previous model, this model does not look at the message
IDs at all, but instead only focuses on the data bytes of the messages. The IDS
aims to model the data flow of the messages, and thus find any messages that
do not adhere to this flow. Since the messages of each ID have their own data

Methods | 41

flow, the paper constructed several SOTA-LSTMmodels, one per message ID.
This allows each model to learn the data flow of a single message ID.

The attacks that this model is designed to detect all disrupt the data flow
in some manner. First the ”interleave” attack, takes two valid sequences of
message data and interleaves them. Thus creating an abnormal data flow. The
”drop” attack, removes a set amount of messages from a sequence. In the
”discontinuity” attack, a new sequence is created by taking the first half of
one sequence and the second half of another sequence from a later time. Both
sequences are valid, however the switch that occurs from one to the other is
not valid. The ”unusual” attack alters the bits from various messages in the
sequence. Based on data analysis, the researchers discovered that certain bits
were generally unused by certain message IDs, so the focused on including
these bits in the ”unusual” attack. Finally, the ”reverse” attack takes a valid
sequence, but reverses it.

These different models were chosen/designed such that they use different
techniques. This will provide themost information regarding how the response
to adverserial samples differs per technique. Additionally, the state-of-the-art
models both focus on different features of the CANmessages. This in turn can
show whether certain features might be more robust than others.

3.3.2.2 Attack method

The method that is used to generate the adversarial data is called the
Fast Gradient-Sign Method (FGSM) [28]. The work flow of perturbation
generations is easier to understand when it is compared to the work flow of
standard gradient descent used in machine learning. As can be seen on the left
in Figure 3.3, gradient descent works as follows. First the input is fed to the
model, after which the output and the corresponding loss is computed. Then
during gradient descent, the gradient of the loss is taken with respect to the
model weights. This gradient is then used to update the weights of the model
to minimize the loss. For the FGSM, the first steps are identical. However,
now the gradient of the loss is taken with respect to the input. This gradient
is then used to compute the perturbation and update the inputs instead of the
model weights.

The FGSM computes the perturbations as

η = ϵ ∗ sign(∇xJ(θ, x, y)), (3.1)

where the J(θ, x, y) is the loss function of the model on which the
perturbations are generated, θ are the model parameters, x is the inputs and y

42 | Methods

Figure 3.3: Comparison of the work flow of FGSM and gradient descent

are the corresponding outputs. The gradient of this loss function is computed
with respect to the inputs. After the gradient is computed, the sign of this
gradient is taken, which is represented by an array of -1s, 0s and 1s depending
on the sign of the values in the gradient. This sign is then multiplied with ϵ,
where the ϵ defines the size of the perturbation. The sign of the gradient is
directly multiplied with ϵ since the original FGSM sets the magnitude of the
perturbation based on the L-inf norm.

Note that for the thesis some alterations have been made to the method
which will be covered in Section 4.1, but the underlying principles have
not changed. Additionally, the specific datasets that were created using this
method will be discussed in Chapter 4.

3.3.3 Hardware/Software to be used
The training and testing of the models was done via RISE’s datacenter called
ICE (https://ice.ri.se/). The datacenter provided access to a
NVIDIA-GTX-2080ti GPU.

Regarding software, the project was executed using the Python program-
ming language in Jupyter Notebooks. The main packeges that were used were:
Numpy, Pandas, Imblearn, Keras, Scikit-learn, Tensorflow and Cleverhans.
Additionally, the Matplotlib.pyplot and the Seaborn packages were used for

https://ice.ri.se/

Methods | 43

the plots and visualizations.

3.4 Validity of the methods
The validity of the methods comes from the systematical research steps and the
pre-established validity of the chosen models and attack method. By adhering
to the general steps of designing, training and testing DL models, the validity
of these final models can be guaranteed. The grid search method was used to
find the set of optimal parameters for each model, while the architectures of
the models are identical to the previous models in [1, 56]. Hence, the validity
of the original architecture is maintained, while the best performance of IDSs
given the architecture is obtained. Regarding the creation of the adversarial
samples, only additional restrictions have been applied to the original FGSM,
thus retaining the underlying functionality and the accompanying validity.

The models will be executed on the standard datasets and those with
adversarial samples. The execution method will be equal for both types of
datasets, assuring that the results can be compared accurately. The final
comparison will be used to support or oppose the hypothesis of this thesis.

3.5 Planned Data Analysis
The planned data analysis of the thesis can be divided into two sections. The
first section is the analysis of the performance of the models on the adversarial
samples. The second section is the analysis of the perturbations of the different
adversarial datasets.

3.5.1 Performance Analysis Technique
For the performance analysis, several metrics that revolve around the number
of correctly and incorrectly classified samples will be used. The main
metrics/techniques are a confusion matrix, accuracy, precision, recall and f1-
score.

First, a confusion matrix can be seen in Table 3.1. In this case, the negative
samples refer to normal messages, while the positive samples refer to attack
messages. The confusion matrix divides the samples into four groups being:
True Positive (TP), False Positive (FP), True Negative (TN) and False Negative
(FN). True positive counts the number of samples that have the positive class
and are predicted to be positive by themodel. False positive counts the samples

44 | Methods

that are negative, but are falsely predicted to be positive. True negative counts
the negative samples that are predicted to be negative. False Negative counts
the positive samples that are predicted to be negative. This gives a quick
overview of how many samples are classified correctly and what types of
mistakes are made by the model.

Predicted class
Negative Positive

True class Negative TN FP
Positive FN TP

Table 3.1: Example confusion matrix

Using these four groups of data points, several other metrics can be
computed. The equations for the accuracy, precision, recall and f1-score are

accuracy =
TP + TN

TP + FP + TN + FN
, (3.2)

precision =
TP

TP + FP
, (3.3)

recall =
TP

TP + FN
, (3.4)

f1− score = 2 ∗ precision ∗ recall
precision+ recall

. (3.5)

The accuracy provides a single number, signifying what percentage of all
the samples are classified correctly. This metric provides a quick look on
the performance of a model, however it can provide a biased result. If the
original dataset is unbalanced, for example 80 normal messages and 20 attack
messages, the accuracy of a model can be 0.8 if it predicts all messages to be
normal. However, this model is unusable in practice, since all attack messages
are missed.

To cover the weakness of the accuracy metric, the precision and recall
metrics are used. The precision metric computes what percentage of the
samples predicted to be positive is actually positive. While the recall metric
computes what percentage of the positive samples is predicted to be positive.
Precision focuses on the correctness of the predictions, and recall focuses on
the completeness of the predictions. Additionally, the f1-score computes the

Methods | 45

harmonic mean of the precision and recall. This transforms these two metrics
into a single value, which makes it easier to evaluate the model.

3.5.2 Perturbation Analysis Technique
To analyze the perturbations, several factors will be taken into account.
The number of iterations needed to create each adversarial sample will be
investigated. The number of iterations represent the number of times the
FGSM is called until a successful adversarial sample is generated or until a
iteration limit is reached. The total size of the perturbations will be evaluated.
Finally, the specific perturbation values will be investigated.

The number of iterations and the size of the perturbations provide insights
into how close the original samples lie to the decision boundary. And by
extension, how robust the models are with respect to those specific samples.
For the specific perturbations, the attention will be on what bits or other values
are most often changed. This shows which bits are more influential during the
classification.

3.6 Evaluation framework
To evaluate the final results, the metrics described previously will be computed
for each model on both the adversarial datasets and the standard datasets. The
values of these metrics will show whether the perturbations are capable of
influencing the performance of the models. Additionally, since all adversarial
samples are only generated on the first baseline model, the transferability will
be shown by observing the influence of the samples on the other models.

Additionally, the performance and the drop in performance of the different
models will be compared to see what models are more resilient.

46 | Methods

Code and Implementation details | 47

Chapter 4

Code and Implementation de-
tails

This chapter provides a deeper look into the code and implementation details
relevant to the thesis. First, the FGSM is shown in psuedo-code format,
and any alterations made will be described. The different datasets that were
generated with the FGSM are described, as well as the reasoning behind the
chosen features for each dataset. Finally, the architectures and parameters of
each of the models used during the thesis is covered.

4.1 Fast Gradient-Sign Method
For the FGSM, the basic implementation has been copied from the Cleverhans
library. The psuedo-code can be seen in Algorithm 1. The Cleverhans
functionality is displayed with the black text, and the extensions to the method
are shown in red text. The corresponding Python code can be seen in
Appendix A.

The input parameters for the function are as follows:

• model_fn: The model on which to generate the perturbation (note:
this model should return logits instead of the final class probabilities
to effectively compute the gradient).

• x: The input that is to be perturbed.

• eps: The size of the perturbation measured using the norm.

• norm: The norm to be used to compute the size of the perturbation.

48 | Code and Implementation details

Algorithm 1 Fast Gradient Sign Method
Require: model_fn, x, eps, norm, features, loss_fn, clip_min, clip_max, y
1: # Compute the gradient of the loss_fn on model_fn w.r.t. x
2: grad = compute_gradient(model_fn, loss_fn, x, y)
3:
4: # Limit gradient to chosen features
5: limit_grad = features * grad
6:
7: # Further limitations
8: limitations = array of 1s of shape (len(features))
9: for i=0 to len(limit_grad) do
10: if feature has max value and will be increased further then
11: limitations[i] = 0
12: else if feature has min value and will decrease further then
13: limitations[i] = 0
14:
15: limit_grad = limit_grad * limitations
16:
17: # Compute perturbation based on gradient, epsilon and the desired norm
18: optimal_perturbation = optimize_linear(limit_grad, eps, norm)
19:
20: # Add perturbation to original sample
21: adv_x = x + optimal_perturbation
22:
23: # Clip values of adversarial sample to max and min values
24: adv_x = clip_by_value(adv_x, clip_min, clip_max)
25: return adv_x

Code and Implementation details | 49

• features: An array of 0s and 1s to select which features to include in
the perturbation.

• loss_fn: The loss function to be used, defaults to sparse softmax cross
entropy.

• clip_min: A single value or an array containing the minimum allowed
values of the adversarial sample.

• clip_max: A single value or an array containing the maximum allowed
values of the adversarial sample.

• y: The label to be used for the loss computation. This variable can
be set to desired class for the adversarial sample, or by default to the
actual predicted class in which case the loss is maximized instead of
minimized.

The first extension can be seen in lines 4 and 5. It enables the option to
select which input features to include during the perturbation generation. By
multiplying the gradient with an array of 0s and 1s, unwanted features can be
removed from the generation process. Lines 7 to 15 show the second addition,
which is an additional check to see if one of the input features has already
reached the minimum or maximum value, and will be updated again in that
direction according to the gradient. Since these updates will be reversed once
the final step of clipping the values is reached, a certain loop might appear.
This is especially noticeable when using the L1-norm during perturbation
generation. For example, let us say that feature 5 has the highest positive
gradient value. This means that when using the L1-norm, this feature will
be increased during the perturbation generation. However, if feature 5 is a bit
value of 1, a higher value is not valid and will be clipped. Meaning that the
update is reversed in the final step. Now the resulting output is equivalent to
the original input, meaning no perturbation has been returned.

During the generation process, depending on what norm was used and
what value for epsilon was taken, the success rate of the perturbation
generation varied significantly. Whilst taking inspiration from the Basic
IterativeMethod [80], an additional loop functionwas implemented that would
run the FGSM until a successful perturbation was generated or until a set
amount of iterations was reached. This method can be seen in Algorithm 2.

The input parameters for FGSM_Loop are the same as for FGSM, with
the addition of the max_iter parameter, which dictates the maximum number
of iterations allowed for the perturbation generation. First, several necessary

50 | Code and Implementation details

Algorithm 2 FGSM Loop
Require: model_fn, x, eps, norm, features, loss_fn, clip_min, clip_max, y,

max_iter
1: # Setup necessary variables
2: iteration = 0
3: adv_x = x
4: x_round = adv_x
5:
6: while x_round is not a successful adversarial sample and iteration <

max_iter do
7: #compute adversarial sample
8: adv_x = FGSM(model_fn, adv_x, eps, norm, features, loss_fn,

clip_min, clip_max, y)
9:
10: # if sample misclassifies, round values and check again
11: if label of adv_x == y then
12: x_round = adv_x rounded except dTIME value
13:
14: # Update iteration counter
15: iteration = iteration + 1;
16:
17: # Add check if maximum iterations reached
18: if iteration == max_iter then
19: # update to latest sample
20: x_round = adv_x rounded except dTIME value)
21: return x_round, iteration

Code and Implementation details | 51

variables are initialized. Next, in a loop, an adversarial sample is generated.
This sample uses a perturbation specified by the norm and epsilon of the
input parameters. If the perturbation causes the desired misclassification,
the features of the sample that expect discrete values are rounded. This is
necessary since the majority of the input features require discrete values (for
example all the data bits), but depending on the choice of norm and epsilon the
perturbations could include continuous values. After rounding the values, the
new classification is computed since it might have changed. Next, the iteration
counter is updated and if either the maximum number of iterations is reached,
or the rounded sample misclassifies as desired, the loop is ended. The final
rounded sample and the number of iterations it took to create the sample is
returned. Note that if the sample is not generated within the specified number
of iterations, the latest sample is rounded and returned.

4.2 Datasets
During the project several different datasets were created both for training
and testing purposes, as well as for adversarial data generation. Each of the
adversarial datasets used different parameters and features when generating the
perturbations. Additionally, both the SOTA-CNN and SOTA-LSTM model
needed their datasets to be in a special format. So the alterations made to
these datasets will be mentioned in this section as well.

4.2.1 Training and Testing
The original datasets consisted of four different data logs, one for normal
messages, one containing normal and DoS messages, one with normal and
Fuzzy messages and one with normal and Malfunction messages. To create
the training and testing datasets, all logs were used except for the pure normal
data log. This decision was made since the datasets were already unbalanced,
so adding more normal messages would be counter-productive.

For the other three logs, the data was preprocessed using the methods
mentioned in Chapter 3. Thus a dTIME field was created, the ID and the
data bytes were transformed into bit values and the logs were balanced using
random undersampling. Afterwards, each of the 3 logs was split in a 60-40
ratio for the training and test sets respectively. The final training and test
datasets were created by concatenating the three training and test splits. This
resulted in the final training set having around 80,000 datapoints and the test set
having around 53,000 datapoints. The distribution between normal and attack

52 | Code and Implementation details

messages in both datasets is approximately equal (there are slight differences
due to the way the split was created for each dataset).

4.2.2 Adversarial datasets
For each of the adversarial datasets that were generated, several parameter
values used in the FGSM were decided on. The majority of these parameter
values were identical for all datasets. All adversarial samples were generated
on the BL-DNN model. The norm and epsilon values used are L1 and 1.0
respectively. This ensures that only 1 of the features is altered in every iteration
with a step size of 1.0. The minimum value of all input features is set to 0, to
prevent negative values. And the maximum value of all bit features (i.e. the
ID bits and the 64 Data bits) is set to 1. The maximum value for the DLC
and dTIME features are set to 8 and 100 respectively. Finally, the maximum
number of iterations is set to 50, and the target for the adversarial samples is
set to 0 (such that the attacks are classified as normal messages).

The only parameter values that differ per adversarial dataset are which
features are included during the perturbation generation. The possible features
are the 11 ID bits, the DLC, the dTIME and the 64 Data bits. Which features
are used for each dataset will be described below and shown schematically
for easier comprehension. The schematic image will show for each feature
whether it is included or excluded as shown in Figure 4.1.

Figure 4.1: Legend for included and excluded features

4.2.2.1 Full adversarial

The Full adversarial dataset was generated based on the previously described
test set. For this dataset, all features were included in the generation of the
perturbation. The features can also be seen in Figure 4.2. A figure showing
the complete parameter list can be seen in Appendix B.

Code and Implementation details | 53

Figure 4.2: Included features for FGSM for Full Dataset

4.2.2.2 DoS adversarial

For theDoS adversarial dataset, only the test split of theDoS logwas used. The
main aim of these adversarial samples is to evade detection whilst still being
able to function as the original attacks. DoS attacks rely heavily on two factors:
a low message ID (e.g., a decimal ID of below 10) and a high transmission
rate (i.e., a low dTIME). Therefore, when generating the perturbations for the
DoS attacks, the dTIME is left out as a feature entirely, and the message ID is
capped at a maximum value of 7 by excluding all ID bits except for the final
three. This way, only the final 3 ID bits have a chance of being perturbed from
0 to 1, meaning that the maximum value for the ID is 7 when all 3 ID bits are
perturbed. The included features can be seen in Figure 4.3.

Figure 4.3: Included features for FGSM for DoS Dataset

4.2.2.3 Fuzzy adversarial

Similar to the DoS adversarial dataset, only the test split of the Fuzzy log was
used for the Fuzzy adversarial dataset. In Fuzzy attacks, themain goal is to find
combinations of message ID and data bits that result in unexpected behaviour.
Therefore, the perturbations will focus on these features and the DLC and
dTIME will be left out. The included features can be seen in Figure 4.4.

Figure 4.4: Included features for FGSM for Fuzzy Dataset

54 | Code and Implementation details

4.2.2.4 Malfunction adversarial

For theMalfuction adversarial dataset, the test split of theMalfunction log was
used for perturbation generation. One key aspect of the malfunction attacks
was that they targeted a specific message ID. Additionally, the messages were
sent at specific intervals and always used 8 data bytes. Therefore, the message
ID bits, the DLC and the dTIME were all excluded during perturbation
generation. The included features can also be seen in Figure 4.5

Figure 4.5: Included features for FGSM for Malfunction Dataset

Code and Implementation details | 55

4.2.3 SOTA-CNN datasets
The datasets that will be used will be different for the SOTA-CNN model in
comparison with the other models. This is since the model expects the data to
be in the form of frames. The psuedo-code for the frame generation function
can be seen in Algorithm 3 and Algorithm 4. Note that this is originally one
function, but it is split up to increase readability. The corresponding Python
code can be seen in Appendix A.

Algorithm 3 Frame Builder for the SOTA-CNN model data (Part 1)
Require: X,Y, nrAttacks
1: length = nr of frames that can be created from the dataset
2:
3: # setup required variables
4: X_frames = array of 0s of shape (length, 29, 29)
5: Y_frames = array of 0s of shape (length)
6:
7: # Setup Initial Frame
8: initial_frame = array of 0s of shape (29, 29)
9: attack_counter = 0.0
10: initial_label = 0.0
11: for i=0 to 28 do:
12: initial_frame[i] = bit ID of X[i]
13:
14: #add label values
15: attack_counter = attack_counter + Y[i]
16:
17: if attack_counter > nrAttacks then
18: initial_label = 1.0
19:
20: Save initial_frame in X_frames
21: Save initial_label in Y_frames

The frame builder creates frames by combining 29 consecutive message
IDs. Note that the original dataset used in this thesis has message IDs of 11
bits, so the other subsequent bits are padded with 0s. This does not remove
any information from the message IDs and it also does not add any other
information to the frames. The label of each frame is determined by the amount
of attack messages in the frame.

Since the previously described training and test set are balanced, the only
way to gain a balanced frame dataset is by setting the attack threshold to 14

56 | Code and Implementation details

Algorithm 4 Frame Builder for the SOTA-CNN model data (Part 2)
Require: X,Y, nrAttacks
22: # compute other frames based on initial frame
23: temp_frame = copy(initial_frame)
24: for each remaining row in X do
25: temp_label = 0.0
26: # remove first row and adjust attack counter accordingly
27: attack_counter = attack_counter - (label of first row)
28: temp_frame = temp_frame with first row deleted
29:
30: # add new row and adjust attack counter
31: attack_counter = attack_counter + (label of new row)
32: temp_frame = temp_frame with new row appended
33:
34: if attack_counter > nrAttacks then
35: temp_label = 1.0
36:
37: Save temp_frame in X_frames
38: Save temp_label in Y_frames
39: return X_frames, Y_frames

Code and Implementation details | 57

attacks. However, if the IDS only classifies frames as attacks if more than
half of the messages in the frame are attacks, various attack messages will be
missed in the future. Since certain attacks can be quite sparse. Preferably, if
5 messages in the frame are attacks, it should already be considered an attack.
But setting the threshold to 5 with the previously balanced datasets results in
a heavily biased frame dataset where most frames are considered attacks.

To solve this problem, the previously unused train and test split of the
Normal log is concatenated to the training and test dataset. These new datasets
are then fed to the frame builder, which results in a fairly balanced training and
test frame dataset. Where the training set has around 70,000 normal frames
and 80,000 attack frames. And the test set has 46,000 normal frames and
53,000 attack frames. Since the Full adversarial dataset is equal in distribution
to the test set, the same steps were executed to balance the Full frames dataset.

To create a similar balance for the DoS, Fuzzy and Malfunction dataset,
respectively 25,000, 15,000 and 12,000 samples of the test split of the Normal
log were added to the datasets. Once again creating frames with the attack
threshold set to 5 gives the following distributions. The DoS frames dataset
has around 25,000 normal frames and 26,000 attack frames. The Fuzzy
frames dataset has 15,000 normal frames, and 14,000 attack frames. And
the Malfunction frames dataset has 12,000 normal frames and 13,000 attack
frames.

4.2.4 SOTA-LSTM datasets
The datasets also have to be adapted for the SOTA-LSTM models. Firstly,
since one SOTA-LSTM model is trained per message ID, the datasets have to
be filtered based on those IDs. One issue was that there were only a limited
amount of message IDs that had a decent number of messages related to them.
In the Normal log, there were only 17 message IDs that had more than 5000
messages each. This will come into play later since the adversarial datasets
have to be re-balanced again.

From these 17 message IDs, the following 5 were randomly selected: 2,
305, 704, 809, 1088. For the training and testing datasets, all logs were used
and split 60-40. For each model, only the messages of the corresponding ID
were selected. Additionally, the SOTA-LSTM models only use the data bits
in the messages, so the other features were dropped.

As mentioned earlier, the SOTA-LSTM models consist of two parts. The
first part takes the data bits from the current input, and predicts the data bits
of the next input. So for the training of the models, the training and testing

58 | Code and Implementation details

set were transformed such that inputs and the labels consisted of the same
databits. However the labels were shifted one spot such that the first message
in the labels is the second message in the outputs.

After the models were trained, the loss on the training set was computed,
and the 99th percentile of the loss was set as the classification threshold.

For the adversarial datasets, in addition to the messages of the
chosen IDs all the attack messages were also included. Since the attack
messages outnumber the normal messages, the attack messages are randomly
undersampled. So for each adversarial dataset, first an input set was created.
Then a predicted output set was generated, which was identical to the input set
except that it was shifted by one place. Finally the labels of each message was
collected for the final classification.

4.3 Models
In this section, the different models and design decision will be discussed.
This includes the general architecture as well as what hyperparameters were
used.

4.3.1 BL-DNN
The first baseline model is a standard DNN, where the main focus was put on
preventing overfitting on the training data. The model consists of three dense
layers with 128, 64 and 2 neurons respectively. These layers are separated by a
normalization layer, which normalizes the intermediate outputs. Additionally,
the first two dense layer uses the ReLu activation function and applies the
L2 weight regularizar. The regularizer prevents the weights of the neurons
from getting too large of a magnitude. The final dense layer uses the softmax
activation function to perform the final classification.

All the weights of the model are initialized using TensorFlow’s default
initializer. This is the uniform glorot initializer, where the weights are drawn
from a uniform distribution whose limits are dependent on the number of
input and output connections. The model uses the Adam optimizer with a
learning_rate of 0.001 and has the Sparse Categorical Crossentropy as the loss
function.

Finally, the model is trained for 10 epochs. However, early stopping is
enabled which stops the training if the validation accuracy does not improve
for 2 epochs. A schematic image of the structure of the model can be seen in
Figure 4.6.

Code and Implementation details | 59

Figure 4.6: BL-DNN schematic

4.3.2 BL-Ensemble
As described in Chapter 3, the ensemble method consists of 5 different ML
techniques. The techniques and the parameter settings used, are as follows.

60 | Code and Implementation details

• Logistic Regression: This model has a maximum amount of iterations
of 1000 and uses the L2 norm to compute a penalty on the model
parameters. The other parameters are the default of the Sklearn package,
such as the lbfgs solver.

• Decision Tree Classifier: The maximum depth is set to 3. The
other parameters are left as default as defined in the Sklearn package.
Meaning the criterion used to determine the decision nodes is the Gini
impurity.

• Support Vector Classifier: The model uses a linear kernel. All the
other parameters are set to the default values defined by the Sklearn
package.

• K-Nearest Neighbor Classifier: The number of neighbors is set to 5.
The distance metric is set to Minkowski with a p value of 2, which is
equivalent to the Euclidean distance metric.

• Gaussian Naïve Bayes: All the parameters are left on their default
settings defined by the Sklearn package.

These 5 submodels are combined into a Voting Classifier, which uses hard
voting. This means that the label predictions of each submodel are collected,
and the majority vote becomes the final predicted label. A schematic overview
of the BL-Ensemble model can be seen in Figure 4.7.

Figure 4.7: BL-Ensemble schematic

Code and Implementation details | 61

4.3.3 SOTA-CNN
The SOTA-CNN model is the most intricate of the implemented models. It
consists of the following parts: a Stem block, a Inception-ResNet-A block,
a Reduction-A block, Inception-ResNet-B block, a Reduction-B block, an
Average Pool layer, a Dropout layer and a final dense softmax layer. A
schematic of this structure can be seen in Figure 4.8.

The Stem block can be seen in Figure 4.9. It consists of several
convolutional layers and a max pooling layer. Note that each convolutional
layer in the whole model is always followed by a batch normalization layer.

After the Stem block, the inputs enter the Inception-ResNet-A block,
which can be seen in Figure 4.10. This figure shows the several different
branches of the Inception-ResNet block. The different branches are fed to
later layers, where they are concatenated, fed to a convolutional layer and
finally combined with a shortcut connection as is the standard with residual
networks.

Next, the intermediate results go the the Reduction-A block, which can be
seen in Figure 4.11. This layer reduces the dimensionality of the results via
various convolutional and pooling layers.

Afterwards, the results are forwarded to the Inception-ResNet-B block,
shown in Figure 4.12. Similar to the Inception-ResNet-A block, it consists of
several branches which are then concatenated. Afterwards, the Reduction-B
block follows in Figure 4.13.

Finally, the intermediate results are fed to the last pooling, dropout and
dense layer. The model uses the Adam optimizer with a learning_rate of 0.001
and the sparse categorical crossentropy as the loss function. It is trained for 10
epochs, with the option of early stopping if the validation accuracy does not
improve for 3 epochs.

To show the difference in scale with the BL-DNN model, while the BL-
DNN model has around 18.000 trainable parameters, the SOTA-CNN model
has around 1.7million trainable parameters. Note that all images of the SOTA-
CNN architecture are licensed and sourced from [1]. Several images of the
implementation of this architecture can be found in Appendix C.

62 | Code and Implementation details

Figure 4.8: SOTA-CNN schematic

Code and Implementation details | 63

Figure 4.9: SOTA-CNN Stem block

64 | Code and Implementation details

Figure 4.10: SOTA-CNN Inception-ResNet-A block

Figure 4.11: SOTA-CNN Reduction-A block

Code and Implementation details | 65

Figure 4.12: SOTA-CNN Inception-ResNet-B block

Figure 4.13: SOTA-CNN Reduction-B block

66 | Code and Implementation details

4.3.4 SOTA-LSTM
As mentioned earlier, each SOTA-LSTM model is trained on messages of a
single ID. Each of the SOTA-LSTM models has the following architecture
and parameter settings. The models first have two dense layers with 128
neurons each and the hyperbolic tangent as activation function. These layers
are followed by two LSTM layers of 512 neurons each, which also use the
hyperbolic tangent as activation function. Afterwards, there is a final dense
layer with 64 neurons and the sigmoid activation function.

All the layers described before are alternated with a dropout layer with a
dropout rate of 0.2. All layer weights are initialized in the same way as the
BL-DNN model, using the uniform glorot initializer.

The models use the Adam optimizer with a learning_rate of 0.001 and the
binary crossentropy as the loss function. The model is trained for 10 epochs,
but early stopping is implemented if the validation loss does not improve for
3 epochs. A schematic overview of the structure of the model can be seen in
Figure 4.14.

After each model is trained on their attack free training sets, the resulting
model is again ran on the training set. The losses of all training samples are
collected, and the 99th percentile of the losses is determined. This value is
then set as the threshold which will be used for future classification. During
testing, if a predicted sample acquires a loss higher than the threshold, it is
classified as an attack.

Code and Implementation details | 67

Figure 4.14: SOTA-LSTM schematic

68 | Code and Implementation details

Results and Analysis | 69

Chapter 5

Results and Analysis

This chapter will show all the results which were retrieved from the previously
described tests. This chapter is divided in two sections. The first section covers
the results regarding the performance of the models. And the second section
will focus on the analysis of the perturbations themselves.

5.1 Model performance
For each model, the previously defined performance metrics will be shown.
These performancemetrics will be grouped per dataset, showing the difference
between the adversarial and the original versions.

5.1.1 BL-DNN
5.1.1.1 Full dataset

Firstly, Figure 5.1 shows heatmaps of the confusion matrix of the BL-DNN
model on the Full adversarial dataset (right), and the non perturbed version
(left). In the heatmaps, each field is labeled with True Negative, False
Negative, True Positive or False Positive. Additionally, the number of sample
that belong to these groups is shown. Finally, the color of the heatmap also
visualizes the number of samples in each group. The darker the color, the
higher the number of samples.

70 | Results and Analysis

(a) Non adversarial (b) Adversarial

Figure 5.1: BL-DNN performance on Full dataset with and without
perturbations

The accompanying metrics can be seen in Table 5.1. From these results,
it can be seen that all attack messages are classified as normal messages after
adding the perturbations. This results in the accuracy dropping from 0.9985 to
0.5002 The precision, recall and f1-score all drop to 0, since there are no longer
any True Positive samples. This means that in all formulas the numerator is
set to 0, hence a final value of 0.

Accuracy Precision Recall f1-score
Non-adversarial 1.0 1.0 1.0 1.0
Adversarial 0.5002 0.0 0.0 0.0

Table 5.1: BL-DNN Performance on Full dataset

5.1.1.2 DoS dataset

The figure and table below contain the metrics of the performance of the BL-
DNN model on the DoS dataset. Similar to the Full dataset, nearly all attacks
are misclassified once the perturbations are added. This results in a significant
drop of accuracy, recall and f1-score.

Results and Analysis | 71

(a) Non adversarial (b) Adversarial

Figure 5.2: BL-DNN performance on DoS dataset with and without
perturbations

Accuracy Precision Recall f1-score
Non-adversarial 1.0 1.0 1.0 1.0
Adversarial 0.4989 1.0 0.0001 0.0003

Table 5.2: BL-DNN Performance on DoS dataset

5.1.1.3 Fuzzy dataset

In the Fuzzy dataset case, around 70% of the adversarial samples is
misclassified. Once again causing a drop in accuracy, recall and f1-score.

(a) Non adversarial (b) Adversarial

Figure 5.3: BL-DNN performance on Fuzzy dataset with and without
perturbations

72 | Results and Analysis

Accuracy Precision Recall f1-score
Non-adversarial 0.9946 1.0 09894 0.9946
Adversarial 0.6351 1.0 0.2721 0.4279

Table 5.3: BL-DNN Performance on Fuzzy dataset

5.1.1.4 Malfunction dataset

Finally, the adversarial samples in theMalfunction dataset are all misclassified.
Meaning that the final precision, recall and f1-score are all 0.

(a) Non adversarial (b) Adversarial

Figure 5.4: BL-DNN performance on Malfunction dataset with and without
perturbations

Accuracy Precision Recall f1-score
Non-adversarial 0.9999 0.9998 1.0 0.9999
Adversarial 0.5049 0.0 0.0 0.0

Table 5.4: BL-DNN Performance on Malfunction dataset

5.1.2 BL-Ensemble
The results below show the performance of the BL-Ensemble model on the
adversarial datasets. Note that since the adversarial samples were generated on
the BL-DNNmodel, any change in performance is caused by the transferability
of the adversarial samples.

Results and Analysis | 73

5.1.2.1 Full dataset

In the full adversarial dataset, 20% of the adversarial samples is misclassified.
While this is significantly lower percentage than on the BL-DNNmodel, 1 out
of 5 attacks is still able to evade the IDS.

(a) Non adversarial (b) Adversarial

Figure 5.5: BL-Ensemble performance on Full dataset with and without
perturbations

Accuracy Precision Recall f1-score
Non-adversarial 0.9957 0.9995 0.9918 0.9956
Adversarial 0.9098 0.9994 0.8199 0.9008

Table 5.5: BL-Ensemble Performance on Full dataset

5.1.2.2 DoS dataset

In contrast to the Full adversarial dataset, nearly all adversarial samples in the
DoS dataset are misclassified as can be seen in Figure 5.6.

74 | Results and Analysis

(a) Non adversarial (b) Adversarial

Figure 5.6: BL-Ensemble performance on DoS dataset with and without
perturbations

Accuracy Precision Recall f1-score
Non-adversarial 0.9999 0.9998 1.0 0.9999
Adversarial 0.4988 0.5 0.0001 0.0003

Table 5.6: BL-Ensemble Performance on DoS dataset

5.1.2.3 Fuzzy dataset

The misclassification percentage of the Fuzzy adversarial samples is around
20%, which is similar to the Full dataset.

(a) Non adversarial (b) Adversarial

Figure 5.7: BL-Ensemble performance on Fuzzy dataset with and without
perturbations

Results and Analysis | 75

Accuracy Precision Recall f1-score
Non-adversarial 0.9848 0.9995 0.9702 0.9847
Adversarial 0.8852 0.9994 0.7714 0.8707

Table 5.7: BL-Ensemble Performance on Fuzzy dataset

5.1.2.4 Malfunction dataset

In Figure 5.8 it is visible that nearly none of the adversarial samples causes a
misclassification in the BL-Ensemble model.

(a) Non adversarial (b) Adversarial

Figure 5.8: BL-Ensemble performance on Malfunction dataset with and
without perturbations

Accuracy Precision Recall f1-score
Non-adversarial 0.9994 0.9988 1.0 0.9994
Adversarial 0.9960 0.9988 0.9932 0.9960

Table 5.8: BL-Ensemble Performance on Malfunction dataset

5.1.3 SOTA-CNN
This section will focus on the performance of the SOTA-CNN model. Note
that the inputs of the SOTA-CNN only use the message IDs, so if no
perturbations are added to the ID, the samples will be equal for the SOTA-
CNN model.

76 | Results and Analysis

5.1.3.1 Full dataset

As can be seen in Figure 5.9 more than half of the adversarial samples
generated on the BL-DNN are able to evade the SOTA-CNN model.

(a) Non adversarial (b) Adversarial

Figure 5.9: SOTA-CNN performance on Full dataset with and without
perturbations

Accuracy Precision Recall f1-score
Non-adversarial 0.9942 0.9936 0.9955 0.9946
Adversarial 0.6736 0.9842 0.3925 0.5612

Table 5.9: SOTA-CNN Performance on Full dataset

5.1.3.2 DoS dataset

When generating the adversarial samples for the DoS attacks, the message ID
was limited to a maximum value of 7. Specifically, only the final 3 bits of
the message ID were included in the perturbation generation. Even under this
restriction, most of the adversarial samples are misclassified by the SOTA-
CNN model.

Results and Analysis | 77

(a) Non adversarial (b) Adversarial

Figure 5.10: SOTA-CNN performance on DoS dataset with and without
perturbations

Accuracy Precision Recall f1-score
Non-adversarial 0.9951 0.9946 0.9958 0.9952
Adversarial 0.6129 0.9789 0.2452 0.3921

Table 5.10: SOTA-CNN Performance on DoS dataset

5.1.3.3 Fuzzy dataset

The SOTA-CNN model misclassifies around 60% of the adversarial Fuzzy
samples. This results in a drop of the recall from 0.9928 to 0.3507.

(a) Non adversarial (b) Adversarial

Figure 5.11: SOTA-CNN performance on Fuzzy dataset with and without
perturbations

78 | Results and Analysis

Accuracy Precision Recall f1-score
Non-adversarial 0.9940 0.9951 0.9928 0.9939
Adversarial 0.6786 0.9869 0.3507 0.5175

Table 5.11: SOTA-CNN Performance on Fuzzy dataset

5.1.3.4 Malfunction dataset

In the Malfunction dataset, there is no difference between the dataset with or
without the adversarial samples. The reason behind this is that the message ID
was not perturbed during the adversarial sample generation. This means that
all perturbations occur in features that are not relevant to the SOTA-CNN.

(a) Non adversarial (b) Adversarial

Figure 5.12: SOTA-CNN performance on Malfunction dataset with and
without perturbations

Accuracy Precision Recall f1-score
Non-adversarial 0.9959 0.9952 0.9968 0.9960
Adversarial 0.9959 0.9952 0.9968 0.9960

Table 5.12: SOTA-CNN Performance on Malfunction dataset

5.1.4 SOTA-LSTM
Since there are several SOTA-LSTM models, the decision was made to show
the confusion matrices of only one of the models. Whilst the other metrics will
be computed by averaging the metrics of each model. The confusion matrices
are all from the SOTA-LSTM corresponding to message ID 305.

Results and Analysis | 79

5.1.4.1 Full dataset

It can be seen from both Figure 5.13 and Table 5.13 that the adversarial samples
have no influence on the models. The average metrics remain the same, and
so do the two confusion matrices.

(a) Non adversarial (b) Adversarial

Figure 5.13: SOTA-LSTM performance on Full dataset with and without
perturbations

Accuracy Precision Recall f1-score
Non-adversarial 0.9491 0.9925 0.9043 0.9341
Adversarial 0.9491 0.9925 0.9044 0.9342

Table 5.13: SOTA-LSTM Performance on Full dataset

5.1.4.2 DoS dataset

While there are no differences between the two confusion matrices, all the
performancemetrics increase in the presence of the adversarial samples. Since
these are average metrics, this indicates that on average, the SOTA-LSTM
models are better at detecting the adversarial samples than the original attack
messages.

80 | Results and Analysis

(a) Non adversarial (b) Adversarial

Figure 5.14: SOTA-LSTM performance on DoS dataset with and without
perturbations

Accuracy Precision Recall f1-score
Non-adversarial 0.8980 0.7977 0.8 0.7988
Adversarial 0.9980 0.9961 1.0 0.9980

Table 5.14: SOTA-LSTM Performance on DoS dataset

5.1.4.3 Fuzzy dataset

Similarly to the Full dataset, there are no noticeable differences regarding
the performance of the SOTA-LSTM models with or without the adversarial
samples.

(a) Non adversarial (b) Adversarial

Figure 5.15: SOTA-LSTM performance on Fuzzy dataset with and without
perturbations

Results and Analysis | 81

Accuracy Precision Recall f1-score
Non-adversarial 0.9979 0.9960 1.0 0.9979
Adversarial 0.9979 0.9960 1.0 0.9979

Table 5.15: SOTA-LSTM Performance on Fuzzy dataset

5.1.4.4 Malfunction dataset

Finally, just as with the Full and Fuzzy datasets, there are no changes in the
performance metrics.

(a) Non adversarial (b) Adversarial

Figure 5.16: SOTA-LSTM performance on Malfunction dataset with and
without perturbations

Accuracy Precision Recall f1-score
Non-adversarial 0.9965 0.9931 1.0 0.9965
Adversarial 0.9965 0.9931 1.0 0.9965

Table 5.16: SOTA-LSTM Performance on Malfunction dataset

5.1.5 Performance Analysis
The drop in f1-score for each of the models on each dataset, has been plotted
as a bar chart in Figure 5.17. Note that since the drop in f1-score is plotted,
the larger the bar, the worse the model performed on the adversarial samples.

82 | Results and Analysis

Figure 5.17: Bar plot of f1-score drop

That the adversarial samples can generate misclassifications is very clear
to see in the performance metrics of the BL-DNN model. However, since
the samples were generated on this model, this is only to be expected. These
adversarial samples have also shown to be transferable from the BL-DNN
model to other models. Especially the DoS adversarial samples caused many
misclassifications in both the BL-Ensemble and the SOTA-CNN model, as
can be seen from the large DoS bars in Figure 5.17.

However, not all models were equally vulnerable to the adversarial
samples. The SOTA-LSTM models showed no loss in performance when
confronted with the adversarial samples. In the presence of the presence of
the DoS adversarial samples, the performance of the models even increased,
denoted by a negative bar in Figure 5.17. The current hypothesis for this is
that the attack method is not optimized for recurrent networks. This will be
expaneded upon in Chapter 6.

Results and Analysis | 83

5.2 Perturbation Analysis
In this section, a close look wil be taken into the exact perturbations that
caused the misclassifications. First, the number of iterations and the size of
the perturbations will be reviewed. Afterwards, the specific features that were
perturbed will be highlighted.

5.2.1 Iterations and Size
Let’s first look at the statistics of the perturbation size and the number of
iterations for the Full dataset. The statistics contain the following metrics.
First the count, which signals the number of data points used for the statistics.
Next the mean and std, which state the mean value and the standard deviation
of the data. Additionally, the min and max values are included, which state
the minimum and maximum values found in the data. Finally, 25%, 50% and
75% denote the 25th, 50th and 75th percentile of the data respectively.

Perturbation Size Iterations
count 26591 26591
mean 4.212 4.582
std 3.891 4.033
min 0.0 0.0
25% 2.0 2.0
50% 2.011 3.0
75% 4.002 5.0
max 35.327 36.0

Table 5.17: Statistics of perturbation size and iterations for Full dataset

The table shows that the majority of the adversarial samples were
computed within 5 iterations, with an average perturbation size of around 4.
There was at least one outlier that required 36 iterations to converge, but there
were no samples that failed to find an adversarial perturbation. Otherwise,
the maximum of the iterations would have been 50 (as it was defined in the
parameters during generation of the samples).

Next, in Table 5.18, the statistics of the iterations and perturbation size with
and without the failed samples can be seen. It can be seen that the majority of
the samples is generated in 2 iterations with and matching perturbation size of
2. However, there are two samples that fail to reach a successful perturbation

84 | Results and Analysis

in 50 iterations. Since the maximum perturbation size is quite low at 4, it
can be deduced that these samples most likely reached a loop where a certain
feature was continuously increased and then decreased again. Thus failing to
converge.

Perturbation Size Iterations
count 12998 12998
mean 2.0 2.007
std 0.024 0.595
min 2.0 2.0
25% 2.0 2.0
50% 2.0 2.0
75% 2.0 2.0
max 4.0 50.0

(a) DoS perturbation statistics with
failed samples

Perturbation Size Iterations
count 12996 12996
mean 2.0 2.0
std 0.0 0.0
min 2.0 2.0
25% 2.0 2.0
50% 2.0 2.0
75% 2.0 2.0
max 2.0 2.0

(b) DoS perturbation statistics without
failed samples

Table 5.18: DoS perturbation statistics with and without failed samples

For the Fuzzy dataset, Table 5.19 also shows the relevant statistics with and
without the failed samples. The average perturbation size is around 16 within
19 iterations. Additionally, there were nearly 2000 samples which failed to
converge within 50 iterations. By removing these samples from the statistics,
the new average perturbation size lies around 8 within 8 iterations. Note that
the maximum perturbation size still reaches 48, meaning that the majority of
the features has been perturbed.

Perturbation Size Iterations
count 7267 7267
mean 15.867 19.697
std 13.344 19.070
min 0.0 0.0
25% 6.0 6.0
50% 10.0 10.0
75% 30.0 50.0
max 50.0 50.0

(a) Fuzzy perturbation statistics with
failed samples

Perturbation Size Iterations
count 5289 5289
mean 8.355 8.364
std 5.216 5.269
min 0.0 0.0
25% 5.0 5.0
50% 7.0 7.0
75% 11.0 11.0
max 48.0 49.0

(b) Fuzzy perturbation statistics with-
out failed samples

Table 5.19: Fuzzy perturbation statistics with and without failed samples

Results and Analysis | 85

Finally, for the Malfunction dataset, the statistics are shown in Table 5.20.
It can be seen that all the samples reach the succesfull perturbation in 4
iterations with a perturbation size of 4.

Perturbation Size Iterations
count 6326 6326
mean 4.0 4.0
std 0.0 0.0
min 4.0 4.0
25% 4.0 4.0
50% 4.0 4.0
75% 4.0 4.0
max 4.0 4.0

Table 5.20: Malfunction perturbation statistics

So for all datasets, if the adversarial sample converges, they do so in a
relatively small number of iterations. The majority of the samples was able to
reach their goal within 8 iterations. This shows that the changes do not have
to be large to cause a misclassification.

5.2.2 Feature Analysis
Now, a closer look will be taken to what features played the largest role in
the perturbations. Figure 5.18 shows a heatmap where for each adversarial
dataset, the importance of each input feature is shown.

In the heatmap various interesting patterns are visible. Firstly, for both the
Full and the Fuzzy dataset, the spread of the features is the widest. However,
the Full dataset seems to put a larger priority on several message ID bits.

In contrast to the Full and Fuzzy dataset, both the DoS and theMalfunction
dataset only perturb a limited number of features. For the DoS dataset, only
two features ever get perturbed. These features are the 10th message ID bit
and the 4th data bit. The Malfunction dataset seems to only perturb a set of 7
features. The most perturbed being the 4th data bit.

In general, the lower message ID bits seem quite influential in the
perturbations. This could signal that the models highly depend on these bits,
especially when you look at the performance of the DoS datast. The 4th data
bit additionally plays a large role both in the DoS and the Malfunction dataset.
Finally, there seems to be a small hotspot around the first four bits of the 7th

86 | Results and Analysis

data byte. These bits are more relevant for the Full and Fuzzy datasets. Doing
further feature analysis is outside the scope of the thesis, so currently no reason
can be provided as to why these features are more relevant.

Results and Analysis | 87

Fi
gu
re
5.
18
:H

ea
tm
ap

of
th
e
pe
rtu

rb
at
io
n
fe
at
ur
es

88 | Results and Analysis

Discussion | 89

Chapter 6

Discussion

The original research question of the thesis was two-fold. What are the
weaknesses of DL techniques that are present in DL-based IDSs for CAN?
Can these weaknesses influence the performance of the IDSs? From the results
it can be seen that the adversarial samples caused a decrease in f1-score of
on average 89% on the BL-DNN, 30% on the BL-Ensemble and 38% on the
SOTA-CNN model. The drop in performance between the datasets without
and with the perturbations can be used to determine the weakness against
perturbations for the different models. Additionally, since the perturbations
were generated on only the BL-DNNmodel, the performance drop on the other
models can show the presence of the transferability weakness in the models.

Since the SOTA-CNN model solely looks at the message ID bits, not all
parts of the perturbation are of significance for this model. This means that
the performance of the SOTA-CNN could potentially be further degraded by
generating the various adversarial datasets purely on the message ID bits.
Additionally, the experiments are set up to show the transferability of the
adversarial samples. This means that these samples are not generated on and
optimized for the BL-Ensemble and SOTA-CNNmodels. The performance of
these models could be further degraded by generating the adversarial samples
directly on them.

Regarding the SOTA-LSTM model, none of the adversarial samples
influenced the performance of the models in a negative way. The most likely
reason for this lies in the nature of RNNs and LSTMs. While other forms
of neural networks learn information and correlations within single inputs,
these recurrent networks additionally learn correlations between inputs. The
FGSM generates perturbations to alter the information within an input, but
this does not change the correlations between messages. Therefore there is

90 | Discussion

still enough information present in the correlations for the SOTA-LSTM to
correctly classify the adversarial samples. To further research the resilience
of these types of models, the attack method has to be adapted to handle
several consecutive messages. This will allow the attack method to alter the
correlations between the messages as well.

Finally, while the important features for the perturbations could be
identified and visualized, no reason behind why these features are important
was found. This is mainly since doing further feature analysis was outside
of the scope of the thesis. This means that no analysis was done to retrieve
information that was not immediately visible. For example, the encoding
that vehicle manufacturers use are company secrets. This means that it is
unknown what the data bytes translate to, so no further information can
be gained from this. Additionally, what message IDs correspond to what
ECUs/vehicle functions is another company secret. Although the importance
of these features may lie in their decoded meaning, it is impossible to research
without the decoding information or extensive testing on a physical vehicle.

Conclusions and Future work | 91

Chapter 7

Conclusions and Future work

This final chapter will wrap up the thesis by providing my insights into the
results and the process of the project. First, the conclusions following the
results will be given as well as their implications. Next, the limitations of
the results and the thesis as a whole will be given. This is to provide further
context to the results and conclusions. After this, several suggestions are
given for potential future work. These suggestions will range from overcoming
the previously described limitations to other work building upon the current
findings. The final section provides my reflections on the results and thesis.

7.1 Conclusions
The aim of this thesis was to investigate the resilience of DL-based IDSs for
automotive networks. Specifically the resilience against adversarial samples
resulting from small perturbations. Additionally, the transferability of these
perturbations were explored.

The results show that the adversarial samples have a large impact on the
BL-DNN model. The recall and f1-score on all datasets drop by at least
57% and for most datasets the drop is more than 90%. Since the adversarial
samples were generated on the BL-DNN model, this does not yet show the
transferability.

The Full, DoS and Fuzzy datasets were all able to influence the
performance of the BL-Ensemble model and even the SOTA-CNN model.
The f1-score on the SOTA-CNN model decreased by at most 60%. Thus
showing the vulnerability of the state-of-the-art model to perturbations, and
the transferability of these perturbations. However, the perturbations were
not transferable to all models. The SOTA-LSTM models remained mainly

92 | Conclusions and Future work

unaffected. In the presence of the DoS adversarial samples, the performance
of the SOTA-LSTM models even increased. This shows that the combination
of model architecture and attack type might even counteract the transferability
of the perturbations.

To conclude, DL techniques are vulnerable to adversarial samples created
using small perturbations. This weakness is also present in certain state-of-the-
art DL-based IDSs for vehicle networks. Additionally, these perturbations can
be generated on one model and then transferred to another model. This opens
the possibility of an attacker creating their own model to generate attacks on.
After which these attacks can be transferred to their desired target model. It is
therefore imperative that this vulnerability is taken into account by researchers
when creating future IDSs.

7.2 Limitations
The first limitation is that of the results of the SOTA-LSTM models. As
shown in the results, these models are unaffected by the perturbations that
were generated. A hypothesis was provided as to why this could be the
case, however this hypothesis remains untested. So without further research,
the conclusion regarding the resilience of the SOTA-LSTM model towards
perturbations is still preliminary.

Another one of the main limitations is that the results are limited to
only two state-of-the-art IDSs. There have been many more research papers
that presented their own DL-based IDSs using different and sometimes more
advanced techniques. However, time constraints and the complexity of some
of these models prevented me re-creating more models. So the results are
limited to the models presented in the thesis.

Additionally, when creating the adversarial datasets, the attack messages
were altered in such away that they had the highest chance to still be functional.
However, since no physical test-bed was available, be it in the form of several
ECUs or an actual vehicle, there was no way to actually test whether the
adversarial attack messages are still functional or not.

Finally, all the adversarial samples were generated using the FGSM.
However, there are various other methods which are also capable of computing
adversarial samples. These methods include the Jacobian Saliency-map
Attack and DeepFool amongst others. It would have been interesting to see the
differences between the adversarial samples generated by the various methods.
This was left for future research due to time constraints.

Conclusions and Future work | 93

7.3 Future work
The future work can be divided into two general sections. First, the future
work that covers the limitations of the current thesis. Second, the future work
that builds upon the results from this thesis

7.3.1 Fixing limitations
As mentioned in the previous section, the current thesis project is still quite
limited in various aspect. This obviously opens the path for future research to
focus on these limitations

7.3.1.1 Adapting to recurrent models

As shown in the results, the perturbations were unable to negatively affect
the recurrent networks, i.e. the SOTA-LSTM models. Future research could
improve on these results by adapting the FGSM to additionally perturb the
information in a sequence of messages instead of only in a single message.
This would allow for further testing whether the recurrent networks are
resilient against perturbations in general, or just the perturbations generated
on individual messages.

7.3.1.2 Other IDS models

Currently, there are only four models which are tested, of which only two are
state-of-the-art. Future research could include other models such as CANnolo
[58] and CANIntelliIDS [63]. CANnolo works quite similarly to the RNN
model used in this thesis, where an LSTM-based model is used to re-create
a message, and based on the reconstruction error a classification is made.
However, while the model in the thesis reconstructs the next message based
on the input, CANnolo reconstructs the input message using and autoencoder
with LSTM layers.

CANIntelliIDS uses a combination of CNN and RNN type layers. This
allows it to focus on the flow of the data in the messages without having to
create a separate LSTM model per message ID. Additionally, they use Gated
Recurrent Units (GRU) for their RNN layers in combination with the attention
mechanism. This is a mechanism that was introduced for natural language
processing, which allows a model to give additional contextual meaning to
the different inputs. This means that the model is capable of gaining more
information from the location of the inputs with respect to other inputs.

94 | Conclusions and Future work

These are just some of examples of other DL-based IDSs for CAN, and
there are many more. Each of these have their own unique qualities which
may or may not help them to overcome adversarial samples.

7.3.1.3 Other attack methods

This thesis focused solely on the Fast Gradient-Sign method to generate the
adversarial samples. However, there are many other methods that use different
approaches to achieve the same goal. For example, the Jacobian-based
Saliency Map Attack [29] and DeepFool [30]. Future research can investigate
whether the different methods have different effects regarding performance
and transferability on DL-based IDSs for CAN.

7.3.1.4 Different test environments

One of the main intentions of this thesis during the creation of the adversarial
samples is to make sure that the attacks still have the highest chance of being
functional. In the current test environment, there was no way to actually
confirm this, reducing the weight of the results. This could be solved by
performing similar tests on either a prototype test-bed or preferably on an
actual vehicle. This would allow the researchers to confirm that not only the
attacks would avoid the IDS but would also still have the expected effect on
the vehicle itself.

7.3.2 Future research
The following step after showing the presence of the weaknesses is to solve
these weaknesses. Future research could focus on know techniques such as
distillation for defense or re-training on adversarial datasets. Different model
architectures could also result in a better resilience against adversarial samples.
Generally speaking, autoencoder networks or DBNs have a higher tolerance
to small errors, which could make them a good choice to incorporate in the
new models. An architecture that combines the physical and digital features
of the CAN messages and ECUs could also improve current performance.
This model could potentially detect more intricate attacks as well as determine
the sender of these attacks. This combination of features could increase the
resilience against adversarial samples.

Conclusions and Future work | 95

7.4 Reflections
As with any thesis, it is important to reflect on what impact the work has
on various aspects of society. These aspects are generally economic, social,
environmental and ethical. This section will cover the economic, social and
ethical consequences of the thesis. The environmental aspect will not be
reviewed, since this project has no direct influence on this aspect.

For the economical aspect, the influence will be visible mainly for vehicle
manufacturers. By improving on the weaknesses shown in this thesis, they can
make their vehicles more secure against future attackers. This in turn allows
them to prevent possible ransom demands from attackers or damage claims
from potential victims. The owners of the vehicles are not able to directly
apply the findings of this thesis themselves, but they still might encounter
the economic influence. If the security of a vehicle is improved by the
manufacturers, the chance of damages or even theft of the vehicle will be
lowered. This will be economically beneficial for the vehicle owners.

The social aspect of this thesis relies mainly on improving the safety of
modern vehicles. Now that the weaknesses in the DL-based IDSs are known,
they can be overcome. By detecting evasion attempts on the systems, actions
can be taken to prevent the attackers from gaining control of the system. This
will make the systems within the vehicles more secure, and thus a higher
degree of safety can be guaranteed for the drivers, passengers and other road
users or pedestrians.

Finally, the ethical aspect of this thesis revolves around the implications of
revealing the presence of these weaknesses. On the one hand, revealing these
weaknesses is a very important step. If they are not revealed, and are instead
discovered and exploited by attackers in secret, the consequences could be
dire. By revealing them publicly, awareness for these issues can be raised,
thus increasing the research to overcome these weaknesses.

On the other hand, by revealing these weaknesses publicly, potential
attackers will also be notified. This could lead them to exploit these
weaknesses using similar methods described in the thesis. This however is
quite unlikely. As mentioned previously, in order for an attacker to send
messages on the CAN bus and evade the IDS, they first have to get access
to this system. This in itself is already not an easy task. Next, every vehicle
manufacturer treats their security measures as company secrets. What type
of IDS are used is unknown, and the same holds for what features they use
or how they are implemented. The likelihood that current vehicle security
systems depend on DL techniques is low due to several factors such as the

96 | Conclusions and Future work

novelty of the technology.
Overall, the advantages outweigh the disadvantages regarding the

revelation of these weaknesses. The goal of this thesis is to stimulate future
researchers to improve on the DL models and thus increase the security of the
vehicles.

References | 97

References

[1] H. M. Song, J. Woo, and H. K. Kim, “In-vehicle network
intrusion detection using deep convolutional neural network,”
Vehicular Communications, vol. 21, p. 100198, 2020. doi:
https://doi.org/10.1016/j.vehcom.2019.100198. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2214209619302451
[Pages i, 27, 39, 43, and 61.]

[2] R. N. Charette, “This car runs on code,” IEEE spectrum, vol. 46, no. 3,
p. 3, 2009. [Online]. Available: https://spectrum.ieee.org/this-car-runs-
on-code [Page 1.]

[3] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno,
“Comprehensive experimental analyses of automotive attack surfaces,”
20th USENIX Security Symposium (USENIX Security 11), 2011. doi:
10.1109/TCCN.2018.2835460. [Online]. Available: https://www.usen
ix.org/legacy/event/sec11/tech/full_papers/Checkoway.pdf [Pages 1
and 11.]

[4] Bosch, “Can specification 2.0,” 1991. [Online]. Available: www.can-ci
a.de/fileadmin/cia/specifications/can20a.pdf [Pages 1 and 8.]

[5] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage,
“Experimental security analysis of a modern automobile,” in 2010 IEEE
Symposium on Security and Privacy, 2010. doi: 10.1109/SP.2010.34 pp.
447–462. [Online]. Available: https://ieeexplore.ieee.org/abstract/doc
ument/5504804?casa_token=4s1pq125b20AAAAA:EO5fuqkSTnsJYe
qB17yRq25gKkljd6mh6Q8_yrlg6a97q5jqCLeGgA6dOlmlWqEK-YO
ofZdf [Pages 1, 10, and 38.]

https://www.sciencedirect.com/science/article/pii/S2214209619302451
https://spectrum.ieee.org/this-car-runs-on-code
https://spectrum.ieee.org/this-car-runs-on-code
https://www.usenix.org/legacy/event/sec11/tech/full_papers/Checkoway.pdf
https://www.usenix.org/legacy/event/sec11/tech/full_papers/Checkoway.pdf
www.can-cia.de/fileadmin/cia/specifications/can20a.pdf
www.can-cia.de/fileadmin/cia/specifications/can20a.pdf
https://ieeexplore.ieee.org/abstract/document/5504804?casa_token=4s1pq125b20AAAAA:EO5fuqkSTnsJYeqB17yRq25gKkljd6mh6Q8_yrlg6a97q5jqCLeGgA6dOlmlWqEK-YOofZdf
https://ieeexplore.ieee.org/abstract/document/5504804?casa_token=4s1pq125b20AAAAA:EO5fuqkSTnsJYeqB17yRq25gKkljd6mh6Q8_yrlg6a97q5jqCLeGgA6dOlmlWqEK-YOofZdf
https://ieeexplore.ieee.org/abstract/document/5504804?casa_token=4s1pq125b20AAAAA:EO5fuqkSTnsJYeqB17yRq25gKkljd6mh6Q8_yrlg6a97q5jqCLeGgA6dOlmlWqEK-YOofZdf
https://ieeexplore.ieee.org/abstract/document/5504804?casa_token=4s1pq125b20AAAAA:EO5fuqkSTnsJYeqB17yRq25gKkljd6mh6Q8_yrlg6a97q5jqCLeGgA6dOlmlWqEK-YOofZdf

98 | References

[6] D. K. Nilsson, U. E. Larson, and E. Jonsson, “Efficient in-vehicle
delayed data authentication based on compound message authentication
codes,” in 2008 IEEE 68th Vehicular Technology Conference, 2008.
doi: 10.1109/VETECF.2008.259 pp. 1–5. [Online]. Available: https:
//ieeexplore.ieee.org/abstract/document/4657091?casa_token=XMYkj
_64TY4AAAAA:myUT5LA_oyANi6JkmnEN1rHS6qlJ5G_zfopYuF
PnEKXAQGN7gXUXsQOsHkFK6Gt7PiC7eOUt [Pages 1 and 11.]

[7] M. Wolf, A. Weimerskirch, and T. Wollinger, “State of the art:
Embedding security in vehicles,” EURASIP Journal on Embedded
Systems, vol. 2007, pp. 1–16, 2007. [Online]. Available: https:
//link.springer.com/content/pdf/10.1155/2007/74706.pdf [Pages 2
and 11.]

[8] A. L. Buczak and E. Guven, “A survey of data mining and
machine learning methods for cyber security intrusion detection,”
IEEE Communications Surveys Tutorials, vol. 18, no. 2, pp. 1153–
1176, 2016. doi: 10.1109/COMST.2015.2494502. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/7307098 [Pages 2, 22,
and 23.]

[9] R. Chalapathy and S. Chawla, “Deep learning for anomaly detection:
A survey,” CoRR, vol. abs/1901.03407, 2019. [Online]. Available:
http://arxiv.org/abs/1901.03407 [Pages 2 and 21.]

[10] M. Wolf, A. Weimerskirch, and C. Paar, “Security in automotive bus
systems,” in Workshop on Embedded Security in Cars. Citeseer, 2004,
pp. 1–13. [Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/do
wnload?doi=10.1.1.92.728&rep=rep1&type=pdf [Pages 7, 8, and 11.]

[11] N. Weiss, “Automotive-specific documentation.” [Online]. Available:
https://scapy.readthedocs.io/en/latest/layers/automotive.html [Pages vii
and 8.]

[12] D. K. Nilsson, P. H. Phung, and U. E. Larson, “Vehicle ecu
classification based on safety-security characteristics,” in IET Road
Transport Information and Control - RTIC 2008 and ITS United
Kingdom Members’ Conference, 2008. doi: 10.1049/ic.2008.0810 pp.
1–7. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/
4562233 [Page 10.]

https://ieeexplore.ieee.org/abstract/document/4657091?casa_token=XMYkj_64TY4AAAAA:myUT5LA_oyANi6JkmnEN1rHS6qlJ5G_zfopYuFPnEKXAQGN7gXUXsQOsHkFK6Gt7PiC7eOUt
https://ieeexplore.ieee.org/abstract/document/4657091?casa_token=XMYkj_64TY4AAAAA:myUT5LA_oyANi6JkmnEN1rHS6qlJ5G_zfopYuFPnEKXAQGN7gXUXsQOsHkFK6Gt7PiC7eOUt
https://ieeexplore.ieee.org/abstract/document/4657091?casa_token=XMYkj_64TY4AAAAA:myUT5LA_oyANi6JkmnEN1rHS6qlJ5G_zfopYuFPnEKXAQGN7gXUXsQOsHkFK6Gt7PiC7eOUt
https://ieeexplore.ieee.org/abstract/document/4657091?casa_token=XMYkj_64TY4AAAAA:myUT5LA_oyANi6JkmnEN1rHS6qlJ5G_zfopYuFPnEKXAQGN7gXUXsQOsHkFK6Gt7PiC7eOUt
https://link.springer.com/content/pdf/10.1155/2007/74706.pdf
https://link.springer.com/content/pdf/10.1155/2007/74706.pdf
https://ieeexplore.ieee.org/abstract/document/7307098
http://arxiv.org/abs/1901.03407
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.728&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.728&rep=rep1&type=pdf
https://scapy.readthedocs.io/en/latest/layers/automotive.html
https://ieeexplore.ieee.org/abstract/document/4562233
https://ieeexplore.ieee.org/abstract/document/4562233

References | 99

[13] T. Hoppe, S. Kiltz, and J. Dittmann, “Security threats to
automotive can networks – practical examples and selected short-
term countermeasures,” Reliability Engineering System Safety, vol. 96,
no. 1, pp. 11–25, 2011. doi: https://doi.org/10.1016/j.ress.2010.06.026.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0951832010001602 [Page 10.]

[14] U. E. Larson and D. K. Nilsson, “Securing vehicles against cyber
attacks,” in Proceedings of the 4th Annual Workshop on Cyber
Security and Information Intelligence Research: Developing Strategies
to Meet the Cyber Security and Information Intelligence Challenges
Ahead, ser. CSIIRW ’08. New York, NY, USA: Association for
Computing Machinery, 2008. doi: 10.1145/1413140.1413174. ISBN
9781605580982. [Online]. Available: https://doi.org/10.1145/1413140.
1413174 [Page 11.]

[15] U. E. Larson, D. K. Nilsson, and E. Jonsson, “An
approach to specification-based attack detection for in-vehicle
networks,” in 2008 IEEE Intelligent Vehicles Symposium, 2008.
doi: 10.1109/IVS.2008.4621263 pp. 220–225. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/4621263?casa_token=0
RP1BNl7l_IAAAAA:QDrTuq1VnaYHi8gIcJZ13cUDlLLD3vOeeNKo
LJWATIG5GAcO26RX3CirGzSb6hixw37IBZzZ [Page 11.]

[16] T. Hoppe, S. Kiltz, and J. Dittmann, “Applying intrusion detection
to automotive it-early insights and remaining challenges,” Journal of
Information Assurance and Security (JIAS), vol. 4, no. 6, pp. 226–235,
2009. [Online]. Available: https://www.researchgate.net/profile/Tobia
s-Hoppe-2/publication/285312982_Applying_intrusion_detection_to_a
utomotive_IT-early_insights_and_remaining_challenges/links/56f41b
9e08ae81582bf09f50/Applying-intrusion-detection-to-automotive-IT
-early-insights-and-remaining-challenges.pdf [Page 12.]

[17] D. G. Kleinbaum, K. Dietz, M. Gail, M. Klein, and M. Klein,
Logistic regression. Springer, 2002. [Online]. Available: https:
//link.springer.com/book/10.1007/978-1-4419-1742-3? [Page 12.]

[18] Y.-Y. Song and L. Ying, “Decision tree methods: applications for
classification and prediction,” Shanghai archives of psychiatry, vol. 27,
no. 2, p. 130, 2015. [Online]. Available: https://www.ncbi.nlm.nih.gov
/pmc/articles/PMC4466856/ [Page 13.]

https://www.sciencedirect.com/science/article/pii/S0951832010001602
https://www.sciencedirect.com/science/article/pii/S0951832010001602
https://doi.org/10.1145/1413140.1413174
https://doi.org/10.1145/1413140.1413174
https://ieeexplore.ieee.org/abstract/document/4621263?casa_token=0RP1BNl7l_IAAAAA:QDrTuq1VnaYHi8gIcJZ13cUDlLLD3vOeeNKoLJWATIG5GAcO26RX3CirGzSb6hixw37IBZzZ
https://ieeexplore.ieee.org/abstract/document/4621263?casa_token=0RP1BNl7l_IAAAAA:QDrTuq1VnaYHi8gIcJZ13cUDlLLD3vOeeNKoLJWATIG5GAcO26RX3CirGzSb6hixw37IBZzZ
https://ieeexplore.ieee.org/abstract/document/4621263?casa_token=0RP1BNl7l_IAAAAA:QDrTuq1VnaYHi8gIcJZ13cUDlLLD3vOeeNKoLJWATIG5GAcO26RX3CirGzSb6hixw37IBZzZ
https://www.researchgate.net/profile/Tobias-Hoppe-2/publication/285312982_Applying_intrusion_detection_to_automotive_IT-early_insights_and_remaining_challenges/links/56f41b9e08ae81582bf09f50/Applying-intrusion-detection-to-automotive-IT-early-insights-and-remaining-challenges.pdf
https://www.researchgate.net/profile/Tobias-Hoppe-2/publication/285312982_Applying_intrusion_detection_to_automotive_IT-early_insights_and_remaining_challenges/links/56f41b9e08ae81582bf09f50/Applying-intrusion-detection-to-automotive-IT-early-insights-and-remaining-challenges.pdf
https://www.researchgate.net/profile/Tobias-Hoppe-2/publication/285312982_Applying_intrusion_detection_to_automotive_IT-early_insights_and_remaining_challenges/links/56f41b9e08ae81582bf09f50/Applying-intrusion-detection-to-automotive-IT-early-insights-and-remaining-challenges.pdf
https://www.researchgate.net/profile/Tobias-Hoppe-2/publication/285312982_Applying_intrusion_detection_to_automotive_IT-early_insights_and_remaining_challenges/links/56f41b9e08ae81582bf09f50/Applying-intrusion-detection-to-automotive-IT-early-insights-and-remaining-challenges.pdf
https://www.researchgate.net/profile/Tobias-Hoppe-2/publication/285312982_Applying_intrusion_detection_to_automotive_IT-early_insights_and_remaining_challenges/links/56f41b9e08ae81582bf09f50/Applying-intrusion-detection-to-automotive-IT-early-insights-and-remaining-challenges.pdf
https://link.springer.com/book/10.1007/978-1-4419-1742-3?
https://link.springer.com/book/10.1007/978-1-4419-1742-3?
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466856/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466856/

100 | References

[19] S. Suthaharan, “Support vector machine,” in Machine learning models
and algorithms for big data classification. Springer, 2016, pp. 207–
235. [Online]. Available: https://link.springer.com/chapter/10.1007/97
8-1-4899-7641-3_9 [Page 13.]

[20] L. E. Peterson, “K-nearest neighbor,” Scholarpedia, vol. 4, no. 2, p.
1883, 2009. [Online]. Available: http://scholarpedia.org/article/K-neare
st_neighbor [Page 14.]

[21] K. P. Murphy et al., “Naive bayes classifiers,” University of British
Columbia, vol. 18, no. 60, pp. 1–8, 2006. [Online]. Available: https://ww
w.ic.unicamp.br/~rocha/teaching/2011s1/mc906/aulas/naive-bayes.pdf
[Page 14.]

[22] C. C. Aggarwal et al., “Neural networks and deep learning,”
Springer, vol. 10, pp. 978–3, 2018. [Online]. Available: https:
//link.springer.com/book/10.1007/978-3-319-94463-0?noAccess=true
[Page 14.]

[23] S. Sharma, S. Sharma, and A. Athaiya, “Activation functions in neural
networks,” towards data science, vol. 6, no. 12, pp. 310–316, 2017.
[Online]. Available: https://www.ijeast.com/papers/310-316,Tesma4
12,IJEAST.pdf [Page 14.]

[24] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a
convolutional neural network,” in 2017 international conference on
engineering and technology (ICET). Ieee, 2017, pp. 1–6. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/8308186
[Page 15.]

[25] Y. Yu, X. Si, C. Hu, and J. Zhang, “A review of recurrent
neural networks: Lstm cells and network architectures,” Neural
computation, vol. 31, no. 7, pp. 1235–1270, 2019. [Online]. Available:
https://direct.mit.edu/neco/article-abstract/31/7/1235/8500/A-Review
-of-Recurrent-Neural-Networks-LSTM-Cells [Page 15.]

[26] I. Corona, G. Giacinto, and F. Roli, “Adversarial attacks against
intrusion detection systems: Taxonomy, solutions and open
issues,” Information Sciences, vol. 239, pp. 201–225, 2013.
doi: https://doi.org/10.1016/j.ins.2013.03.022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0020025513002119
[Pages 16 and 29.]

https://link.springer.com/chapter/10.1007/978-1-4899-7641-3_9
https://link.springer.com/chapter/10.1007/978-1-4899-7641-3_9
http://scholarpedia.org/article/K-nearest_neighbor
http://scholarpedia.org/article/K-nearest_neighbor
https://www.ic.unicamp.br/~rocha/teaching/2011s1/mc906/aulas/naive-bayes.pdf
https://www.ic.unicamp.br/~rocha/teaching/2011s1/mc906/aulas/naive-bayes.pdf
https://link.springer.com/book/10.1007/978-3-319-94463-0?noAccess=true
https://link.springer.com/book/10.1007/978-3-319-94463-0?noAccess=true
https://www.ijeast.com/papers/310-316,Tesma412,IJEAST.pdf
https://www.ijeast.com/papers/310-316,Tesma412,IJEAST.pdf
https://ieeexplore.ieee.org/abstract/document/8308186
https://direct.mit.edu/neco/article-abstract/31/7/1235/8500/A-Review-of-Recurrent-Neural-Networks-LSTM-Cells
https://direct.mit.edu/neco/article-abstract/31/7/1235/8500/A-Review-of-Recurrent-Neural-Networks-LSTM-Cells
https://www.sciencedirect.com/science/article/pii/S0020025513002119

References | 101

[27] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” 2014.
[Online]. Available: https://arxiv.org/abs/1312.6199 [Pages 16, 17,
and 18.]

[28] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014. [Online].
Available: https://arxiv.org/abs/1412.6572 [Pages vii, 16, 17, and 41.]

[29] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,” in
2016 IEEE European Symposium on Security and Privacy (EuroS P),
2016. doi: 10.1109/EuroSP.2016.36 pp. 372–387. [Online]. Available:
https://ieeexplore.ieee.org/document/7467366 [Pages 17, 19, and 94.]

[30] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool:
a simple and accurate method to fool deep neural networks,”
in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 2574–2582. [Online]. Available: https:
//openaccess.thecvf.com/content_cvpr_2016/html/Moosavi-Dezfo
oli_DeepFool_A_Simple_CVPR_2016_paper.html [Pages 17, 19,
and 94.]

[31] G. Zizzo, C. Hankin, S. Maffeis, and K. Jones, “Invited: Adversarial
machine learning beyond the image domain,” in 2019 56th ACM/IEEE
Design Automation Conference (DAC), 2019, pp. 1–4. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/8806924
[Page 17.]

[32] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. D. McDaniel,
“Adversarial perturbations against deep neural networks for malware
classification,” CoRR, vol. abs/1606.04435, 2016. [Online]. Available:
http://arxiv.org/abs/1606.04435 [Pages 17 and 19.]

[33] N. Papernot, P. D. McDaniel, and I. J. Goodfellow, “Transferability
in machine learning: from phenomena to black-box attacks using
adversarial samples,” CoRR, vol. abs/1605.07277, 2016. [Online].
Available: http://arxiv.org/abs/1605.07277 [Pages 18 and 37.]

[34] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural networks,”
in 2016 IEEE Symposium on Security and Privacy (SP), 2016.

https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1412.6572
https://ieeexplore.ieee.org/document/7467366
https://openaccess.thecvf.com/content_cvpr_2016/html/Moosavi-Dezfooli_DeepFool_A_Simple_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/Moosavi-Dezfooli_DeepFool_A_Simple_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/Moosavi-Dezfooli_DeepFool_A_Simple_CVPR_2016_paper.html
https://ieeexplore.ieee.org/abstract/document/8806924
http://arxiv.org/abs/1606.04435
http://arxiv.org/abs/1605.07277

102 | References

doi: 10.1109/SP.2016.41 pp. 582–597. [Online]. Available: https:
//ieeexplore.ieee.org/abstract/document/7546524 [Pages 19 and 20.]

[35] N. Carlini and D. Wagner, “Towards evaluating the robustness of
neural networks,” in 2017 IEEE Symposium on Security and Privacy
(SP), 2017. doi: 10.1109/SP.2017.49 pp. 39–57. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/7958570 [Page 20.]

[36] K. Sethi, E. Sai Rupesh, R. Kumar, P. Bera, and Y. Venu Madhav,
“A context-aware robust intrusion detection system: a reinforcement
learning-based approach,” vol. 19, no. 6, 2020. doi: 10.1007/s10207-
019-00482-7. ISSN 1615-5270 pp. 657–678. [Online]. Available:
https://doi.org/10.1007/s10207-019-00482-7 [Page 20.]

[37] C. Aggarwal, Outlier Analysis. New York N.Y.: Springer, 2013. ISBN
978-1-4614-6395-5. [Online]. Available: https://doi.org/10.1007/978-
1-4614-6396-2 [Pages 20, 21, and 22.]

[38] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection:
A survey,” ACM Comput. Surv., vol. 41, no. 3, 2009. doi:
10.1145/1541880.1541882. [Online]. Available: https://doi.org/10
.1145/1541880.1541882 [Pages vii, 21, and 22.]

[39] L. R. Halme and R. K. Bauer, “Aint misbehaving–a taxonomy
of anti-intrusion techniques,” in 18th National Information Systems
Security Conference, 1995, p. 163. [Online]. Available: https:
//apps.dtic.mil/sti/pdfs/ADA302547.pdf#page=182 [Page 22.]

[40] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A deep learning approach
for network intrusion detection system,” Eai Endorsed Transactions on
Security and Safety, vol. 3, no. 9, p. e2, 2016. [Online]. Available:
http://eprints.eudl.eu/id/eprint/2057/ [Page 23.]

[41] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning
approach to network intrusion detection,” IEEE Transactions on
Emerging Topics in Computational Intelligence, vol. 2, no. 1, pp.
41–50, 2018. doi: 10.1109/TETCI.2017.2772792. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8264962?casa_token=o
wWjh5gFNo4AAAAA:1jppqqQJdOHlbkt_m66c80dF5rJ1OMTg5yIAI
wtURjVrz4uATqqCugwi1aqCvZVml_XgmqkB [Page 23.]

https://ieeexplore.ieee.org/abstract/document/7546524
https://ieeexplore.ieee.org/abstract/document/7546524
https://ieeexplore.ieee.org/abstract/document/7958570
https://doi.org/10.1007/s10207-019-00482-7
https://doi.org/10.1007/978-1-4614-6396-2
https://doi.org/10.1007/978-1-4614-6396-2
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://apps.dtic.mil/sti/pdfs/ADA302547.pdf##page=182
https://apps.dtic.mil/sti/pdfs/ADA302547.pdf##page=182
http://eprints.eudl.eu/id/eprint/2057/
https://ieeexplore.ieee.org/abstract/document/8264962?casa_token=owWjh5gFNo4AAAAA:1jppqqQJdOHlbkt_m66c80dF5rJ1OMTg5yIAIwtURjVrz4uATqqCugwi1aqCvZVml_XgmqkB
https://ieeexplore.ieee.org/abstract/document/8264962?casa_token=owWjh5gFNo4AAAAA:1jppqqQJdOHlbkt_m66c80dF5rJ1OMTg5yIAIwtURjVrz4uATqqCugwi1aqCvZVml_XgmqkB
https://ieeexplore.ieee.org/abstract/document/8264962?casa_token=owWjh5gFNo4AAAAA:1jppqqQJdOHlbkt_m66c80dF5rJ1OMTg5yIAIwtURjVrz4uATqqCugwi1aqCvZVml_XgmqkB

References | 103

[42] F. A. Khan, A. Gumaei, A. Derhab, and A. Hussain,
“A novel two-stage deep learning model for efficient network
intrusion detection,” IEEE Access, vol. 7, pp. 30 373–30 385,
2019. doi: 10.1109/ACCESS.2019.2899721. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8643036 [Page 23.]

[43] B. Dong and X. Wang, “Comparison deep learning method to traditional
methods using for network intrusion detection,” in 2016 8th IEEE
International Conference on Communication Software and Networks
(ICCSN), 2016. doi: 10.1109/ICCSN.2016.7586590 pp. 581–585.
[Online]. Available: https://ieeexplore.ieee.org/abstract/document/7586
590?casa_token=AtDB8v2PToUAAAAA:JA-iF3gJ_TLdxVcWKZmo
Yk5T2TUaFqhwEliutqrxNoyZkLvTHdmVBaOah1AjC6CbefPtMjkf
[Page 23.]

[44] O. Al-Jarrah, A. Siddiqui, M. Elsalamouny, P. Yoo, S. Muhaidat, and
K. Kim, “Machine-learning-based feature selection techniques for large-
scale network intrusion detection,” in 2014 IEEE 34th International
Conference on Distributed Computing Systems Workshops (ICDCSW),
2014. doi: 10.1109/ICDCSW.2014.14 pp. 177–181. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/6888858?casa_token=C
HoYH89uANYAAAAA:ccV0Msq-7sLU-8K6cJram3vDNhnUczqC-R
Jyin8GvYaYqsHEMGNraVLGwwwA9HjLs4ngc4RO [Page 23.]

[45] S. Otoum, B. Kantarci, and H. T. Mouftah, “On the
feasibility of deep learning in sensor network intrusion detection,”
IEEE Networking Letters, vol. 1, no. 2, pp. 68–71, 2019.
doi: 10.1109/LNET.2019.2901792. [Online]. Available: https:
//ieeexplore.ieee.org/abstract/document/8653348?casa_token=7wz
5UEDVIVAAAAAA:1x8FFdMhH022dMQ2q1yoCjnMgJ6PmUrcl8
3HjRCCeluR-XyXe47S3AtrSZtNTm8RiXaVFGtz [Page 23.]

[46] S. Raza, L. Wallgren, and T. Voigt, “Svelte: Real-time intrusion
detection in the internet of things,” Ad Hoc Networks, vol. 11, no. 8,
pp. 2661–2674, 2013. doi: https://doi.org/10.1016/j.adhoc.2013.04.014.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1570870513001005 [Page 23.]

[47] K. A. da Costa, J. P. Papa, C. O. Lisboa, R. Munoz, and V. H. C. de
Albuquerque, “Internet of things: A survey on machine learning-based

https://ieeexplore.ieee.org/abstract/document/8643036
https://ieeexplore.ieee.org/abstract/document/7586590?casa_token=AtDB8v2PToUAAAAA:JA-iF3gJ_TLdxVcWKZmoYk5T2TUaFqhwEliutqrxNoyZkLvTHdmVBaOah1AjC6CbefPtMjkf
https://ieeexplore.ieee.org/abstract/document/7586590?casa_token=AtDB8v2PToUAAAAA:JA-iF3gJ_TLdxVcWKZmoYk5T2TUaFqhwEliutqrxNoyZkLvTHdmVBaOah1AjC6CbefPtMjkf
https://ieeexplore.ieee.org/abstract/document/7586590?casa_token=AtDB8v2PToUAAAAA:JA-iF3gJ_TLdxVcWKZmoYk5T2TUaFqhwEliutqrxNoyZkLvTHdmVBaOah1AjC6CbefPtMjkf
https://ieeexplore.ieee.org/abstract/document/6888858?casa_token=CHoYH89uANYAAAAA:ccV0Msq-7sLU-8K6cJram3vDNhnUczqC-RJyin8GvYaYqsHEMGNraVLGwwwA9HjLs4ngc4RO
https://ieeexplore.ieee.org/abstract/document/6888858?casa_token=CHoYH89uANYAAAAA:ccV0Msq-7sLU-8K6cJram3vDNhnUczqC-RJyin8GvYaYqsHEMGNraVLGwwwA9HjLs4ngc4RO
https://ieeexplore.ieee.org/abstract/document/6888858?casa_token=CHoYH89uANYAAAAA:ccV0Msq-7sLU-8K6cJram3vDNhnUczqC-RJyin8GvYaYqsHEMGNraVLGwwwA9HjLs4ngc4RO
https://ieeexplore.ieee.org/abstract/document/8653348?casa_token=7wz5UEDVIVAAAAAA:1x8FFdMhH022dMQ2q1yoCjnMgJ6PmUrcl83HjRCCeluR-XyXe47S3AtrSZtNTm8RiXaVFGtz
https://ieeexplore.ieee.org/abstract/document/8653348?casa_token=7wz5UEDVIVAAAAAA:1x8FFdMhH022dMQ2q1yoCjnMgJ6PmUrcl83HjRCCeluR-XyXe47S3AtrSZtNTm8RiXaVFGtz
https://ieeexplore.ieee.org/abstract/document/8653348?casa_token=7wz5UEDVIVAAAAAA:1x8FFdMhH022dMQ2q1yoCjnMgJ6PmUrcl83HjRCCeluR-XyXe47S3AtrSZtNTm8RiXaVFGtz
https://ieeexplore.ieee.org/abstract/document/8653348?casa_token=7wz5UEDVIVAAAAAA:1x8FFdMhH022dMQ2q1yoCjnMgJ6PmUrcl83HjRCCeluR-XyXe47S3AtrSZtNTm8RiXaVFGtz
https://www.sciencedirect.com/science/article/pii/S1570870513001005
https://www.sciencedirect.com/science/article/pii/S1570870513001005

104 | References

intrusion detection approaches,” Computer Networks, vol. 151, pp. 147–
157, 2019. doi: https://doi.org/10.1016/j.comnet.2019.01.023. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S1389128
618308739 [Page 23.]

[48] S.-F. Lokman, A. T. Othman, andM.-H. Abu-Bakar, “Intrusion detection
system for automotive controller area network (can) bus system: a
review,” vol. 2019, no. 1, 2019. doi: 10.1186/s13638-019-1484-3. ISSN
1687-1499. [Online]. Available: https://doi.org/10.1186/s13638-019-1
484-3 [Page 24.]

[49] O. Y. Al-Jarrah, C. Maple, M. Dianati, D. Oxtoby, and
A. Mouzakitis, “Intrusion detection systems for intra-vehicle
networks: A review,” IEEE Access, vol. 7, pp. 21 266–21 289,
2019. doi: 10.1109/ACCESS.2019.2894183. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8642311 [Page 24.]

[50] S. C. Kalkan and O. K. Sahingoz, “In-vehicle intrusion
detection system on controller area network with machine learning
models,” in 2020 11th International Conference on Computing,
Communication and Networking Technologies (ICCCNT), 2020. doi:
10.1109/ICCCNT49239.2020.9225442 pp. 1–6. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9225442 [Page 24.]

[51] K.-T. Cho and K. G. Shin, “Fingerprinting electronic control units
for vehicle intrusion detection,” in 25th USENIX Security Symposium
(USENIX Security 16). Austin, TX: USENIX Association, Aug.
2016. ISBN 978-1-931971-32-4 pp. 911–927. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity16/technical-session
s/presentation/cho [Page 24.]

[52] W. Choi, K. Joo, H. J. Jo, M. C. Park, and D. H. Lee, “Voltageids: Low-
level communication characteristics for automotive intrusion detection
system,” IEEE Transactions on Information Forensics and Security,
vol. 13, no. 8, pp. 2114–2129, 2018. doi: 10.1109/TIFS.2018.2812149.
[Online]. Available: https://ieeexplore.ieee.org/abstract/document/8306
904 [Page 24.]

[53] K.-T. Cho and K. G. Shin, “Viden: Attacker identification on
in-vehicle networks,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS

https://www.sciencedirect.com/science/article/pii/S1389128618308739
https://www.sciencedirect.com/science/article/pii/S1389128618308739
https://doi.org/10.1186/s13638-019-1484-3
https://doi.org/10.1186/s13638-019-1484-3
https://ieeexplore.ieee.org/abstract/document/8642311
https://ieeexplore.ieee.org/abstract/document/9225442
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/cho
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/cho
https://ieeexplore.ieee.org/abstract/document/8306904
https://ieeexplore.ieee.org/abstract/document/8306904

References | 105

’17. New York, NY, USA: Association for Computing Machinery,
2017. doi: 10.1145/3133956.3134001. ISBN 9781450349468 p. 1109–
1123. [Online]. Available: https://doi.org/10.1145/3133956.3134001
[Page 24.]

[54] D. Stabili, M. Marchetti, and M. Colajanni, “Detecting
attacks to internal vehicle networks through hamming distance,”
in 2017 AEIT International Annual Conference, 2017. doi:
10.23919/AEIT.2017.8240550 pp. 1–6. [Online]. Available: https:
//ieeexplore.ieee.org/abstract/document/8240550?casa_token=-XW
hyKLucckAAAAA:LVAZCBMdxqNm79M0VKBYxT07r1cBJ3wG
KcHHofWzCF1aC2m7iZfd7OK-ulXU1RYv5YXuxnfv [Pages 25
and 26.]

[55] M.-J. Kang and J.-W. Kang, “Intrusion detection system using deep
neural network for in-vehicle network security,” in PLOS ONE,
2016. doi: 10.1371/journal.pone.0155781. [Online]. Available: https:
//journals.plos.org/plosone/article?id=10.1371/journal.pone.0155781
[Page 25.]

[56] A. Taylor, S. Leblanc, and N. Japkowicz, “Anomaly detection
in automobile control network data with long short-term memory
networks,” in 2016 IEEE International Conference on Data Science and
Advanced Analytics (DSAA), 2016. doi: 10.1109/DSAA.2016.20 pp.
130–139. [Online]. Available: https://ieeexplore.ieee.org/abstract/doc
ument/7796898?casa_token=VJxIJae2T1wAAAAA:i_bUg4rcLYAaT
f3oPqtloYhaiSjrUaiy4i71yDoczUv-JtO-a4Mx02p2smf-nJ3bjYWT__B
d [Pages 26, 40, and 43.]

[57] M. D. Hossain, H. Inoue, H. Ochiai, D. Fall, and Y. Kadobayashi,
“Lstm-based intrusion detection system for in-vehicle can bus
communications,” IEEE Access, vol. 8, pp. 185 489–185 502,
2020. doi: 10.1109/ACCESS.2020.3029307. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9216166 [Page 26.]

[58] S. Longari, D. H. Nova Valcarcel, M. Zago, M. Carminati, and
S. Zanero, “Cannolo: An anomaly detection system based on
lstm autoencoders for controller area network,” IEEE Transactions
on Network and Service Management, vol. 18, no. 2, pp. 1913–
1924, 2021. doi: 10.1109/TNSM.2020.3038991. [Online]. Available:

https://doi.org/10.1145/3133956.3134001
https://ieeexplore.ieee.org/abstract/document/8240550?casa_token=-XWhyKLucckAAAAA:LVAZCBMdxqNm79M0VKBYxT07r1cBJ3wGKcHHofWzCF1aC2m7iZfd7OK-ulXU1RYv5YXuxnfv
https://ieeexplore.ieee.org/abstract/document/8240550?casa_token=-XWhyKLucckAAAAA:LVAZCBMdxqNm79M0VKBYxT07r1cBJ3wGKcHHofWzCF1aC2m7iZfd7OK-ulXU1RYv5YXuxnfv
https://ieeexplore.ieee.org/abstract/document/8240550?casa_token=-XWhyKLucckAAAAA:LVAZCBMdxqNm79M0VKBYxT07r1cBJ3wGKcHHofWzCF1aC2m7iZfd7OK-ulXU1RYv5YXuxnfv
https://ieeexplore.ieee.org/abstract/document/8240550?casa_token=-XWhyKLucckAAAAA:LVAZCBMdxqNm79M0VKBYxT07r1cBJ3wGKcHHofWzCF1aC2m7iZfd7OK-ulXU1RYv5YXuxnfv
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0155781
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0155781
https://ieeexplore.ieee.org/abstract/document/7796898?casa_token=VJxIJae2T1wAAAAA:i_bUg4rcLYAaTf3oPqtloYhaiSjrUaiy4i71yDoczUv-JtO-a4Mx02p2smf-nJ3bjYWT__Bd
https://ieeexplore.ieee.org/abstract/document/7796898?casa_token=VJxIJae2T1wAAAAA:i_bUg4rcLYAaTf3oPqtloYhaiSjrUaiy4i71yDoczUv-JtO-a4Mx02p2smf-nJ3bjYWT__Bd
https://ieeexplore.ieee.org/abstract/document/7796898?casa_token=VJxIJae2T1wAAAAA:i_bUg4rcLYAaTf3oPqtloYhaiSjrUaiy4i71yDoczUv-JtO-a4Mx02p2smf-nJ3bjYWT__Bd
https://ieeexplore.ieee.org/abstract/document/7796898?casa_token=VJxIJae2T1wAAAAA:i_bUg4rcLYAaTf3oPqtloYhaiSjrUaiy4i71yDoczUv-JtO-a4Mx02p2smf-nJ3bjYWT__Bd
https://ieeexplore.ieee.org/abstract/document/9216166

106 | References

https://ieeexplore.ieee.org/abstract/document/9262960 [Pages 26
and 93.]

[59] A. Taylor, N. Japkowicz, and S. Leblanc, “Frequency-based
anomaly detection for the automotive can bus,” in 2015 World
Congress on Industrial Control Systems Security (WCICSS), 2015.
doi: 10.1109/WCICSS.2015.7420322 pp. 45–49. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/7420322?casa_token=Q
5hTTUzYLmgAAAAA:9kKYs0Pe_j3MOAxH3D9nPlUeYSTL5ay0
9Dxe4wtqlY5vDanJ44-pwWmttKmLuKySoRJsbqYQ [Page 27.]

[60] E. Seo, H. M. Song, and H. K. Kim, “Gids: Gan based
intrusion detection system for in-vehicle network,” in 2018 16th
Annual Conference on Privacy, Security and Trust (PST), 2018.
doi: 10.1109/PST.2018.8514157 pp. 1–6. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8514157?casa_token
=buuyBgoMA9sAAAAA:x0uE9_1Y7mEhr67-LdUHeOLZObNnvuU
QnJ41M1N4TdMAWbmL49qYiz1PrcHsc7YxsOjKmuhJ [Pages 27
and 34.]

[61] R. Islam, R. U. D. Refat, S. M. Yerram, and H. Malik, “Graph-
based intrusion detection system for controller area networks,” IEEE
Transactions on Intelligent Transportation Systems, vol. 23, no. 3,
pp. 1727–1736, 2022. doi: 10.1109/TITS.2020.3025685. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/9210546
[Page 27.]

[62] S. Tariq, S. Lee, and S. S. Woo, CANTransfer: Transfer Learning Based
Intrusion Detection on a Controller Area Network Using Convolutional
LSTM Network. New York, NY, USA: Association for Computing
Machinery, 2020, p. 1048–1055. ISBN 9781450368667. [Online].
Available: https://doi.org/10.1145/3341105.3373868 [Page 28.]

[63] A. R. Javed, S. u. Rehman, M. U. Khan, M. Alazab, and T. R. G,
“Canintelliids: Detecting in-vehicle intrusion attacks on a controller
area network using cnn and attention-based gru,” IEEE Transactions
on Network Science and Engineering, vol. 8, no. 2, pp. 1456–
1466, 2021. doi: 10.1109/TNSE.2021.3059881. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9359538 [Pages 28
and 93.]

https://ieeexplore.ieee.org/abstract/document/9262960
https://ieeexplore.ieee.org/abstract/document/7420322?casa_token=Q5hTTUzYLmgAAAAA:9kKYs0Pe_j3MOAxH3D9nPlUeYSTL5ay09Dxe4wtqlY5vDanJ44-pwWmttKmLuKySoRJsbqYQ
https://ieeexplore.ieee.org/abstract/document/7420322?casa_token=Q5hTTUzYLmgAAAAA:9kKYs0Pe_j3MOAxH3D9nPlUeYSTL5ay09Dxe4wtqlY5vDanJ44-pwWmttKmLuKySoRJsbqYQ
https://ieeexplore.ieee.org/abstract/document/7420322?casa_token=Q5hTTUzYLmgAAAAA:9kKYs0Pe_j3MOAxH3D9nPlUeYSTL5ay09Dxe4wtqlY5vDanJ44-pwWmttKmLuKySoRJsbqYQ
https://ieeexplore.ieee.org/abstract/document/8514157?casa_token=buuyBgoMA9sAAAAA:x0uE9_1Y7mEhr67-LdUHeOLZObNnvuUQnJ41M1N4TdMAWbmL49qYiz1PrcHsc7YxsOjKmuhJ
https://ieeexplore.ieee.org/abstract/document/8514157?casa_token=buuyBgoMA9sAAAAA:x0uE9_1Y7mEhr67-LdUHeOLZObNnvuUQnJ41M1N4TdMAWbmL49qYiz1PrcHsc7YxsOjKmuhJ
https://ieeexplore.ieee.org/abstract/document/8514157?casa_token=buuyBgoMA9sAAAAA:x0uE9_1Y7mEhr67-LdUHeOLZObNnvuUQnJ41M1N4TdMAWbmL49qYiz1PrcHsc7YxsOjKmuhJ
https://ieeexplore.ieee.org/abstract/document/9210546
https://doi.org/10.1145/3341105.3373868
https://ieeexplore.ieee.org/abstract/document/9359538

References | 107

[64] M. Hanselmann, T. Strauss, K. Dormann, and H. Ulmer, “Canet:
An unsupervised intrusion detection system for high dimensional
can bus data,” IEEE Access, vol. 8, pp. 58 194–58 205, 2020.
doi: 10.1109/ACCESS.2020.2982544. [Online]. Available: https:
//ieeexplore.ieee.org/abstract/document/9044377 [Page 28.]

[65] R. Bhatia, V. Kumar, K. Serag, Z. B. Celik, M. Payer, and
D. Xu, “Evading voltage-based intrusion detection on automotive
can,” in Network and Distributed System Security Symposium (NDSS),
2021. doi: 10.14722/ndss.2021.23013. [Online]. Available: https:
//beerkay.github.io/papers/Berkay2021DuetNDSS.pdf [Pages 29
and 30.]

[66] S. U. Sagong, X. Ying, A. Clark, L. Bushnell, and R. Poovendran,
“Cloaking the clock: Emulating clock skew in controller area networks,”
in 2018 ACM/IEEE 9th International Conference on Cyber-Physical
Systems (ICCPS), 2018. doi: 10.1109/ICCPS.2018.00012 pp. 32–42.
[Online]. Available: https://ieeexplore.ieee.org/abstract/document/8443
719 [Page 30.]

[67] M. A. Ayub, W. A. Johnson, D. A. Talbert, and A. Siraj, “Model
evasion attack on intrusion detection systems using adversarial machine
learning,” in 2020 54th Annual Conference on Information Sciences and
Systems (CISS), 2020. doi: 10.1109/CISS48834.2020.1570617116 pp.
1–6. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/
9086268 [Page 30.]

[68] Y. Li, J. Lin, and K. Xiong, “An adversarial attack defending
system for securing in-vehicle networks,” in 2021 IEEE 18th Annual
Consumer Communications Networking Conference (CCNC), 2021.
doi: 10.1109/CCNC49032.2021.9369569 pp. 1–6. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9369569 [Pages 30
and 31.]

[69] MIT Lincoln Lab, “Kdd cup 1999: Computer network intrusion
detection,” 1999. [Online]. Available: https://www.kdd.org/kdd-cup/vi
ew/kdd-cup-1999/Data [Page 34.]

[70] M. E. Verma, M. D. Iannacone, R. A. Bridges, S. C. Hollifield,
B. Kay, and F. L. Combs, “ROAD: the real ORNL automotive
dynamometer controller area network intrusion detection dataset (with

https://ieeexplore.ieee.org/abstract/document/9044377
https://ieeexplore.ieee.org/abstract/document/9044377
https://beerkay.github.io/papers/Berkay2021DuetNDSS.pdf
https://beerkay.github.io/papers/Berkay2021DuetNDSS.pdf
https://ieeexplore.ieee.org/abstract/document/8443719
https://ieeexplore.ieee.org/abstract/document/8443719
https://ieeexplore.ieee.org/abstract/document/9086268
https://ieeexplore.ieee.org/abstract/document/9086268
https://ieeexplore.ieee.org/abstract/document/9369569
https://www.kdd.org/kdd-cup/view/kdd-cup-1999/Data
https://www.kdd.org/kdd-cup/view/kdd-cup-1999/Data

108 | References

a comprehensive CAN IDS dataset survey & guide),” CoRR, vol.
abs/2012.14600, 2020. [Online]. Available: https://arxiv.org/abs/2012.1
4600 [Page 34.]

[71] G. Dupont, J. Den Hartog, S. Etalle, and A. Lekidis, “Evaluation
framework for network intrusion detection systems for in-vehicle can,”
in 2019 IEEE International Conference on Connected Vehicles and
Expo (ICCVE), 2019. doi: 10.1109/ICCVE45908.2019.8965028 pp.
1–6. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/
8965028 [Page 34.]

[72] H. Lee, S. H. Jeong, and H. K. Kim, “Otids: A novel intrusion
detection system for in-vehicle network by using remote frame,” in
2017 15th Annual Conference on Privacy, Security and Trust (PST),
2017. doi: 10.1109/PST.2017.00017 pp. 57–5709. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8476919 [Page 34.]

[73] M. L. Han, B. I. Kwak, and H. K. Kim, “Anomaly intrusion
detection method for vehicular networks based on survival
analysis,” Vehicular Communications, vol. 14, pp. 52–63, 2018.
doi: https://doi.org/10.1016/j.vehcom.2018.09.004. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2214209618301189
[Page 34.]

[74] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“Smote: synthetic minority over-sampling technique,” Journal of
artificial intelligence research, vol. 16, pp. 321–357, 2002. doi:
https://doi.org/10.1613/jair.953. [Online]. Available: https://www.jair.o
rg/index.php/jair/article/view/10302 [Page 36.]

[75] W. Jiang, H. Li, S. Liu, X. Luo, and R. Lu, “Poisoning and evasion
attacks against deep learning algorithms in autonomous vehicles,” IEEE
Transactions on Vehicular Technology, vol. 69, no. 4, pp. 4439–
4449, 2020. doi: 10.1109/TVT.2020.2977378. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9019666 [Pages 37
and 38.]

[76] G. Apruzzese, M. Andreolini, L. Ferretti, M. Marchetti, and
M. Colajanni, “Modeling realistic adversarial attacks against network
intrusion detection systems,” CoRR, vol. abs/2106.09380, 2021.
[Online]. Available: https://arxiv.org/abs/2106.09380 [Pages 37
and 38.]

https://arxiv.org/abs/2012.14600
https://arxiv.org/abs/2012.14600
https://ieeexplore.ieee.org/abstract/document/8965028
https://ieeexplore.ieee.org/abstract/document/8965028
https://ieeexplore.ieee.org/abstract/document/8476919
https://www.sciencedirect.com/science/article/pii/S2214209618301189
https://www.jair.org/index.php/jair/article/view/10302
https://www.jair.org/index.php/jair/article/view/10302
https://ieeexplore.ieee.org/abstract/document/9019666
https://arxiv.org/abs/2106.09380

References | 109

[77] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Thirty-first AAAI conference on artificial intelligence, 2017. [Online].
Available: https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/v
iewPaper/14806 [Page 39.]

[78] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2015. [Online]. Available:
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/S
zegedy_Going_Deeper_With_2015_CVPR_paper.html [Page 40.]

[79] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016. [Online]. Available:
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Res
idual_Learning_CVPR_2016_paper.html [Page 40.]

[80] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples
in the physical world,” in Artificial intelligence safety and security.
Chapman and Hall/CRC, 2018, pp. 99–112. [Online]. Available:
https://www.taylorfrancis.com/chapters/edit/10.1201/9781351251389-
8/adversarial-examples-physical-world-alexey-kurakin-ian-goodfello
w-samy-bengio [Page 49.]

https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/viewPaper/14806
https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/viewPaper/14806
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://www.taylorfrancis.com/chapters/edit/10.1201/9781351251389-8/adversarial-examples-physical-world-alexey-kurakin-ian-goodfellow-samy-bengio
https://www.taylorfrancis.com/chapters/edit/10.1201/9781351251389-8/adversarial-examples-physical-world-alexey-kurakin-ian-goodfellow-samy-bengio
https://www.taylorfrancis.com/chapters/edit/10.1201/9781351251389-8/adversarial-examples-physical-world-alexey-kurakin-ian-goodfellow-samy-bengio

110 | References

Appendix A: Code | 111

112 | Appendix A: Code

Appendix A

Code

A.1 Fast Gradient Sign Method

Algorithm 5 Fast Gradient Sign Method Python
Require: model_fn, x, eps, norm, features, loss_fn, clip_min, clip_max, y
1: # Compute the gradient of the loss_fn on model_fn w.r.t. x
2: grad = compute_gradient(model_fn, loss_fn, x, y)
3:
4: # Limit gradient to chosen features
5: limit_grad = features * grad
6:
7: # Test additional limitation for features that have hit
8: # max or min value and will be updated again
9: # This stops infinitely updating a single value
10: # (especially when using 1-norm)
11: limitations = np.ones(len(features))
12: for i=0 in range(len(limit_grad)) do
13: if (x[i] >= clip_max[i]) and (limit_grad[i] > 0) then
14: limitations[i] = 0
15: else if (x[i] <= clip_min) and (limit_grad[i] < 0) then
16: limitations[i] = 0
17:
18: limit_grad = limit_grad * limitations
19:
20: # Compute perturbation based on gradient, epsilon and the desired norm
21: optimal_perturbation = optimize_linear(limit_grad, eps, norm)
22:
23: # Add perturbation to original sample
24: adv_x = x + optimal_perturbation
25:
26: # Clip values of adversarial sample to max and min values
27: adv_x = clip_by_value(adv_x, clip_min, clip_max)
28: return adv_x

Appendix A: Code | 113

Algorithm 6 FGSM Loop Python
Require: model_fn, x, eps, norm, features, loss_fn, clip_min, clip_max, y,

max_iter
1: # Setup necessary variables
2: iteration = 0
3: adv_x = x
4: x_label = model_fn.predict(adv_x)
5:
6: # Set placeholder for rounded version of adversarial sample
7: x_round = adv_x
8: x_round_label = x_label
9:
10: # Loop till either adversarial sample is successful or
11: # maximum number of iterations is reached
12: while x_round_label != y and iteration < max_iter do
13: #compute adversarial sample
14: adv_x = FGSM(model_fn, adv_x, eps, norm, features, loss_fn,

clip_min, clip_max, y)
15:
16: # compute new label
17: x_label = model_fn.predict(adv_x)
18:
19: # if sample misclassifies, round values and check again
20: if label of adv_x == y then
21: # round all values
22: x_round = round(adv_x)
23: # reset dTIME to non-rounded value
24: x_round[0][12] = adv_x[0][12]
25: x_round_label = model_fn.predict(x_round)
26:
27: # Update iteration counter
28: iteration = iteration + 1;
29:
30: # Add check if maximum iterations reached
31: if iteration == max_iter then
32: # update to latest sample
33: x_round = round(adv_x)
34: return x_round, iteration

114 | Appendix A: Code

A.2 SOTA-CNN Frame Builder

Algorithm 7 Frame Builder for the SOTA-CNN model data Python (Part 1)
Require: X,Y, nrAttacks
1: length = len(X)-28
2:
3: # setup required variables
4: X_frames = np.zeros((length, 29, 29))
5: Y_frames = np.zeros(length)
6:
7: # Setup Initial Frame
8: initial_frame = np.zeros((29, 29))
9: attack_counter = 0.0
10: initial_label = 0.0
11: for i=0 in range(29) do:
12: initial_frame[i][0:11] = X[i][0:11]
13:
14: #add label values
15: attack_counter = attack_counter + Y[i]
16:
17: if attack_counter > nrAttacks then
18: initial_label = 1.0
19:
20: X_frames[0][:][:] = initial_frame
21: Y_frames[0] = initial_label

Appendix A: Code | 115

Algorithm 8 Frame Builder for the SOTA-CNN model data Python (Part 2)
Require: X,Y, nrAttacks
22: # compute other frames based on initial frame
23: temp_frame = np.copy(initial_frame)
24: for i in range(29, len(X)) do
25: temp_label = 0.0
26: # remove first row and adjust attack counter accordingly
27: attack_counter = attack_counter - Y[i-28]
28: temp_frame = np.delete(temp_frame , 0, axis=0)
29:
30: # add new row and adjust attack counter
31: attack_counter = attack_counter + Y[i]
32: new_row = np.zeros(29)
33: new_row[0:11] = X[i][0:11]
34: temp_frame = np.append(temp_frame, [new_row], axis = 0)
35:
36: #check if attacks in frame succeeds threshold
37: if attack_counter > nrAttacks then
38: temp_label = 1.0
39:
40: X_frames[i-28][:][:] = temp_frame
41: Y_frames[i-28] = temp_label
42: return X_frames, Y_frames

116 | Appendix B: Dataset Parameters

Appendix B: Dataset Parameters | 117

Appendix B

Dataset Parameters

B.1 Full dataset

Figure B.1: All parameters for FGSM for Full Dataset

118 | Appendix B: Dataset Parameters

B.2 DoS dataset

Figure B.2: All parameters for FGSM for DoS Dataset

Appendix B: Dataset Parameters | 119

B.3 Fuzzy dataset

Figure B.3: All parameters for FGSM for Fuzzy Dataset

120 | Appendix B: Dataset Parameters

B.4 Malfunction dataset

Figure B.4: All parameters for FGSM for Malfunction Dataset

Appendix C: CNN Implementation | 121

Appendix C

CNN Implementation

In the figures below, parts of the python implementation of the SOTA-
CNN model can be seen. The parts include the Stem, Inception-ResNet-A,
Inception-ResNet-B, Reduction-A, Reduction-B and the final layers. Note
that the implementation for the Inception blocks is split up, where Figure C.2
and Figure C.3 show the branches of respectively the Inception-ResNet-A
and Inception-ResNet-B blocks. Figure C.4 shows the implementation of the
concatenation layers of both blocks.

Figure C.1: SOTA-CNN Stem implementation

122 | Appendix C: CNN Implementation

Figure C.2: SOTA-CNN Inception-ResNet-A implementation

Figure C.3: SOTA-CNN Inception-ResNet-B implementation

Appendix C: CNN Implementation | 123

Figure C.4: SOTA-CNN Inception-ResNet concat layers implementation

Figure C.5: SOTA-CNN Reduction-A implementation

124 | Appendix C: CNN Implementation

Figure C.6: SOTA-CNN Reduction-B implementation

Figure C.7: SOTA-CNN final layers implementation

	Aalto_cover_v2 (4)
	Abstract

	KTH_Thesis_Ivo_Zenden_Shortened PDFA_2B
	Introduction
	Background
	Problem
	Original problem and definition

	Purpose
	Goals
	Research Methodology
	Ethical aspects
	Delimitations
	Structure of the thesis

	Background
	Vehicle Specification and Security
	CAN specification
	Vehicle and CAN weaknesses
	Vehicle security

	Machine Learning and Deep Learning
	Machine Learning techniques
	Logistic Regression
	Decision Tree
	Support Vector Machine
	K-Nearest Neighbors
	Naïve Bayes

	Deep Learning techniques
	Neural Network
	Convolutional Neural Network
	Recurrent Neural Network

	Weaknesses
	Perturbations
	Transferability

	Defenses

	Anomaly and Intrusion Detection
	Anomaly Detection
	Intrusion Detection
	Network Intrusion Detection Systems

	Related work
	Intrusion Detection Systems for Vehicle Networks
	Hardware Features
	Software Features

	Attacks on Intrusion Detection Systems
	Poisoning
	Evasion

	Summary

	Methods
	Research Process
	Data Collection
	Survival dataset characteristics
	Preprocessing

	Experimental design
	Attacker Model
	Attacker's knowledge
	Attacker's capabilities
	Attack scenario

	Test environment
	Machine Learning Models
	Attack method

	Hardware/Software to be used

	Validity of the methods
	Planned Data Analysis
	Performance Analysis Technique
	Perturbation Analysis Technique

	Evaluation framework

	Code and Implementation details
	Fast Gradient-Sign Method
	Datasets
	Training and Testing
	Adversarial datasets
	Full adversarial
	DoS adversarial
	Fuzzy adversarial
	Malfunction adversarial

	SOTA-CNN datasets
	SOTA-LSTM datasets

	Models
	BL-DNN
	BL-Ensemble
	SOTA-CNN
	SOTA-LSTM

	Results and Analysis
	Model performance
	BL-DNN
	Full dataset
	DoS dataset
	Fuzzy dataset
	Malfunction dataset

	BL-Ensemble
	Full dataset
	DoS dataset
	Fuzzy dataset
	Malfunction dataset

	SOTA-CNN
	Full dataset
	DoS dataset
	Fuzzy dataset
	Malfunction dataset

	SOTA-LSTM
	Full dataset
	DoS dataset
	Fuzzy dataset
	Malfunction dataset

	Performance Analysis

	Perturbation Analysis
	Iterations and Size
	Feature Analysis

	Discussion
	Conclusions and Future work
	Conclusions
	Limitations
	Future work
	Fixing limitations
	Adapting to recurrent models
	Other IDS models
	Other attack methods
	Different test environments

	Future research

	Reflections

	References
	Code
	Fast Gradient Sign Method
	SOTA-CNN Frame Builder

	Dataset Parameters
	Full dataset
	DoS dataset
	Fuzzy dataset
	Malfunction dataset

	CNN Implementation

