
Aalto University

School of Electrical Engineering

Master’s Programme in ICT Innovation - EIT Digital Master School

Giuseppe Superbo

HardMulti-Tenancy Kubernetes approaches
in a local 5G deployment:

Testing and evaluation of the available solu-
tions

Master’s Thesis
Espoo, July 22, 2022

Supervisors: Professor Fabrizio Granelli, University of Trento
Professor Jukka Manner, Aalto University

Advisor: M.Sc. (Tech.) Jan Zizka

Aalto University
School of Electrical Engineering
Master’s Programme in ICT Innovation - EIT Digital Master
School

ABSTRACT OF
MASTER’S THESIS

Author: Giuseppe Superbo

Title:
Hard Multi-Tenancy Kubernetes approaches in a local 5G deployment: Testing
and evaluation of the available solutions

Date: July 22, 2022 Pages: 94

Major: Cloud and Network Infrastructures Code: ELEC3059

Supervisors: Professor Fabrizio Granelli
Professor Jukka Manner

Advisor: M.Sc. (Tech.) Jan Zizka

With its capabilities, the fifth mobile network generation (5G) provides new op-
portunities and applications, which were not possible to exploit previously. In
addition to novel technologies, also infrastructure management has been influ-
enced by 5G. Micro-Operator business model was identified by University of
Oulu and Nokia Oulu in 2017. They observed that TelCo stakeholders actors
are no longer based only on a small group of Mobile Network Operators, but
new actors are becoming relevant. Specifically, Micro-Operators are involved in
the deployment of scalable services within local 5G deployments. In most cases,
micro-operators deploy their containerized application by exploiting Kubernetes
Orchestrator capabilities. At the same time, they share a pool of resources, which
usually are provided by the infrastructure owner. Since current standards require
strict data privacy and security mechanisms, hard multi-tenancy should be en-
forced in the design phase. Many solutions are available within the Kubernetes
environment. Thus, it would be interesting to analyse how each approach affects
network performance, which are very critical metrics in 5G requirements. In the
context of this thesis, test and evaluation strategy consisted of deploying a set
of applications with every identified hard multi-tenancy approach. The choice of
the applications was based on the 5G application classes: extreme multi broad-
band, massive scale communication, ultra-reliable low latency communication.
Once the deployment configurations were defined, data of specific critical appli-
cation network performance metrics was collected for each of the approaches. By
looking at the retrieved data, it is possible to observe that network performance
is mainly affected by the application protocol and the corresponding transport
protocol. Nevertheless, it is not possible to perform design choices only by look-
ing at network performance. In conclusion, further investigation on other design
characteristics may be required.

Keywords: 5G, Kubernetes, Multi-Tenancy, Small Cells, Micro-
Operators, Edge Computing, Containerazation

Language: English

2

Acknowledgements

The development of this thesis would not have been possible without the
support that I received during these months. First of all, I would like to
thank my supervisors, Professor Jukka Manner, from Aalto University, and
Professor Fabrizio Granelli, from University of Trento, for all the precious
support and feedback received. They helped me to increase the quality of
this thesis and provided very important technical suggestions during our
meetings. I am really thankful to Nokia Oy, specifically to Markku Niiranen
for giving me the opportunity to join the fantastic ECP Team and to my
advisor Jan Zizka for all the technical support received during the testing
activity. I am infinitely grateful to my mum and my dad that have been my
first supporters since the first day of my life. They taught me how to behave
correctly in this wild world but most importantly they always tought me to
see only the positive side on everything. Hard work and respect have been
always two main concepts that they shared with me. Thanks to them I am
the person that I am today. My aunt, my grandmother and my grandfather
that always shared with me their wisdom and love. All my relatives that
believed in me and have always supported me with their love. My soul mate,
Marta, who has never stopped to raise my mood whenever I was sad or
anxious, who has never stopped to believe in me even if I annoyed her with
my unsecurity but most importantly I know that I can always count on her
love. Her parents Enzo and Giulia have always supported and helped me
since the first day I met them. Thanks to my dear friends Elton, Gianluca,
Marica, Liliana, Alessandro, Fabrizio, Giuseppe. Last but not least, I would
like to thank all my university and Nokia mates for all the unforgettable
moments.

Espoo, July 22, 2022

Giuseppe Superbo

3

Abbreviations and Acronyms

3GPP 3rd Generation Partnership Project
5G NR 5G New Radio
5GPPP 5G Infrastructure Public Private Partnership
µO Micro Operator
API Application programming interface
AR Augmented reality
Cgroups Control groups
C-RAN Cloud-based Radio access network
CAPI Cluster API
CAPN Cluster API Provider Nested
CESC Cloud Enabled Small Cell
CNCF Cloud Native Computing Foundation
CNI Container Network Interface
CRD Custom resource definition
CUPS Control and User Plane Separation
D2D Device-to-Device communication
DRF Dominant Resource Fairness
eMBB Enhanced mobile broadband
EMS Entity Management System
ETSI European Telecommunications Standards Institute
FR Frequency Range
GSMA Global System for Mobile Communications Associa-

tion
GPL GNU General Public Licence
HNC Hierarchical Namespaces Controller
ICE Interactive Connectivty Establishment
IoT Internet of Things
K8s Kubernetes
LXC Linux Container Runtime
MBS Macrocell base stations

4

MCPTT Mission Critical Push-To-Talk
M2M Machine-to-Machine communication
MEC Multi-access edge computing
MFC Multi-access fog computing
MIMO Multiple Input Multiple Output
mMTC Massive machine type communications
MNO Mobile Network Operator
MQTT Message Queue Telemetry Transport
Multi-RAT Multi Radio Access Technologies
NFV Network Function Virtualization
NFVO Network Virtual Function Orchestrator
NUC Next Unit of Computing
QoE Quality of experience
QoS Quality of service
RBAC Role-based access control
RTT Round-trip time
SBS Small cell base stations
SCaaS Small-Cell-as-a-Service
SDMA Spatial division multiple access
SDN Software Defined Networking
SON Self-Organizing Networks
STUN Session Traversal Utilities for NAT protocol
UDN Ultra dense network
URLLC Ultra reliable low latency communications
VANET Vehicles ad Hoc Networks
VM Virtual machine
VMM Virtual machine monitor
VNF Virtual Network Function
VR Virtual reality
WWW World Wide Web
XaaS Everything-as-a-Service

5

Contents

Abbreviations and Acronyms 4

1 Introduction 8
1.1 Problem statement . 10
1.2 Testing and evaluation activity 10
1.3 Related works . 11
1.4 Structure of the Thesis . 12

2 5G trends and use cases 13
2.1 5G Architecture and requirements 13
2.2 Micro-Operators business model 18
2.3 Cloud, Multi-access Edge and Fog Computing 20
2.4 5G-Essence Project . 23

2.4.1 Architecture description 24
2.4.2 Example of service deployment in a Cloud-Enabled

Small Cell . 26
2.5 Summary . 27

3 Virtualisation and containerisation 29
3.1 Evolution of virtualisation . 30
3.2 Lightweight virtualisation . 33

3.2.1 Namespaces and CGroups 33
3.2.2 Linux Containers and Docker 35

3.3 Kubernetes . 37
3.3.1 Architecture . 38
3.3.2 Use cases . 42

3.4 Summary . 42

4 Multi-Tenancy in Kubernetes 43
4.1 Hard and Soft Multi-Tenancy 43
4.2 Hard Multi-Tenancy Approaches 45

6

4.2.1 Hierarchical namespaces Controller (HNC) with strict
RBAC rules - Namespaces-as-a-Service 45

4.2.2 Multi-cluster deployment - Cluster-as-a-service 47
4.2.3 Virtual Clusters / Cluster API Provider nested (CAPN)

- Control-Planes-as-a-Service 48
4.3 Summary . 50

5 Evaluation of the solutions 51
5.1 Test Environment . 52
5.2 Tested applications . 53

5.2.1 Janus WebRTC Gateway - eMBB use case 53
5.2.2 EMQX IoT Broker - mMTC use case 54
5.2.3 QuakeJS - URLLC use case 54

5.3 Deployment configurations . 55
5.4 Methodology . 58

5.4.1 Metrics definition . 59
5.4.2 Testing tools and methods 60

5.5 Results . 62
5.5.1 Janus WebRTC Gateway - eMBB use case 62
5.5.2 EMQX IoT Broker - mMTC use case 65
5.5.3 QuakeJS - URLLC use case 68

5.6 Evaluation . 69

6 Discussion 71
6.1 Future work . 72
6.2 Conclusion . 72

References 74

A Results from the evaluation phase 86
A.1 Janus WebRTC Gateway . 86

A.1.1 Throughput . 86
A.1.2 Round-trip time . 88

A.2 EMQX MQTT Broker . 91
A.2.1 Message Delivery Time 91
A.2.2 Message Throughput 92

A.3 QuakeJS . 94
A.3.1 Round-trip time . 94

7

Chapter 1

Introduction

Mobile networks, also known as cellular networks, have been an essential
component of modern society for the last 35 years. The ability to potentially
communicate in a few seconds with different parts of the world has expo-
nentially increased the pace of technological evolution and quality of life. In
this perspective, like other modern standard technologies, the evolution of
cellular networks can be described by exploiting the concept of ”generation”.
Each generation is characterized by unique and novel features that enable
new classes of applications and use cases. Despite the initial challenges of
the first generations 1G and 2G in terms of global standardization and adop-
tion rate [1], mobile networks have been successfully deployed all over the
world, enabling new opportunities and services for society.

Currently, the state-of-the-art generation, 5G, is already available in
many regions of the world, as Mobile Network Operators (MNO) are cur-
rently investing many resources in the deployment of novel technologies.
Meanwhile, 3GPP is still developing and defining future standard releases
for the fifth mobile network generation, to assess security and performance
issues that have merged during the initial deployment stages in the mass
market. On the other hand, from a statistical point of view, 4G is still the
most widely adopted technology for mobile communication [2]. This is re-
lated to the fact that 5G is still in an early stage of the adoption phase and
most of the available user equipment is not capable of exploiting 5G capa-
bilities. In the ”Mobile Economy 2021” report [3], Global System for Mobile
Communications Association (GSMA) forecasts that by 2025, 20% of mobile
communication will be based on 5G technologies , which means that, even in
the near future, 4G will still be the most adopted cellular network generation.

So, looking at these initial statistics coming from the public market, how
will 5G be exploited in the next few years? The latest trends of mobile
networking are mainly characterized by highly demanding requirements that

8

CHAPTER 1. INTRODUCTION 9

can be summarized in three main typologies of scenarios: enhanced mo-
bile broadband (eMBB), massive machine-type communications (mMTC)
and ultra-reliable low latency communications (URLLC). Depending on the
requirements of a specific use case, many key enabling technologies have
been exploited for guaranteeing a specific level of performance. For instance,
from a physical point of view, the 5G architecture is characterised by novel
transmission access approaches. Multiple Input Multiple Output (MIMO)
antennas and millimeterwave bands (24-100 GHz) increase throughput capa-
bilities and provide optimal support for a higher number of connected devices
compared to previous generations of mobile networks [4].

Furthermore, from a higher level perspective, 5G is also characterized
by advanced hardware virtualization, specifically based on Software Defined
Networking (SDN) and Network Function Virtualization (NFV). These novel
approaches allow commodity hardware to virtually act as dedicated hardware
for a specific network function, such as firewall, routing, or switching. In ad-
dition to traditional virtual machines, lightweight virtualization has an im-
portant role in achieving certain levels of performance, especially when there
are some limitations or constraints on the available computing resources.
Docker containers, along with the corresponding orchestration software Ku-
bernetes, have been exploited in many 5G network deployment scenarios [5]
[6], as they guarantee an efficient level of availability and maintainability
within a small amount of resources.

Even though high density deployments may be costly for MNOs [7], these
approaches, at both low and high levels of hardware abstraction, make in-
frastructure deployment and maintenance easier in comparison with the past
generations. Consequently, in urban and suburban environments, the deploy-
ment of higher density architecture components is becoming a trend among
MNOs [8]. In this way, it is possible to increase the availability of the services
and decrease, at the same time, the overall latency, especially because the
radio access components and the services themselves are very near to the
end-user. Speaking about the short distance between the actual service and
the end-user equipment, there are several technology trends focused on this
scope. One of the most relevant trend in mobile networking is the 5G small
cell. Although this class of radio access device is not a novelty in the mobile
networking scenario, its usage in the 5G context is different compared to the
past generations. Applications that require a very low latency, like Vehicle ad
Hoc Networks (VANET), smart cities services and other IoT use cases, which
are usually characterized by a large amount of connected device, can be easily
enabled by the deployment and configuration of a smart grid of small cells.
Furthermore, by deploying Multi-Access Edge Computing (MEC) units in
correspondence to a small cell, it is possible to enable local computing ser-

CHAPTER 1. INTRODUCTION 10

vices that do not require a high amount of computing resources. Examples of
applications that can exploit this typology of configuration can be ultra-high
definition multimedia content delivery, augmented reality, or virtual reality.
Obviously, despite all the advantages in adopting small cells in local service
deployments, many challenges have to be addressed in order to guarantee the
required QoS. As multiple operators can deploy their own services within a
single small cell, it is crucial to understand if there is an issue with letting
multiple tenants deploy their services within the same radio access or edge
server unit.

1.1 Problem statement

As discussed previously, lightweight virtualization has an important role in
many 5G use cases and within the corresponding architecture. Specifically,
many operators deploy their containerised services by exploiting the Kuber-
netes Orchestrator capabilities [9] [10], as it is one of the main choices in
terms of container orchestration software. In addition to this, an increasing
trend in the sharing of physical resources between operators has characterised
the latest local deployment configurations in urban and sub-urban contexts
[11]. This implies that operators must be isolated from each other in a rigor-
ous way, especially when they share common environments, such as a single
Kubernetes cluster. Consequently, assigned resources, such as storage, mem-
ory, computing, and networks, should be carefully allocated and isolated to
avoid legal or policy issues.

On the other hand, in the last years, the research community has found
concerning issues in balancing hard isolation between tenants, and guaran-
teeing at the same time a satisfying level of performance. Most of the current
adopted security approaches, which mainly aim to isolate tenants that share
the same physical resources, produce an overhead, which is difficult to ignore
in the context of ultra low latency applications [12] [13].

For these reasons, the main scope of this thesis, and so the main research
question, is understanding what impacts the main available kubernetes hard
multi-tenancy isolation approaches have on the network performance of the
deployed applications.

1.2 Testing and evaluation activity

In order to give a broad overview, test activity was based on deploying
three open-source applications, one for each 5G use case category (URLLC,

CHAPTER 1. INTRODUCTION 11

mMTC, eMBB). The deployment was performed by exploiting the identified
Kubernetes hard multi-tenancy approaches. Thus, the three applications
were tested after being deployed with each of the analysed approach. For
each application, reference network metrics that are strictly related to the
application class itself and the 5G requirements were identified. Data were
collected using benchmark and testing tools, specifically designed for each
deployed service. The evaluation was then performed by analysing the ex-
tracted data with the support of graphical visualisation tools. During the
evaluation phase, it was possible to compare the analysed approaches and un-
derstand their corresponding behaviour in specific scenarios. In conclusion,
from the available data, it is possible to observe that the network perfor-
mance still strictly depends on the characteristics of the application itself.
Specifically, tested multi-tenancy approaches impacted network performance
depending on the adopted application network protocols.

1.3 Related works

Despite some concerns in considering the ”Multi-tenancy” [14] concept still
relevant in the cloud computing scenario, given the secure nature of the
server-less computing applications, the research community has still further
developed some approaches and solutions that enables multi-tenancy within
a Kubernetes environment.

KubeSphere [15] is a project that aims to improve the orchestration of
Kubernetes cluster resources when multiple tenants deploy their services on
the same physical infrastructure. This is achieved by scheduling resource as-
signment and adopting a multi-resource fairness policy meta-scheduler. The
additional scheduling layer, based on Dominant Resource Fairness (DRF)
improves fairness between different tenants that deploy very different set of
tasks.

EdgeNet [16], on the other hand, is an open-source project that is fo-
cused on extending the management model of a Kubernetes cluster. Addi-
tional functionalities like ”location-based node selection”, ”node contribu-
tion” and, of course, ”multi-tenancy” make the deployment of tenant ser-
vices easier than adopting the vanilla Kubernetes management model, es-
pecially within an edge location. This enables the capability of providing
a distributed public Kubernetes cluster where nodes are deployed in differ-
ent locations around the world. It is important to note that an open Ku-
bernetes Working Group for Multi-Tenancy was established at the end of
2017 (https://groups.google.com/g/kubernetes-wg-multitenancy). Dur-
ing these years, they had regular meetings and developed multiple approaches

https://groups.google.com/g/kubernetes-wg-multitenancy

CHAPTER 1. INTRODUCTION 12

for enabling multi-tenancy functionalities in Kubernetes.
In the mobile networking context, multi-tenancy has often been discussed

along the concept of ”network slicing” [17] [18], which is one of the key
enablers of 5G networks. Each slice is allocated to a specific tenant, which
mainly provides network isolation between other tenants. In addition to this,
it also provides further customisation of the dedicated resources, depending
on the requirements of the slice owner.

1.4 Structure of the Thesis

In chapter 2 an overview of the 5G architecture will be presented, along with
the most common trends and use cases from which the 5G requirements have
been defined. Furthermore, the Micro-Operators business model will be pre-
sented as one of the main reasons behind the multi-tenancy in 5G. Finally,
5G-Essence project will be described, as it exploits the previously presented
business model. Chapter 3 will cover virtualisation and containerisation and,
at the same time, highlight their crucial role in mobile networking. Technolo-
gies like Docker, LXC and Kubernetes will be discussed in order to provide an
overview of what technologies are being employed in this thesis. During chap-
ter 4, the multi-tenancy concept in the kubernetes context will be described
along with the three main approaches that are currently available: Hierar-
chical Namespaces Controller (HNC), Multi-cluster deployment and Virtual
Clusters. Furthermore, in chapter 5, the previously presented approaches
will be described in detail: what applications are going to be adopted for
testing purposes; what are the testing tools and methods, and the results
of the testing activity. Finally, in Chapter 6, based on the testing session
and the corresponding results, a final evaluation will be provided, which will
suggest the best approach within the available ones. Possible future work
and opportunities will be presented in order to provide some guidelines on
how to further adopt this evaluation approach for future solutions.

Chapter 2

5G trends and use cases

Since 1998, 3GPP has been involved in the development of universal protocols
for mobile telecommunications. Their development platform is based on a
system of parallel ”Releases” which enables developers to work on different
projects at the same time. In 2019, 3GPP has published the final version of
release 15 [19]. The development of this release started in 2017 and, during
the 2 years of development, the first 5G system design standard version was
defined.

Compared to the previous generation, 4G, the current state-of-the-art
mobile network standard provides crucial improvements in terms of architec-
ture, performance, and new enabled applications [20]. Thus, in this chapter
a general overview of 5G architecture and use cases will be provided. A more
detailed analysis will be performed on the micro-operator business model and
the corresponding technical solution, 5G-Essence.

2.1 5G Architecture and requirements

While designing, configuring, and deploying a network, the concept of a
”plane” can be used to classify components and data fluxes depending on
their role [21]. For example, in mobile networking, the concepts of control
plane and user plane have been widely adopted since the first release of the
3G standard, where, for the first time, packet-switched traffic was supported.
The control plane refers to all the entities involved in handling the signal-
ing between the network and the user equipment for management purposes;
meanwhile, the entities in the user plane are involved in delivering the actual
user payload. In Figure 2.1, it is possible to observe that for the first time in
mobile networks there is a clear separation between the elements involved in
the control plane and those involved in the user plane. This approach, com-

13

CHAPTER 2. 5G TRENDS AND USE CASES 14

monly named ”Control and User Plane Separation (CUPS)”, lets the network
infrastructure operators centralise the control plane in a single location and
the user plane to be deployed in a distributed approach, usually closer to
the actual user equipment. This design strategy enables a higher degree of
elasticity and maintainability, which is one of the reasons why it is possible
to achieve a higher level of performance compared to previous generations,
especially in terms of availability [22].

Figure 2.1: 5G architecture diagram.

As soon as new use cases, applications or trends emerge from the mar-
ket, current adopted standards often show some limits. This motivates re-
searchers and engineers to look for new approaches or technologies that can
meet new needs. Mobile networking evolution has been characterized by this
process, where the former state-of-the-art standard was no longer capable
of satisfying mass market needs. Furthermore, in the specific case of 5G,
the requirements are mainly based on recent years trends. As shown in 2.2,
there are three main categories of applications, which have different degrees
of requirements [23] [24] :

• Enhanced mobile broadband (eMBB): this class of applications

CHAPTER 2. 5G TRENDS AND USE CASES 15

Figure 2.2: Spider plot of each 5G use case category [23].

is often identified as the evolution of existing 4G networks. Conse-
quently, researchers are mainly focused on increasing the quality of
human-centric services such as media content delivery and mobile com-
munication applications. Thus, a very high amount of throughput must
be guaranteed for a consistent number of devices at a certain location.
Examples that can be classified as eMBB applications include 360°
4K video streaming, real-time video monitoring, or augmented reality
(AR).

• Massive machine-type communications (mMTC): in the last
years, the Internet of Things (IoT) has become a strong trend in
telecommunications [25]. The exponential increase in connected de-
vices has driven researchers and engineers to adapt network capabili-
ties for this purpose. Hence, 5G has better capabilities in managing a
large amount of connected devices in a small area. At the same time,
since most of these connected devices have small energy resources or
are directly self-powered, 5G Radio Access components must guarantee
an optimal level of power efficiency. This class of application is mainly
focused on machine-to-machine communication (M2M).

• Ultra-reliable low latency communications (URLLC): as it is
possible to see from the name of this family of applications, latency

CHAPTER 2. 5G TRENDS AND USE CASES 16

is defined as a very critical key metric. In recent years, many ap-
plications that involve a responsive interaction between machines or
between machines and humans have been introduced into the mass
market. Furthermore, the stability of the connection between entities
of the network must also be guaranteed if a device is in motion, even at
high speeds. This implies that an optimal deployment of radio access
network antennas and efficient handover approaches must be adopted
in order to guarantee the initial requirements. This specific configu-
ration of metrics enables novel use cases, such as automated driving,
remote traffic management, industrial automation, remote healthcare,
and highly interactive VR or AR [26].

Table 2.1: Comparison between 4G and 5G requirements [27].
Key performance metric 4G 5G
Maximum data rate 1 Gbps 20 Gbps
User data rate 10 Mbps 100-1000 Mbps
Maximum mobility speed 350 km/h 500 km/h
Latency 10 ms 1 ms
Connected device capacity 100000 devices/km2 1000000 devices/km2

Data processing capacity 0.1 Mbps/m2 10 Mbps/m2

Power efficiency 1x 8100x

Based on these three main classes of scenarios, key performance reference
metrics were defined, as shown in Table 2.1.1. Similarly to previous gener-
ations, 5G capabilities are on average 10 times higher than those available
with a 4G system. At this point of the analysis, it would be interesting to
briefly understand which enabling technologies have been exploited in order
to reach these levels of performance.

In the research community literature, there are many articles and works
available where a survey is performed on key enabling technologies for 5G.
For instance, a very detailed survey from 2019 [28], describes relevant tech-
nologies in the 5G deployment context. One of the most critical sets of
components for a 5G system is the access technology used. A new spectrum
allocation has been allocated for 5G access networks, which is split in two
ranges [29]:

• Frequency Range 1 (FR1): this subset of frequencies include sub-6
GHz bands, with which it is possible to support previous standards,
with an extension towards the range between 410 MHz to 7125 MHz.

• Frequency Range 1 (FR2): frequency range from 24.25 to 52.6 GHz.

CHAPTER 2. 5G TRENDS AND USE CASES 17

Consequently, it is possible to serve different communication systems within
the same infrastructure that has such a wide range of frequencies. This
approach is called multi-radio access technologies (multi-RAT). These fre-
quencies are managed by deploying efficient antennas that rely on novel ap-
proaches such as massive multiple input multiple output (M-MIMO) or, in
the case of a scenario with a large amount of connected user equipment,
multi-user multiple input multiple output (MU-MIMO), enabled by the spa-
tial division multiple access (SDMA). In addition to the actual physical spec-
ifications of the radio access technology, the adopted strategy for deploying
a dense network of access components was also carefully analysed by the
research community. Thus, current trends are pointing towards an ultra-
dense network (UDN) where access points are optimally deployed in order
to achieve the best use of the available spectre in a certain area. Further-
more, to simplify the management of a large number of radio access compo-
nents, MNOs often adopt the Cloud-Based Radio Access Network (C-RAN)
approach [30]. Basically, the management and the allocation of the radio re-
sources is centralized in a cloud solution. This allows to have a higher degree
of scalability and densification, which drastically decreases the operational
costs of the infrastructure [22].

Speaking of cloud solutions, if the 5G architecture is analysed from a
higher-level perspective, it is possible to notice that novel network and soft-
ware technologies are adopted. Approaches like Network Function Virtual-
ization (NFV) and Software Defined Networking (SDN), which are based on
virtualisation paradigms, are important technologies in the 5G architecture.
If in previous generations, a specific proprietary hardware was necessary to
enable a particular functionality, with NFV, generic commodity hardware
virtually enables the same functionality. Consequently, the physical com-
ponents of the architecture can be reprogrammed very easily, depending on
the required functionality. SDN, also based on virtualisation paradigms, en-
ables a higher degree of elasticity in network configuration, since routing and
switching are now performed by virtual components that can be remotely
configured and deployed [22]. Examples of these approaches include Network
Slicing, Self-Organising Networks (SON), Device-to-Device Communications
(D2D), Fog Computing, and Multi-access Edge Computing (MEC). This last
example will be discussed in detail afterwards, along with a very interesting
business model, based on a novel radio access approach.

CHAPTER 2. 5G TRENDS AND USE CASES 18

2.2 Micro-Operators business model

In the past mobile network generations, only a small group of MNOs was in-
volved in delivering communication services to the mass market [31]. There-
fore, most of the infrastructure was owned and managed by powerful compa-
nies, which had a business model based on large infrastructure management
and long-term investments. In recent years, however, an evident shift to-
wards a different model has been observed. In addition to traditional voice
and text communication services, a wide range of heterogeneous services
have been deployed to the public market. Furthermore, as different vertical
classes of application are characterized by different requirements, also the
infrastructure must be deployed and configured accordingly. As a matter of
fact, these new trends are no longer compatible with the traditional Telco
business model.

In the late stage of the development of the 5G standard (Q3 2017), the
University of Oulu, in collaboration with Nokia Oulu, published an impor-
tant study on a new telecommunication business model [32]. Based on this
novel approach, the telco market is no longer based only on a small group of
stakeholders but on a wide range of actors that are involved in very different
roles. On the other hand, if this could increase the complexity of infras-
tructure management, it would enable an elastic market of different vertical
sectors that could be deployed and configured within a local area in a very
short time. However, as explained in [32], a change of this magnitude re-
quires the adoption of different strategies in different domains: regulations,
technologies and business itself. However, this change to a new model may
be a complex task to achieve in a short period of time. Despite the possible
challenges of such operations, a new concept has been identified within the
mobile business ecosystem: micro-operator (µO).

This new actor is considered the key enabler of this new business model,
as he is in charge of deploying scalable new applications within a local area,
which is often an indoor scenario. In this case, connectivity and service de-
livery is guaranteed by small cells, which are configured specifically based
on deployed application requirements. As explained above, there are many
challenges in switching from the traditional business model to a novel one.
Specifically, as now there are many vertical domains, each of them managed
by a specific set of micro-operators, it is necessary to adopt a clear strategy
in allocating spectrum licences and shared resources. In addition to this,
µO must agree on common security and data processing policies to avoid
future legal problems, especially if some resources are shared. The cost and
the complexity of this typology of configuration can be easily overcome by

CHAPTER 2. 5G TRENDS AND USE CASES 19

Figure 2.3: Micro operator’s relations with key stakeholders [32].

adopting specific virtualization approaches, such as NFV and SDN. Further-
more, based on the key reference pillars of 5G, elasticity and maintainability
are still guaranteed, as these resources can be allocated and configured on de-
mand. In Figure 2.3 it is possible to observe which are the main stakeholders
that interact with a micro operator. Each of them provides specific support
or resource to the micro operator such that it is capable of successfully de-
ploying the local service. In a more recent work, also from the University of
Oulu, an additional analysis was performed on the role of end-to-end network
slice architecture in the context previously described [33]. The authors of this
article have identified different deployment scenarios based on the final use
of the µO premises:

• Closed micro-operator network: it is essentially a private network
where services are delivered only to a recognised user group. It is
usually enabled by using highly secure approaches that can guarantee
the isolation of the processed data.

• Open micro-operator network: in the opposite to the previous

CHAPTER 2. 5G TRENDS AND USE CASES 20

case, here micro operators are in charge of delivering services to any
MNO subscriber that is located in a specific local area. This class
of configuration is usually adopted when MNOs have no interest in
deploying applications within a specific area and so the task is assigned
to a specialized µO.

• Mixed micro-operator network: both of the cases described above
are deployed within a set of allocated resources. If the µO is in charge
of deploying a private service for a vertical set of users and, at the same,
time manage MNO subscribers within the same area, an high level of
isolation must be guaranteed.

What is in common between all of these configurations is that they all
rely on the concept of network slicing. Thanks to SDN, it is possible to
define specific routing configurations that isolate a subset of devices from the
rest of the physical network. Each of these isolated networks is commonly
named slices, as they can also be configured to behave in a specific way in
terms of performance, such as delay, throughput, and jitter. Furthermore,
it is also relevant to highlight that deploying services in a local area, and
so in a location very near to the end users, was also exploited in order to
optimize computing resources and capabilities, thanks to MEC concept. In
the next section, a brief analysis of this network architecture paradigm will
be performed, as it is relevant in the context of this novel business model.

2.3 Cloud, Multi-access Edge and Fog Com-

puting

In the last decade, significant progress has been made in the design ap-
proaches of the infrastructure. In the early stages of the Internet, most service
providers had to deploy and configure their own on-premise infrastructure,
which was mainly made with cheap and commodity hardware. The successive
exponential increase in requirements, in terms of performance and reliability,
pushed into the market a concept that was originally defined by Profes-
sor John McCarthy in 1961: utility computing. Basically, computational
resources could be identified as a public utility, similar to the traditional
telephone or electrical system. Due to the exponential growth of hardware
capabilities and novel virtualisation approaches, which will be discussed in
Chapter 3, this pioneering idea was actually implemented around fifty years
later under the label of ”Cloud Computing”. In one of the early works on the
definition of cloud requirements [34], cloud computing was defined as a ser-
vice delivery and access approach in which scalable and virtualised resources

CHAPTER 2. 5G TRENDS AND USE CASES 21

are dynamically delivered as a service. Consequently, today most businesses
are no more concerned about having their own on-premise IT infrastructure
to host their services, as they can rely on third-party infrastructure providers
[35].

From the mobile network sector perspective, during the early stage of
5G development, European Telecommunications Standards Institute (ETSI)
identified one of their network architecture paradigms, Mobile Edge Comput-
ing, as one of the key enabling technologies for 5G [36]. In an early survey
on this topic [37], Mobile Edge Computing, now known as Multi-access Edge
Computing, was defined as a network architecture paradigm that is capable
of enabling cloud computing services focused on business within the radio
access network. The motivations that continue to drive the research com-
munity and engineers to invest in this approach are related to a wide range
of applications that rely on the capabilities of MEC. As explained in a more
recent survey [38], the main capabilities of this approach are mainly based
on the positioning of the MEC nodes: a lower level of latency is successfully
achieved by deploying these nodes in the vicinity of end users. In addition
to this, further optimisation of the QoS is achieved by collecting information
from the access environment: real-time radio statistics are collected in order
to tune the network behaviour accordingly. The ability to be aware of the
environment makes each MEC node autonomous in terms of local resource
management, so it can operate perfectly even if the node is isolated from
the rest of the network. Finally, even though some computational tasks are
performed directly within MEC node, the heaviest one are forwarded to a
centralized node, which is based on a cloud data centre. Many use cases
that today have a strong presence in some industrial sectors are enabled
by the MEC paradigm [39] [40]. Examples of these application classes are
AR/VR, VANET, live security and control, location tracking, and IoT so-
lutions. Specifically, all the applications in the IoT environment have really
demanding requirements in terms of latency and energy efficiency. Thus,
MEC is essential for the deployment of this typology of applications, as, in
addition to the low latency capabilities, computational offloading and con-
tent awareness are also guaranteed in most of the cases. These two last
capabilities are crucial, as most of the IoT devices, such as outdoor sensors,
rely on a very limited amount of power, and consequently it is necessary to
centralise most of the computational task into the cloud and optimise radio
access communication approach [41].

CHAPTER 2. 5G TRENDS AND USE CASES 22

Figure 2.4: ETSI MEC reference architecture [42] [38].

In Figure 2.4, a high-level diagram of the ETSI MEC architecture is rep-
resented. As most of the actual architecture entities are virtualised, it is
possible to observe that there is a clear separation between the system level
and the host level within the MEC system. Available physical resources are
managed by the Multi-access edge orchestrator, which is also aware of the
available services and the current status of the node topology. It is defined

CHAPTER 2. 5G TRENDS AND USE CASES 23

as the core of the MEC system as it is in charge of most of the operational
tasks such as application relocation, deployment, and termination. The MEC
platform manager is responsible for managing the lifecycle of a set of MEC
applications by controlling network policies and application rules. In addi-
tion to this, this component collects any problems and performance mea-
surements. Finally, the virtualization infrastructure is in charge of managing
virtual resources and the required images for deploying MEC applications.

While MEC is based on the definition of Edge computing, in recent years,
an extension of this paradigm was defined, Fog Computing. A group of Cisco
engineers published an analysis on the role of fog computing in IoT scenar-
ios [43]. Within this work, Fog Computing is defined as a virtual provider
of computational, storage, and networking resources deployed between edge
locations and centralised cloud locations. It can be seen as an additional
layer that provides further cooperation and optimisation between different
edge locations and consequently enables further opportunities and use cases.
Despite all the possible advantages that Fog computing can offer, how can
this be interfaced with MEC systems? An attempt was made in [44]. Here,
the authors tried to associate for the first time the term Mobile Fog Com-
puting (MFC) with all mobile IoT applications that exploit the fog layer of a
complex system. Specifically, it is explained why many IoT applications re-
quire intermediary nodes between edge locations and central cloud ones. For
instance, in the case of VANET or UAV networks, having a dynamic system
that offloads the computing tasks not only from edge nodes to centralised
cloud nodes, but also towards fog nodes dramatically increases the reactive-
ness of the system. Despite being a very promising approach for many IoT
use cases, there are many challenges that still limit the success of it. Speak-
ing about connectivity of moving entities, mobility is still a concerning issue
as it is still complex to develop an efficient autonomous management system
that coordinates all the fog and edge clouds when they have to react to a
very fast moving equipment.

2.4 5G-Essence Project

Since 5G networks are characterized by the ultra-dense deployment of radio
components, it is interesting to analyze in which way they could be designed
and optimized within specific scenarios. Even though this mobile network
generation relies on a heterogeneous set of radio access antennas, small cells
base stations (SBS) have a crucial role. Depending on the use case and
the corresponding application, different sizes, such as picocells, femtocells,
and ultradense small cells, are deployed to cover areas between 100s and 10s

CHAPTER 2. 5G TRENDS AND USE CASES 24

metres [45]. The challenges that characterised the design and the following
configuration of the SBS are quite different compared to those related to the
macrocell base stations (MBS). Novel approaches and paradigms have been
applied in the design of this class of antennas, especially in terms of their
physical characteristics. Signal management strategy is clearly based on the
behaviour of the target user class. Mobility and coverage are two of the most
critical metrics that have been studied in order to develop an efficient signal
transmission approach [46] [47]. In addition to these parameters, researchers
and engineers are also focused on providing an energy efficient solution that
can still guarantee to satisfy 5G requirements even with low levels of power
consumption.

Nevertheless, physical design is not the only aspect that can be exploited
to provide an additional level of optimisation for RAN components. As
seen in the previous sections, edge computing has a very important role in
providing very low latency transmission within the user location. In addition
to MEC, virtualization techniques have been extensively exploited within
4G and 5G architectures, and RAN components are no exception to this
trend. Cloud-enabled small cells (CESCs) , also defined as Small-Cell-as-
a-Service (SCaaS), are a paradigm that enables the deployment of VNFs,
applications, and services within the access network [48]. Consequently, in
order to support the orchestration and the deployment of virtual resources,
it is necessary to setup an efficient architecture that can support and enable
these features. The 5G Infrastructure Public Private Partnership (5GPPP)
has defined a framework commonly named the 5G-Essence project, which is
based on the former SESAME project [49]. As explained by the founders of
this project, the proposed architecture is based on two relevant elements of
the 5G environment: MEC and Small Cells. The reason behind the definition
of this solution is based on the fact that many scenarios, such as the micro-
operator one, require a flexible and scalable solution which is capable of
satisfying new business models. The key function is to provide a platform
where multiple network operators have the ability to provide services to their
corresponding users by exploiting a set of CESCs. The infrastructure that
hosts the small cells is owned and managed by a third party. It is obvious
that, politically, this architecture is based on a hierarchical multi-tenancy
model, where multiple tenants rely on another tenant.

2.4.1 Architecture description

As the 5G-Essence project is based on the edge computing paradigm, the
corresponding architecture is organized in a two-tier cloud system. In order
to provide a satisfying level of elasticity and performance, which are neces-

CHAPTER 2. 5G TRENDS AND USE CASES 25

sary to enable a 5G deployment, most of the resources are virtualised based
on the most common approaches, such as MEC and network slicing. Even
though virtualisation has been widely adopted within 4G and 5G standard
infrastructures, the 5G-Essence project exploits the same concepts in order
to increase the performance of small cells within a multi-operator scenario.
As shown in Figure.2.5, the unique element that is introduced by the devel-
opers of this project is the CESC, which is a computational node deployed in
a edge location, that provides storage, computing and radio resources within
a set of small cells. Multi-tenancy can be enabled very easily by deploying a
cluster of CESCs, where each of them can be managed autonomously by a
specific local operator. The two-tier architecture is organized as follows:

Figure 2.5: 5G-Essence reference high level architecture diagram [49].

CHAPTER 2. 5G TRENDS AND USE CASES 26

• First tier: it is the tier located in the edge location which directly en-
ables the CESC functionalities. It is based on a Light Data Center,
which is usually hosted within the CESCs cluster. It is responsible for
enabling basic packet traffic management functionalities and must be
able to execute VNFs that are involved in small cell access virtualisa-
tion. Furthermore, this tier can also enable any VNFs that require a low
amount of computational resources, such as the Machine-to-Machine
(M2M) Gateway, which is the core of IoT systems.

• Second tier: like in most of the edge systems, edge nodes are sup-
ported by a centralized node, which is usually deployed in a further
location and it has a larger amount of resources available. Given the
nature of the deployment location and the capabilities, it is usually re-
ferred as the Main Data Center. All tasks that require a substantial
amount of resources are executed within this tier. From the perspective
of this component, different edge locations can be managed from this
location, allowing a global view of the infrastructure.

In addition to these tiers, another crucial component is the CESC Man-
ager. Here, multiple management functionalities are enabled, such as the
network virtual function orchestration (NFVO), the Entity Management Sys-
tem (EMS), functions related to the collected metrics from the system, and
a portal where tenants can access their allocated resources via API.

2.4.2 Example of service deployment in a Cloud-Enabled
Small Cell

Nowadays, edge computing is widely adopted and continuously improved, as
many applications rely on the capabilities of this paradigm. However, CESC
extends edge capabilities by providing further radio functionalities. In [50],
the authors explain how 5G-Essence can be adopted for a very critical class
of applications: mission-critical public safety services. Currently, emergency
networks are so crucial to society that they do not rely on commercial mo-
bile infrastructure but are deployed as a parallel and isolated infrastructure.
This is related to the fact that this class of communication channel requires
a very high level of security, but at the same time it must be reliable. Given
the nature of the corresponding tasks, low latency must be guaranteed in
order to enable a responsive and effective communication channel. Further-
more, mission-critical service users do not have a fixed position since they
are usually adopting emergency vehicles. For this reason, it is necessary to
increase the overall mobility of the allocated resources within the involved

CHAPTER 2. 5G TRENDS AND USE CASES 27

radio access components, which means that the handover phase from one
cell to another is something critical to be managed. Among the mission-
critical applications class, one of the most demanding and latency-critical
use cases is the Mission Critical Push-To-Talk service (MCPTT). Currently,
the available solutions are not very flexible in terms of capacity tuning, miss-
ing support of multimedia content delivery in case video or audio is required
by the application, or most importantly, there are no possibilities to have a
common infrastructure for both mission critical and public traffic. Having a
network with the characteristics described above would dramatically improve
the quality and responsiveness of the emergency service. In recent years, as
previously described, 5G has been a game changer in terms of latency and
network capacity. Since MEC is the key enabler of latency-critical applica-
tions, the authors of [50] were interested to see if 5G-Essence could be the
right solution for the emergency use cases. Since 5G-Essence provides a cen-
tralised orchestration of radio resources, it is possible to dynamically allocate
resources to a specific area where an emergency occurs. In this case, differ-
ent tenants from different industries share the same infrastructure thanks to
network slicing. However, any tenant that is involved in emergency services
has a higher priority access in terms of resources in comparison to other ten-
ants. This enables what was not possible with earlier solutions: providing
an elastic approach with which it is possible to exploit public infrastructure
deployment while all the mission critical requirements are guaranteed. The
validation of this setup was carried out in a real scenario, where public safety
services were tested at different levels of emergency, which are triggered by
a monitoring system. As expected, depending on the emergency level, ac-
cess capacity can be increased in order to avoid any issue if more emergency
units are focused on a specific area. Furthermore, if the emergency involves
also the integrity of the infrastructure, 5G-Essence architecture is capable of
extending the coverage of a specific area under exceptional circumstances.
Validation was rigorously evaluated, as not only were the basic functional-
ities of the infrastructure tested, but extended performance evaluation and
end-user experience tests were performed.

2.5 Summary

5G environment includes a wide set of novel technologies, which are exploited
in order to enable new applications and business models. It is clear that 5G
is a step forward compared to previous generations of mobile networks. The
gradual passage of TelCo from traditional business models to novel ones,
like the micro-operators model, is a clear sign that requirements of the mass

CHAPTER 2. 5G TRENDS AND USE CASES 28

market have drastically changed. Consequently, research community and
engineers have to adapt their approaches accordingly. Since virtualisation
plays an important role within the 5G environment, a detailed description of
its evolution will be provided in the next chapter.

Chapter 3

Virtualisation and containerisa-
tion

In the early stages of the World Wide Web (WWW), the ”one application per
server” rule was the most common approach adopted by service providers.
Having one single dedicated server for a specific application guarantees an
optimal level of maintainability, as system parameters and configuration de-
pend only on the requirements of a single application [51]. Furthermore, it is
clearly difficult that other applications, which are installed in other servers,
could actually affect the performances and the security of the service. De-
spite the advantages that this approach offers, a huge limit was identified
while the WWW was changing the world: it was not possible to satisfy the
exponential growth of the deployed services with this approach as it was not
feasible to have a corresponding number of dedicated servers. At the same
time, on the basis of the Moore law, servers were starting to be developed
with a higher computational capability. The final result was a large amount
of servers, which were not exploited at their maximum capabilities and that,
at the same time, were consuming a large amount of electrical power. An-
other obstacle that was forcing infrastructure architects to keep adopting this
approach was the lack of virtualization functionalities available in the OSes:
they were not capable of providing the required tools in order to guarantee
an efficient level of isolation and reliability between applications deployed on
the same machine. Consequently, it was necessary to adopt another different
resource allocation strategy, which led engineers to enforce an approach in
their infrastructure design approaches: virtualisation. In the next sections of
this chapter, a detailed description of how the concept of virtualisation was
already defined during the 1960s and how it has evolved during the last 30
years will be provided. Starting from the definition of the concept itself to
the state-of-the-art concepts of container and cluster of containers, the most

29

CHAPTER 3. VIRTUALISATION AND CONTAINERISATION 30

significant milestones of this evolution will be covered.

3.1 Evolution of virtualisation

The concept of virtualisation was defined for the first time in the 1960s by
IBM [52], followed by the formal definition published by Goldberg and Popek
during the 1970s [53]. In this specification report, which is still the reference
point in modern virtualisation approaches, the authors provide a clear defini-
tion of virtual machine (VM) and the corresponding minimum requirements
of the host system. A virtual environment can be identified as a VM, if it
consists in an efficient and isolated copy of the real physical machine. This
means that efficient control of the resources should be implemented. Conse-
quently, in the host machine, a core component, which is often referred to
as Virtual machine monitor (VMM), should provide resource allocation and
isolation between different virtual environments. An efficient virtualization
layer can be guaranteed only if the following characteristics are available:

• Any executed instruction in this environment should be seemingly run
as if it was natively launched on the physical machine.

• A subset of the instructions executed by the VM processor must be
executed directly by the physical processor whenever an higher grade
of efficiency is requested.

• An efficient control of the physical resources must be available to the
VMM. Resources allocated to a specific environment should not overlap
with those allocated to another virtual environment.

Despite having a clear definition of how virtual hosts should be imple-
mented, in those years, the mass market needs and the substantial decline of
hardware production costs were limiting the actual exploitation of virtuali-
sation. Consequently, only in the late 1990s the virtualisation concept was
finally adopted in order to optimise the performances and the usage of the
available data centre resources. In this way, the previously described limits
were finally overcome. In the last 20 years virtualization concept was imple-
mented in different ways, depending on the requirements of the specific use
case.

Therefore, two main classes of virtualisation approaches are often identi-
fied in the literature [54] [55]:

• Hardware-level virtualisation: this class is strictly based on the def-
inition of VM provided by Goldberg and Popek in [53]. Consequently,

CHAPTER 3. VIRTUALISATION AND CONTAINERISATION 31

in the approaches that can be identified within this class, the virtu-
alisation relies on an additional layer that is responsible for providing
multiple virtual clones of the host hardware. For instance, in the case
of one of the approaches adopted in this class, full virtualisation, the
VMM is installed on the host OS as a generic application and simulates
an exact copy of the underlying hardware to allow the guest OS to run
completely isolated [56]. Any application designed for the host archi-
tecture can be executed on the guest virtual machine, as it can rely on
the same instruction set of the physical processor. Despite the clear
advantage of being capable of running any OS or application made for
the virtualised architecture, the corresponding overhead may be too
high in some specific scenarios. In addition to this, the design and
implementation of the VMM architecture may be quite complex to de-
velop and maintain [57]. Other commonly adopted approaches of the
same class try to overcome the limitations of full virtualisation. For
example, as soon as virtualisation became a mandatory requirement
for data centres, hardware producers tried to decrease the complexity
of the VMM architecture by developing new computational compo-
nents with a set of features that could natively support the hosting
of virtual environments. The two main processor producers, Intel and
AMD, have released their own hardware support tools for virtualisa-
tion (Intel VT-x, AMD-V). Basically, within the instruction set of a
CPU, an additional subset of instructions was implemented to increase
the isolation between virtual environments, which in some cases may
be crucial for overall performance. Furthermore, another commonly
adopted approach, known as paravirtualisation, tries to solve the over-
head issues of full virtualisation by providing support functionalities as
part of a modified guest OS. In this case, the guest OS is aware that it
is currently being executed in a virtual environment. Consequently, it
can directly interact with the VMM by using an interface and perform
”Hypercalls”. Thus, the virtual environment can interact directly with
the physical CPU instead of performing a binary translation of every
instruction, as is usually done within the full virtualisation approach.

• Operative System-level virtualisation: despite other hardware-
level virtualisation approaches trying to address overhead and com-
plexity issues, traditional virtual machines are still not optimised for
many use cases. Therefore, it was necessary to design a lighter so-
lution that could still provide the virtualisation capabilities originally
defined by the Goldberg and Popek model. Instead of replicating an
entire system, with OS-level virtualisation, it is possible to create vir-

CHAPTER 3. VIRTUALISATION AND CONTAINERISATION 32

tual environments that directly depend on the host OS, as shown in
Figure.3.1. This means that these virtual environments share the same
kernel. Thus, from the point of view of the host OS, these environments
are seen as processes with their own dedicated set of resources. This
affects the performance of the system, as all the resources that in the
traditional hypervised virtualisation are involved in the OS execution
are now free to be allocated to the actual applications. In addition to
this, any operational activity, such as the deployment or restart of a
virtual environment, requires less time compared to a fully virtualised
OS [58]. In addition to this, any operational activity, such as deploy-
ing or restarting a container, requires less time compared to a fully
virtualised OS [58]. Based on these characteristics, it was possible to
define the so-called ”lightweight virtualisation”, commonly known as
an alternative to the traditional virtualisation described above [59].

Figure 3.1: High level architecture comparison between hardware-level vir-
tualisation and os-level virtualisation [60].

Although many different approaches are available, in the context of recent
mobile networking infrastructures, where virtual environments are dynami-
cally allocated at a very fast pace, lightweight virtualisation is preferred to
traditional hardware-level virtualisation in some resource-constrained con-
texts [61]. For this reason, a more detailed analysis of lightweight virtual-
isation evolution and state-of-the-art is going to be performed in the next

CHAPTER 3. VIRTUALISATION AND CONTAINERISATION 33

section.

3.2 Lightweight virtualisation

The first concept design that can be classified as OS-level virtualisation, and
thus as lightweight virtualisation, can be found for the first time in Unix V7,
1979. As stated in a recent blog article [62], Unix developers introduced the
”chroot system call”, a turning point in the evolution of lightweight virtual-
isation, as it was the starting point of process isolation. Basically, when this
call is performed, the root directory of a running process and its correspond-
ing children is moved to a new directory of the filesystem. The same feature
was added to another OS, BSD, in 1982. Further steps were accomplished
only at the beginning of the 2000s, when FreeBSD developers introduced the
concept of ”Jail” [63] in order to split hosting provider environments and
customer environments for security and integrity reasons. This ”clear-cut”
separation was performed at the service level as the OS was partitioned into
smaller independent systems, which included all the necessary networking
functions, such as assigning an IP address. In an article from 2006 [59],
an early definition of ”lightweight virtualisation” was provided, along with a
forecast on the highly probable growth of the adoption of the approach in the
next years. Despite being an old article, the concept of ”Container” is already
identified as one of the main actor in the lightweight virtualization scenario.
It is defined as a group of processes that do not emulate any hardware com-
ponent. During that year, however, the current modern solutions were not
available, but one specific project was really similar to them: OpenVZ. Also
known as Open Virtuozzo, developed by Virtuozzo and the corresponding
project community, it consists in a OS-level virtualization software that en-
ables the user to deploy multiple isolated containers by exploiting a modified
version of the Linux Kernel [64]. Each container had its set of resources
that included basic elements like memory limits, CPU quotas, filesystem or
network configuration. Before presenting the current state-of-the-art of the
container concept, it is relevant to describe two main features, namespaces
and cgroups, which are available in the Linux Kernel. This is related to the
fact that they are often described as the basis of available containerisation
approaches [65].

3.2.1 Namespaces and CGroups

Since 1991, Linus Torvalds has been involved in the development of the
Linux kernel. The project consists of a Unix-like monolithic kernel that

CHAPTER 3. VIRTUALISATION AND CONTAINERISATION 34

has been published under the GNU General Public Licence (GPL). Conse-
quently, given the open-source nature of the project, in the last 30 years,
many contributors have developed new features and expanded kernel com-
patibility to a wide set of architectures [66]. On the 3rd of August 2002,
the 2.4.19 release of the Linux Kernel was released. Within the new features
and fixes of this version, a new functionality was included: namespaces. As
described in the Kerrisk’s Linux manual [67], a namespace consists of ab-
stracting a set of kernel resources in order to make them available only to a
restricted group of processes. Therefore, any change applied to that specific
set of resources can only be seen by members of the specific namespace. Any
other process that is allocated outside that specific namespace is unaware of
the status of these resources. Depending on the target resource, there are
different typologies of namespaces:

• Cgroup: a cgroup root directory of the target namespace members,
which will be described later in this section, is not shared outside that
specific namespace.

• Interprocess communication (IPC): any IPC resource, such as
POSIX message queues, is dedicated to all processes that are mem-
bers of a specific namespace. Consequently, any other process cannot
communicate with the namespace members within these resources.

• Network: a dedicated copy of the network stack kernel module is
allocated only to the members of the namespace. Thus, IPv4 and IPv6
protocol stack, network devices, IP routing tables and firewall rules
cannot be accessed by any member outside the namespace.

• Mount: released as the first ever namespace type in the Linux Kernel,
it provides an abstracted isolation of the mount points. This means that
filesystems are not shared between members of different namespaces.

• Process ID (PID): a dedicated set of PIDs is assigned to the names-
pace. Therefore, two processes with different namespaces can actually
have the same PID without causing any conflict.

• Time: independent system clocks can be assigned to a specific set of
processes.

• User: user management kernel functionalities are abstracted from the
overall OS. This means that it is possible to create a set of security rules
and identifiers that can be only used within the specific namespace.

CHAPTER 3. VIRTUALISATION AND CONTAINERISATION 35

• Unix Time Sharing (UTS): setting system identifiers, such as host-
name and domainname, are not going to affect processes outside the
namespace.

Originally called ”process containers”, Control groups (Cgroups) were de-
signed and developed by two Google engineers, Paul Menage and Rohit Seth,
in 2006 [68]. This functionality was then merged in the Linux Kernel version
2.6.24 release only 2 years later. CGroups provides a hierarchical approach
to limit and monitor a subset of resources within a group of processes. Thus,
each kernel component that manages a specific type of resource is responsible
for allocating resource quotas to a specific cgroup.

Despite having cumbersome management and deployment approaches,
these two kernel functionalities have been a game changer in virtualisation
research, as they are the basis for lightweight virtualisation [65].

3.2.2 Linux Containers and Docker

In 2008, the first version of Linux Container Runtime (LXC) was released.
LXC is one of the first mostly used OS-level virtualisation solutions that is
capable of enabling the concept of container. It is based on the functionalities
provided by the Linux Kernel that were described in the previous section:
namespaces to enforce isolation between processes and cgroups to define re-
source quota for each container [69]. Even though many vulnerabilities were
found during its development [70], LXC has become a standard in the vir-
tualization approaches and its community has reached a substantial number
of contributors. Unfortunately, there are some limitations that are difficult
to ignore, especially in some critical scenarios:

• Checkpointing and migration are not included as default features in
the vanilla Linux kernel. Consequently, whenever it is necessary to
migrate or automate a specific configuration or deployment, there may
be some challenges within the process. Third-party tools may be useful
in this case, but they are still not reliable to be adopted in a production
environment.

• Resource isolation is not straightforward, but it requires substantial
effort to configure and test the environment. Even after being sure
that enough isolation mechanisms have been deployed, containers can
still be affected by the behaviour of other containers, based on the
resource quota allocation.

In order to overcome these issues, in 2013 an open-source project named
as Docker was established. It is an extension of the LXC approach that

CHAPTER 3. VIRTUALISATION AND CONTAINERISATION 36

provides a very efficient combination between the already exploited Linux
Kernel features and an efficient API server from which the user can easily
interact with the container runtime [60]. The architecture of this solution,
described in Figure.3.2, is based on the server/client paradigm, as the user
can send RESTful API request through a simple command line or the offi-
cial GUI Client installed with Docker. These requests are then received and
managed by the Docker daemon/server, which is going to set up or modify
the containers configuration accordingly. A very relevant aspect about this
architecture is that an interfaced docker client and a server can be deployed
on two different remote hosts. This is a step forward in terms of elasticity
compared to the previous available solutions. Whenever a user requests to
create a new container, the Docker Daemon is in charge of extracting the re-
quired libraries to execute a specific application, which are usually defined in
a blueprint, commonly referred to as the Docker Image. These images can be
directly pulled from a common repository, also known as the Docker registry,
or the user can define the characteristics of an image through a Dockerfile.
In addition to basic container management functionalities, support tools for
managing networking, resource, storage, user control, and security are also
available to the user.

Figure 3.2: High level Docker architecture diagram

The success of Docker container runtime is mainly related to its elastic
nature [71]. The necessary time to build and deploy a container is not even
comparable to that taken to deploy a complete virtual machine. Thanks to
these characteristics, it is possible to develop scalable and dense systems of
containers within physical nodes of any data centre, on-premise or cloud, with
a very optimal level of resource usage. In conclusion, a good analogy [72] can

CHAPTER 3. VIRTUALISATION AND CONTAINERISATION 37

summarise what containers represent in the IT infrastructure landscape. If
virtual machines can be represented as unique pets that are usually managed
in a low amount and they are hard to replace, containers, on the other
hand, can be considered chickens, as they are usually deployed in a very high
amount and can be replaced very easily.

3.3 Kubernetes

While containers, specifically the Docker container runtime, were gaining
more popularity among application developers, cloud computing was also
beginning to be seriously considered as a standard in infrastructure design
[73]. Based on the Cloud Native Computing Foundation (CNCF), the term
”cloud-native” application is used to identify any software that is developed
and deployed by exploiting the distributed computed features established by
the cloud delivery approach. Crucial features like resiliency, elasticity, scala-
bility and flexibility have characterized this class of application in comparison
to the previous development and deployment approaches.

CNCF promotes different projects that are compliant with their ethics
and best practises. Depending on the degree of maturity, each project can be
identified in a specific category: sandbox, incubating and graduated. Among
these categories, the one that includes all projects with a sufficient level of
adoption is the ”graduated” one [74]. One of the most popular ”graduated”
projects is Kubernetes (k8s). Originally developed and introduced by Google
in 2014, k8s consists in an open source container orchestrator. The main ob-
jective of this project is to extend the functionality of any supported container
runtime by providing a reliable and elastic system to deploy and manage a
large number of containers [75]. In a market where microservice-based appli-
cations have nowadays an important role in cloud computing, being capable
of supporting highly efficient automation and monitoring approaches is es-
sential for achieving the current demanding requirements. In one of the most
widely adopted relative manuals [76], the success of k8s can be identified by
the following main characteristics:

• Self-healing and scaling functions: as reliability is one of the crit-
ical requirements in modern systems, a system that autonomously re-
acts to failures or provisioning issues has a dramatic impact on service
delivery and the final user experience. System entities are promptly
redeployed whenever a failure is occurring or system capabilities are
increased if under-provisioning is forecast.

• Declarative configuration: in line with the portability capability

CHAPTER 3. VIRTUALISATION AND CONTAINERISATION 38

of the Docker container runtime, k8s further increase it by making
every single entity of the system a declarative configuration object.
In this way, the developer can explicitly define the desired status of a
component. Consequently it is possible to reuse the same configuration
as a template in very different scenarios and use cases.

• API and third party cloud providers support: given the ”cloud-
native” nature of this approach, the k8s development team has always
been focused on guaranteeing that service providers could easily deploy
their micro-services on any main cloud infrastructure provider.

Still, in order to understand how k8s can be exploit in specific scenarios, in
the next subsections a brief discussion on which are the main components
that characterize this approach will be performed. Additionally, some details
about the most common use cases will also be presented.

3.3.1 Architecture

In addition to the characteristics described above, another reason for the
success of kubernetes lies in its architecture design. In a manual focused on
the management of kubernetes-based systems [77], it is highlighted that the
design of k8s architecture is based on the philosophy of Unix modularity.
Each component has a specific role and can be deployed and configured inde-
pendently. Consequently, each component does not affect the status of other
components, which means that, in the event that a single component is not
operating properly, the probability of a general system failure is very low. If
this seems a straightforward approach to improve the reliability of deployed
applications, on the other hand, the system may result in complex imple-
mentation, as more understanding is required for managing a set of modules.
From an external point of view, all kubernetes entities are collected in a core
logical entity, which is commonly called cluster. Any user can interact with
the cluster through an application programming interface (API), which may
be considered as a single point of failure of the entire cluster as, in addi-
tion to the actual users, it is used by internal components. It is possible to
communicate with this API by performing HTTP requests and JSON-format
configurations. Its reference component can be identified in the API Server,
where API objects are defined in order to provide all the necessary function-
alities of a container orchestrator. The following API objects are the basis
of any micro-service deployment as they provide core functionalities for the
application:

• Pods: commonly classified as the atomic unit of a K8s cluster where
applications are actually hosted. It consists of one or more containers

CHAPTER 3. VIRTUALISATION AND CONTAINERISATION 39

that share most of the allocated resources for that specific pod. One of
the main functionality is checking the health status of each container:
in case a container fails, the pod is in charge of re-deploying it.

• ReplicaSets: in order to achieve an optimal level of reliability, it
is often necessary to deploy several replicas of the same application.
Thus, this object guarantees that a minimum number of containers are
deployed and running for a specific application. In addition to this,
if the system experience additional load, it is possible to increase the
number of deployed containers by modifying the parameters of this
object.

• Deployment: even though this object could be mistaken for a Repli-
caSet, it provides essential functionality for application developers.
Whenever is necessary to deploy a new version of an already deployed
application, it is usually necessary to substitute the containers that run
an older version of the corresponding application image with a new set
that run the new version. If the update is performed directly on the
ReplicaSet, it would be necessary to delete the one that points the old
image with a new one. This may cause downtime, which in some use
cases is not welcomed. For this reason, in this specific scenario, the de-
ployment object performs a rolling update where the old ReplicaSet is
substituted with the new one only when the new containers are healthy
and operating.

Depending on the specific role, there are objects, such as services or Ingress
that provide advanced network functionalities such as HTTP load balanc-
ing, proxying or firewalling. Basic tools for managing storage resources or
configuration files are included within a set of objects that include, for in-
stance, persistent volumes, ConfigMaps, or secrets. In order to guarantee
an optimal level of security, dedicated objects for deploying user access and
resource permissions are provided. One of the most relevant for this thesis is
the namespace. It is a logical entity with which it is possible to group K8s
objects into subsets. Thanks to specific role-based access control (RBAC)
rules, further access restrictions can be applied to any resource of a specific
namespace. For further understanding, a namespace can be represented as
a directory of objects, as their existence is strictly related to the namespace
one: if a namespace is removed, all the objects under it are also removed.

CHAPTER 3. VIRTUALISATION AND CONTAINERISATION 40

Figure 3.3: High level Kubernetes architecture diagram [78]

As shown in Figure.3.3, a cluster contains a set of nodes which can be
classified into two categories. Each category has its own role and the corre-
sponding components:

• Master node: it is the most important node in a k8s cluster as it
contains all the necessary core components for making the API fully

CHAPTER 3. VIRTUALISATION AND CONTAINERISATION 41

operating.

– etcd: as discussed previously, one of the key features of k8s is the
ability to self-heal and scale. Etcd is a key-value storing system
that contains all the information about the desired components
status. Consequently, it is possible to employ an approach named
”compare and swap”, where other core components always check
if the actual system status is the same as the one stored in the
etcd server.

– API server: identified as the main interface where both internal
components and users interact with each other.

– Scheduler: similarly to the other master node components, it
is mainly involved in the deployment and management of API
objects. It has the capability of identifying which is the best
node where objects should be deployed. Its efficiency is based on
cooperation with the etcd and API servers.

– Controller manager: despite the previously described compo-
nents seem to be capable of successfully managing a k8s cluster,
the control manager is the actual gearing that drives everything.
Thanks to a system of efficient control loops, the other compo-
nents know of to act whenever a status change occurs.

• Worker node: in these category of nodes the actual applications are
deployed. In the very rare case where the cluster is made up of a
single node, the master node also acts as a worker node. The following
components are necessary to execute the required applications and, at
the same time, to interact with the components of the master node:

– Kubelet: core component of a worker node, it is responsible for
joining the allocated resources of the node into the entire K8s
cluster. Furthermore, it is directly interfaced with the master node
through the API Server to communicate the health state of the
node objects. In case one of the pod containers fails, Kubelet will
act directly by redeploying it, without involving the API server.
In this way reliability is still guaranteed without increasing the
API server traffic.

– kube-proxy: it implements most of the networking related K8s
objects, such as the service object. Any established network ses-
sion between the pod and an external or internal node is filtered
based on specific network rules.

CHAPTER 3. VIRTUALISATION AND CONTAINERISATION 42

3.3.2 Use cases

During its development and evolution, the popularity of kubernetes has
grown exponentially within the mass market. This can be proven by looking
at the official K8s case studies page (https://kubernetes.io/case-studies/).
Here, different companies from totally different market sectors have success-
fully adopted kubernetes for their internal tasks and they have successfully
experienced a positive impact. For example, the European Organisation for
Nuclear Research (CERN) collects a huge amount of data on a daily basis.
Therefore, they require an efficient infrastructure that can satisfy their strict
storage and data processing needs. Currently, they rely on a hybrid solution
where cloud resources could offer additional computational resources during
exceptional peaks, such as during big conferences. In this case, Kubernetes
provided an elastic approach for autonomously increasing the required re-
sources in a few minutes, and at the same time less resources are required
for the virtual environment in comparison to the previous adopted solution.

A different reason motivated Adidas in their choice of adopting Kuber-
netes as their main environment for hosting e-commerce sites: many benefits
were found in increasing the efficiency of their continuous delivery model,
as with Kubernetes they could finally design their solution ”starting from
the developer point of view”. Release frequency went from 4-6 weeks to 3-4
times a day, opening new business opportunities and being more competitive
towards other e-commerce stakeholders.

Finally, another relevant example, especially in accordance with the anal-
ysis of this thesis, is the Nokia use case. By exploiting the K8s capabilities,
it was possible to develop infrastructure-agnostic behaviour software for any
component of the mobile network infrastructure. The scalability and reliabil-
ity of this solution have allowed Nokia to develop a very competitive solution
for 5G infrastructure deployments.

3.4 Summary

Virtualisation is now an essential paradigm in modern infrastructures. Most
of the daily life services rely on a specific virtualisation approach, as most se-
curity and performance requirements can be easily satisfied. Due to lightweight
virtualisation, a further step has been taken in terms of performance and
maintainability. Despite the evident advantages brought by virtualization,
there could be some cases where security between users can raise some con-
cerns. In the next chapter, a detailed analysis on a specific Kubernetes case
will be performed.

https://kubernetes.io/case-studies/

Chapter 4

Multi-Tenancy in Kubernetes

As cloud computing is one of the most adopted design paradigm in mod-
ern infrastructures, the term ”tenancy” has become relevant in this context.
This is mainly due to the nature of cloud computing, where the same physical
resources are shared between different stakeholders. In this chapter, a brief
analysis of what tenancy means in the kubernetes universe is performed. De-
tails about different grades of tenancy are presented along with the available
solutions, which are systematically evaluated in Chapter 5.

4.1 Hard and Soft Multi-Tenancy

In a 2018 paper [79], an Oracle engineer performed a detailed analysis on
the relevance of Multi-Tenancy in the current application development and
deployment scenario. In general, as explained by the author, a tenant is ba-
sically the customer of a cloud service provider. It shares any entity that can
be included in the Everything-as-a-Service (XaaS) model [80] with a wide set
of users. The service provider is in charge of developing a solution that can
guarantee a satisfactory level of isolation between tenants, depending on the
requirements of the use cases. This is enforced by the strict privacy and data
processing regulations that have been defined during the last years. Once the
definition of multi-tenancy was clearly explained, the author of [79] compares
the container-based virtualisation, previously described in Chapter 3, with
the novel serverless computing approach. This new approach completely ab-
stracts any detail related to the infrastructure from the actual application
deployment. Consequently, developers are no longer concerned with configur-
ing and deploying virtual environments with all the relative details. For this
reason, the final assumption of the author is that multi-tenancy is no more
relevant in the state-of-the-art solutions as the serverless approach implicitly

43

CHAPTER 4. MULTI-TENANCY IN KUBERNETES 44

includes already everything required to isolate different tenants.
Despite this analysis, after four years since its publication, it is possible to

observe that container-based computing is still very relevant and the corre-
sponding community has evolved very fast. As multi-tenancy is not implicit
in container-based virtualisation, as in serverless computing, additional effort
has been spent on the topic. Specifically, in the Kubernetes environment two
classes of multi-tenancy have been commonly identified by the community
[81] based on the security requirements:

• Soft Multi-Tenancy: as suggested by the adjective, in some scenarios
it is not necessary to enforce a high level of isolation between tenants.
This is a feasible solution when tenants trust each other, for example,
when all of them are part of the same organisation but are involved in
different projects. The main scope of this approach is to split available
resources between different project teams in order to avoid any con-
flict. Therefore, the approach does not focus on system security, as it
does not provide an efficient tool to prevent attacks between tenants.
In the end, soft multi-tenancy is only a support tool for any organisa-
tion that has multiple teams working on the same infrastructure. In a
K8s environment, soft multi-tenancy can be realised by exploiting the
available objects in the vanilla version of the container orchestrator.
Specifically, all objects related to resource control, such as namespaces,
RBAC rules, labels, and selectors, have enough capabilities to satisfy
the needs described previously.

• Hard Multi-Tenancy: the constraints that motivate infrastructure
designers to further increase the isolation between tenants are mainly
related to the deployment scenario. In most of the cloud-native so-
lutions, a third party organisation provides physical resources to its
users. Ideally, these users should not be aware of the presence of other
tenants, especially if there is no business relationship between them.
Therefore, according to current data processing regulations, such as
the European General Data Protection Regulation (GDPR) [82], any
information owned by a tenant must not be accessible or readable to
other tenants. Here, tenants do not trust each other and boundaries
must be enforced against any kind of security breach. Despite having
many API objects for role access and security, reaching an optimal level
of isolation between tenants in Kubernetes is often complex and is not
yet in compliance with requirements [83] [84].

It is clear that vanilla K8s has many limits in terms of tenant isolation, as
the available resource control objects do not provide the required level of

CHAPTER 4. MULTI-TENANCY IN KUBERNETES 45

protection from any data leak. Nevertheless, the following section is focused
on how the developer and engineer community is currently trying to overcome
these limitations.

4.2 Hard Multi-Tenancy Approaches

In March 2019, a group of developers, employed in different IT companies,
established a working group to increase Kubernetes multi-tenancy capabili-
ties (https://github.com/kubernetes-sigs/multi-tenancy). In these three
years, as additional developers have joined the working group, many ideas
and new projects related to the topic have been developed and published.
During KubeCon 2021, this working group has hosted a speech about the dif-
ference between the ”Multi-cluster” and ”Multi-Tenant” concepts in a Ku-
bernetes environment [85]. During the discussion, it was noted that these
two concepts are not mutually exclusive, as there may be some scenarios
where multi-tenancy is implemented by designing a multi-cluster system.
In the end, the participants of the talk agreed that the approach and the
corresponding level of isolation between tenants highly depend on the re-
quirements of the use case. On the official Kubernetes blog, the developers
of the working group have posted their main results [86]: depending on the
level of isolation between tenants, three main models have been identified,
which can be included in the XaaS paradigm. In the next subsections, a brief
description of each model will be provided.

4.2.1 Hierarchical namespaces Controller (HNC) with
strict RBAC rules - Namespaces-as-a-Service

As seen previously, vanilla kubernetes offers several API objects to logically
split the available resources of a single K8s cluster. This model is based on
assigning a namespace to each tenant from which it can declare any object.
On the other hand, to properly isolate any allocated resource within that
specific namespace, it is necessary to configure a set of control objects:

• Role based access control rules: each tenant must have access only
to a specific set of resources. Thus, it is necessary to deploy a set of
access rules to all the resources that are deployed inside the namespace.

• Network policies: a critical aspect of sharing resources is networking.
By default, any node in a K8s cluster can reach other nodes. This is
not acceptable when tenants do not trust each other. Thus, strict

https://github.com/kubernetes-sigs/multi-tenancy

CHAPTER 4. MULTI-TENANCY IN KUBERNETES 46

network policies are necessary to avoid the establishment of network
traffic between objects of different namespaces.

• Resource quotas: the performances of a service implemented by a
tenant should not be affected in anyway by other tenants. Conse-
quently, resource quotas must be enforced in order to guarantee that
only the allocated resources can be fairly exploited by the single tenant.

• Labels and selectors: finally labels and selectors can be exploited
to assign a worker node to a specific namespace. Having a dedicated
node for a specific tenant decreases the probability of an attack being
carried out within the resources allocated to a node.

Within the multi-tenancy working group, an extension of the namespace
objects has been developed: Hierarchical Namespace Controller (HNC).

Figure 4.1: Example of HNC deployment scenario in a single cluster - Cluster
point of view

CHAPTER 4. MULTI-TENANCY IN KUBERNETES 47

Figure 4.2: Example of HNC deployment scenario in a single cluster - Hier-
archical tree diagram

The main goal of this project is to simplify the management of names-
paces, especially when the complexity of the organisation cannot be handled
by default namespaces. Basically, thanks to this additional custom resource
definition (CRD), it is possible to create sub-namespaces within a names-
pace. This approach does not provide any additional security level for the
tenant, as it is still necessary to enforce the control objects described above.
This is related to the fact that tenants still share the same control plane and
API server, which may be considered as a possible attack vector. Further-
more, if each tenant tries to deploy cluster-wide resources, there may be race
conditions and conflicts between them. Still, in some cases where different
teams own a set of different projects, it may be useful to have a hierarchical
model to be exploited for organisational purposes.

4.2.2 Multi-cluster deployment - Cluster-as-a-service

The most straightforward and most secure model for implementing multi-
tenancy is, for sure, the cluster-as-a-service approach. Here, each tenant
owns a dedicated cluster, of which resources are not shared with any other
tenant. Consequently, complete isolation is guaranteed, since the API server
and control plane are not shared with anyone else. Additionally, any cluster-
wide resource has no impact on other clusters, which implies that each tenant
has more freedom to deploy specific cluster configurations. Although the
previous approach has significant advantages, especially in terms of isolation,
there could be some limitations that may be critical in some use cases. For
example, if the available resources are limited, it may not be possible to
deploy a complete cluster for each tenant. Additionally, the owner of the
actual physical infrastructure is in charge of managing a large number of

CHAPTER 4. MULTI-TENANCY IN KUBERNETES 48

clusters, which may require an additional support tool for the management of
them: projects like Cluster API (CAPI) or Kind provide an efficient interface
for managing group of clusters.

Figure 4.3: Example of Multi Cluster Deployment

4.2.3 Virtual Clusters / Cluster API Provider nested
(CAPN) - Control-Planes-as-a-Service

As seen previously, one of the limitations of the HNC approach is the fact
that tenants share the same control plane. Multi-tenancy working group
have developed a novel solution that tries to overcome this limit: cluster api
provider nested, also known as virtual cluster. A very similar project was es-
tablished by Loft Labs, an American development house focused on develop-
ing a kubernetes platform for deploying services. The main design differences
are extensively described in an issue thread on the GitHub project reposi-
tory: https://github.com/loft-sh/vcluster/issues/5. Since the Loft Labs
project has shown to have more support, documentation, and consequently
more production readiness, analysis will be performed on it.

Virtual Cluster is an extension of the Kubernetes namespace entity, as it
provides the capability of deploying a tenant-dedicated control plane inside
the namespace itself. It would be quite complicated to realise this design
with the help of CRDs. Consequently, further engineering was required: each
virtual cluster control plane has a dedicated API server, a data store, and,
finally, a controller manager. Consequently, the tenant can exploit the virtual

https://github.com/loft-sh/vcluster/issues/5

CHAPTER 4. MULTI-TENANCY IN KUBERNETES 49

control plane in the same way as he would have done with a traditional host,
for instance, by using Kubectl to make API requests to the virtual cluster
API server. In this way, the tenant is not directly interfaced with the host
API server but with a virtual instance of it.

Figure 4.4: Example of Virtual Cluster Deployment

The only core component that is not present in a virtual control plane is
the scheduler, which is replaced by an additional layer called a ”syncer”. This
additional component plays the crucial role of syncing the virtual cluster with
the actual host cluster through the host control plane. Thus, a virtual cluster
does not have any actual physical nodes allocated but is directly interfaced
with physical resources through the syncer. In conclusion, this approach
can be identified as a hybrid solution that tries to exploit the advantages of
both HNC and multi-cluster solutions: it is possible to have strong isolation
between tenants, similarly to what has been seen in the multi-cluster solution,
but, at the same time, the performances are kept on an optimal level as
everything is still deployed in a single Kubernetes cluster.

CHAPTER 4. MULTI-TENANCY IN KUBERNETES 50

4.3 Summary

Even though there are clear development paths, multi-tenancy implementa-
tion still lacks a reference approach, as each available solution has advantages
and drawbacks. Thus, the choice of the approach is highly related to the
specific scenario and thus uniquely depends on the actual requirements. In
the next sections, a performance evaluation of the analysed multi-tenancy
methods will be performed. Specifically, the evaluation will be based on the
context of a 5G small cell micro-operator local deployment.

Chapter 5

Evaluation of the solutions

In a scenario where multiple micro-operators are interested in deploying their
services in a local area, cloud-enabled small cells and the corresponding mo-
bile edge computing capabilities have the potential to offer many business
opportunities. The advantages are based on the fact that with this business
model it is possible to achieve an optimal level of QoS with restricted oper-
ational costs. Third-party mobile infrastructure providers can dynamically
allocate their available resources to each micro-operator. In the specific case
of the 5G-Essence project, the cloud-enabled small cell framework was suc-
cessfully tested in different business scenarios [50] [87] [88] [89]. Although
deploying services within the radio access network guarantees very low la-
tency, other requirements should not be underestimated. As it is very likely
that the micro-operators share the same physical resources, it is crucial to
isolate them from each other. Thus, in order to be compliant with the strict
security and privacy laws, it is necessary to take on account the previously
described hard multi-tenancy concept. Specifically, if Kubernetes is adopted
as the main container orchestration for deploying services, the available ap-
proaches can be potentially exploited to guarantee a satisfactory level of iso-
lation between tenants. However, since 5G applications have very demanding
requirements, it is also very important to assess the impact these approaches
have on the performance of the deployed service. Consequently, in this chap-
ter, three applications, one for each 5G use case (URLLC, eMBB, mMTC),
will be deployed simultaneously with each presented hard multi-tenancy ap-
proach. An evaluation of network performance will be developed for each
approach.

51

CHAPTER 5. EVALUATION OF THE SOLUTIONS 52

5.1 Test Environment

In one of the 5G Essence whitepapers [90], where it is possible to consult a
report on the design, the deployment and the testing of the system prototype,
an Intel Next Unit of Computing (NUC) was employed as computational
unit of the light data centre. This unit consists of a very small chassis,
which has been widely used in contexts where energy efficiency and space
limitations were critical metrics [91] [92]. Therefore, as in the 5G Essence
system, this data centre is usually located in an edge location and is directly
interfaced with small cells (Figure 2.5), Intel NUCs are a valid choice. For
this reason, the test environment, where the kubernetes hard multi-tenancy
approaches have been deployed, has very similar computational capabilities
in comparison with a medium-class Intel NUC. The environment is based on
an OpenStack virtual instance with the following characteristics:

• 8 VCPU based on the Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz;

• 16 GBs of RAM;

• A volume of 100 GBs mounted in the root directory of the OS;

• A custom image of Ubuntu LTS 20.04.

As it was necessary to deploy kubernetes clusters for every scenario analysed,
a cluster API tool was exploited: kind (https://kind.sigs.k8s.io/). This
support tool provides basic functionalities in order to deploy and manage K8s
clusters with the required configuration of nodes and parameters. Once the
cluster was set up, the application deployment was handled with the help of
Helm (https://helm.sh/). This additional tool increases the portability of
Kubernetes-based applications, as it is possible to install a specific applica-
tion very easily with just one command. Each application relies on a specific
”Chart”, which is a collection of yaml files. Within these files, it is possible
to find the application deployment template with the required configuration
and K8s object API definitions. Each hard multi-tenancy approach was de-
ployed individually by launching a bash script that includes all the necessary
commands. In terms of networking, the OpenStack host machine is located
in the same premises as the user equipment from which applications have
been tested. Consequently, the average latency experienced while pinging
the virtual instance of the user equipment was 3 ms. This increases the re-
alism of the test environment, as the experienced latency is very similar to
that usually present in a local 5G application deployments.

https://kind.sigs.k8s.io/
https://helm.sh/

CHAPTER 5. EVALUATION OF THE SOLUTIONS 53

5.2 Tested applications

The choice of applications for the evaluation of hard multi-tenancy approaches
was based on their characteristics. Each of them should represent a specific
5G use case class, which means that only a subset of metrics are critical for
quality of service.

5.2.1 Janus WebRTC Gateway - eMBB use case

For the first class of application, enhanced multi broadband, it was necessary
to pick an application that, as stated in [93], should exploit at the same time
a very high throughput rate and low latency. Thus, as described in a related
state-of-the-art overview [40], augmented reality (AR) is one of the use cases
that can be identified as the eMBB case. Specifically, a very common protocol
was identified in the context of AR multimedia deployments: WebRTC. This
protocol is defined as a set of standards that enable real-time communication
between web browsers. The success of this protocol is based on the fact
that it is very simple to develop any kind of web application, as it can be
directly enabled with the support of HTML5 and JavaScript, which is the
modern standard for web developers. For these reasons, in the context of
the evaluation activity of this thesis, an open source WebRTC gateway was
adopted for the tests: Janus WebRTC. Developed by the Italian softwer house
Meetecho, it consists of a general purpose WebRTC server, where each feature
is based on plugins. Usually, the WebRTC protocol establishes a peer-to-
peer connection with two browsers, and audio/video transmission is directly
exchanged and managed by them. However, in the case of Janus WebRTC
gateway, since it can also act as a WebRTC media server, in addition to
signalling management, it is also in charge of processing the media data
according to the plugin configuration. For the purposes of this thesis, the
”VideoRoom plugin” was used, where both audio and video streams are
delivered from the streamer browser to the viewer browser via the Janus
WebRTC Gateway server. In the official Docker hub image register, a Janus
Docker image is available. From this image, it was possible to deploy two
Kubernetes pods that could run Janus containers. In this way, it was possible
to simulate a high availability configuration where the server is replicated in
case one of them fails. In addition to the WebRTC gateway servers, an nginx
load balancer was deployed to redirect traffic to the healthy node.

CHAPTER 5. EVALUATION OF THE SOLUTIONS 54

5.2.2 EMQX IoT Broker - mMTC use case

The second class of applications is massive machine-type communications
(mMTC), characterised by an extreme capacity to manage a large number
of connected devices within a network. These devices usually communicate
with each other by sending very short packets, which is the main communi-
cation scheme that can be found in IoT and machine-to-machine scenarios.
Therefore, for this class of applications, an IoT broker was identified as a
valid choice.

One of the most widely adopted protocols for this purpose is Message
Queue Telemetry Transport (MQTT), which is based on the publish-subscribe
communication paradigm [94]. The MQTT Broker is a standalone server that
plays the crucial role of delivering any message sent to the target subscription
topic. All devices subscribed to that specific topic will receive the message.
The importance of the MQTT Broker is mainly related to its tasks: man-
aging a large number of devices with their corresponding connection states,
and the produced traffic must be performed optimally in order to deploy an
efficient IoT network. In the case of 5G Small Cell deployments, this new
class of antennas has been identified as valid enablers for this class of appli-
cations, as they are expected to provide additional device capacity [95] [96].
Among the available solutions, the EMQX Community Edition was chosen
for this use case. It is defined as a cloud-native and open-source solution
as an helm chart for deploying the MQTT Broker server in a K8s cluster is
available. Similarly to what was done for the eMBB case, a high-availability
configuration was deployed, which consisted of two EMQX broker servers
and a nginx load balancer.

5.2.3 QuakeJS - URLLC use case

The last case analysed is ultra-reliable low-latency communication, where
latency and reliability are the most critical metrics for evaluating the per-
formance of the service. Among the applications that are part of this class,
online gaming has been identified as a latency-critical application. The user
experience is highly affected by the lag caused by latency, which can be dra-
matically reduced by deploying gaming servers within an edge location [97]
[98]. Thus, a portable web browser game has been identified as a valid can-
didate for this class: quakeJS. This porting of one of the most famous first
person shooter gamer can be deployed on a Kubernetes cluster, as, also in this
case, an helm chart is available for easing the deployment. Two containers
are deployed within the target point: one delivers the required game files to
the user, while the second hosts the actual game server for the online session.

CHAPTER 5. EVALUATION OF THE SOLUTIONS 55

Consequently, if the user establishes a connection for the first time with the
exposed endpoint, the required content of the game will be downloaded, and
then the user will be able to join the server game and start playing.

5.3 Deployment configurations

Once the target applications were identified, it was necessary to configure
each scenario accordingly. Starting from the most straightforward, the multi-
cluster approach is based on three standalone clusters (Figure.5.1), one for
each deployed application. Thanks to the Cluster API Kind, it was possible
to deploy three clusters with different node configurations within a single
script. In the cases of EMQX and Janus deployments, in order to guarantee
high availability, 4 worker nodes and 1 control plane were deployed for each
application. In this way, replicas of the same service could be deployed on
different dedicated nodes. However, the QuakeJS deployment required only
two worker nodes and a single master node, as no high availability scenario
was deployed. Each cluster provides a dedicated control plane and monitor-
ing platform for tenants, which provides an optimal level of isolation between
tenants, as they do not share any component of the cluster. With the second
approach, the hierarchical namespace controller, a higher degree of complex-
ity can be seen in the deployment configuration (Figure.5.2). Since Janus
and QuakeJS applications can be grouped under the multimedia applications
class, a specific namespace was deployed for this class of services, which is
owned and managed by a fictional multimedia operator. Each application in
this category has its own sub-namespace with the corresponding resources.
Similarly, the EMQX Broker service has been deployed under the IoT Op-
erator’s namespace. Since it was necessary to isolate the nodes allocated for
each application, in addition to the namespace mechanism and the RBAC
rules, each cluster worker node was labelled with a specific application label.
Therefore, each API object was deployed to a specific node according to the
node selector value. In this case, tenants do not share worker nodes but
interact with the cluster from the same Server API.

The last approach is based on an even more complex configuration, since
an additional layer, the syncer, interfaces the virtual cluster objects with
the one actually deployed in the K8s cluster host (Figure.5.3). Similarly
to the first approach, each application has its own dedicated virtual cluster.
Since the syncer already provides an efficient virtualisation of the actual host
Kubernetes resources, it is not necessary to instruct directly the scheduler to
assign API objects to a specific node.

Thus, it is possible to proceed with the same deployment approach adopted

CHAPTER 5. EVALUATION OF THE SOLUTIONS 56

in the multi-cluster scenario. Despite the fact that this approach is based
on a single K8s cluster, the tenants do not share the same control plane.
Consequently, it is possible to achieve the required level of isolation between
tenants, even if all of their resources are deployed in a single cluster.

Figure 5.1: Multi Cluster deployment configuration diagram

CHAPTER 5. EVALUATION OF THE SOLUTIONS 57

Figure 5.2: Hierarchical Name Space Controller deployment configuration
diagram

CHAPTER 5. EVALUATION OF THE SOLUTIONS 58

Figure 5.3: Virtual cluster deployment configuration diagram

5.4 Methodology

After the environment was properly set up, it was possible to proceed with the
extraction of the required performance data from each application. The main
goal is to compare how the selected services perform within each hard multi-
tenancy approach. Since the chosen applications have different characteristics

CHAPTER 5. EVALUATION OF THE SOLUTIONS 59

and a very different nature, it was relevant to select a specific set of metrics
for each of them.

5.4.1 Metrics definition

The main reference point in terms of standards for mobile networks is 3GPP.
Whenever new technology standards are developed, performance require-
ments are defined. Therefore, hardware and software producers can develop
their products on the basis of these common requirements. 3GPP techni-
cal specification documents are really specific, as they cover many use cases
providing all the necessary details. As the environment test does not in-
clude a complete 5G infrastructure, it is not feasible to compare the actual
requirements values with those extracted during the testing phase of this
thesis. Thus, an evaluation on how much the hard multi-tenancy impacts
the performances of the applications was performed.

• In the specific case of Janus WebRTC gateway deployment, it is
quite complex to target a specific set of metrics, as the WebRTC pro-
tocol can potentially be adopted for many scenarios [99]. However, in
the context of video and audio transmissions, among the key parame-
ters defined by 3GPP [100], there are two crucial metrics:

– Round-trip time (RTT) - milliseconds (ms): based on the
WebRTC API documentation [101], the observed metric ”curren-
tRoundTripTime” is the time required by the Session Traversal
Utilities for NAT protocol (STUN) to discover the path charac-
teristics between the two devices. This means that whenever a
session is established between two devices, the STUN protocol
evaluates which path is the most optimal based on the available
ones. In the specific case, as the Janus WebRTC gateway acts as a
WebRTC Media Server, the observed round-trip time is based on
the STUN behaviour between the Janus WebRTC Gateway and
the viewer/streamer.

– Throughput - bits per second (bps): in general multimedia
content requires extremely high levels of throughput. In the case
of conference calls, audio and video quality is crucial in order to
have an optimal level of QoE between users and avoid disruptions
in terms of communication efficiency.

• EMQX IoT Broker is involved in a very different scenario. Since
the main objective of this class of applications is to provide efficient

CHAPTER 5. EVALUATION OF THE SOLUTIONS 60

connectivity to a substantial number of devices, 3GPP states that the
usual parameters, such as the round trip time, could be affected by
some influence quantities [102].

– Message delivery time - milliseconds (ms), based on the
number of connected devices: message delivery time is the
the required by the MQTT broker to deliver a message from a
publisher to a subscriber. Since in mMTC use cases, the number
of connected devices is a critical parameter, an analysis of how
this metric is affected was performed.

– Message throughput - messages per second (message/s),
based on the number of connected devices: this metric
shows how many messages the MQTT Broker is capable of han-
dling in a specific time interval. Similarly to the previous metric
analysed, the number of connected devices was identified as an
influence quantity.

• In interactive applications, such as QuakeJS, the user experience is
mainly affected by how the system responds to any user input [103]
[104]. Furthermore, when more than one user interacts with a virtual
3D environment, it is also important to understand how quickly the
input of other players is received by the user. Thus, also in this case,
3GPP defines characteristic parameters that are influenced by other
quantities [102].

– Round-trip time (RTT) - milliseconds (ms), based on the
number of connected users, also known as ”Ping” in this spe-
cific context, is crucial in terms of QoE. If this value is too high,
the player is more likely to experience a very poor gaming ses-
sion. Since this may linked to the quantity of users connected to
the gaming servers, it would be interesting to see if this value is
affected by this parameter, in addition to the chosen hard multi-
tenancy approach itself.

5.4.2 Testing tools and methods

Each chosen application is characterised by its specific transmission protocol
and communication approach. Therefore, it was necessary to extract the
target metrics using the dedicated tools for each application. Additionally,
to extract meaningful data, a specific testing strategy was defined for each
case.

CHAPTER 5. EVALUATION OF THE SOLUTIONS 61

Starting from the Janus WebRTC gateway case, two devices were in-
volved during the test: one was streaming its own screen content, while the
second was receiving and viewing the received payload. The two devices were
connected to the same local network and consequently experienced the same
RTT when reaching the Janus WebRTC gateway endpoint. For each hard
multi-tenancy deployment approach, three streaming sessions of ten minutes
were performed. The quality of the streaming content delivered during the
testing session is based on the current average quality experienced by most
of the available mobile handheld devices: 1920x1080 and 30 frames per sec-
ond (FPS). Although 5G can very easily handle UHD video streaming [105]
with a 4K or 8K resolution, in this testing environment it was not possible
to deliver higher quality content due to bandwidth limitations of the net-
work. The required data were collected from the built-in WebRTC Developer
Tools available on any Chrome-based browser, available at ”edge://webrtc-
internals” or ”chrome://webrtc-internals”. This integrated tool relies on the
WebRTC API request ”getUserMedia()”, which, in addition to the actual
video and audio payload, also returns a set of useful streaming metrics.

EMQX IoT Broker was tested using two open source benchmark tools.
The first one, called the ”MQTT benchmarking tool”, is developed by Alexandr
Krylovskiy (https://github.com/krylovsk/mqtt-benchmark) and consists of
a simple tool that tests MQTT broker capabilities. With this tool, it is possi-
ble to generate virtual clients and send messages with them through the tar-
get MQTT broker. When sending messages, the tool collects data about mes-
sage delivery time and message throughput. In the case of the thesis test ac-
tivity, only the message delivery time data was extracted with this tool. The
second tool that was used for the evaluation is the ”MQTT Stresser”, which
is developed by inovex GmbH (https://github.com/inovex/mqtt-stresser).
Likewise, the first tool, virtual clients can be generated in order to stress-
test the target MQTT broker. However, with this tool, detailed data about
the message is collected. Consequently, the evaluation of the deployment
approaches was based on the message throughput data collected with the
support of this tool. As it was necessary to understand if the two metrics
were affected by the number of connected devices to the MQTT Broker, dif-
ferent scenarios were tested: 10, 25 and 50 devices connected to the broker.
The messages were characterised by a Quality of Service (QoS) equal to 1,
which in the context of the MQTT protocol means that for every message
sent, the publisher must receive an acknowledgement once the MQTT broker
completes the delivery.

For the last case, QuakeJS, the approach was similar to the one adopted
previously with the MQTT broker: for each deployment approach, different
gaming sessions were performed with different amount of users connected to

https://github.com/krylovsk/mqtt-benchmark
https://github.com/inovex/mqtt-stresser

CHAPTER 5. EVALUATION OF THE SOLUTIONS 62

the game server at the same time. Specifically, scenarios were tested from
a single user to three connected users at the same time. The required data
were extracted from the built-in command console of the QuakeJS client.

Once all raw data was available, plots were created using R, which is a
very common programming language, specifically used for data analysis.

5.5 Results

In the research community, no comparison is available between the presented
approaches in terms of network performance. However, in the master thesis
[84] and in the conference paper [12], in a scenario where it is necessary to
provide hard multi-tenancy within a Kubernetes Cluster, network isolation
approaches have been tested in terms of security and performance. Specif-
ically, in [84] a detailed evaluation was performed on a solution based on
multiple namespaces, deployed on the same cluster and isolated with a set
of RBAC rules and a sidecar container that applies iptables rules to the
tenant’s network namespace. In [12], hard multi-tenancy was enforced by
exploiting network policies and container network interface (CNI) plugins.
In both cases, the ability to isolate between tenants did not result in signifi-
cant overhead in network performance. On the other hand, it is reasonable to
expect the tested approaches to behave differently. For instance, it is possible
to hypothesise that the virtual cluster approach may suffer some overhead,
since there is an additional virtualisation layer between the virtual clusters
and the host physical cluster.

5.5.1 Janus WebRTC Gateway - eMBB use case

Once the three WebRTC streaming sessions were performed, the data avail-
able in the Appendix Sections A.1.1 and A.1.2, respectively, throughput and
RTT related data, were extracted using the Chrome built-in WebRTC anal-
ysis tool.

Starting from the round-trip time, in WebRTC based applications this
value is mainly affected by the distance between the devices that are ex-
changing media. However, as previously described, the media payload is
actually sent to the Janus WebRTC Gateway, which acts as a WebRTC Me-
dia Server. Thus, in this case, the deployed service in the Kubernetes Cluster
is also involved in forwarding media content from the streamer to the viewer.
Consequently, this means that the collected data are based on the distance
between the cluster, where the Janus WebRTC gateway is deployed, and the
connected users. From Figure.5.4, it is possible to observe that in most cases,

CHAPTER 5. EVALUATION OF THE SOLUTIONS 63

regardless of the approach used, the streamer and viewer round-trip time is
really similar to the one experienced while pinging the host where the Kuber-
netes cluster is deployed (3 ms). Furthermore, it is possible to observe that
during the multi cluster approach testing, a less stable RTT was experienced
in specific testing sessions. As explained during the metrics definition, this
is not related directly with the deployment approach but with the current
network status. This is confirmed by the fact that other testing sessions did
not show unstable RTT values, even if a multi cluster approach was adopted.

Figure 5.4: Experienced RTT distribution from the streamer and viewer
point of view

CHAPTER 5. EVALUATION OF THE SOLUTIONS 64

In terms of throughput, the analysis focused on the upload bitrate of the
streamer and the download bitrate of the viewer, which were both based on
streaming media content. From this analysis, it was possible to understand
whether the available bandwidth was optimally exploited by both users and
if the Janus WebRTC gateway caused some throughput loss.

Figure 5.5: Experienced Throughput distribution from the streamer and
viewer point of view

From Figure.5.5, it is possible to observe the experienced throughput of
both the streamer and the viewer during the streaming session, specifically

CHAPTER 5. EVALUATION OF THE SOLUTIONS 65

the streamer upload throughput and the viewer download throughput. Janus
VideoRoom Plugin was configured to allocate a maximum bandwidth of 4
Mbits/s for any device connected to the Janus WebRTC Gateway. This was
sufficient to stream video content with the quality characteristics described
above. In the WebRTC protocol, the bandwidth is managed by exploiting the
capabilities of a mechanism known as bandwidth estimation (BWE) [106],
which tries to anticipate the behaviour of the network based on the heuristic
model. The bandwidth is then allocated accordingly. From the available
data of the streaming traffic, it is possible to see that the streaming sessions
did not experience any difference in performance, regardless of the adopted
deployment approach. On average, a throughput of 2,65 Mbits/s was expe-
rienced in every case. Overall stability was also confirmed by the standard
deviation of the collected values, which is between 0.15 to 0.20 Mbits/s.

By looking at both RTT and throughput collected data, it is finally possi-
ble to observe that the experienced spikes in the multi cluster testing sessions
did not have any impact on the experienced throughput. Consequently, the
quality of the content delivered was not affected.

5.5.2 EMQX IoT Broker - mMTC use case

Thanks to the previously described MQTT broker benchmark tools, it was
possible to extract the data available in the Appendix Sections A.2.1 and
A.2.2, which in this case respectively refer to the experienced Message De-
livery Time and Message Throughput.

Figure 5.6: Average message delivery time

CHAPTER 5. EVALUATION OF THE SOLUTIONS 66

In Figure.5.6, it is possible to observe how the message delivery time is
on average related to the number of devices connected to the MQTT broker.
Based on the assumption that a single MQTT Broker server starts to suffer
performance degradation after a certain amount of simultaneous connections
[107] [108], the delivery time is directly proportional to the number of con-
nected devices, also in the case of this thesis testing activity. This is related
to the fact that the MQTT broker has to manage more connections in the
same instant, which obviously has an impact on the time necessary to de-
liver a message from the publisher to the subscribers. Despite the fact that
a similar behaviour was observed with all the approaches, in terms of abso-
lute values, the HNC and Multi-Cluster approaches experienced a lower level
of delivery time compared to the Virtual Cluster approach: with the same
number of connected devices, the Virtual Cluster approach experienced about
25-30% of higher message delivery time compared to the other approaches.
Specifically, even with a low number of devices, while multi cluster and HNC
experienced a delivery time below 6 ms, the virtual cluster approach resulted
in a delivery time of nearly 7.5 ms. With the highest number of connected
devices, the same differences where experienced as the broker deployed with
multi cluster or HNC was in average delivering messages in 12.5ms, mean-
while with virtual cluster in 16.25ms. However, since the standard deviation
in all deployment cases on average was equal to 0.75 ms, overall stability is
experienced, regardless of the adopted approach.

Table 5.1: Publishing message throughput (Messages/s)
Number devices HNC Multi-Cluster VCluster

10 300 209 166
25 263 222 169
50 258 222 169
100 256 221 167

Table 5.2: Receiving message throughput (Messages/s)
Number devices HNC Multi-Cluster VCluster

10 2802 2696 2281
25 2790 2578 2139
50 2613 2871 2171
100 2851 2752 2253

If the delivery time of the message was affected by the number of con-
nected devices, the message throughput was not affected. This is related to

CHAPTER 5. EVALUATION OF THE SOLUTIONS 67

the fact that the broker tries to exploit the maximum available bandwidth
of messages sent in an instant, regardless of the input number of messages
and connected devices when launching a testing session with the benchmark
tools. However, since the main objective is to understand whether the de-
ployment approach affects behaviour, in Tables 5.1 and 5.2, the experienced
message throughput of both the publisher and subscribers is compared. In
the case of the published messages throughput in the case of HNC and Multi
Cluster approach an average of 235-240 messages per second was experi-
enced, meanwhile, in the case of Virtual Clusters, 167 messages per second
was the average delivery rate. Similarly, for the received message through-
put, HNC and Multi Cluster experienced an average of 2650 messages per
second, while with Virtual Clusters 2200 messages per second. In both cases,
the message throughput experienced by the virtual cluster approach is about
25-30% lower than the other approaches. Consequently, it is possible to ob-
serve that the same behaviour experienced during the message delivery time
analysis was also experienced with the message throughput analysis, as the
magnitude difference between the approaches is similar.

To better understand the experienced behaviour, packet traffic was cap-
tured using TShark on the cluster host. Specifically, two sessions of message
delivery between 10 devices were further analysed: the first session was per-
formed within a cluster based on the multi-cluster approach, meanwhile, the
second session was performed within a virtual cluster deployment. Once the
traffic was captured, WireShark was exploited to analyse the behaviour of
the packets and their corresponding flows. Thanks to the filtering feature
provided by the WireShark GUI, it was possible to perform an analysis only
on the MQTT packets. From the ”Protocol Hierarchy Statistics” it is possi-
ble to observe that in both cases most of the traffic, about 60% is made of
TCP packets, since the MQTT protocol is based on that transport protocol.
Within these TCP packets, 50% of them encapsulated the MQTT protocol
packets. On the TCP level, window size, segment length, and round-trip
time did not show any difference between the two message delivery sessions.
Finally, in both cases, 70% of the packets had 40 to 79 bytes length. By
looking at the packet traffic analysis, it is possible to observe that the trans-
port protocol is not the root of the different behaviour of virtual cluster
approach. Since the deployed application is the same for all approaches,
the root cause of the observed behaviour can only be traced to the internal
cluster pod-service communication.

CHAPTER 5. EVALUATION OF THE SOLUTIONS 68

5.5.3 QuakeJS - URLLC use case

In the last analysed application class, the traffic involved in the synchroni-
sation of the game between users is based on the User Datagram Protocol
(UDP). UDP is characterised by fast transmission as, in comparison to the
TCP protocol, there are no acknowledgement or retransmission mechanisms.
Consequently, packet management may be characterised by duplicated, out
of order, or missing packets. Even though UDP is not reliable, it fits the
analysed use case, since QuakeJS is a very fast paced game. However, as
seen previously [109], in case of a session characterised by a packet of differ-
ent size, the UDP protocol may result in a higher RTT compared to TCP.
By looking at the Appendix Section A.3.1, the same phenomenon was also
encountered during the testing session of this application. Based on the re-
sults available in the Appendix Section A.3.1, in Figure.5.7 it is possible to
see that on average a higher latency was experienced compared to the one
observed during the Janus WebRTC tests.

Figure 5.7: Average RTT based on number of connected players

Specifically, in the scenario where only one user was connected to the
server, all approaches experienced an RTT of 7 ms on average. By adding
more users to the server, in all three approaches, the RTT value fluctu-
ated between 10 and 40 ms. Higher values were reached when 3 players were
simultaneously connected to the server. As explained in a fan base documen-
tation [110], the QuakeJS network protocol is based mainly on the actions
performed by users, which means that the characteristic of the traffic is very
dynamic and highly dependent on the characteristics of each user connec-

CHAPTER 5. EVALUATION OF THE SOLUTIONS 69

tion and hardware. Thus, at least for this case, it is possible to conclude
that the adopted Kubernetes multi-tenancy approach had no influence on
the performance of the online gaming sessions.

5.6 Evaluation

Since the traffic analysis did not show any obvious differences, the degrada-
tion experienced while testing the EMQX broker, within the Virtual Cluster
deployment approach, may be explained by looking at the architecture of the
approach itself.

Figure 5.8: Virtual Cluster Networking management [111]

In the case of the VCluster approach, as shown in Figure.5.8, a standalone
deployment of the DNS service is placed in the virtual cluster. Consequently,
the syncer interfaces the DNS service deployed in the virtual cluster with the
one deployed in the host cluster from which the actual traffic is handled. In
addition to this, by default, virtual resources like services, endpoints, and the
nodes themselves are synced with the corresponding one in the actual host
cluster. Consequently, pod-to-service and pod-to-pod traffic is also synced
between virtual cluster and host cluster resources, as stated in the official
Virtual Cluster documentation [111]. For these reasons, in some cases, addi-
tional overhead may be experienced in comparison to the other approaches.

CHAPTER 5. EVALUATION OF THE SOLUTIONS 70

Still, to predict which cases may be affected similarly, it may be useful to
analyse which transport protocol is exploited by the tested applications. In
the case of the JanusWebRTC gateway, the peer-to-peer session is established
by the Interactive Connectivty Establishment (ICE) protocol, which relies
on the UDP transport protocol. UDP is used not only for the actual media
delivery but also for the signalling between peers. Similarly, as explained
previously, QuakeJS is based on the Quake 3 network protocol. Snapshots
of the current state of the game session are exchanged very quickly among
connected users. This application protocol is based on the UDP transport
protocol, since it is necessary to have a very fast exchange of packets even
if high packet loss may be experienced. On the other hand, the MQTT
protocol relies on the TCP transport protocol, as it is necessary to have
a packet loss detection and recovery mechanism, especially when the QoS
message delivery is greater than one. Based on the very different nature of
the three use cases, it is very complex to make clear assumptions on which
hard multi-tenancy approach is absolute best choice. In a scenario where
the UDP protocol was exploited as the main transport protocol, like in the
eMBB and URLLC cases, no differences were experienced between the three
analysed approaches in terms of network performance. Meanwhile, in the
case where the TCP protocol was in charge of packet transport, as seen
in the mMTC case, the virtual cluster resulted in a worse overall network
performance compared to the other two approaches, which shared similar
behaviour. In the end, it is clear that application and transport protocol
have an important impact on network performance, since there are scenarios
where the network performance is highly affected by the application itself
and the selected approach has a limited or no influence on the actual user
experience.

Chapter 6

Discussion

Test and evaluation activity was useful to understand how the hard multi-
tenancy approach behaves while adopted for the deployment of real use-case
applications. From the collected results, it is clear that hard multi-tenancy
approaches network performance highly depends on the nature of the de-
ployed application. Each approach responded in a different way, depending
on the specific behaviour of the application and the corresponding traffic
characteristics. Specifically, factors like application and transport protocol,
available resources, cluster configuration, user equipment, and network sta-
tus all have a clear impact on the analysed test sessions. Still, interesting
results were observed while testing a specific class of application, which led
to thinking that in some cases the choice of a specific hard multi-tenancy
approach may have an impact on the network performance. For these rea-
sons, it is quite complex to evaluate which is the best solution solely on this
aspect, as within a local micro-operator service deployment, each tenant may
deploy applications that are very different in terms of network behaviour or
requirements. Furthermore, other aspects like security and resource usage of
each deployment method may have a higher priority from an infrastructure
provider point of view, as, in many cases, they have to comply with very
strict requirements in terms of available hardware or security policies.

Hence, in a design evaluation, network performances could have high
priority, only if in a specific local deployment area, all the micro-operators
deploy applications of the same class, or at least with similar characteristics
and requirements.

71

CHAPTER 6. DISCUSSION 72

6.1 Future work

Since this thesis is focused on the analysis of network performance, it would
be interesting in the future to also evaluate the resource usage performance
and the isolation degree of each hard multi-tenancy approach.

Evaluating the impact of each approach in terms of CPU, memory, and
I/O operations is very relevant, as in 5G local edge deployments, hardware
availability may have some limitations or constraints. This is also driven
by the fact that the computational units deployed within the RAN cannot
physically occupy a large amount of space. Furthermore, during the test
activity of this thesis, different hardware resource usage rates were observed
while testing each approach. This suggests that it is highly possible that
each approach is characterised by different hardware usage.

As discussed previously, security and isolation are very crucial aspects of
an hard multi-tenancy scenario, since tenants must be completely isolated
between each other. As a starting point for a possible security evaluation ac-
tivity, the previously presented working group, focused on developing multi-
tenancy features for Kubernetes, is currently involved in the development of
a useful tool that can evaluate the degree of isolation between cluster ten-
ants: ”Multi-Tenancy” benchmarks (https://github.com/kubernetes-sigs/
multi-tenancy/tree/master/benchmarks).

As this work is focused on the performance evaluation of a local Ku-
bernetes deployment hosted within a virtual OpenStack instance, another
relevant research path could be testing multi-tenancy approaches also within
the actual 5G Infrastructure. Specifically, it would be interesting to verify if
multi-tenancy approaches could be exploited within the Open Source NFV
Management and Orchestration (MANO) platform. Finally, as during the
Janus WebRTC tests it was not possible to stream multimedia content with
a higher resolution than 1920x1080 due to bandwidth limitation, it would be
interesting to see how the hard multi-tenancy deployment approaches behave
with higher quality multimedia deliveries.

6.2 Conclusion

5G local edge deployments within small cells are characterised by a large
amount of requirements that cover different aspects of the system. Since
security and isolation between tenants is mandatory in order to comply with
the strict policy regulations, hard multi-tenancy mechanisms are highly nec-
essary in order to guarantee the success of the solution in the mass market.
However, since there are different classes of applications, it is necessary to

https://github.com/kubernetes-sigs/multi-tenancy/tree/master/benchmarks
https://github.com/kubernetes-sigs/multi-tenancy/tree/master/benchmarks

CHAPTER 6. DISCUSSION 73

carefully evaluate the choice, as the performance of each approach highly
depends on the type of application. Hence, based on the state-of-the-art,
there is no standard or straightforward rule that can drive the infrastructure
provided to perform a specific choice. In the end, the overall scenario is still
complex, and detailed evaluation must be performed whenever it is necessary
to design and deliver a micro-operator service platform.

References

[1] T. Dunnewijk and S. Hultén, “A brief history of mobile communica-
tion in europe”, Telematics and Informatics, vol. 24, no. 3, pp. 164–
179, 2007, issn: 0736-5853. doi: 10.1016/j.tele.2007.01.013.

[2] S. O’Dea, “4G and 5G services usage in the United Kingdom (UK)
in 2021”, 2021. Available at https://www.statista.com/statistics/
387245/market-share-of-4g-services-in-the-uk/#statisticContainer.

[3] Global System for Mobile Communications Association (GSMA), “The
Mobile Economy 2021”, 2021. Available at https://www.gsma.com/

mobileeconomy/wp-content/uploads/2021/07/GSMA_MobileEconomy2021_

3.pdf.

[4] S. Sharma, M. Deivakani, K. Reddy-Srinivasa, A. Gnanasekar, and
A. Gira, “Key enabling technologies of 5g wireless mobile communi-
cation”, Journal of Physics: Conference Series, vol. 1817, p. 012 003,
Mar. 2021. doi: 10.1088/1742-6596/1817/1/012003.

[5] O. Arouk and N. Nikaein, “Kube5g: A cloud-native 5g service plat-
form”, in GLOBECOM 2020 - 2020 IEEE Global Communications
Conference, 2020, pp. 1–6. doi: 10.1109/GLOBECOM42002.2020.9348073.

[6] F. A. Wiranata, W. Shalannanda, R. Mulyawan, and T. Adiono, “Au-
tomation of virtualized 5g infrastructure using mosaic 5g operator over
kubernetes supporting network slicing”, in 2020 14th International
Conference on Telecommunication Systems, Services, and Applica-
tions (TSSA), 2020, pp. 1–5. doi: 10.1109/TSSA51342.2020.9310895.

[7] E. J. Oughton and Z. Frias, “The cost, coverage and rollout impli-
cations of 5g infrastructure in britain”, Telecommunications Policy,
vol. 42, no. 8, pp. 636–652, 2018, issn: 0308-5961. doi: 10.1016/j.
telpol.2017.07.009.

74

https://doi.org/10.1016/j.tele.2007.01.013
https://www.statista.com/statistics/387245/market-share-of-4g-services-in-the-uk/#statisticContainer
https://www.statista.com/statistics/387245/market-share-of-4g-services-in-the-uk/#statisticContainer
https://www.gsma.com/mobileeconomy/wp-content/uploads/2021/07/GSMA_MobileEconomy2021_3.pdf
https://www.gsma.com/mobileeconomy/wp-content/uploads/2021/07/GSMA_MobileEconomy2021_3.pdf
https://www.gsma.com/mobileeconomy/wp-content/uploads/2021/07/GSMA_MobileEconomy2021_3.pdf
https://doi.org/10.1088/1742-6596/1817/1/012003
https://doi.org/10.1109/GLOBECOM42002.2020.9348073
https://doi.org/10.1109/TSSA51342.2020.9310895
https://doi.org/10.1016/j.telpol.2017.07.009
https://doi.org/10.1016/j.telpol.2017.07.009

REFERENCES 75

[8] S. Kumagai, T. Kobayashi, T. Oyama, et al., “Experimental trials
of 5g ultra high-density distributed antenna systems”, in 2019 IEEE
90th Vehicular Technology Conference (VTC2019-Fall), 2019, pp. 1–
5. doi: 10.1109/VTCFall.2019.8891604.

[9] J. B. Moreira, H. Mamede, V. Pereira, and B. Sousa, “Next generation
of microservices for the 5g service-based architecture”, International
Journal of Network Management, vol. 30, no. 6, 2020. doi: 10.1002/
nem.2132.

[10] Cloud native computing foundation - CNCF, “Annual survey 2021”,
2021. Available at https://www.cncf.io/wp-content/uploads/2022/

02/CNCF-AR_FINAL-edits-15.2.21.pdf.

[11] P. Ahokangas, M. Matinmikko-Blue, S. Yrjola, et al., “Business models
for local 5g micro operators”, in 2018 IEEE International Symposium
on Dynamic Spectrum Access Networks (DySPAN), 2018, pp. 1–8.
doi: 10.1109/DySPAN.2018.8610462.

[12] G. Budigiri, C. Baumann, J. T. Mühlberg, E. Truyen, and W. Joosen,
“Network policies in kubernetes: Performance evaluation and security
analysis”, in 2021 Joint European Conference on Networks and Com-
munications 6G Summit (EuCNC/6G Summit), 2021, pp. 407–412.
doi: 10.1109/EuCNC/6GSummit51104.2021.9482526.

[13] R. Janssen, “Categorizing container escape methodologies in multi-
tenant environments”, University of Amsterdam, MSc Security and
Network Engineering Research Project, 2018. Available at https://

rp.os3.nl/2017-2018/p80/report.pdf.

[14] C. Bussler, “Multi-tenancy: A concept whose time has come and (al-
most) gone”, in Proceedings of the 14th International Conference on
Web Information Systems and Technologies, WEBIST 2018, Seville,
Spain, September 18-20, 2018, SciTePress, 2018, pp. 316–323. doi:
10.5220/0006963303160323.

[15] A. Beltre, P. Saha, and M. Govindaraju, “Kubesphere: An approach
to multi-tenant fair scheduling for kubernetes clusters”, in 2019 IEEE
Cloud Summit, 2019, pp. 14–20. doi: 10.1109/CloudSummit47114.

2019.00009.

[16] B. C. Şenel, M. Mouchet, J. Cappos, O. Fourmaux, T. Friedman,
and R. McGeer, “Edgenet: A multi-tenant and multi-provider edge
cloud”, ser. EdgeSys ’21, Online, United Kingdom: Association for
Computing Machinery, 2021, pp. 49–54, isbn: 9781450382915. doi:
10.1145/3434770.3459737.

https://doi.org/10.1109/VTCFall.2019.8891604
https://doi.org/10.1002/nem.2132
https://doi.org/10.1002/nem.2132
https://www.cncf.io/wp-content/uploads/2022/02/CNCF-AR_FINAL-edits-15.2.21.pdf
https://www.cncf.io/wp-content/uploads/2022/02/CNCF-AR_FINAL-edits-15.2.21.pdf
https://doi.org/10.1109/DySPAN.2018.8610462
https://doi.org/10.1109/EuCNC/6GSummit51104.2021.9482526
https://rp.os3.nl/2017-2018/p80/report.pdf
https://rp.os3.nl/2017-2018/p80/report.pdf
https://doi.org/10.5220/0006963303160323
https://doi.org/10.1109/CloudSummit47114.2019.00009
https://doi.org/10.1109/CloudSummit47114.2019.00009
https://doi.org/10.1145/3434770.3459737

REFERENCES 76

[17] S. O. Oladejo and O. E. Falowo, “5g network slicing: A multi-tenancy
scenario”, in 2017 Global Wireless Summit (GWS), 2017, pp. 88–92.
doi: 10.1109/GWS.2017.8300476.

[18] K. Samdanis, X. Costa-Pérez, and V. Sciancalepore, “From network
sharing to multi-tenancy: The 5g network slice broker”, CoRR, vol. abs/1605.01201,
2016. arXiv: 1605.01201.

[19] 3GPP, “Technical Specification Group Services and System Aspects -
Release 15 Description”, 3rd Generation Partnership Project (3GPP),
Technical Report (TR) 21.915, Sep. 2019, Version 15.0.0. Available at
https://www.3gpp.org/ftp//Specs/archive/21_series/21.915/

21915-f00.zip.

[20] G. Barb and M. Otesteanu, “4g/5g: A comparative study and overview
on what to expect from 5g”, in 2020 43rd International Conference
on Telecommunications and Signal Processing (TSP), 2020, pp. 37–
40. doi: 10.1109/TSP49548.2020.9163402.

[21] L. Yang, T. A. Anderson, R. Gopal, and R. Dantu, Forwarding and
control element separation (forces) framework, RFC 3746, Apr. 2004.
doi: 10.17487/RFC3746.

[22] Huawei Technologies Co., LTD., “5g network architecture - a high-
level perspective”, Tech. Rep. 11, 2016, pp. 1–16. Available at https:
/ / carrier . huawei . com / ~ / media / CNBG / Downloads / Program / 5g _

nework_architecture_whitepaper_en.pdf.

[23] D. Witkowski, Bridging the Gap - 21st Century Wireless Telecom-
munications Handbook (2nd Edition, 2019). Dec. 2019, isbn: 978-
1675085080.

[24] P. Popovski, K. F. Trillingsgaard, O. Simeone, and G. Durisi, “5g
wireless network slicing for embb, urllc, and mmtc: A communication-
theoretic view”, IEEE Access, vol. 6, pp. 55 765–55 779, 2018. doi:
10.1109/ACCESS.2018.2872781.

[25] A. Elnashar and M. A. El-saidny, “Iot evolution towards a super-
connected world”, in Practical Guide to LTE-A, VoLTE and IoT:
Paving the way towards 5G. 2018, pp. 310–381. doi: 10.1002/9781119063407.
ch7.

[26] D. Feng, L. Lai, J. Luo, Y. Zhong, C. Zheng, and K. Ying, “Ultra-
reliable and low-latency communications: Applications, opportunities
and challenges”, Science China Information Sciences, vol. 64, pp. 1–
12, 2021. doi: 10.1007/s11432-020-2852-1.

https://doi.org/10.1109/GWS.2017.8300476
https://arxiv.org/abs/1605.01201
https://www.3gpp.org/ftp//Specs/archive/21_series/21.915/21915-f00.zip
https://www.3gpp.org/ftp//Specs/archive/21_series/21.915/21915-f00.zip
https://doi.org/10.1109/TSP49548.2020.9163402
https://doi.org/10.17487/RFC3746
https://carrier.huawei.com/~/media/CNBG/Downloads/Program/5g_nework_architecture_whitepaper_en.pdf
https://carrier.huawei.com/~/media/CNBG/Downloads/Program/5g_nework_architecture_whitepaper_en.pdf
https://carrier.huawei.com/~/media/CNBG/Downloads/Program/5g_nework_architecture_whitepaper_en.pdf
https://doi.org/10.1109/ACCESS.2018.2872781
https://doi.org/10.1002/9781119063407.ch7
https://doi.org/10.1002/9781119063407.ch7
https://doi.org/10.1007/s11432-020-2852-1

REFERENCES 77

[27] B. Kim, “Ict-based business communication with customers in the
4th industrial revolution era”, Business Communication Research and
Practice, vol. 2, pp. 55–61, Jul. 2019. doi: 10.22682/bcrp.2019.2.2.
55.

[28] S. El Hassani, A. Haidine, and H. Jebbar, “Road to 5g: Key enabling
technologies”, Journal of Communications, vol. 14, pp. 1034–1048,
Sep. 2019. doi: 10.12720/jcm.14.11.1034-1048.

[29] 3GPP, “New Radio; User Equipment (UE) radio transmission and
reception”, 3rd Generation Partnership Project (3GPP), Technical
specification (TS) 38.101-1, Jan. 2018. Available at https://portal.
3gpp.org/desktopmodules/Specifications/SpecificationDetails.

aspx?specificationId=3283.

[30] P. Rost, C. J. Bernardos, A. D. Domenico, et al., “Cloud technologies
for flexible 5g radio access networks”, IEEE Communications Maga-
zine, vol. 52, no. 5, pp. 68–76, 2014. doi: 10.1109/MCOM.2014.6898939.

[31] Global System for Mobile Communications Association (GSMA), Spec-
trum in competition policy - appendix 1 of competition policy in the
digital age: Case studies from asia and sub-saharan africa, Kube-
Con Europe 2021, Dec. 2016. Available at https://www.gsma.com/

publicpolicy/wp-content/uploads/2016/12/4.CPITDA_Case_Studies_

Asia__Sub-SaharanAfrica_Appendix1-2.pdf.

[32] M. Matinmikko, M. Latva-Aho, P. Ahokangas, S. Yrjölä, and T. Koivumäki,
“Micro operators to boost local service delivery in 5g”, Wirel. Pers.
Commun., vol. 95, no. 1, pp. 69–82, Jul. 2017, issn: 0929-6212. doi:
10.1007/s11277-017-4427-5.

[33] I. Badmus, A. Laghrissi, M. Matinmikko-Blue, and A. Pouttu, “End-
to-end network slice architecture and distribution across 5g micro-
operator leveraging multi-domain and multi-tenancy”, EURASIP Jour-
nal on Wireless Communications and Networking, vol. 2021, Apr.
2021. doi: 10.1186/s13638-021-01959-7.

[34] R. Prasad, A. Jukan, D. Katsaros, and Y. Goeleven, “Architectural
requirements for cloud computing systems: An enterprise cloud ap-
proach”, J. Grid Comput., vol. 9, pp. 3–26, Mar. 2011. doi: 10.1007/
s10723-010-9171-y.

[35] T. Boillat and C. Legner, “From on-premise software to cloud ser-
vices: The impact of cloud computing on enterprise software vendors’
business models”, Journal of Theoretical and Applied Electronic Com-

https://doi.org/10.22682/bcrp.2019.2.2.55
https://doi.org/10.22682/bcrp.2019.2.2.55
https://doi.org/10.12720/jcm.14.11.1034-1048
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3283
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3283
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3283
https://doi.org/10.1109/MCOM.2014.6898939
https://www.gsma.com/publicpolicy/wp-content/uploads/2016/12/4.CPITDA_Case_Studies_Asia__Sub-SaharanAfrica_Appendix1-2.pdf
https://www.gsma.com/publicpolicy/wp-content/uploads/2016/12/4.CPITDA_Case_Studies_Asia__Sub-SaharanAfrica_Appendix1-2.pdf
https://www.gsma.com/publicpolicy/wp-content/uploads/2016/12/4.CPITDA_Case_Studies_Asia__Sub-SaharanAfrica_Appendix1-2.pdf
https://doi.org/10.1007/s11277-017-4427-5
https://doi.org/10.1186/s13638-021-01959-7
https://doi.org/10.1007/s10723-010-9171-y
https://doi.org/10.1007/s10723-010-9171-y

REFERENCES 78

merce Research, vol. 8, no. 3, pp. 39–58, 2013, issn: 0718-1876. doi:
10.4067/S0718-18762013000300004.

[36] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mo-
bile edge computing—a key technology towards 5g”, Tech. Rep. 11,
2015, pp. 1–16. Available at https://www.etsi.org/images/files/

etsiwhitepapers/etsi_wp11_mec_a_key_technology_towards_5g.pdf.

[37] A. Ahmed and E. Ahmed, “A survey on mobile edge computing”, in
2016 10th International Conference on Intelligent Systems and Con-
trol (ISCO), 2016, pp. 1–8. doi: 10.1109/ISCO.2016.7727082.

[38] Q.-V. Pham, F. Fang, V. N. Ha, et al., “A survey of multi-access edge
computing in 5g and beyond: Fundamentals, technology integration,
and state-of-the-art”, IEEE Access, vol. 8, pp. 116 974–117 017, 2020.
doi: 10.1109/ACCESS.2020.3001277.

[39] Z. Zou, Y. Jin, P. Nevalainen, Y. Huan, J. Heikkonen, and T. West-
erlund, “Edge and fog computing enabled ai for iot-an overview”, in
2019 IEEE International Conference on Artificial Intelligence Cir-
cuits and Systems (AICAS), 2019, pp. 51–56. doi: 10.1109/AICAS.
2019.8771621.

[40] X. Qiao, P. Ren, S. Dustdar, and J. Chen, “A new era for web ar with
mobile edge computing”, IEEE Internet Computing, vol. 22, no. 4,
pp. 46–55, 2018. doi: 10.1109/MIC.2018.043051464.

[41] X. Sun and N. Ansari, “Edgeiot: Mobile edge computing for the inter-
net of things”, IEEE Communications Magazine, vol. 54, pp. 22–29,
Dec. 2016. doi: 10.1109/MCOM.2016.1600492CM.

[42] L. M. Contreras and C. J. Bernardos, “Overview of architectural al-
ternatives for the integration of etsi mec environments from different
administrative domains”, Electronics, vol. 9, no. 9, 2020, issn: 2079-
9292. doi: 10.3390/electronics9091392.

[43] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things”, in Proceedings of the First Edi-
tion of the MCC Workshop on Mobile Cloud Computing, ser. MCC
’12, Helsinki, Finland: Association for Computing Machinery, 2012,
pp. 13–16, isbn: 9781450315197. doi: 10.1145/2342509.2342513.

[44] C. Chang, A. Hadachi, J. Mass, and S. N. Srirama, “Mobile fog com-
puting”, in Fog Computing. John Wiley & Sons, Ltd, 2020, ch. 1,
pp. 1–41, isbn: 9781119551713. doi: 10.1002/9781119551713.ch1.

https://doi.org/10.4067/S0718-18762013000300004
https://www.etsi.org/images/files/etsiwhitepapers/etsi_wp11_mec_a_key_technology_towards_5g.pdf
https://www.etsi.org/images/files/etsiwhitepapers/etsi_wp11_mec_a_key_technology_towards_5g.pdf
https://doi.org/10.1109/ISCO.2016.7727082
https://doi.org/10.1109/ACCESS.2020.3001277
https://doi.org/10.1109/AICAS.2019.8771621
https://doi.org/10.1109/AICAS.2019.8771621
https://doi.org/10.1109/MIC.2018.043051464
https://doi.org/10.1109/MCOM.2016.1600492CM
https://doi.org/10.3390/electronics9091392
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1002/9781119551713.ch1

REFERENCES 79

[45] D. Muirhead, M. A. Imran, and K. Arshad, “A survey of the chal-
lenges, opportunities and use of multiple antennas in current and fu-
ture 5g small cell base stations”, IEEE Access, vol. 4, pp. 2952–2964,
2016. doi: 10.1109/ACCESS.2016.2569483.

[46] P. Mogensen, K. Pajukoski, E. Tiirola, et al., “5g small cell opti-
mized radio design”, in 2013 IEEE Globecom Workshops (GC Wk-
shps), 2013, pp. 111–116. doi: 10.1109/GLOCOMW.2013.6824971.

[47] J. Chen, X. Ge, and Q. Ni, “Coverage and handoff analysis of 5g
fractal small cell networks”, IEEE Transactions on Wireless Commu-
nications, vol. 18, no. 2, pp. 1263–1276, 2019. doi: 10.1109/TWC.2018.
2890662.

[48] J. Pérez-Romero, J. Sanchez-Gonzalez, O. Sallent, and A. Whitehead,
“On introducing knowledge discovery capabilities in cloud-enabled
small cells”, Aug. 2017, pp. 680–692, isbn: 978-3-319-65171-2. doi:
10.1007/978-3-319-65172-9_57.

[49] M. Spada, A. Kostopolous, I. P. Chochilouros, et al., “5g essence
project: A general view and the project pilots results”, 2019. Available
at http://www.5g-essence-h2020.eu/Portals/0/5G%5C%20ESSENCE_

results-Whitepaper_final_v1.0.pdf?ver=2019-12-18-112253-267.

[50] M. R. Spada, J. Pérez-Romero, A. Sanchoyerto, R. Solozabal, M. A.
Kourtis, and V. Riccobene, “Management of mission critical public
safety applications: The 5g essence project”, in 2019 European Con-
ference on Networks and Communications (EuCNC), 2019, pp. 155–
160. doi: 10.1109/EuCNC.2019.8802026.

[51] M. D. Hanson, “The client/server architecture”, in Server Manage-
ment, Auerbach Publications, 2000, pp. 17–28, isbn: 9780429114861.

[52] R. J. Creasy, “The origin of the vm/370 time-sharing system”, IBM
Journal of Research and Development, vol. 25, no. 5, pp. 483–490,
1981. doi: 10.1147/rd.255.0483.

[53] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualiz-
able third generation architectures”, Commun. ACM, vol. 17, no. 7,
pp. 412–421, Jul. 1974, issn: 0001-0782. doi: 10.1145/361011.361073.

[54] Y. Yu, “Os-level virtualization and its applications”, Ph.D. disserta-
tion, 2007, isbn: 9780549914075. doi: 10.5555/1571423.

https://doi.org/10.1109/ACCESS.2016.2569483
https://doi.org/10.1109/GLOCOMW.2013.6824971
https://doi.org/10.1109/TWC.2018.2890662
https://doi.org/10.1109/TWC.2018.2890662
https://doi.org/10.1007/978-3-319-65172-9_57
http://www.5g-essence-h2020.eu/Portals/0/5G%5C%20ESSENCE_results-Whitepaper_final_v1.0.pdf?ver=2019-12-18-112253-267
http://www.5g-essence-h2020.eu/Portals/0/5G%5C%20ESSENCE_results-Whitepaper_final_v1.0.pdf?ver=2019-12-18-112253-267
https://doi.org/10.1109/EuCNC.2019.8802026
https://doi.org/10.1147/rd.255.0483
https://doi.org/10.1145/361011.361073
https://doi.org/10.5555/1571423

REFERENCES 80

[55] A. Moga, T. Sivanthi, and C. Franke, “Os-level virtualization for in-
dustrial automation systems: Are we there yet?”, in Proceedings of the
31st Annual ACM Symposium on Applied Computing, ser. SAC ’16,
Pisa, Italy: Association for Computing Machinery, 2016, pp. 1838–
1843, isbn: 9781450337397. doi: 10.1145/2851613.2851737.

[56] R. Rose, “Survey of system virtualization techniques”, Oregon State
University, MSc Electrical and Computer Engineering Master Thesis,
2004. Available at https://ir.library.oregonstate.edu/concern/

graduate_projects/t148fh24b?locale=en.

[57] E. Bugnion, S. Devine, M. Rosenblum, J. Sugerman, and E. Y. Wang,
“Bringing virtualization to the x86 architecture with the original vmware
workstation”, ACM Trans. Comput. Syst., vol. 30, no. 4, Nov. 2012,
issn: 0734-2071. doi: 10.1145/2382553.2382554.

[58] A. M. Joy, “Performance comparison between linux containers and
virtual machines”, in 2015 International Conference on Advances in
Computer Engineering and Applications, 2015, pp. 342–346. doi: 10.
1109/ICACEA.2015.7164727.

[59] S. J. Vaughan-Nichols, “New approach to virtualization is a lightweight”,
Computer, vol. 39, no. 11, pp. 12–14, 2006. doi: 10.1109/MC.2006.393.

[60] D. Bernstein, “Containers and cloud: From lxc to docker to kuber-
netes”, IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, 2014. doi:
10.1109/MCC.2014.51.

[61] H. Baba, M. Matsumoto, and K. Noritake, “Lightweight virtualized
evolved packet core architecture for future mobile communication”,
in 2015 IEEE Wireless Communications and Networking Conference
(WCNC), 2015, pp. 1811–1816. doi: 10.1109/WCNC.2015.7127743.

[62] R. Osnat, “A brief history of containers: From the 1970s till now”,
Acquasec, Jan. 2020. Available at https://blog.aquasec.com/a-

brief-history-of-containers-from-1970s-chroot-to-docker-2016.

[63] The FreeBSD Project Developer Team, “Chapter 15. jails”, in FreeBSD
Handbook. 2022, ch. 15. Available at https://docs.freebsd.org/en/
books/handbook/jails/.

[64] M. Furman, OpenVZ essentials. Packt Publishing Ltd, 2014, isbn:
9781782167327.

https://doi.org/10.1145/2851613.2851737
https://ir.library.oregonstate.edu/concern/graduate_projects/t148fh24b?locale=en
https://ir.library.oregonstate.edu/concern/graduate_projects/t148fh24b?locale=en
https://doi.org/10.1145/2382553.2382554
https://doi.org/10.1109/ICACEA.2015.7164727
https://doi.org/10.1109/ICACEA.2015.7164727
https://doi.org/10.1109/MC.2006.393
https://doi.org/10.1109/MCC.2014.51
https://doi.org/10.1109/WCNC.2015.7127743
https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-docker-2016
https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-docker-2016
https://docs.freebsd.org/en/books/handbook/jails/
https://docs.freebsd.org/en/books/handbook/jails/

REFERENCES 81

[65] V. Struhár, M. Behnam, M. Ashjaei, and A. V. Papadopoulos, “Real-
Time Containers: A Survey”, in 2nd Workshop on Fog Computing and
the IoT (Fog-IoT 2020), A. Cervin and Y. Yang, Eds., ser. OpenAccess
Series in Informatics (OASIcs), vol. 80, Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2020, 7:1–7:9, isbn: 978-
3-95977-144-3. doi: 10.4230/OASIcs.Fog-IoT.2020.7.

[66] D. P. Bovet and M. Cesati, Understanding the Linux Kernel: from
I/O ports to process management. O’Reilly Media Inc., 2005, isbn:
0596554915, 9780596554910.

[67] M. Kerrisk, Namespaces(7) - linux manual page, 2021. Available at
https://man7.org/linux/man-pages/man7/namespaces.7.html.

[68] R. Seth, Containers (cgroups): Introduction, 2006. Available at https:
//lwn.net/Articles/199643/.

[69] S. Senthil Kumaran, Practical LXC and LXD: linux containers for
virtualization and orchestration. Springer, 2017, isbn: 148423023X.

[70] J. Hertz, “Abusing privileged and unprivileged linux containers”,Whitepa-
per, NCC Group, vol. 48, 2016. Available at https://www.nccgroup.

com/globalassets/our-research/us/whitepapers/2016/june/container_

whitepaper.pdf.

[71] B. Bashari Rad, H. Bhatti, and M. Ahmadi, “An introduction to
docker and analysis of its performance”, IJCSNS International Jour-
nal of Computer Science and Network Security, vol. 173, p. 8, Mar.
2017. Available at https://www.researchgate.net/publication/

318816158 _ An _ Introduction _ to _ Docker _ and _ Analysis _ of _ its _

Performance.

[72] R. McKendrick, “The pets and cattle analogy demonstrates how server-
less fits into the software infrastructure landscape”, Feb. 2018. Avail-
able at https://hub.packtpub.com/pets-cattle-analogy-demonstrates-
how-serverless-fits-software-infrastructure-landscape/.

[73] A. Nag, “Cloud computing: A paradigm shift in it infrastructure”,
CSI Communication, vol. 38, p. 8, Jan. 2015. Available at https:

//www.researchgate.net/publication/270958592_Cloud_Computing_

A_Paradigm_Shift_in_IT_Infrastructure.

[74] Cloud native computing foundation - CNCF, Graduated and incubat-
ing projects, 2022. Available at https://www.cncf.io/projects/.

[75] M. Luksa, Kubernetes in action. Simon and Schuster, Dec. 2017, isbn:
9781617293726.

https://doi.org/10.4230/OASIcs.Fog-IoT.2020.7
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://lwn.net/Articles/199643/
https://lwn.net/Articles/199643/
https://www.nccgroup.com/globalassets/our-research/us/whitepapers/2016/june/container_whitepaper.pdf
https://www.nccgroup.com/globalassets/our-research/us/whitepapers/2016/june/container_whitepaper.pdf
https://www.nccgroup.com/globalassets/our-research/us/whitepapers/2016/june/container_whitepaper.pdf
https://www.researchgate.net/publication/318816158_An_Introduction_to_Docker_and_Analysis_of_its_Performance
https://www.researchgate.net/publication/318816158_An_Introduction_to_Docker_and_Analysis_of_its_Performance
https://www.researchgate.net/publication/318816158_An_Introduction_to_Docker_and_Analysis_of_its_Performance
https://hub.packtpub.com/pets-cattle-analogy-demonstrates-how-serverless-fits-software-infrastructure-landscape/
https://hub.packtpub.com/pets-cattle-analogy-demonstrates-how-serverless-fits-software-infrastructure-landscape/
https://www.researchgate.net/publication/270958592_Cloud_Computing_A_Paradigm_Shift_in_IT_Infrastructure
https://www.researchgate.net/publication/270958592_Cloud_Computing_A_Paradigm_Shift_in_IT_Infrastructure
https://www.researchgate.net/publication/270958592_Cloud_Computing_A_Paradigm_Shift_in_IT_Infrastructure
https://www.cncf.io/projects/

REFERENCES 82

[76] B. Burns, J. Beda, and K. Hightower, Kubernetes: Up and running.
Dpunkt Heidelberg, Germany, 2018, isbn: 1491935677.

[77] B. Burns and C. Tracey, Managing Kubernetes: operating Kubernetes
clusters in the real world. O’Reilly Media, 2018, isbn: 149203391X.

[78] The Kubernetes Authors, The Linux Foundation, Kubernetes compo-
nents - kubernetes official documentation, 2022. Available at https:

//kubernetes.io/docs/concepts/overview/components/.

[79] C. Bussler, “Multi-tenancy: A concept whose time has come and (al-
most) gone.”, inWEBIST, 2018, pp. 316–323. doi: 10.5220/0006963303160323.

[80] Y. Duan, G. Fu, N. Zhou, X. Sun, N. C. Narendra, and B. Hu, “Ev-
erything as a service (xaas) on the cloud: Origins, current and future
trends”, in 2015 IEEE 8th International Conference on Cloud Com-
puting, 2015, pp. 621–628. doi: 10.1109/CLOUD.2015.88.

[81] J. Cowan, M. Chandrasekaran, and A. Parmar. “Eks best practices
guides - tenant isolation”. (2022), Available at https://aws.github.
io/aws-eks-best-practices/security/docs/multitenancy/.

[82] “2018 reform of eu data protection rules”, European Commission.
(May 25, 2018), Available at https://ec.europa.eu/commission/

sites/beta-political/files/data-protection-factsheet-changes_

en.pdf (visited on 06/17/2019).

[83] S. A. Kjeserud, V. Rahm, S. Y. Sanden, and E. Tobiassen, “Security
within a multi-tenant kubernetes cluster”, Norwegian University of
Science, Technology (NTNU), BSc Thesis in Digital Infrastructure,
and Cyber Security, 2021. Available at https://ntnuopen.ntnu.no/

ntnu-xmlui/bitstream/handle/11250/2781186/no.ntnu1/:inspera/:

78301194/:82504109.pdf?sequence=1.

[84] X. Nguyen et al., “Network isolation for kubernetes hard multi-tenancy”,
Aalto University, MSc Thesis in Security and Cloud Computing (SEC-
CLO), 2020. Available at https : / / aaltodoc . aalto . fi / handle /

123456789/46078.

[85] T. Drew, R. Bezdicek, A. Ludwin, and J. Bugwadia, Multi-tenancy
vs. multi-cluster: When should you use what?, KubeCon Europe 2021,
May 2021. Available at https://kccnceu2021.sched.com/event/iE66.

[86] T. Drew, R. Bezdicek, A. Ludwin, and J. Bugwadia, Three tenancy
models for kubernetes, Kubernetes official blog, Apr. 2021. Available
at https://kubernetes.io/blog/2021/04/15/three-tenancy-models-
for-kubernetes/.

https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://doi.org/10.5220/0006963303160323
https://doi.org/10.1109/CLOUD.2015.88
https://aws.github.io/aws-eks-best-practices/security/docs/multitenancy/
https://aws.github.io/aws-eks-best-practices/security/docs/multitenancy/
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2781186/no.ntnu1/:inspera/:78301194/:82504109.pdf?sequence=1
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2781186/no.ntnu1/:inspera/:78301194/:82504109.pdf?sequence=1
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2781186/no.ntnu1/:inspera/:78301194/:82504109.pdf?sequence=1
https://aaltodoc.aalto.fi/handle/123456789/46078
https://aaltodoc.aalto.fi/handle/123456789/46078
https://kccnceu2021.sched.com/event/iE66
https://kubernetes.io/blog/2021/04/15/three-tenancy-models-for-kubernetes/
https://kubernetes.io/blog/2021/04/15/three-tenancy-models-for-kubernetes/

REFERENCES 83

[87] J. Fernandez Hidalgo, M. Catalán Cid, P. Sayyad Khodashenas, et
al., “A 5g framework for the next generation in-flight entertainment
and communications (ng-ifec)”, Jun. 2018. Available at https://www.
researchgate.net/publication/327423918_A_5G_Framework_for_

the_Next_Generation_In-Flight_Entertainment_and_Communications_

NG-IFEC.

[88] A. Kostopoulos, I. P. Chochliouros, E. Sfakianakis, D. Munaretto, and
C. Keuker, “Deploying a 5g architecture for crowd events”, in 2019
IEEE International Conference on Communications Workshops (ICC
Workshops), 2019, pp. 1–6. doi: 10.1109/ICCW.2019.8757152.

[89] M.-A. Kourtis, B. Blanco, J. Pérez-Romero, et al., “A cloud-enabled
small cell architecture in 5g networks for broadcast/multicast ser-
vices”, IEEE Transactions on Broadcasting, vol. 65, no. 2, pp. 414–
424, 2019. doi: 10.1109/TBC.2019.2901394.

[90] O. Segou and A. Flizikowski, “Prototypes of network services and
integration planning for use case 2”, Mar. 2019. Available at https:

//www.5g-essence-h2020.eu/Portals/0/5G-ESSENCE_Deliverable%

206.2_v1.0_Final.pdf?ver=2020-05-29-134509-817.

[91] L. Ferranti, L. Bonati, S. D’Oro, and T. Melodia, “Skycell: A pro-
totyping platform for 5g aerial base stations”, in 2020 IEEE 21st
International Symposium on ”A World of Wireless, Mobile and Mul-
timedia Networks” (WoWMoM), 2020, pp. 329–334. doi: 10.1109/
WoWMoM49955.2020.00062.

[92] J. M. Kumar, R. Mahajan, D. Prabhu, and D. Ghose, “Cost effective
road accident prevention system”, in 2016 2nd International Con-
ference on Contemporary Computing and Informatics (IC3I), 2016,
pp. 353–357. doi: 10.1109/IC3I.2016.7917988.

[93] T. Taleb, Z. Nadir, H. Flinck, and J. Song, “Extremely interactive
and low-latency services in 5g and beyond mobile systems”, IEEE
Communications Standards Magazine, vol. 5, no. 2, pp. 114–119, 2021.
doi: 10.1109/MCOMSTD.001.2000053.

[94] A. Banks, E. Briggs, K. Borgendale, and R. Gupta, Mqtt version 5.0,
Mar. 2019. Available at https://docs.oasis-open.org/mqtt/mqtt/

v5.0/mqtt-v5.0.html.

[95] F. Al-Turjman, E. Ever, and H. Zahmatkesh, “Small cells in the forth-
coming 5g/iot: Traffic modelling and deployment overview”, IEEE
Communications Surveys Tutorials, vol. 21, no. 1, pp. 28–65, 2019.
doi: 10.1109/COMST.2018.2864779.

https://www.researchgate.net/publication/327423918_A_5G_Framework_for_the_Next_Generation_In-Flight_Entertainment_and_Communications_NG-IFEC
https://www.researchgate.net/publication/327423918_A_5G_Framework_for_the_Next_Generation_In-Flight_Entertainment_and_Communications_NG-IFEC
https://www.researchgate.net/publication/327423918_A_5G_Framework_for_the_Next_Generation_In-Flight_Entertainment_and_Communications_NG-IFEC
https://www.researchgate.net/publication/327423918_A_5G_Framework_for_the_Next_Generation_In-Flight_Entertainment_and_Communications_NG-IFEC
https://doi.org/10.1109/ICCW.2019.8757152
https://doi.org/10.1109/TBC.2019.2901394
https://www.5g-essence-h2020.eu/Portals/0/5G-ESSENCE_Deliverable%206.2_v1.0_Final.pdf?ver=2020-05-29-134509-817
https://www.5g-essence-h2020.eu/Portals/0/5G-ESSENCE_Deliverable%206.2_v1.0_Final.pdf?ver=2020-05-29-134509-817
https://www.5g-essence-h2020.eu/Portals/0/5G-ESSENCE_Deliverable%206.2_v1.0_Final.pdf?ver=2020-05-29-134509-817
https://doi.org/10.1109/WoWMoM49955.2020.00062
https://doi.org/10.1109/WoWMoM49955.2020.00062
https://doi.org/10.1109/IC3I.2016.7917988
https://doi.org/10.1109/MCOMSTD.001.2000053
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://doi.org/10.1109/COMST.2018.2864779

REFERENCES 84

[96] S. Borkar and H. Pande, “Application of 5g next generation network
to internet of things”, in 2016 International Conference on Internet
of Things and Applications (IOTA), 2016, pp. 443–447. doi: 10.1109/
IOTA.2016.7562769.

[97] J. N. Syed, S. K. Sharma, M. N. Patwary, and M. Asaduzzaman,
“Enhanced URLLC-Enabled Edge Computing Framework for Device-
Level Innovation in 6G”, Feb. 2021. doi: 10.36227/techrxiv.13325336.
v2.

[98] Y. Jararweh, A. Doulat, O. AlQudah, E. Ahmed, M. Al-Ayyoub, and
E. Benkhelifa, “The future of mobile cloud computing: Integrating
cloudlets and mobile edge computing”, in 2016 23rd International
Conference on Telecommunications (ICT), 2016, pp. 1–5. doi: 10.
1109/ICT.2016.7500486.

[99] N. Blum, S. Lachapelle, and H. Alvestrand, “Webrtc - realtime com-
munication for the open web platform: What was once a way to bring
audio and video to the web has expanded into more use cases we could
ever imagine.”, Queue, vol. 19, no. 1, pp. 77–93, Feb. 2021, issn: 1542-
7730. doi: 10.1145/3454122.3457587.

[100] 3GPP, “Service requirements for Video, Imaging and Audio for Pro-
fessional Applications (VIAPA)”, 3rd Generation Partnership Project
(3GPP), Technical Specifications (TS) 22.263, Jun. 2021, Version 17.4.0.
Available at https://www.3gpp.org/ftp/Specs/archive/22_series/

22.263/22263-h40.zip.

[101] H. Alvestrand, V. Singh, and H. Boström, “Identifiers for WebRTC’s
statistics API”, W3C, Candidate Recommendation, Jun. 2022. Avail-
able at https://www.w3.org/TR/2022/CRD-webrtc-stats-20220614/.

[102] 3GPP, “Service requirements for the 5G system”, 3rd Generation
Partnership Project (3GPP), Technical Specifications (TS) 22.261,
Mar. 2022, Version 18.6.0. Available at https://www.3gpp.org/ftp/

Specs/archive/22_series/22.261/22261-i60.zip.

[103] J. Saldana, J. Fernández-Navajas, J. Ruiz-Mas, E. Viruete Navarro,
and L. Casadesus, “The effect of router buffer size on subjective gam-
ing quality estimators based on delay and jitter”, in 2012 IEEE Con-
sumer Communications and Networking Conference (CCNC), 2012,
pp. 482–486. doi: 10.1109/CCNC.2012.6181008.

https://doi.org/10.1109/IOTA.2016.7562769
https://doi.org/10.1109/IOTA.2016.7562769
https://doi.org/10.36227/techrxiv.13325336.v2
https://doi.org/10.36227/techrxiv.13325336.v2
https://doi.org/10.1109/ICT.2016.7500486
https://doi.org/10.1109/ICT.2016.7500486
https://doi.org/10.1145/3454122.3457587
https://www.3gpp.org/ftp/Specs/archive/22_series/22.263/22263-h40.zip
https://www.3gpp.org/ftp/Specs/archive/22_series/22.263/22263-h40.zip
https://www.w3.org/TR/2022/CRD-webrtc-stats-20220614/
https://www.3gpp.org/ftp/Specs/archive/22_series/22.261/22261-i60.zip
https://www.3gpp.org/ftp/Specs/archive/22_series/22.261/22261-i60.zip
https://doi.org/10.1109/CCNC.2012.6181008

REFERENCES 85

[104] O. S. Peñaherrera-Pulla, C. Baena, S. Fortes, E. Baena, and R. Barco,
“Measuring key quality indicators in cloud gaming: Framework and
assessment over wireless networks”, Sensors, vol. 21, no. 4, 2021, issn:
1424-8220. doi: 10.3390/s21041387.

[105] J. Nightingale, P. Salva-Garcia, J. M. A. Calero, and Q. Wang, “5g-
qoe: Qoe modelling for ultra-hd video streaming in 5g networks”,
IEEE Transactions on Broadcasting, vol. 64, no. 2, pp. 621–634, 2018.
doi: 10.1109/TBC.2018.2816786.

[106] A. Bergkvist, D. Burnett, A. Narayanan, B. Aboba, and T. Brand-
stetter,Webrtc 1.0: Real-time communication between browsers, W3C,
Sep. 2018. Available at https://www.w3.org/TR/2018/CR-webrtc-

20180927/.

[107] I. H. Jung, J. M. Lee, and K. Hwang, “Mqtt protocol extension for real
time location based service”, Webology, vol. 19, no. 1, 2022. Available
at https://www.webology.org/data-cms/articles/20220123013255pmWEB19314.
pdf.

[108] D. Soni and A. Makwana, “A survey on mqtt: A protocol of inter-
net of things (iot)”, in International Conference On Telecommunica-
tion, Power Analysis And Computing Techniques (ICTPACT-2017),
vol. 20, 2017, pp. 173–177. Available at https://www.researchgate.

net/publication/316018571_A_SURVEY_ON_MQTT_A_PROTOCOL_OF_

INTERNET_OF_THINGSIOT.

[109] F. T. AL-Dhief, N. Sabri, N. A. Latiff, et al., “Performance compari-
son between tcp and udp protocols in different simulation scenarios”,
International Journal of Engineering & Technology, vol. 7, no. 4.36,
pp. 172–176, 2018. Available at https://www.researchgate.net/

publication/329698255_Performance_Comparison_between_TCP_and_

UDP_Protocols_in_Different_Simulation_Scenarios.

[110] J. Fedoryński, Quake 3 network protocol, 2020. Available at https:

//www.jfedor.org/quake3/.

[111] Loft Labs, Inc., Virtual cluster - network & dns, 2022. Available at
https://www.vcluster.com/docs/architecture/networking.

https://doi.org/10.3390/s21041387
https://doi.org/10.1109/TBC.2018.2816786
https://www.w3.org/TR/2018/CR-webrtc-20180927/
https://www.w3.org/TR/2018/CR-webrtc-20180927/
https://www.webology.org/data-cms/articles/20220123013255pmWEB19314.pdf
https://www.webology.org/data-cms/articles/20220123013255pmWEB19314.pdf
https://www.researchgate.net/publication/316018571_A_SURVEY_ON_MQTT_A_PROTOCOL_OF_INTERNET_OF_THINGSIOT
https://www.researchgate.net/publication/316018571_A_SURVEY_ON_MQTT_A_PROTOCOL_OF_INTERNET_OF_THINGSIOT
https://www.researchgate.net/publication/316018571_A_SURVEY_ON_MQTT_A_PROTOCOL_OF_INTERNET_OF_THINGSIOT
https://www.researchgate.net/publication/329698255_Performance_Comparison_between_TCP_and_UDP_Protocols_in_Different_Simulation_Scenarios
https://www.researchgate.net/publication/329698255_Performance_Comparison_between_TCP_and_UDP_Protocols_in_Different_Simulation_Scenarios
https://www.researchgate.net/publication/329698255_Performance_Comparison_between_TCP_and_UDP_Protocols_in_Different_Simulation_Scenarios
https://www.jfedor.org/quake3/
https://www.jfedor.org/quake3/
https://www.vcluster.com/docs/architecture/networking

Appendix A

Results from the evaluation phase

A.1 Janus WebRTC Gateway

A.1.1 Throughput

Table A.1: Streamer throughput in Mbps within Multi Cluster deployment
approach

Multi Cluster - Streamer throughput in Mbps
Test number Test #1 Test #2 Test #3
Mean 2,62 2,59 2,59
Standard Deviation 0,12 0,18 0,21
Minimum 2,14 1,38 1,55
25th Percentile 2,58 2,56 2,53
50th Percentile 2,63 2,62 2,62
75th Percentile 2,67 2,66 2,68
Maximum 3,04 3,64 3,52

86

APPENDIX A. RESULTS FROM THE EVALUATION PHASE 87

Table A.2: Viewer throughput in Mbps within Multi Cluster deployment
approach

Multi Cluster - Viewer throughput in Mbps
Test number Test #1 Test #2 Test #3
Mean 2,65 2,62 2,62
Standard Deviation 0,12 0,19 0,21
Minimum 2,17 1,30 1,53
25th Percentile 2,61 2,58 2,56
50th Percentile 2,66 2,65 2,65
75th Percentile 2,70 2,70 2,72
Maximum 3,08 3,67 3,55

Table A.3: Streamer throughput in Mbps within HNC deployment approach

HNC - Streamer throughput in Mbps
Test number Test #1 Test #2 Test #3
Mean 2,61 2,59 2,60
Standard Deviation 0,16 0,18 0,17
Minimum 0,92 1,63 1,55
25th Percentile 2,58 2,55 2,55
50th Percentile 2,63 2,62 2,62
75th Percentile 2,67 2,67 2,67
Maximum 3,37 3,57 3,75

Table A.4: Viewer throughput in Mbps within HNC deployment approach

HNC - Viewer throughput in Mbps
Test number Test #1 Test #2 Test #3
Mean 2,64 2,62 2,63
Standard Deviation 0,16 0,18 0,17
Minimum 0,93 1,67 1,58
25th Percentile 2,60 2,58 2,59
50th Percentile 2,66 2,65 2,65
75th Percentile 2,70 2,70 2,70
Maximum 3,44 3,58 3,79

APPENDIX A. RESULTS FROM THE EVALUATION PHASE 88

Table A.5: Streamer throughput in Mbps within Virtual Cluster deployment
approach

Virtual Cluster - Streamer throughput in Mbps
Test number Test #1 Test #2 Test #3
Mean 2,59 2,59 2,59
Standard Deviation 0,27 0,17 0,21
Minimum 0,57 1,46 1,55
25th Percentile 2,56 2,56 2,53
50th Percentile 2,63 2,62 2,62
75th Percentile 2,67 2,66 2,68
Maximum 3,88 3,78 3,52

Table A.6: Viewer throughput in Mbps within Virtual Cluster deployment
approach

Virtual Cluster - Viewer throughput in Mbps
Test number Test #1 Test #2 Test #3
Mean 2,62 2,62 2,60
Standard Deviation 0,28 0,18 0,17
Minimum 0,59 1,56 0,36
25th Percentile 2,59 2,58 2,56
50th Percentile 2,66 2,65 2,66
75th Percentile 2,70 2,69 2,70
Maximum 3,95 3,82 3,92

A.1.2 Round-trip time

Table A.7: Streamer RTT in ms within Multi Cluster deployment approach

Multi Cluster - Streamer RTT in ms
Test number Test #1 Test #2 Test #3
Mean 4,63 5,34 13,47
Standard Deviation 3,12 8,68 9,33
Minimum 2,00 2,00 2,00
25th Percentile 3,00 3,00 5,00
50th Percentile 4,00 3,00 13,00
75th Percentile 5,00 5,00 20,00
Maximum 21,00 92,00 38,00

APPENDIX A. RESULTS FROM THE EVALUATION PHASE 89

Table A.8: Viewer RTT in ms within Multi Cluster deployment approach

Multi Cluster - Viewer RTT in ms
Test number Test #1 Test #2 Test #3
Mean 4,59 16,00 3,98
Standard Deviation 3,68 11,00 2,29
Minimum 1,00 1,00 1,00
25th Percentile 3,00 7,00 3,00
50th Percentile 4,00 16,00 3,00
75th Percentile 5,00 23,00 5,00
Maximum 36,00 118,00 17,00

Table A.9: Streamer RTT in ms within HNC deployment approach

HNC - Streamer RTT in ms
Test number Test #1 Test #2 Test #3
Mean 4,59 4,90 4,04
Standard Deviation 3,25 3,88 2,56
Minimum 1,00 2,00 2,00
25th Percentile 3,00 3,00 3,00
50th Percentile 4,00 4,00 3,00
75th Percentile 5,00 5,00 4,00
Maximum 21,00 42,00 18,00

Table A.10: Viewer RTT in ms within HNC deployment approach

HNC - Viewer RTT in ms
Test number Test #1 Test #2 Test #3
Mean 4,54 4,88 4,60
Standard Deviation 2,92 3,38 3,94
Minimum 2,00 2,00 2,00
25th Percentile 3,00 3,00 3,00
50th Percentile 3,00 4,00 3,00
75th Percentile 5,00 6,00 5,00
Maximum 19,00 23,00 39,00

APPENDIX A. RESULTS FROM THE EVALUATION PHASE 90

Table A.11: Streamer RTT in ms within Virtual Cluster deployment ap-
proach

Virtual Cluster - Streamer RTT in ms
Test number Test #1 Test #2 Test #3
Mean 4,11 4,11 4,24
Standard Deviation 2,94 4,61 3,11
Minimum 2,00 2,00 2,00
25th Percentile 3,00 3,00 3,00
50th Percentile 3,00 3,00 3,00
75th Percentile 5,00 4,00 5,00
Maximum 35,00 65,00 30,00

Table A.12: Viewer RTT in ms within Virtual Cluster deployment approach

Virtual Cluster - Streamer RTT in ms
Test number Test #1 Test #2 Test #3
Mean 4,47 4,33 4,55
Standard Deviation 4,44 5,14 3,79
Minimum 1,00 2,00 2,00
25th Percentile 3,00 3,00 3,00
50th Percentile 3,00 3,00 3,00
75th Percentile 4,00 4,00 5,00
Maximum 42,00 57,00 34,00

APPENDIX A. RESULTS FROM THE EVALUATION PHASE 91

A.2 EMQX MQTT Broker

A.2.1 Message Delivery Time

Table A.13: Message delivery time within Multi Cluster approach
10 Devices (ms)
Test number Test #1 Test #2 Test #3
Minimum 1,03 1,13 0,72
Mean 5,81 6,01 5,84
Standard deviation 0,19 0,17 0,08
Maximum 14,87 15,52 22,94

25 Devices (ms)
Test number Test #1 Test #2 Test #3
Minimum 1,39 1,05 0,60
Mean 6,92 7,21 7,45
Standard deviation 0,12 0,19 0,21
Maximum 19,59 22,10 20,45

50 Devices (ms)
Test number Test #1 Test #2 Test #3
Minimum 0,50 0,00 0,98
Mean 8,28 9,08 9,06
Standard deviation 0,30 0,19 0,22
Maximum 27,54 23,22 23,52

100 Devices (ms)
Test number Test #1 Test #2 Test #3
Minimum 0,00 1,59 0,00
Mean 10,42 13,19 13,22
Standard deviation 2,00 0,37 0,53
Maximum 32,59 39,16 50,73

Table A.14: Message delivery time within HNC approach
10 Devices (ms)
Test number Test #1 Test #2 Test #3
Minimum 0,00 1,10 1,00
Mean 5,51 5,41 5,36
Standard deviation 0,39 0,27 0,12
Maximum 121,48 18,15 18,15

25 Devices (ms)
Test number Test #1 Test #2 Test #3
Minimum 0,39 2,34 0,00
Mean 6,41 6,43 5,91
Standard deviation 0,12 0,13 0,15
Maximum 19,20 18,93 19,16

50 Devices (ms)
Test number Test #1 Test #2 Test #3
Minimum 0,51 0,00 0,00
Mean 7,38 8,09 8,04
Standard deviation 0,50 0,20 0,20
Maximum 34,71 25,95 21,99

100 Devices (ms)
Test number Test #1 Test #2 Test #3
Minimum 0,00 0,00 0,00
Mean 11,34 11,33 12,44
Standard deviation 0,55 0,40 0,62
Maximum 39,19 32,25 43,25

Table A.15: Message delivery time within Virtual Cluster approach
10 Devices (ms)
Test number Test #1 Test #2 Test #3
Minimum 3,82 4,36 4,48
Mean 7,10 7,24 7,55
Standard deviation 0,07 0,07 0,09
Maximum 18,66 30,24 17,17

25 Devices (ms)
Test number Test #1 Test #2 Test #3
Minimum 4,42 4,74 3,99
Mean 9,50 9,38 9,33
Standard deviation 0,14 0,13 0,13
Maximum 25,49 17,97 23,17

50 Devices (ms)
Test number Test #1 Test #2 Test #3
Minimum 3,64 4,22 0,00
Mean 11,74 12,30 11,96
Standard deviation 0,18 0,28 0,29
Maximum 34,86 36,19 30,72

100 Devices (ms)
Test number Test #1 Test #2 Test #3
Minimum 0,00 0,00 0,00
Mean 15,35 17,89 17,23
Standard deviation 3,34 0,54 0,59
Maximum 54,10 43,57 70,66

APPENDIX A. RESULTS FROM THE EVALUATION PHASE 92

A.2.2 Message Throughput

Table A.16: Message throughput (message/second)
within Multi Cluster deployment approach

Multi Cluster - Message Throughput (Message/second) - 10 devices
Test number Test #1 Test #2 Test #3
Publishing/Receiving Throughput Publishing Receiving Publishing Receiving Publishing Receiving
Minimum 213 1939 195 1958 180 2254
Mean 225 2332 206 2343 196 3414
Maximum 228 3095 218 3221 208 4554

Multi Cluster - Message Throughput (Message/second) - 25 devices
Test number Test #1 Test #2 Test #3
Publishing/Receiving Throughput Publishing Receiving Publishing Receiving Publishing Receiving
Minimum 199 2230 170 977 195 2089
Mean 224 2926 228 2108 215 2700
Maximum 260 4518 241 4358 230 5145

Multi Cluster - Message Throughput (Message/second) - 50 devices
Test number Test #1 Test #2 Test #3
Publishing/Receiving Throughput Publishing Receiving Publishing Receiving Publishing Receiving
Minimum 199 1669 183 2032 189 1889
Mean 219 2591 218 2958 229 3065
Maximum 249 5420 259 11389 259 5746

Multi Cluster - Message Throughput (Message/second) - 100 devices
Test number Test #1 Test #2 Test #3
Publishing/Receiving Throughput Publishing Receiving Publishing Receiving Publishing Receiving
Minimum 182 1604 191 1614 181 1177
Mean 219 2612 225 3045 221 2601
Maximum 248 7612 267 5945 240 4954

Table A.17: Message throughput (message/second)
within HNC deployment approach

HNC - Message Throughput (Message/second) - 10 devices
Test number Test #1 Test #2 Test #3
Publishing/Receiving Throughput Publishing Receiving Publishing Receiving Publishing Receiving
Minimum 255 2822 286 2011 259 2450
Mean 276 3310 331 2261 293 2835
Maximum 288 5781 337 7351 298 4879

HNC - Message Throughput (Message/second) - 25 devices
Test number Test #1 Test #2 Test #3
Publishing/Receiving Throughput Publishing Receiving Publishing Receiving Publishing Receiving
Minimum 242 2444 231 1833 244 2174
Mean 261 3174 261 2449 269 2748
Maximum 280 5282 288 4892 286 3983

APPENDIX A. RESULTS FROM THE EVALUATION PHASE 93

HNC - Message Throughput (Message/second) - 50 devices
Test number Test #1 Test #2 Test #3
Publishing/Receiving Throughput Publishing Receiving Publishing Receiving Publishing Receiving
Minimum 244 1354 235 1564 152 1020
Mean 266 2257 262 2670 248 2913
Maximum 299 6561 289 5905 284 6089

HNC - Message Throughput (Message/second) - 100 devices
Test number Test #1 Test #2 Test #3
Publishing/Receiving Throughput Publishing Receiving Publishing Receiving Publishing Receiving
Minimum 204 1901 217 2003 206 1796
Mean 256 2948 262 3019 250 2588
Maximum 286 7691 294 6311 300 8009

Table A.18: Message throughput (message/second)
within Virtual Cluster deployment approach

Virtual cluster - Message Throughput (Message/second) - 10 devices
Test number Test #1 Test #2 Test #3
Publishing/Receiving Throughput Publishing Receiving Publishing Receiving Publishing Receiving
Minimum 144 1959 162 1940 155 1589
Mean 158 2234 175 2398 167 2211
Maximum 165 2915 185 3117 181 3675

Virtual Cluster - Message Throughput (Message/second) - 25 devices
Test number Test #1 Test #2 Test #3
Publishing/Receiving Throughput Publishing Receiving Publishing Receiving Publishing Receiving
Minimum 140 1837 165 1415 156 1791
Mean 159 2386 177 1885 173 2146
Maximum 180 3375 203 2818 199 3830

Virtual Cluster - Message Throughput (Message/second) - 50 devices
Test number Test #1 Test #2 Test #3
Publishing/Receiving Throughput Publishing Receiving Publishing Receiving Publishing Receiving
Minimum 140 1837 165 1415 156 1791
Mean 159 2386 177 1885 173 2146
Maximum 180 3375 203 2818 199 3830

Virtual Cluster - Message Throughput (Message/second) - 100 devices
Test number Test #1 Test #2 Test #3
Publishing/Receiving Throughput Publishing Receiving Publishing Receiving Publishing Receiving
Minimum 116 1368 135 1122 145 1637
Mean 169 2236 166 2140 168 2383
Maximum 187 4532 180 3993 193 4359

APPENDIX A. RESULTS FROM THE EVALUATION PHASE 94

A.3 QuakeJS

A.3.1 Round-trip time

Table A.19: Round-trip time (message/second) within Virtual Cluster de-
ployment approach

Virtual Cluster - Round-trip time in ms
Number of connected players 1 Player 2 Players 3 Players
Minimum RTT 7 7 5
Average RTT 9 10 19
Maximum RTT 11 15 39

Table A.20: Round-trip time (message/second) within HNC deployment ap-
proach

HNC - Round-trip time in ms
Number of connected players 1 Player 2 Players 3 Players
Minimum RTT 6 8 7
Average RTT 7 11 22
Maximum RTT 14 17 46

Table A.21: Round-trip time (message/second) within Multi Cluster deploy-
ment approach

Multi Cluster - Round-trip time in ms
Number of connected players 1 Player 2 Players 3 Players
Minimum RTT 4 8 9
Average RTT 8 13 20
Maximum RTT 10 23 51

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Problem statement
	1.2 Testing and evaluation activity
	1.3 Related works
	1.4 Structure of the Thesis

	2 5G trends and use cases
	2.1 5G Architecture and requirements
	2.2 Micro-Operators business model
	2.3 Cloud, Multi-access Edge and Fog Computing
	2.4 5G-Essence Project
	2.4.1 Architecture description
	2.4.2 Example of service deployment in a Cloud-Enabled Small Cell

	2.5 Summary

	3 Virtualisation and containerisation
	3.1 Evolution of virtualisation
	3.2 Lightweight virtualisation
	3.2.1 Namespaces and CGroups
	3.2.2 Linux Containers and Docker

	3.3 Kubernetes
	3.3.1 Architecture
	3.3.2 Use cases

	3.4 Summary

	4 Multi-Tenancy in Kubernetes
	4.1 Hard and Soft Multi-Tenancy
	4.2 Hard Multi-Tenancy Approaches
	4.2.1 Hierarchical namespaces Controller (HNC) with strict RBAC rules - Namespaces-as-a-Service
	4.2.2 Multi-cluster deployment - Cluster-as-a-service
	4.2.3 Virtual Clusters / Cluster API Provider nested (CAPN) - Control-Planes-as-a-Service

	4.3 Summary

	5 Evaluation of the solutions
	5.1 Test Environment
	5.2 Tested applications
	5.2.1 Janus WebRTC Gateway - eMBB use case
	5.2.2 EMQX IoT Broker - mMTC use case
	5.2.3 QuakeJS - URLLC use case

	5.3 Deployment configurations
	5.4 Methodology
	5.4.1 Metrics definition
	5.4.2 Testing tools and methods

	5.5 Results
	5.5.1 Janus WebRTC Gateway - eMBB use case
	5.5.2 EMQX IoT Broker - mMTC use case
	5.5.3 QuakeJS - URLLC use case

	5.6 Evaluation

	6 Discussion
	6.1 Future work
	6.2 Conclusion

	References
	A Results from the evaluation phase
	A.1 Janus WebRTC Gateway
	A.1.1 Throughput
	A.1.2 Round-trip time

	A.2 EMQX MQTT Broker
	A.2.1 Message Delivery Time
	A.2.2 Message Throughput

	A.3 QuakeJS
	A.3.1 Round-trip time

