
AI-assisted curriculum learning

Haoping Xiao

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo July 25, 2022

Supervisor

Prof. Samuel Kaski

Advisors

M.Sc. Iiris Sundin

M.Sc. Sebastiaan De Peuter



Copyright © 2022 Haoping Xiao



Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Haoping Xiao
Title AI-assisted curriculum learning
Degree programme Computer, Communication and Information Sciences
Major Machine Learning, Data Science and Artificial

Intelligence
Code of major SCI3044

Supervisor Prof. Samuel Kaski
Advisors M.Sc. Iiris Sundin, M.Sc. Sebastiaan De Peuter
Date July 25, 2022 Number of pages 40 Language English
Abstract
Deep reinforcement learning is widely applied in de novo molecular design to generate
molecules with desired properties. This technique often has a sparse reward problem
since the target properties usually exist for the minority of the generated molecules.
With a sparse reward, the agent in a de novo design tool may fail to begin learning
and waste much time exploring areas in the vast chemical space that are far away from
the target area. A recent study successfully applied curriculum learning to mitigate
the sparse reward problem. However, a chemist must hand-craft a curriculum for the
generative agents, which requires domain knowledge and is time-consuming, especially
as tasks grow in complexity. This thesis applies an AI assistance framework to assist
in a curriculum design task by recommending actions. The AI assistant infers the
private information of the chemist, including design objective function and chemist’s
biases. Then, the AI tries to convince the chemist to adopt its advice. The chemist
is free to choose action after receiving advice. This setting presents a significant
improvement in AI safety. We demonstrate this method with a simulated chemist
in a de novo design task, where the generated molecules should be predicted to be
active against the dopamine type 2 receptor (DRD2). Our experiments show that the
AI-assisted curriculum learning achieves a pronounced improvement on the sparse
property (DRD2) and significantly outperforms unassisted curriculum learning.
Keywords curriculum learning , AI-assisted design , de novo molecular design ,

sparse reward
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Symbols and abbreviations

Symbols
M a Markov Decision Process
S state space in M
A action space in M
GO a start token in Recurrent Neural Network
EOS an ending token in Recurrent Neural Network
ω parameters in reward function
θ bias parameters in user model
m molecules
STOP an action that stops curriculum design

Operators
exp Exponential function
arg max Return the indices of maximum value
T transition function in M
R reward function in M
π a decision-making policy
Q Q value function
p(m) property value p of molecule m∑︁ sum

Abbreviations
RL reinforcement learning
CL Curriculum learning
SMILES Simplified Molecular Input Line Entry Specification
RNN Recurrent Neural Networks
MDP Markov Decision Process
MCTS Monte Carlo Tree Search
GHPMCP Generalized Hidden Parameter Monte Carlo Planning
QED Quantitative Estimate of Drug-likeness
SA Synthetic Accessibility



1 Introduction

1.1 Motivation
Drug discovery involves proposing novel compounds with desirable pharmacological
properties. Traditional drug discovery is time-consuming and cost-intensive, including
an average 10-15 years for launching to market with billions to invest[27]. The
prohibitive cost prompts the usage of computer-aided drug design, which accelerates
drug discovery in the vast chemical space. The prominent role of computer-aided
drug design is to prioritize libraries of molecules regarding selected properties toward
a target of interest, thereby narrowing down drug candidates to a few clusters.
However, a synthetically feasible molecular space is on the order of 1060 − 10100[24]
and therefore a complete search in the vast space is computationally infeasible.

An alternative method for drug discovery is de novo molecular design, which is a
promising technique to propose novel compounds that satisfy a desirable property
profile without needing a starting template and enumerating large virtual libraries.
With the advancement of deep learning, deep generative models have been intro-
duced for de novo design to generate molecules with desirable properties by using
different algorithms, such as policy-based reinforcement learning(RL), value-based
RL, molecular latent vectors, tree search and genetic algorithms[15].

The policy-based reinforcement learning framework encompasses an agent opti-
mizing its action policy to produce molecules that maximize a user-defined reward
function. In other words, the framework utilizes correlations between policies and
environmental rewards to reinforce and improve agent performance. Popular agent
models in de novo drug design generally are deep generative models such as Recur-
rent Neural Network(RNN), Generative Adversarial Neural Networks(GAN) and
variational autoencoders. These models are pre-trained on a large dataset to learn
about producing molecules, and the user-defined reward function typically consists
of multiple scoring components such as activity, selectivity and physicochemical
properties. This results in a multi-parameter optimization(MPO) problem. Given
sufficiently long training time, the agent models can learn to generate molecules with
desired properties that satisfy a user-defined MPO objective.

However, when the user-defined MPO objective contains some target-specific
scoring components like specific bio-activity and molecular docking, only a small
fraction of molecules in the vast molecule space satisfy the objective. This leads to a
reward sparseness problem in reinforcement learning. In cases these target-specific
properties are expected in de novo design, the resulting reward function provides
sparse extrinsic reward signals since by definition there are fewer rewards, and hence
fewer instances provide gradients to train the agent policy. In the most problematic
de novo design tasks, the agent may waste much time exploring areas in the vast
chemical space that are far away from the target area and fail to begin learning at
all. Therefore, leaving the computational efficiency in computing these properties
aside, optimization for such reward functions is practically difficult.

Curriculum learning(CL) has been proposed as a training strategy to overcome
sparse reward problems in reinforcement learning. Previous work[15] mitigates two
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de novo drug design tasks with sparse reward by curriculum learning. In curriculum
learning, the agent sequentially learns curriculum objectives that gradually increase
in complexity. Eventually, a curriculum with gradually increasing complexity guides
the agent to learn the sparse reward function. To construct curriculum for solving
sparse problems, chemists need to create a set of potential curriculum objectives that
correlated with the sparse reward function based on domain knowledge. From the
set of curriculum objectives, a chemist sequentially chooses a curriculum objective
as intermediate reward function which improves convergence on the sparse reward
function. The chemist also needs to design a threshold of the curriculum objective
value that the agent must achieve as a progression criterion to check sufficient learning
of each curriculum objective. Once the sparse reward function converges or there are
no more promising curriculum objectives, the curriculum construction is complete.
Figure 1 shows a curriculum learning application where the chemist would like the de
novo drug design tool to produce complex molecules that possess a complex scaffold,
which results in a sparse reward objective. To use curriculum learning for sparse
reward function, the chemist needs to provide multiple curriculum objectives after
rigorous consideration. From all possible curriculum objectives, chemists select a few
successive curriculum objectives that gradually increase in complexity. If and only if
the final curriculum progression criterion is satisfied, the agent could progress into
the production phase with a sparse reward function. In this thesis, we describe the
selection of curriculum objectives as curriculum design.

Human experts must hand-craft a curriculum for the agents, which requires
domain knowledge and is time-consuming, especially as tasks grow in complexity. In
addition, humans are required to design a curriculum progression criterion, which
is typically a threshold of the curriculum objective value. This criterion is hard
to determine as it cannot promise success in the next curriculum objective. These
problems motivate this thesis to create an AI assistant to help humans design a
curriculum by providing advice.

1.2 Problem Statement
A sparse reward is difficult to incentivize the agent in a de novo design tool to produce
molecules with desired properties. A practical method to mitigate sparse reward
problem is curriculum learning. As in previous work[15], we divide the curriculum
learning process into curriculum phase and production phase. The agent learns a
sequence of curriculum objectives in the curriculum phase and then learns the sparse
reward in the production phase. While design a curriculum is time-consuming and
laborious, this thesis applies an AI assistant to help curriculum design.

Curriculum design can be modeled as an infinite-horizon Markov Decision Pro-
cess(MDP) E =< S,A, T,Rω, γ, p0,s >. The states S are represented by the pa-
rameters of the agent model in a de novo drug design tool. A set of curriculum
objective selections and a STOP action constitute action space A for the chemist.
From the action space A, the chemist sequentially takes actions to choose a curricu-
lum objective or takes the STOP action to stop curriculum design. A curriculum
objective is allowed to be revisited in curriculum learning and therefore, the agent
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Figure 1: The figure is adapted from Guo, Jeff, et al. "Improving De Novo Molecular
Design with Curriculum Learning." (2021). In the Curriculum Phase, the agent
progresses through successive Curriculum Objectives that gradually increase in
complexity. Curriculum progression criterion checks for sufficient learning of each
Curriculum Objective based on a threshold that the agent must achieve. If and only
if the final Curriculum Progression Criterion is satisfied does the agent progress to
the Production Phase in which a sparse reward function is applied.

will learn the selected curriculum objective with a fixed number of epochs. This
definition optimizes the process of how chemists design a curriculum. The chemist
is not required to design a threshold as a curriculum progression criterion to check
sufficient learning of each curriculum objective. The same curriculum objective could
be selected again if the agent has not converged on that curriculum objective. The
chemist action ai (except the STOP action) at time step i will choose a curriculum
objective for the agent si to learn, resulting in a new state si+1. For the STOP
action, the agent remains in state si. With the definition of the action space, the
chemist can only focus on selecting curriculum objectives and decides when to enter
the production phase by selecting the STOP action.

At time step i the transition function T (si+1|si, ai) defines a distribution of
potential next states si+1 given that the chemist has taken action ai in current state
si. The chemist has a curriculum design objective function fω(s) =

∑︁k

i
ωi∗p̄i(m|s)∑︁k

i
ωi

.
p̄i(m|s) calculates the average value of property pi of sampled molecules m, which
are from the agent in state s in the production phase. The chemist evaluates the
average property value p̄i and each property pi has a weight ωi. We define the reward
function as Rω(si, ai, si+1) = fω(si+1) − fω(si), which is the improvement in the
curriculum design objective value from one time step to the next. The chemist
could not explicitly describe Rω, but we assume the AI assistant has access to its
parametric function class R = {Rω′}ω′∈Ω. γ ∈ [0, 1] is the discounting rate. The
objective in curriculum design is to maximize the expected discounted cumulative
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reward E [∑︁∞
i=0 riγ

i | T, p0,s] where ri is the reward received at the time step i. When
the discounting rate equals 1, the expected discounted cumulative reward is equal
to E [f(s∞)], which is the expected curriculum design objective value when the
curriculum design process ends. Finally, p0,s is the start state distribution: s0 ∼ p0,s.

Figure 2: The assistant observes both the action a taken by the chemist and the
new state s of the de novo design tool, and uses this to infer the chemist’s private
information. In every time step the assistant gives new advice a′ , appropriate for
the current state s, based on its inference of the chemist’s private information. The
chemist incorporates the advice into his/her own decision-making and arrives at an
action a. Only the chemist directly takes action to select a curriculum objective for
the agent.

This thesis applies an AI-assistance framework[11] to help a chemist design a
curriculum without initially knowing the chemist’s private information, including
curriculum design objective function and chemist’s biases. The goal of the AI assistant
is to increase the quality of curriculum construction, measured by the chemist’s
cumulative reward. Therefore, the goal of the AI assistant is consistent with the goal
of the chemist. Figure 2 shows the interaction among an AI assistant, a chemist and
a de novo design tool.

1.3 Structure of the Thesis
The thesis proceeds as follows. Chapter two introduces the background knowledge of
the de novo molecular design tool that we used in the thesis, sparse reward problem,
Markov decision process, Monte Carlo Tree Search and Human-AI collaboration.
These techniques are all related to the methods applied in this thesis.

Chapter three elaborates the AI-assisted curriculum design method. First, we
abstract the AI-assistant’s task as a generalized hidden parameter Markov decision
process. Second, the AI assistant applies a variant of Monte Carlo Tree Search to
plan advice according to the inferred reward function and chemist’s biases.

Chapter four describes the experiments we conduct to demonstrate the utility of
curriculum design in simulated example cases. Chapter five summarizes the thesis.



12

2 Background
This thesis aims to solve the sparse reward problem in de novo drug design by
applying an AI-assistance framework. This chapter will introduce the background of
the thesis, including a de novo design tool, sparse reward remedies, Markov decision
process, Monte Carlo tree search and human-AI collaboration.

2.1 REINVENT: de novo molecular design tool
This thesis focuses on a de novo molecular design tool REINVENT[5], implemented
by the Molecular AI group at AstraZeneca. REINVENT aims to efficiently explore
the chemical space and produce promising compounds with targeted properties.
REINVENT uses a policy-based reinforcement technique to fine-tune a generative
model (RNNs), which has been pre-trained to produce valid molecules. The fine-
tuning enables the generative model to produce molecules with desired properties.
Users are required to define a scoring function for REINVENT, consisting of multiple
scoring components such as activity, selectivity and physicochemical properties. A
diversity filter, the pre-trained generative model and the user-defined scoring function
will be combined to generate rewards for the agent’s action. The rewards incentivize
the agent model to produce valid and diverse molecules with desired properties. More
details will be introduced in the following sections.

2.1.1 SMILES

Molecules in REINVENT are represented in Simplified Molecular Input Line Entry
Specification (SMILES)[33] notation. Based on molecular graph theory, SMILES
rigorously represents molecules by a sequence of characters corresponding to atoms
and special chemical structures. In the SMILES representation system, atoms are
represented by their atomic symbols, and special symbols −, =, #, : are used to denote
single, double, triple, and aromatic bonds respectively. Branches in a compound are
specified by enclosures in parentheses. The SMILES notation also consider rules to
designate cyclic structures, disconnected structures and aromatic structures. In brief,
SMILES establishes a natural grammar to represent molecules, and is well suited
for high-speed machine processing. Canonicalization algorithms[34] can be used to
generate consistent and unique encodings for molecules.

2.1.2 Generative Model

As a de novo molecular design tool, REINVENT requires a generative model to
produce valid molecules with desired properties. A generative model approximates
a distribution of training data, so it can sample data from the same distribution.
REINVENT employs Recurrent Neural Networks (RNNs) as a generative model.
RNNs are particularly well-suited to the sequential structure of SMILES strings.
Recent success[28] demonstrates that RNNs could not only reproduce molecules in
the training dataset, but also generate novel and valid SMILE compounds.
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RNNs are a class of neural networks that incorporate the dependency of previous
sequential data. They have a typical network architecture as Figure 3. For every
time step t, the previous hidden state ht−1 and the current input xt are encoded into
a new hidden state ht, which determine both the output yt at the current step as
well as influence the next hidden state. This special network structure enables the
network to memorize previous information, which contributes to the next prediction.
However, this structure also results in a vanishing and exploding gradients [3] due
to the gradient-based back-propagation through time (BPTT) technique in training
RNNs. Therefore, RNNs in REINVENT adopted LSTM[17]/GRU[9] cells, which
are designed to address the vanishing/exploding gradient problems by learning to
determine which previous information to retain.

Figure 3: The architecture of RNN

The RNN model in REINVENT is trained to produce valid and novel molecules
on ChEMBL[14]. The training process of RNN applies teacher forcing technique[37].
Given a SMILES sequence(y1, y2, · · · , yn), the parameters of the RNN model are
updated by maximizing the estimated likelihood P (yt|x1, · · · , xt), where x1 = GO
(a start token) and xt = yt−1 (for t > 1). Since the hidden state ht−1 incorporates the
previous information, the likelihood P (yt|x1, · · · , xt) can be written as P (yt|ht−1, xt).
In tuition, the teacher forcing technique aims to correct the prediction at every time
step given a preceding sequence by updating the parameters.

When RNNs generate molecules in SMILES notation, a special start token GO is
fed into the network as x1 with an initial default hidden state h0. This will update
the next hidden state and predict the next token y using the parameters that have
been learned. This process iterates until the ending token EOS is predicted.

In brief, the RNN model in REINVENT can produce valid and novel molecules
in SMILES notation.
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2.1.3 Reinforcement learning in REINVENT

REINVENT encompasses a reinforcement learning tool to fine-tune generative models
such that generated molecules possess desired molecules. A reinforcement learning
system typically incorporates an agent and an environment in which the agent takes
actions and receives corresponding rewards for its actions. The reinforcement learning
system in REINVENT is shown as Figure 41.

Figure 4: RL cycle in REINVENT: The agent produces molecules in SMILES
notation to maximizing the reward from the score modulating block. The scoring
function incentivizes the agent to produce molecules with desired properties. The
prior model check the validity of generated molecules. The diversity filter encourages
diverse generation and collects generated scaffolds in the DF memory. The inception
module stores SMILES that previously receive high rewards for experience replay.

In REINVENT, since the agent is a pre-trained RNN, its action is to predict
the next token given a sequence of generated tokens until the ending token occurs.
A sequence of actions produces a sequence of tokens, which can be translated
into SMILES. The environment for the agent is a score modulating block that
consists of a user-defined scoring function, "prior" and diversity filter. A user-defined
scoring function combines multiple scoring components. Each scoring component
is responsible for one target property. The combination could be either a weighted
sum (eq 1) or a weighted product (eq 2), where each component pi has a weight wi.
The user-defined scoring function outputs a score to evaluate how good generated
molecules m are.

f(m) =
∑︁

i wi × pi(m)∑︁
i wi

(1)

1The figure comes from the support information of REINVENT

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c00915/suppl_file/ci0c00915_si_001.pdf
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f(m) =
[︄∏︂

i

pi(m)wi

]︄1/
∑︁

i
wi

(2)

The “prior” is a generative model that is the same as the agent at the beginning
of the RL. The prior does not undergo any optimization while the agent is updated
through interaction with the environment. Even without any optimization, the prior
has great generative capacity since it is a pre-trained RNN. The prior likelihood
prediction constrains the exploration of the agent so that the produced molecules
have valid SMILES syntax during RL. The last element in the score modulating
block in Figure 4, the diversity filter, determines if the generated compounds already
exist or if there are too many compounds of the same scaffold. It may reset the
user-defined score to 0 for the purpose of diverse generation, even if the generated
molecules satisfy a desired property. The diversity filter encourages the agent to
explore other part of the chemical space. In summary, the environment provides
feedback to help the agent balance exploitation in the desired chemical space and
exploration in the promising chemical space.

The last component of the RL system is inception, which essentially acts as a
form of experience replay. It keeps track of previously high-score molecules and
randomly exposes a subset of them to direct the learning process[5]. The reinforce-
ment learning(RL) algorithm that is employed in REINVENT is policy-based. It
explicitly learns an optimal stochastic policy[30]. While the policy in REINVENT is
a parametric model, a popular way to optimize the policy is through policy gradient
descent[23]. The gradient method in REINVENT starts by sampling a batch of
molecules and then calculates the corresponding loss from environment feedback.
The parameters of the policy are updated through back-propagation with the loss.
This optimization process stops when a satisfied policy is found. Using this gradient
descent method, a pre-trained generative agent model can be fine-tuned to produce
molecules with desired properties by interacting with the environment.

2.2 Sparse reward remedies
In de novo drug design with reinforcement learning, the chemist’s goal is translated
to the scoring function, which could consist of multiple molecular properties. While
some molecular properties, such as molecular weights, are possessed by every molecule,
there are other properties only exist for a small fraction of molecules, such as specific
bio-activity. The reward function is a sparse function when it is dominated by sparse
properties, since there are fewer generated molecules can receive rewards. This
sparse reward problem will lead to long training time and a suboptimal policy in
reinforcement learning.

In recent years, advanced techniques have been proposed to mitigate sparse reward
problems. Hand-crafted shaping rewards have shown great success in accelerating
learning [21]. Recent work has shown this technique can even help AI learn to
play the advanced game Dota2 at an expert level[4]. Reward shaping enhances
the original reward from the environment with additional localized rewards that
encourage behavior consistent with prior knowledge. The additional reward should
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be justified for the intended behavior and thus appropriately reward or punish the
agent’s actions, filling the gap of the original sparse reward. In REINVENT, the
diversity filter plays a similar role in shaping rewards. When the REINVENT agent
overexploits and generates molecules with the same scaffold, the diversity filter will
penalize it to encourage exploration. This technique can alleviate mode collapse,
in which the agent gets stuck into a pathological local minimum in the objective
function, and converges to generating a few instances with high reward[18]. However,
the technique in REINVENT does not fill the gap of the original sparse reward, and
the agent may fail to learn early on.

Curiosity-driven methods have been shown to be effective in sparse reward
problems[8]. Curiosity is a type of intrinsic reward function which uses prediction
error as reward signal. By rewarding the agent when it visits states on which it has
high prediction error, we incentivize it to collect those experiences that will improve
its predictions most. The agent is intrinsically motivated to explore its environment
out of curiosity. The curiosity encourages the agent to explore unseen states in the
environment, so that the agent may eventually help solve the sparse reward task.
However, this approach may not be applicable since many challenging but irrelevant
tasks could potentially distract the exploration[25]. In a de novo design problem,
the chemical space is extremely huge, and a curiosity-driven method may result in
endless exploration.

Transfer learning is another potential technique. Transfer learning uses a large
prior dataset to bootstrap the AI model so that it possesses prior knowledge in a new
task. Transfer learning may direct the agent to an area that is close to the target
area, giving the agent a better chance of finding the high rewards around the target
area. Therefore, transfer learning could alleviate sparse reward problems in principle.
The agent in REINVENT is pre-trained using a transfer learning technique. But
the purpose of pre-training is to help the agent produce valid molecules in the vast
chemical space. To deal with sparse reward, a specific dataset appropriate for the de
novo drug design goal is required, which is practically infeasible. Chemists resort to
de novo design tools to generate promising molecules because there are few known
molecules that satisfy their goal. A workaround in REINVENT is inception, which
is a modified version of experience replay. Once well-scored molecules are found,
they are stored in memory and inception will randomly expose a subset of them to
the agent to direct the learning process. Nevertheless, the agent may struggle to
find well-scored molecules in a sparse reward environment at the beginning and thus
inception would not work.

Curriculum learning has been shown to successfully mitigate sparse reward prob-
lems. Human education is usually organized through a curriculum which introduces
concepts from easy to difficult and from concrete to abstract. Curriculum learning is
inspired by human education, helping AI models master challenging concepts by learn-
ing easier concepts first. Curriculum learning can be seen as a continuation method,
which can help find better local minima for a non-convex function[2]. Continuation
methods are a well-known non-convex optimization approach. They first optimize
a simple(smoother) objective function to reveal the global picture of the smooth
problem. Then, the objective function is gradually transformed into less smooth
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version until the original non-convex objective function is recovered. Applying a
continuation method in optimization involves a sequence of training criteria, starting
from an easier objective function and ending with the training criterion of interest.

Curriculum learning can be implemented at the data-level, model-level and task-
level[29]. Data-level curriculum learning presents samples to the AI model from
easy to hard and thus needs a difficulty criterion for data. On the other hand,
model-level curriculum learning does not require a difficulty criterion but instead, it
gradually increases the AI model capacity. Task-level curriculum learning gradually
increases the difficulty of the tasks. An important element in curriculum learning
is the curriculum progression criterion, which determines when to start learning
in the next level. In practice, training is stopped when the task performance has
converged. Otherwise, training with a fixed number of epochs may be sufficient, since
a curriculum can be revisited later.

Curriculum learning has been applied in de novo design to mitigate sparse
rewards[15]. For de novo design, data-level curriculum learning is infeasible because
of a lack of data in specific tasks. As the generative model is usually pre-trained on
huge dataset to possess great generative capacity, updating the model architecture
through model-level curriculum is not feasible. Previous studies applied task level
curriculum learning to decompose complex reward function into simpler constituent
objectives, guiding training towards successful convergence of the final objective.
Chemists have to design a set of curriculum objectives, from which they select a
subset to form a curriculum. Although the method achieve great improvement, it
requires human expertise and is time-consuming. Therefore, this thesis aims to
create an AI assistant to help chemists choose a sequence of curriculum objectives to
construct a curriculum.

2.3 Markov decision process
This thesis defines curriculum design as a Markov Decision Process. A Markov
Decision Process (MDP) is a mathematical framework that models decision-making
problems of agents where the results are partly stochastic and partly controllable.
MDPs contain a state space S, an action space A, a transition function T , a
reward function R, a discounting rate γ ∈ [0, 1] and an initial state distribution p0,s

if applicable. The state characterizes the current state of the environment, with
which the agent interacts. The actions allow the agent to change its environment.
T (si+1|si, ai) is the transition function that describes the distribution of the next state
si+1 given that the agent takes action ai in the current state si. The decision-making
process is a Markov process if the new state si+1 only depends on the current state
si. In other words, T (si+1|si, ai, si−1, ai−1, · · · ) = T (si+1|si, ai). Under Markovian
dynamics, the current state s is sufficient for making an optimal decision. The reward
function specifies reward for being in a state si R(si), for taking an action a in state
si R(si, a), or taking an action a in state si and ending up in state si+1 R(si, a, si+1).
In summary, an MDP is formalized as a tuple < S,A, T ,R, γ, p0,s >.

The agent in a MDP < S,A, T ,R, γ, p0,s > has a policy π(a|s) = P (A = ai|S =
si), which is defined as the probability distribution over actions for every possible
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state. The goal of the agent in a MDP is to maximize the expected discounted
cumulative reward E [∑︁∞

i=0 riγ
i | T, p0,s, π(a|s)] that it receives. For an infinite MDP,

the discounted cumulative reward models the infinite cumulative rewards better by
giving greater weights to immediate rewards than delayed rewards. Therefore, an
optimal policy for the agent in a MDP is the policy that can maximize the expected
discounted cumulative reward.

2.4 Monte Carlo Tree Search
This thesis formulates curriculum design as a Markov Decision Process and applies
a method based on Monte Carlo Tree Search to find a solution. Monte Carlo Tree
Search(MCTS) is a search algorithm for finding optimal decisions by taking actions
in the environment and building a search tree according to the accumulated rewards.

“The basic MCTS process is conceptually very simple. . . A tree is built in an
incremental and asymmetric manner. For each iteration of the algorithm, a tree
policy is used to find the most urgent node of the current tree. The tree policy
attempts to balance considerations of exploration (look in areas that have not been
well sampled yet) and exploitation (look in areas which appear to be promising). A
simulation is then run from the selected node and the search tree updated according
to the result. This involves the addition of a child node corresponding to the action
taken from the selected node, and an update of the statistics of its ancestors. Moves
are made during this simulation according to some default policy.” [7]

MCTS builds a tree of visited state-action pairs starting from the current state
(Figure 5). MCTS uses Monte Carlo simulation to accumulate value estimates to
guide toward highly rewarding trajectories in the search tree. It consists of four
steps: selection, expansion, simulation and backup. These four steps are repeated
multiple times and the action with the highest value will be selected as the most
promising action. In summary, MCTS uses Monte Carlo simulation to accumulate
value estimates to guide toward highly rewarding trajectories in the search tree.

• Selection: start from the root node R and select successive child nodes until a
leaf node L is reached. A leaf node is a node that has no explored child nodes.
This selection needs to balance exploration and exploitation. Typically, the
upper confidence bound(UCB) for tree (UCT) policy is applied to select an
action. Specifically, each node in a tree has an associated UCB value and the
child node with the highest UCB value will be chosen. The UCB equation is
shown in Equation 3, where s′ represents a child node of a parent node s after
taking action a, Q(s, a) is the value of the child node, N(s) is a count of visits
to state s and N(s, a) is a count of visits to the state-action pair (s, a). As
we can see, the first term Q(s, a) controls exploitation while the second term
considers exploration. The more a child node s′ is visited (higher N(s, a)),
the lower the second term becomes, hence decreasing its probability of being
selected again. UCB algorithm has exploration and exploitation inherently
built-in.
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Figure 5: This figure is created by Wiering et al. [35]. It shows a Monte Carlo
Tree Search roll-out from the agent’s current state out to a depth of 2. The MCTS
methods simulate a trajectory(a sequence of state-action pairs (s0, a0, s1, a1, · · · ))
forward from the agent’s current state. At each state, a policy will select an action,
leading to the next state one level deeper in the tree. After rolling out to a terminal
state or a maximum depth, the values of the selected action are updated towards
the rewards received following it on that trajectory.

UCB(s′) = Q(s, a) + c

⌜⃓⃓⎷ log N(s)
N(s, a) (3)

• Expansion: randomly create a child node C of a leaf node L that the selection
stage reached, unless the leaf node L is a terminal state or maximum depth is
reached.
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• Simulation: Roll out one or multiple simulations from the expanded node C
with reward accumulated for each simulation. A rollout may be as simple as
choosing uniform random actions until the terminal state or maximum rollout
length is reached. The simulation process evaluates the value of the expanded
node C.

• Backup: Use the accumulated rewards in the simulations to update the value
of nodes on the path from the expanded node C to the root node R.

2.5 Human-AI collaboration
This thesis proposes an AI assistant that provides advice to the chemist for cur-
riculum design. Only the chemist can take actions in the de novo design molecular
tool. This AI assistance framework fits within Human-AI collaboration methods
where the AI and human are solving the same problem. Dimitrakakis et al. [12]
propose an AI assistant to cooperate with human in a decision process. The AI
assistant primarily controls the process, but the human can override the AI’s actions.
However, their method assumes the AI knows the reward function of the human in
advance before cooperation. Hadfield Menell et al. [16] introduce cooperative inverse
reinforcement learning, where the AI and the human simultaneously take actions
to solve a task. The AI assistant does not initially know the reward function of the
task, but it learns the reward function by inverse reinforcement learning when the
human demonstrates a policy. In shared autonomy [26], the AI assistant receives a
human action command and selects high-value action that are closest to the human
command. The AI assistant assists a user without access to the user’s reward function,
implicitly inferring it through human action commands. In these automation-based
methods, the AI assistant is allowed to access to the environment and take actions
autonomously. In contrast, the assistant helper action MDP (HAMDP) [13] assists
an agent through action recommendations. However, HAMDP assumes the agent
will always accept a recommendation for the optimal action, and does not take
into account the agent’s biases. De Peuter et al. [11] proposed an AI assistant
which recommends actions based on the user that it encounters, taking into account
the user biases and the private reward function. The study shows that their AI
assistant framework significantly outperforms automation methods based on inverse
reinforcement learning and preference learning. Therefore, this thesis adopts this AI
assistant framework to help chemist design curriculum to solve sparse reward in de
novo molecular design.



21

3 Methods
We describe the method introduced in [11] in this section, and explain how it maps to
the AI-assisted curriculum design process. As shown in Figure 2, the chemist takes
action based on advice from the assistant. In our problem settings, this means that
the chemist chooses a curriculum objective based on a suggested curriculum objective.
The assistant helps the chemist solve the curriculum design problem E described
in Section 1.2. The goal of the assistant is to maximize the cumulative discounted
reward obtained by the chemist through its advice. Therefore, the assistant aims to
solve a decision problem with reward function R(si, ai, si+a; ω) by its actions(advice).

To create such an assistant, we assume a user model π̂ (a | s, a′; θ, ω) is available,
which simulates how a chemist will act when receiving advice a′. The model depends
on two sets of unobserved parameters: ω ∈ Ω and θ ∈ Θ. Ω is the parameter space
of the chemist’s preference in the reward function and Θ is the parameter space
for the possible biases that the chemist has in action selection. We call θ the bias
parameters.

3.1 Advice as a decision problem
The assistant’s decision problem can be model as A generalized hidden parameter
MDP(GHP-MDP)[22]. A GHP-MDP is an MDP in which the transition and reward
function are parameterized with unobserved parameters. In this thesis, these pa-
rameters are ω and θ, the two unobserved parameters which determine a chemist’s
reward function and biases. Let M = ⟨S, Ω, Θ,A, T , π̂,R, γ, p0,s, p0,ω, p0,θ⟩. S,A, γ
and p0,s are the state space, chemist action space, discounting rate and the ini-
tial state distribution from the curriculum design process E, which is described in
problem statement 1.2. The assistant should provide suggested action a′ ∈ A from
the same action space A as the chemist’s, and the state for the assistance problem
would be the agent state in de novo design tool. The advice a′

i ∈ A provided by
the assistant should not restrict the chemist from taking action in E. Only the
chemist’s action ai leads the agent to a new state based on the transition function of
E. Therefore, the assistant only indirectly influences the change of state, by using
advice to induce a different policy from the chemist. The user model π̂ (a | s, a′; θ, ω)
predicts the chemist’s action induced by advice. T is the transition function class
T = {Tω,θ}ω∈Ω,θ∈Θ. The transition function Tω,θ(si+1 | si, a′

i) defines a distribution of
potential next states si+1 given that the chemist received advice a′ in the current
state si. For given reward and bias parameters ω and θ, the transition function is
Tω,θ (si+1 | si, a′

i) = ∑︁
ai∈A π̂ (ai | si, a′

i; θ, ω) T ′ (si+1 | si, ai). It encodes the interac-
tion between the assistant and the chemist and between the chemist and the agent
in de novo design tool from Figure 2. T ′ (si+1 | si, ai) is used to approximate the
transition function T (si+1 | si, ai) in curriculum design process E. The computation
of the next state si+1 requires training the agent with a fixed number of epochs,
which is usually sufficient for convergence. For simulation efficiency in the assistant’s
decision problem M when planning advice, we use T ′ (si+1 | si, ai) to estimate the
next state si+1 by training the agent with fewer epochs.
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Since the REINVENT agent state would be only changed by the chemist’s action,
the reward for the assistant’s advice depends on the chemist’ action induced by its
advice. In other words, its reward is equivalent to the reward that chemist received
after taking his/her induced action a, which would be predicted by the user model.
Therefore, the reward function should be identical to the reward function R in
curriculum design process E. Lastly, Ω and Θ are the parameter spaces for the
reward function and biases under prior distributions p0,ω and p0,θ respectively.

3.2 Advice generation
The MDP M describes the assistant’s task in curriculum design. M essentially
defines a space of MDPs {Mω,θ}θ∈Θ,ω∈Ω. Each MDPMω,θ has the unknown transition
function Tω,θ and the unknown reward function Rω(si, ai, si+1), resulted from two
sets of unknown parameters ω and θ. In other words, the assistant does not know
what kind of chemist it is advising. However, the assistant can maintain posterior
beliefs over unknown parameters ω and θ based on observed transitions (si, a′

i, si+1)
and the priors p0,ω and p0,θ. After providing advice a′

i to the chemist, the assistant
observes the transitions by observing what action ai the chemist takes in state si

(resulting in state si+1) in response to advice a′
i. The AI assistant uses Bayesian

inference to estimate the true value of the unknown parameters. It calculates the
likelihood of the observed transitions under different parameter values in Ω×Θ to
maintain a posterior distribution over the chemist’s biases and reward function.

This thesis employs Generalized Hidden Parameter Monte Carlo Planning (GH-
PMCP) [11] for planning over the assistant’s decision problem M. The GHPMCP
algorithm is based on MCTS[7] and enables planning over MDPs where the transition
function Tω,θ and the reward function Rω are unknown. Though these two function
are unknown, the AI assistant applies the maintained beliefs over the unknown
parameters Ω and Θ in the GHPMCP algorithm. The GHPMCP algorithm uses the
MCTS tree as a sort of particle filter and implicitly represents this belief distribution
at all future states present in the tree. This allows it to gauge the information value
of actions for future policies.

The GHPMCP algorithm is shown in Algorithm 1. GHPMCP plans multiple
time over sampled Mω,θ and provide the action with the highest Q-value. When
GHPMCP plans in the AI assistant’s decision problem M, it samples ω and θ from
a maintained belief distributions over reward parameters pω and bias parameters
pθ. Then, it simulates Mω,θ down the tree up to a maximum depth max_depth,
following an Upper Confidence bound for Trees(UCT)[7] policy, which balances the
exploration and the exploitation. “The variable h is applied to identify tree nodes
by their path to the root and d to represent the current depth. As the simulation
progresses down the tree, the state and action node visit counts N(h, s) and N(h, s, a)
and Q-values Q(h, s, a) are updated. Simulation proceeds recursively until a leaf
node is reach, either because the maximum depth is reached or because a new node
is encountered.” [11]
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Algorithm 1 GHPMCP
function plan(s, pω, pθ)

for i = 1, · · · , n_iterations do
ω ∼ pω

θ ∼ pθ

h← s
simulate(h, s,Mω,θ, 1)

end for
h← s
return arg maxa Q(h, s, a)

end function
function simulate(h, s,Mω,θ, d)

if N(h, s) = 0 then
for all a ∈ A do

N(h, s, a)← 0
Q(h, s, a)← 0.0

end for
end if
a′ ← arg maxa∈A Q(h, s, a) + c

√︃
log N(h,s)
N(h,s,a) ▷ UCT policy

s′ ∼ Tω,θ (· | s, a′) ▷ A user model involved
r ← Rω (s, a′, s′)
h′ ← ha′s′

d′ ← d + 1
if N(h, s, a) = 0 or d = max_depth then

q ← r
else

q ← r + γsimulate(h′, s′, Mω,θ, d′)
end if
N(h, s)← N(h, s) + 1
N(h, s, a)← N(h, s, a) + 1
Q(h, s, a) = Q(h, s, a) + q−Q(h,s,a)

N(h,s,a)
return q

end function

3.3 User model
The assistant plans the next action to maximize the chemist’s cumulative reward. In
the simulated decision problem Mω,θ, the assistant consider how the chemist will
act after receiving its advice a′ by the transition function Tω,θ. This consideration
requires a user model π̂ (a | s, a′; θ, ω). Since the user model simulated the chemist’s
behavior, this section uses user model and chemist interchangeably.

The user model in this thesis is also inspired by De Peuter et al.[11]. The process
of how humans make decisions is well-studied and these established theories lead to
our user model. The user model simulates how a human make choices by equation 4.
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p(a | u) = p(a) exp(βu(a))∑︁
â∈A p(â) exp(βu(â)) (4)

where a ∈ A is an action, u is a utility function that evaluates the action a, p(a) is
the prior distribution over actions, and the last parameter β ∈ θ is a temperature
parameter. Equation 4 describes that the probability of taking action a depends on
the action value u(a) and human prior preference p(a). β balances the exploration
and exploitation on actions. A high temperature (β → ∞) results in a greedy
exploitative strategy and makes fully ration choices while a low temperature (β → 0)
would tend to make every action equiprobable (i.e. pure exploration). This choice
rule is known as a softmax policy, which is widely applied in RL as an action selection
rule. In addition, the softmax choice rule is a compelling model of human cognition
that frequently used to model human behavior[20, 1, 31, 10, 6].

Since the chemist selects a curriculum objective to maximize his/her cumulative
reward, we apply the chemist’s prior knowledge Rω(s0, a, s1) as the utility function.
Rω(s0, a, s1) defines the improvement in curriculum design objective value for taking
action a in the initial state s0 and ending up in s1. Rω(s0, a, s1) provides a score
evaluating sampled molecules from the agent s1 in the production phase. We assume
the chemist has prior knowledge Rω(s0, a, s1) after (s)he creates a set of promising
curriculum objectives. In other words, given an prior agent s0 in de novo design
tool, the chemist understands how helpful the action a is to solve the sparse reward
in the production phase. Although the agent state will update during curriculum
learning, the chemist will continue to use its prior knowledge as the utility function.
It is too computationally intensive and time-consuming for chemists to consider
Rω(si, a, si+1) for every possible actions and state pair. In tuition, chemists should
prefer the curriculum objective that will cause an agent to produce desired molecules.

With the prior knowledge, we employ the softmax choice rule instead of greedy
selection for the following reasons. The greedy action does not necessarily result in
an optimal order of curriculum objectives in curriculum design because the prior
knowledge is biased as it allows a fixed state for the agent. However, the softmax
choice rule allows exploration to overcome the limitation of biased prior knowledge.
The greedy action is still most likely to be selected because it has the highest
selection probability, but all the others are ranked and weighted according to their
value estimates.

When the chemist designs a curriculum, we assume the chemist would select the
best curriculum objective they can think of by using the choice rule. Therefore, it is
a stochastic action choice which is denoted by random variable A1. The distribution
of A1 is given in the equation 5. Rω(a), p(A1 = a) are a simplified notation of
Rω(s0, a, s1), p(A1 = a|si; θ, ω) respectively, because the state and parameters are
constant in this context.

p (A1 = a) = p(a) exp (β1Rω(a))∑︁
â∈A p(â) exp (β1Rω(â)) (5)

After using prior knowledge to select an action choice a ∈ A1, the chemist chooses
whether to switch to the assistant’s suggested action a′ or insist on his/her original
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choice. Since there are only two actions for the chemist to choose from, it is computa-
tionally feasible to sample molecules in the production phase to evaluate Rω(si, a, si+1)
and Rω(si, a′, s′

i+1) to compare the two actions. For the STOP action in the action
space, the agent remains in the previous state and thus Rω(si, STOP, si+1) = 0.
If neither the chemist’s prior choice a nor the assistant’s advice a′ improves the
curriculum design objective value (Rω(si, a, si+1) < 0 and Rω(si, a′, s′

i+1) < 0), then
the chemist will choose the STOP action instead to terminate the curriculum design
process.

In summary, the user model π̂ (a | s, a′; θ, ω) in this GHPMCP algorithm simulates
the chemist’s behaviors. First, it will apply prior knowledge Rω(a) and the softmax
choice rule to select a curriculum objective and then compare that with the assistant’s
advice using sampled molecules. The user model π̂ (a | s, a′; θ, ω) makes a sequence
of choices to construct a curriculum and will only settle if the assistant and itself
cannot find a curriculum objective that improves the agent further in the production
phase.

3.4 Summary
In this section, we have defined the assistant’s decision problem as a GHP-MDP.
The assistant provides advice to help the chemist take actions, but only the chemist’s
action can change the state of the agent in the de novo drug design tool. When the
assistant is planning the advice, it has to consider the possible reward function and
chemist’s bias in action selection, which is implemented by GHPMCP. GHPMCP
samples possible reward parameters and bias parameters and applies MCTS to
estimate the Q-values of the assistant’s actions. In MCTS, the state transition
considers how the chemist will act, which is simulated by the user model. After
adequate simulation, the assistant will choose the action with the highest Q-values.
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4 Experiments

4.1 DRD2 activity
Curriculum design aims to solve the sparse reward problem in reinforcement learning.
In this thesis, we select DRD2 activity as the property to simulate a sparse reward.
The objective of the agent in the de novo drug design tool is to generate molecules
that are predicted to be active against a biological target, which is the dopamine
type 2 receptor DRD2.

To create a DRD2 activity prediction model, we use the corresponding bioactivity
data from REINVENT2. The training dataset includes 24080 active molecules and
251688 inactive molecules while the test dataset has 1104 active molecules and 67840
inactive molecules. To create a predictive model that results in a sparse reward
problem, we randomly select 100 molecules from the training dataset including 10
active molecules and 90 inactive molecules. We use this tiny imbalanced dataset to
train a random forest classifier and use this classifier to simulate sparse rewards in
the de novo design tool.

We use the random forest classifier from Scikit-learn, a machine learning toolkit
in Python. We extract molecules’ Morgan fingerprint, which is one of the supported
molecular features in REINVENT. The random forest classifier has 100 trees in the
forest and the maximum depth of each tree is 2. The resulting classifier can not recall
any active molecules in the test dataset (see Table 1) and can only recall 2 active
molecules in the training dataset (see Table 2). The weak DRD2 activity prediction
model tends to predict molecules to be inactive, which is desired to produce sparse
rewards. We use this model to create a drug design task in which the generated
molecules should be predicted to be active. This task has sparse rewards since few
molecules can be predicted to be active.

metric accuracy recall
value 0.987 0

Table 1: The performance of a weak DRD2 activity classifier on test dataset

metric accuracy recall
value 0.92 0.2

Table 2: The performance of a weak DRD2 activity classifier on training dataset

Then, we apply this weak DRD2 activity prediction model in REINVENT to
check the performance when converged. REINVENT uses the predictive probability
from the model as a score to train the agent. We call this predictive probability DRD2
activity score for the rest of the thesis. As we can see in Figure 6, the generated
molecules from the prior agent only get around 0.09 average DRD2 activity score
and after 1000 epochs, the average DRD2 activity score converges at around 0.38.

2The DRD2 data comes from REINVENT community

https://github.com/MolecularAI/ReinventCommunity/tree/master/notebooks/data
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Figure 6: Without curriculum learning, the average score of weak DRD2 activity
converges at around 0.38.

4.2 Simulated Chemist
We demonstrate our AI assist curriculum design method with a simulated chemist.
We create a simulated chemist which has the same action policy as the user model
π̂ (a | s, a′; θ, ω). However, the simulated chemist has reward parameters ω and bias
parameters θ which they cannot explicitly describe. The AI has to maintain posterior
belief over these parameters to estimate θ and ω.

The simulated chemist aims to use a de novo drug design tool to generate
molecules that are predicted to be active by the weak DRD2 activity model. The
higher the predictive probability the generated molecules achieve, the closer the
simulated chemist gets to its goal. Since DRD2 activity is a sparse property in our
setting, the simulated chemist uses curriculum learning to mitigate the sparse reward
problem. In curriculum design, the objective function fω(s) of the simulated chemist
evaluates sampled molecules m of the agent s in the production phase. We assume
the chemist would take into account the DRD2 activity, Quantitative Estimate of
Drug-likeness(QED) and synthetic accessibility(SA) in molecular evaluation. Thus,
the curriculum design objective function fω(s) =

∑︁k

i
ωi∗p̄i(m|s)∑︁k

i
ωi

consists of these three
properties. The reward parameters ω consist of 3 parameters representing the
simulated chemist’s interests in the three properties and the bias parameter θ is β in
the softmax choice rule (equation 4).

The chemists we simulate in the experiments are instantiated with parameter
values sampled from the priors p0,ω and p0,θ. All parameters have independent prior
distributions, which are listed in table 3. We assume the DRD2 activity has a higher
weight because it is the main goal in curriculum learning and the other two properties
have lower weights since they are necessary for the chemist to evaluate molecules.
These priors are also used in the beliefs maintained by the AI assistant.
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name prior distribution explanation

Ω
ω1 N (0.8, 0.1) the weight of DRD2 activity in reward function
ω2 N (0.1, 0.05) the weight of QED in reward function
ω3 N (0.1, 0.05) the weight of SA in reward function

Θ β Unif (1, 4) bias parameter of the choice in eq. 4

Table 3: Prior distributions for the parameters of the simulated chemist. The left-
most column indicates whether the parameter is part of the reward parameters Ω or
the bias parameters Θ

4.3 Action Space
To solve the sparse DRD2 activity reward in de novo design, the simulated chemist
resorts to curriculum learning. We create a set of 25 curriculum objectives for the
simulated chemist and the AI assistant to design the curriculum. The supported
scoring components for REINVENT include physicochemical properties, predictive
models and similarity measures to some specific structures [5]. For physicochemical
properties, we select the number of rotatable bonds, the number of hydrogen bond
donors, the number of hydrogen bond acceptors, the number of rings, molecular
weights, topological polar surface area, the length of graph, slogp and the number of
atomic stereo centers. The definition of these scoring components can be found in
the supporting information3 of REINVENT.

We analyze the distributions of these properties among the active molecules in the
dataset and use their 95% confidence interval as criteria to create a set of curriculum
objectives. The generated molecules from the de novo design tool get rewards if
their property values fall in the 95% confidence interval. For similarity measures, we
apply Tanimoto similarity, matching substructure and custom alert. The provided
targets in the similarity measures are selected from active molecules in the dataset
and prior knowledge. For predictive models, we have the weak DRD2 activity model,
Quantitative Estimate of Drug-likeness(QED) from the Rdkit package [19] and a
synthetic accessibility model from REINVENT community.

The simulated chemist is given 25 curriculum objectives and must create a
curriculum to solve the sparse reward problem. Therefore, the simulated chemist
has 26 actions including a STOP action. Once the STOP action is selected, the
curriculum design process is terminated. The STOP action will not change the agent
state, and thus the cumulative reward remains the same as the one in the previous
state. We assume a uniform prior distribution over these 26 actions. In other words,
the softmax choice rule in the user model can be simplified to:

p (A1 = a) = exp (β1Rω(a))∑︁
â∈A exp (β1Rω(â)) (6)

3the support information of REINVENT

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c00915/suppl_file/ci0c00915_si_001.pdf
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4.4 Hyperparameters
The number of epochs The transition function T (si+1|si, ai) of the agent state
in the curriculum design problem E is achieved by applying action ai(a curriculum
objective) to the agent si and training it for a fixed number of epochs. In our
experiments, the number of epochs is 300, as it is usually sufficient for convergence
in REINVENT. Since a curriculum objective can be revisited, the ai would be
re-considered if the REINVENT agent has not converged on the curriculum objective.
In addition, the sparse reward objective in the production phase will be also be
trained with 300 epochs, which would typically be insufficient for convergence without
curriculum learning. Therefore, obtaining reward Rω(si, ai, si+1) requires 600 epochs
for one action-state (si, ai, si+1) pair: 300 epochs for the action and 300 epochs for the
production phase. After 600 epochs, the chemist samples molecules m for the agent
and receives reward Rω(si, ai, si+1). Since calculating the reward Rω(si, ai, si+1) is
computational intensive, the chemist will make their prior choice based on their prior
knowledge Rω(a) at first and use Rω(si, ai, si+1) to select between their choice and
advice. In the assistant’s decision problem, the transition function T (si+1 | si, ai)
in the curriculum design problem E is approximated by T ′ (si+1 | si, ai), which is
achieved by training the agent with fewer epochs(200) in the production phase.

Planning for Assistance The AI assistant learns the policy of the simulated
chemist and provides advice to the simulated chemist. We use the following parameter
values in Table 4 for GHPMCP.

name GHPMCP explanation
γ 1 discounting rate used while planning

max_depth 1 maximum depth of the tree
n_iterations 1000 number of planning iterations

c 1√
2 exploration constant used by the UCT policy

Table 4: Parameters used in GHPMCP. The names of the parameters correspond to
those used in Algorithm 1

4.5 Evaluation
4.5.1 Evaluation metrics

AI-assisted curriculum design aims at helping a chemist design a curriculum for
curriculum learning, which will be beneficial for optimizing sparse reward in de novo
molecular design. Therefore, an appropriate evaluation should include evaluation in
the curriculum design stage and performance in optimization.

Here, we use the following two metrics:

1. average DRD2 activity score: We use the average DRD2 activity score as a
metric to evaluate an agent in a specific state. Given an agent in de novo
molecular tool, we sample 1000 molecules and use the weak DRD2 activity
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classifier to predict their activity. The predictive probability is referred as
DRD2 activity score.

2. curriculum design objective value: fω(s) =
∑︁k

i
ωi∗p̄i(m|s)∑︁k

i
ωi

consists of three prop-
erties, which are DRD2 activity predicted by the weak DRD2 activity classifier,
Quantitative Estimate of Drug-likeness(QED) and synthetic accessibility(SA).
The reward parameters ω consist of 3 parameters representing the simulated
chemist’s interests in the three properties. For a design problem, the curriculum
design objective value fω(s) is the most appropriate measure of comparison. It
represents the chemist satisfaction with the resulting agent state after taking
action in the curriculum design process.

For curriculum design, our measure of interest is the curriculum design objective
value achieved by a given time step, where time steps are counted as actions of the
simulated chemist. For the sparse reward problem, our measure of interest is the
average DRD2 score achieved by a given time step, where time steps are counted as
actions of the simulated chemist.

4.5.2 Hypotheses

In this section, we propose the following four hypotheses that we would like to test
in our experiments.

H1 Applying the curriculum design objective function in de novo design tool
instead of the original sparse reward can not improve the sparse property (DRD2
activity) of generated molecules.

H2 For curriculum design, AI-assisted curriculum design achieve higher curricu-
lum design objective values than unassisted curriculum design and curriculum design
with random advice.

H3 For the sparse reward problem, curriculum learning would improve the average
DRD2 activity scores.

H4 AI-assisted curriculum learning achieve higher average DRD2 activity scores
than unassisted curriculum learning and random-assisted curriculum learning.

In our earlier discussion on sparse reward remedies (Section 2.2), we introduce
a reward shaping method to mitigate sparse reward problem. Reward shaping
enhances the original reward with additional rewards that can fill the gap in the
original sparse reward. In our curriculum design, the objective function incorporates
the sparse reward and other two properties, which originate from chemist’s biases in
molecular evaluation and enhance the sparse reward. While the curriculum design
objective function has additional rewards, we would like to propose the first hypothesis
H1, because the drug-likeness and synthetic accessibility are weakly correlated to
the sparse DRD2 activity. The weak correlation fails to incentivize the agent to
produce DRD2 active molecules. Since the chemist cannot describe their curriculum
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design objective function directly, we must learn an approximate objective function
through human interaction and then subsequently apply it in the de novo drug
design tool. However, as we use a simulated chemist, we know the exact curriculum
design objective function once we sample a simulated chemist. We apply the exact
curriculum design objective function in de novo design tool to overestimate the result
of using an approximate objective function. The result is measured by the average
DRD2 activity score of generated molecules, which is in range [0, 1].

Curriculum design helps chemists design a curriculum for curriculum learning.
To test the second hypothesis H2, we compare our AI-assisted curriculum design
method with the result of an unassisted simulated chemist and assisted with random
advice. In our experiments, the unassisted simulated chemist selects curriculum
objectives based on its prior knowledge.

The goal of curriculum learning is mitigating the sparse reward problem. We test
the following hypotheses H3 and H4 to show the utility of AI-assisted curriculum
design.

To test these hypotheses, we need five experiments including AI-assisted curricu-
lum learning, unassisted curriculum learning, random-assisted curriculum learning,
reinforcement learning with sparse reward and reinforcement learning with curriculum
design objective function. All experiments except reinforcement learning with sparse
reward require a simulated chemist. These comparative experiments are run ten
times. Every run of the experiments uses a new randomly sampled simulated chemist
with different reward function and biases. In every run we apply four experiments
once.

We use a two-sided paired Wilcoxon signed rank test [36] to verify significance.
We define the independent paired samples as the measured values at the same time
step for two different comparative experiments but the same simulated chemist. As a
result, we can collect the same number of paired samples as the number of simulated
chemists we sampled. In our implementation, we use the Wilcoxon signed-rank test
from SciPy statistics package [32].

4.6 Results
For curriculum design, we compare AI-assisted curriculum design to unassisted cur-
riculum design and curriculum design with random advice. These three comparative
experiments require a simulated chemist. Different simulated chemists and different
curriculum design methods will result in a different curriculum, including the number
of curriculum objectives and the type of curriculum objectives. We extend the mea-
surement for every experiment until the max time step that one of the experiments
achieved by filling the measured values at the final time step in every experiment.
For example, assuming a AI-assisted curriculum design takes the maximum action
(6 actions or time steps), the measured values of every design experiment will be
extended to 6 time steps. This is done by adding STOP actions to the trajectory
until it reaches the desired length. STOP actions have no effect on the evaluation,
as they do not change the agent state and have zero reward. Although we extend
the measured values, we will list the average actions for each design method takes to
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compare the time costs.

4.6.1 Results of Curriculum Design

We provide evidence towards H2 through three methods, including AI-assisted
curriculum design, unassisted curriculum design and curriculum design with random
advice. The curriculum design objective value achieved by all methods is shown in
Figure 7 and detailed results with significance tests can be found in Table 5.

In time step 0, the prior REINVENT agent is presented as a low curriculum
design objective value since it has not started curriculum learning. We observe
that the AI-assisted curriculum design significantly (p-value<0.01) outperforms the
unassisted curriculum design and curriculum design with random advice after time
step 1. The unassisted simulated chemists rarely improve their curriculum design
objective value after the first curriculum objective is selected. In addition, we see that
the curriculum design with random advice is only slightly better than the unassisted
approach, since it offers an alternative action for the simulated chemist to consider.
Even though the action space has only 26 actions, random recommendations do not
prove tremendously helpful. On the other hand, the AI assistant uses the GHPMCP
algorithm to plan advice based on a user model and offers the advice with the highest
Q-values after multiple simulations. As we can see, advice with careful planning
enables AI-assisted curriculum design to achieve higher curriculum design objective
value than the other two methods, which proves the hypothesis H2.

Note that at each time step, the simulated chemist chooses a curriculum objective
for curriculum learning or takes the STOP action because of the extension. In our
10 repetitive experiments for each method, the simulated chemist in AI-assisted
curriculum design takes more actions (4.6 time steps) than the other two methods
(2.6 time steps is the least one). Note, however, that AI-assisted curriculum design
significantly outperforms the other two methods in the first three time step. The
advantage of AI-assisted curriculum design is revealed from the second time step and
the curriculum design objective values keep improving as time step increases.

time step 1 2 3 4 5 6 average time step
unassisted 0.371±0.015 0.388 ± 0.015 0.402 ± 0.021 0.406 ± 0.021 0.409 ± 0.020 0.409 ± 0.020 2.6
random 0.371± 0.013 0.405 ± 0.024 0.416± 0.023 0.416± 0.022 0.417± 0.022 0.417 ± 0.022 3.6
assisted 0.372 ± 0.014 0.436± 0.028 0.453± 0.029 0.460± 0.028 0.464±0.030 0.477 ±0.037 4.6

Table 5: Mean curriculum design objective value ± standard error as a function of
time for by three different design methods. Bold shows significant improvement of
assisted curriculum design (p-value<0.01) over the alternatives within the same time
step. The average time step indicates the average number of actions taken by the
simulated chemist in the curriculum design.

4.6.2 Improvement on Sparse reward problem

We translate curriculum design to curriculum learning when the context switches
from design problem to sparse reward problem. Selecting a curriculum objective
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Figure 7: Curriculum design objective value achieved

in curriculum design corresponds to learning a curriculum objective in curriculum
learning. For the sparse reward problem, we have three hypotheses: H1, H3 and
H4. We ran five different experiments to provide evidence towards these hypotheses,
including AI-assisted curriculum learning, unassisted curriculum learning, random-
assisted curriculum learning, reinforcement learning with curriculum design objective
function as reward and reinforcement learning with DRD2 activity as reward.

As we can see the average DRD2 activity score in Figure 8 and detailed results
with significance tests in Table 6, the reinforcement learning with the original
reward significantly outperforms (p-value<0.01) the one with the curriculum design
objective function, in which the additional reward is weakly correlated to the sparse
reward. Thus, we verify the hypothesis H1. Reward shaping requires the additional
reward appropriately rewards or punishes the agent’s actions, filling the gap of the
original sparse reward. The results indicate that the curriculum design objective
function can not be simply used as a reward shaping technique in reinforcement
learning. Conversely, the curriculum design objective function introduces the other
two properties because of the chemist’s biases on molecular evaluation.

Next, we see that the average DRD2 activity score of curriculum learning is better
than the result of reinforcement learning, which verifies the third hypothesis H3.
The unassisted curriculum learning is only slightly better than reinforcement learning
with sparse reward, since the simulated chemist uses prior knowledge to create the
curriculum. With random advice, the simulated chemist is offered an alternative
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to consider and thus the result is better than the unassisted curriculum learning.
Again, although the action space has only 26 actions, random-assisted curriculum
learning does not offer as good advice as AI assisted curriculum learning. Lastly, we
see the AI-assisted curriculum learning significantly outperform the other methods
from time step 2 and the average DRD2 activity score eventually reach about 0.52.
This result proves H4.

In reinforcement learning with DRD2 activity, the average DRD2 score converges
at around 0.38 and it rarely improves even after training with 3300 epochs, as
shown in Figure 6. With AI assisted curriculum learning, the average DRD2 score
reaches about 0.52 at time step 6. We see that the AI-assisted curriculum learning
significantly improve the DRD2 activity score with less training time.

Figure 8: Average DRD2 activity score achieved

4.6.3 Summary

In summary, through our comparative experiments and results, we verify four hy-
potheses (H1-H4) and get the following conclusions.

1. Applying the curriculum design objective function in de novo design tool
instead of the original sparse reward can not improve the sparse property
(DRD2 activity) of generated molecules.
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time step 1 2 3 4 5 6 average time step
objective function 0.242± 0.024 0.286 ± 0.019 0.295± 0.011 0.302±0.015 0.301±0.011 0.310 ±0.017 -

DRD2 activity 0.345± 0.006 0.366 ± 0.006 0.374± 0.005 0.377±0.009 0.380±0.006 0.384 ±0.006 -
unassisted 0.344±0.009 0.370 ±0.017 0.388±0.024 0.391±0.026 0.395±0.021 0.395 ±0.021 2.6
random 0.345± 0.008 0.393 ± 0.034 0.408± 0.028 0.409±0.027 0.409±0.027 0.409 ±0.027 3.6
assisted 0.348 ± 0.004 0.472± 0.047 0.478± 0.045 0.488± 0.043 0.496±0.046 0.517 ±0.057 4.6

Table 6: Mean of average DRD2 activity score ± standard error at different time steps
by different methods. Bold shows significant improvement of assisted curriculum
learning (p-value<0.01) over the alternatives within the same time step. The average
time step indicates the average number of curriculum objectives learned in the
curriculum learning. For reinforcement learning, there is no extension and each time
step is equivalent to 300 epochs.

2. For curriculum design, AI-assisted curriculum design achieve higher curriculum
design objective values than unassisted curriculum design and curriculum design
with random advice.

3. For the sparse reward problem, curriculum learning would improve the average
DRD2 activity scores.

4. AI-assisted curriculum learning achieve higher average DRD2 activity scores
than unassisted curriculum learning and random-assisted curriculum learning.
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5 Summary
This thesis aims to mitigate the sparse reward problem in de novo molecular design.
Sparse rewards are an inevitable problem in drug design when specific biochemical
properties are expected. The synthetically feasible molecular space is on the order of
1060 − 10100 [24] while only a small fraction of molecules possess specific biochemical
properties. Among sparse reward remedies, curriculum learning is a promising
method to mitigate the sparse reward problem and it has been successfully applied
in de novo molecular design[15]. Prior approaches required a chemist to hand-craft a
curriculum for the agent, which requires domain knowledge and is time-consuming,
especially as tasks grow in complexity. In addition, the chemist is required to design
a curriculum progression criterion, which is typically hard to do as it cannot promise
success in the next curriculum objective.

This thesis defines the curriculum design process as an infinite-horizon Markov
decision process, in which the chemist focuses on selecting curriculum objectives and
decides when to enter the production phase by selecting the STOP action. We applied
an AI-assistance framework[11] to help this decision process. This AI-assistance
framework assumes an available user model, which simulates how the chemist takes
action after receiving the assistant’s advice. The AI assistant infers what kind of
the chemist it is advising through the interaction between the chemist and AI and
the interaction between the chemist and the de novo drug design tool. The AI
assistant estimates the Q-values of actions based on the possible chemists that it
could encounter and recommend the action with the best Q-value. The assistant
only provides advice to the chemist and only the chemist can take action in the
de novo design tool. The assistant must convince the chemist to adopt its advice.
Advice also reduces the negative effects of value misalignment in the assistant. The
chemist can simply reject advice from a misaligned assistant. These elements present
a significant improvement in AI safety. [11]

We demonstrate the AI-assistance framework with a simulated chemist in a de
novo design task, where the generated molecules should be predicted by a weak DRD2
activity classifier. Through our experiments, we show that AI-assisted curriculum
learning significantly outperforms random-assisted curriculum learning, unassisted
curriculum learning, reinforcement learning with DRD2 activity and reinforcement
learning with the curriculum design objective function. We show that curriculum
learning can mitigate the sparse reward problem and that the AI-assistance framework
help to improve the curriculum design. Therefore, AI-assisted curriculum learning
significantly mitigates the sparse reward problem.
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6 Future works
First, we assume the user model makes a prior choice based on prior knowledge and
then compares it with the advice. The user model is a naive version and it could
be further improved. Second, the AI assistant approximates the transitions of the
agent state by running REINVENT with few epochs. In the future, a state transition
estimator could provide a better approximation. Lastly, this thesis uses a weak
DRD2 activity classifier as a sparse reward and creates only 25 promising curriculum
objectives by statistically analyzing the distribution of each molecular property. More
sparse reward applications and methods to create curriculum objectives could be
explored in the future.
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