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Crown-of-Thorns Starfish outbreaks appeared many decades ago which have
threatened the overall health of the coral reefs in Australia’s Great Barrier Reef.
This indeed has a direct impact on the reef-associated marine organisms and
severely damages the biological diversity and resilience of the habitat structure.
Yet, COTS surveillance has been carried out for long but completely by human
effort, which is absolutely ineffective and prone to errors. There emerges an urge
to apply recent advanced technology to deploy unmanned underwater vehicles
for detecting the target object and taking suitable actions accordingly. Existing
challenges include but not limited to the scarcity of qualified underwater images
as well as superior detection algorithms which is able to satisfy major criteria
such as light-weight, high accuracy and speedy detection. There are not many
papers in this specific area of research and they can’t fulfill these expectations
completely.

In this thesis, we propose a deep learning based model to automatically detect
the COTS in order to prevent the outbreak and minimize coral mortality in the
Reef. As such, we use CSIRO COTS Dataset of underwater images from the
Swain Reefs region to train our model. Our goal is to recognize as many starfish
as possible while keeping the accuracy high enough to ensure the reliability of
the solution. We provide a comprehensive background of the problem, and an
intensive literature review in this area of research. In addition, to better align
with our task, we use F2 score as the main evaluation metrics in our MS COCO-
based evaluation scheme. That is, an average F2 is computed from the results
obtained at different IoU thresholds, from 0.3 to 0.8 with a step size of 0.05. In our
implementation, we experiment with model architecture selection, online image
augmentation, confidence score threshold calibration and hyperparameter tuning
to improve the testing performance in the model inference stage. Eventually, we
present our novel COTS detector as a promising solution for the stated challenge.

Keywords: Convolutional Neural Networks, COTS, CSIRO Dataset, deep
learning, marine organisms, starfish, underwater images, You
Only Look Once

Language: English
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Abbreviations and Acronyms

Abbreviations

API Application Programming Interface
AUV Autonomous Underwater Devices
CNN Convolutional Neural Networks
COTS Crown-of-Thorns Starfish
CPU Central Processing Unit
CSIRO Commonwealth Scientific and Industrial Research Organization
CUDA Compute Unified Device Architecture
FCN Fully Connected Network
FN False Negative
FP False Positive
FPN Feature Pyramid Network
GIoU Generalized Intersection over Union
GPU Graphical Processing Unit
HSV Hue Saturation Value
ILSVRC ImageNet Large Scale Visual Recognition Challenge
IoU Intersection over Union
MOB Merging of Overlapping Bounding Boxes
NMS Non-Max Suppression
OICOD Open Image Challenge Object Detection
PANet Path Aggregation Network
PASCAL Pattern Analysis, Statistical Modeling, and Computational Learning
PASCAL VOC PASCAL Visual Object Classes (challenges)
PCA Principal Component Analysis
ReLU Rectified Linear Unit
RGB Red Green Blue
ROI Region of Interest
RPN Region Proposal Network
SPP Spatial Pyramid Pooling
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TN True Negative
TP True Positive
TPU Tensor Processing Unit
UUV Unmanned Underwater Vehicle
XOR Exclusive OR

Symbols

β Real factor β used in F score
Bi Bounding box i
C The smallest convex shape that encloses two bounding boxes
c Confidence threshold

Ĉi Prediction confidence score of bounding box i
Ci True confidence score of bounding box i
D Detection vector
ζ Training IoU threshold
ϵ Bounding box aggregation IoU threshold
ε Evaluation IoU threshold
λ Confidence weight
L Loss
Lreg Bounding box regression loss
Lobj Objectness loss
Lcls Classification loss, only if multiple classes exist
m Predicted bounding box’s index with the highest c from xc
P Precision
R Recall
si Confidence score of predicted bounding box bpi
xc Bounding box candidates with confidence score bypassing the

confidence threshold c

Operators

AB Area of bounding box B
Bi ∩Bj Intersection of bounding boxes Bi and Bj

Bi ∪Bj Union of bounding boxes Bi and Bj

⊘ Element-wise division
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Chapter 1

Introduction

Aquatic habitat is a complex ecosystem which includes connections and in-
teractions among many different marine species and organisms. These inter-
relationships are mutually beneficial, but sometimes they can destroy each
other. In reality, this is not completely a bad thing since this cancellation
helps to maintain the biological balance and diversity. However, if either
of the species emerges to be more dominant than the other, the mutual in-
fluence definitely becomes imbalanced and eventually either of the involved
parties diminishes. This scenario has happened in the Great Barrier Reef
(Australia) for many decades. This world’s largest breathtakingly beautiful
coral reefs have been severely endangered by a native creature to the Reef
- Crown-of-Thorns Starfish (COTS). This species feeds on live coral and it
is highly fecund and can easily reach pest-level under favourable conditions.
According to the prediction, the next outbreak is likely to happen within a
couple of coming years.

There are different surveillance and control programs conducted by hu-
mans and thus considerably prone to error and inefficient on the large scale.
With the latest advances in technology, unmanned underwater vehicles (UUV)
would be the most appropriate alternative for COTS surveillance. There
exists limitations in human effort (health and safety issues), demanding re-
quirements (experienced divers, ships, durable equipments), and obstacles
from other conditions (hindrance of weather, watery turbidity). Indeed, the
adoption of UUV can overcome all of the aforementioned challenges as it
automatically collects images from the reef and performs a robust starfish
detection. Hence, it can deliver an accurate, timely, and reliable assessment
for the surveillance program. We believe that the true potential of UUV and
its utilization are soon to be unlocked in the near future.

Given as a background context, the starfish are typically camouflaged in
the underwater environment and they are potentially occluded because of

10



CHAPTER 1. INTRODUCTION 11

the camera altitude and angle, which makes the task even more challenging.
As such, our goal in this thesis is to efficiently automate this troublesome
visual search task through computer vision. Deep learning has significantly
revolutionized the field of object detection recently, thus it is a promising
candidate for this kind of detection task. Due to its compelling capability
to learn representations from data, especially high dimensional data such as
images, we are motivated to adopt deep learning to build our COTS detector
in this work.

1.1 Problem Statement

We choose the latest and renowned YOLOv5 deep learning algorithm as the
base model for detecting the Crown-of-Thorns Starfish, supporting this ma-
rine creature’s surveillance and controlling the outbreak. Simply defined,
our task is to localize and recognize this small and obscure starfish from
high-resolution underwater images as many as possible within a high level
of accuracy and at an acceptable speed. Specifically, we follow the typi-
cal machine learning workflow: understand the dataset through exploratory
data analysis, train the model and analyze the validation results, experiment
with different hyperparameters, and evaluate model performance against an
unseen test dataset. By this, we make a certain number of hypotheses and
conduct many iterative improvements. Motivated by an intensive literature
review on the area of research, we test different adaptations to the base model,
including but not limited to model architecture, online augmentations dur-
ing training, and hyperparameters. Since there exists no similar works for us
to benchmark the performance from, we conduct the experiments until we
achieve desirable results from the model that can generalize well to our test-
ing dataset. Thus, this desirable extent is based on our expectations and one
should notice that it is definitely not any standard criterion for this problem
at hand. Apart from our effort to find an optimal model, we first analyze
this problem comprehensively to formulate it properly. In particular, the
underwater environment poses several challenges to the image’s quality. Ad-
ditionally, the images are in sequence since they are derived from the video.
These issues are indeed addressed properly through our work. Regarding
the evaluation process, we clearly specify how our detector’s performance is
evaluated through a particular evaluation scheme. This ensures we leave no
room for ambiguous results.
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1.2 Structure of the Thesis

After the big picture, here comes the structure of this thesis:

• Chapter 2 - an intensive literature review. It firstly glances through
computer vision, object detection problems specifically, and the evolu-
tion of deep learning. The COTS outbreak and its significant conse-
quences are discussed in great details. Different surveillance methods,
including human interference and vision-based models, are presented.
A strong focus is on the latter, hence a rigorous review of traditional
machine learning models and deep learning models (such as Fast-CNN,
novel YOLO family).

• Chapter 3 - problem formulation. We define the COTS detection
problem in a complete picture and choose an appropriate set of evalu-
ation metrics to find the best detector.

• Chapter 4 - major components of the COTS detector: data, model,
and loss. Relevant data augmentation techniques are chosen to enhance
the original dataset, rectifying the underwater environment. Important
model implementation details and procedures are discussed. This chap-
ter also describes the multi-task loss function when optimizing both
bounding box regression loss and objectness loss.

• Chapter 5 - comprehensive experimentation pipeline. Different exper-
iments are presented regarding the choices of parameters and validation
results. The best models are selected to undergo an inference and gen-
eralization assessment.

• Chapter 6: - evaluation and discussion. The final model is evaluated
thoroughly to gain deeper insights into what have been done well and
what would be the potential areas for future development.

• Chapter 7 - conclusion. This chapter summarizes the work and dis-
cusses briefly its usability on the research area and societal impact.



Chapter 2

Literature Review

This chapter provides a review of object detection problem and key mile-
stones in its revolutionary history. State-of-the-art object detection methods
represent a series of improvements building upon prior accomplishments or
failures. Therefore, it’s worth glancing through the epitome of computer
vision history and object detection advancements. Notably, Convolutional
Neural Networks (CNN) has brought an unprecedented attention of AI prac-
titioners back to deep learning and pushed object detection to the new fron-
tier. Besides, this chapter provides an introductory description of the thesis
research problem - the coral loss in Great Barrier Reef due to the outbreak
of Crown-of-Thorns Starfish. It’s worth understanding the problem thor-
oughly and analyzing existing papers with their proposed solutions to com-
prehensively evaluate and look for a better direction. Although this review
highlights the more notable achievements while slicing much of the details, it
highly focuses on the main architectures and algorithms in underwater object
detection. The review provides both practical and theoretical importance to
solve the research problem of this thesis.

2.1 Computer Vision and Object Detection

Computer vision is a sub-stream in computer science and engineering which
simulates human vision and cognitive ability [21]. Among all, object detec-
tion is one of the fundamental computer vision problems. It aims to answer
the question “What objects are where in the given image?”. Specifically, ob-
ject localization and object classification tasks are done through three main
stages, including region selection, feature extraction and classification. [64].
Undeniably, object detection provides a semantic and spatial understanding
of images and videos to solve complex and high-level tasks such as image
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classification, image captioning, object localization, object tracking, facial
recognition, to name just a few [28, 36, 63]. Therefore, there exists a wide
range of applications utilizing object detection, including but not limited
to human interaction, robotics, autonomous driving, security, content-based
image retrieval, AI-assisted medical diagnosis, autonomous retail checkout
systems, video surveillance and augmented reality etc. [24, 28]. In the next
section, we provide a snapshot of computer vision history over different peri-
ods: early neuron network (origin), AI winter (decline), deep neural network
(prosperity). The fundamentals behind deep learning are discussed briefly
together with its revolution in the context of computational resources, data
availability and novel algorithms.

2.1.1 A brief history

Several neuroscientific researches have been conducted to understand human
visual perception. By observing how neurons react to different stimuli, the
scientists suppose that human vision is fundamentally spatially hierarchical
[5]. In specific, our neurons detect simple features first (edges), then feed into
the more complex visual representations (shapes, textures, patterns). This
knowledge enlightens the computer scientists in using hierarchical approach
to enable the computer to perceive and process images by extracting fea-
tures through several layers of “artificial neurons”. Figure 2.1 explains how
biological neuron and its operating principles inspire the idea of “artificial
neurons”.

Early artificial neural networks could date back to 1940s and it took some
decades for the method to be completely supplanted by its modern variants.
In 1950s, Frank Rosenblatt [43] introduced the first neural networks model
and supervised learning algorithm. The model was known as “Perceptron”,
which classified data by using only one layer, given that the data was lin-
early separable. After a while, Minsky and Papert [34] (1969) discovered the
limitations in the concept. Perceptron could not solve XOR classification
problem where data clusters are not linearly separable. Indeed, it required
a multi-layer perceptron with non-linear activation function to be able to
extract non-linear features. Yet, the training of these multi-layer perceptron
was computationally costly. [36]. Needless to say, the community have long
been struggle to search for an efficient way to train these networks. Such
factors contributed to the slow pace in AI research during 1970s; the pe-
riod we commonly know as “AI Winter”. The governments and corporations
were increasingly losing their faith in the field, thus dried up the funding and
investments. Artificial intelligence in general was almost relegated to the
realm of science fiction. Only until mid-1980s, neural networks revived the
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Figure 2.1: An anatomy of a biological neuron (A) and an artificial neuron
(B). The dendrites and axon in the biological neuron correspond to input
(xi) and output (yi) in the artificial neuron. Cell body, also known as nu-
cleus, is responsible for processing input signals and firing the output signals.
Similarly, input xi are weighed separately, summed up and passed through
an activation function f(X) (B) to produce output yi. Synapse connects the
terminal axon to other neuron dendrites (C). Rooted by the same concept,
synapses in artificial neuron interconnect neurons between different layers
(D). [22, 45].

interest of the community when Rumelhart and his co-researchers [44, 63]
rediscovered backpropagation algorithm and its capability in training deep
multi-layer perceptrons [5, 24, 36]. Yann LeCun with his combination of
convolutional neural networks and backpropagation in solving handwritten
digits classification problem introduced the first successful and practical ap-
plication of neural networks - an automation in reading ZIP codes on mail
envelopes for United States Postal Service in the 1990s. [5].

Although neural networks just triggered a wave of interest, it was quickly
sent back to oblivion in early 2000s due to the limitation in computational
resources, the lack of large scale data set, the overftiting performance com-
pared to other machine learning algorithms. Typically, kernel method with
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its best known support vector machine (SVM), developed and reformulated
by Vladimir Vapnik and Corrinna Cortes in 1995 at Bell Labs, has become
extremely popular for a long time although its former linear formulation was
already proposed by Vapnik and Alexey Chervonenkis in 1963. [5]. The
algorithm was backed by extensive theory and mathematical interpretation.
SVM has exhibited a stunning performance on simple classification within
tractable computation. Besides, logistic regression (LR) and random forests
(RF) were among shallow models yet dominated in real-world applications
such as spam filtering system and advertisement recommendation [24]. Neu-
ral networks with many layers, on the other hand, suffered from vanishing
gradient problem and did not work well in practice. Indeed, it was consid-
ered as black boxes and could not be explained theoretically [24]. Yet, kernel
functions are typically crafted manually rather than learned directly from
data. Hence, SVM is a rather shallow method when dealing with either large
datasets or perceptual problem (image classification as a typical example)
where feature engineering is absolutely a daunting task.

Neural network still kept a long silence although it has shown potential
in tackling many complex tasks. A small group of AI practitioners continued
their research and started to make certain significant breakthroughs. Hinton
et al. heated up the academic community with his article “Reducing the di-
mensionality of data with neural networks”, supported by Canadian Institute
for Advanced Research (CIFAR). An autoencoder architecture was formed by
an adaptive and multi-layer encoder to transform high-dimensional data to
lower representation and a similar decoder network to recover the data, which
worked much better than well-known PCA technique. [19]. Deep networks
outperformed other shallow machine learning models and ultimately popu-
larized the term deep learning among the community [24]. The first practical
success of modern deep learning came in 2011 when Dan Ciresan from ID-
SIA (Switzerland) won two niche competitions (the ICDAR 2011 Chinese
character recognition competition and the IJCNN 2011 German traffic signs
recognition competition) with GPU-trained deep neural networks [5]. The
watershed moment came in 2012 when Alex Krizhevsky and his group, with
the advisory from Geoffey Hinton, used convolution neural networks for the
first time ever to solve ImageNet LSVRC-2010 image classification challenge
and achieved a top-five accuracy of 83.6%. Since 2012, deep convolutional
neural networks (convnets) has become a state-of-the-art algorithm for most
computer vision tasks and other contests such as robust reading challenge in
ICDAR, Microsoft image recognition and captioning challenge (COCO) etc
[24]. It has surpassed all traditional methods and brought object detection
to a new frontier.



CHAPTER 2. LITERATURE REVIEW 17

2.1.2 What makes deep learning outstanding?

Having mentioned before, deep learning - a sub-field in machine learning, has
rose to prominence in early 2010s. Fundamentally, machine learning algo-
rithms try to learn useful representations from the input that get us closer
to the output, while deep learning in specific is learning by successive layers
of neurons to find increasingly meaningful representations of the input data.
“Deep” refers to deeper understanding of data through multi-stage layers of
representation. In other words, deep learning expresses the ability to learn se-
mantic, high-level and deeper features. In computer vision tasks, traditional
object detection methods are adhere to handcrafted features and shallow
trainable architectures [63]. Deep learning, on the other hand, automates
heavy engineering-pipeline and simplifies learning workflow considerably by
only single and end-to-end trainable deep-learning model [5, 54, 63].

There are two fundamentals behind deep learning’s superiority, namely
Convolutional Neural Networks and backpropagation algorithm [5]. Back-
propagation stands for backward propagation of errors [54], which is the
central algorithm in deep learning for computer vision [5]. It starts with
the loss value from the last layer and works backward to compute the loss
value contributed by each parameter. It helps to realize how much loss each
node is responsible for and subsequently adjust the network’s weights and
bias in order to minimize the cost function. The proper tuning of weights
ensures the model reliability by enhancing its generality. Convolution neural
networks has become a representation architecture of deep learning thanks
to its superiority over traditional methods.

Densely connected layer learns global patterns from all pixels of the image
while convolution layer learns only local patterns in small 2D windows of the
input, illustrated in Figure 2.2. After learning a certain pattern, a convnets
can recognize that pattern in other areas of the same image (translation-
invariant) or anywhere in the new images (generality and therefore reusabil-
ity). A densely connected model, in contrast, has to learn again when the
pattern appears in a different location, which is hugely inefficient when pro-
cessing images. In addition, it requires more training examples to learn the
representations that generalize well. [5]. Another key characteristic of con-
vnets is its ability to learn spatial hierarchies of patterns. The first layer
learns local, highly generic feature map such as visual edges, colors and tex-
tures. The higher layers combine the outputs from the first layer to form
the larger patterns and extract a more abstract concept. Ultimately, the last
layer learns the most complex and abstract visual concepts from the image.
[5]. Figure 2.3 illustrates spatial hierarchies of patterns learnt by convolution
layers.
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Figure 2.2: Local patterns. Figure is derived directly from Deep Learning
with Python, Second Edition by François Chollet [6]

Figure 2.3: Elementary lines and textures in the first convolution layer form
simple features such as eyes and ears in the second convolution. Altogether
combines into high-level concept of a cat. Figure is derived directly from
Deep Learning with Python, Second Edition by François Chollet [6]
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2.1.3 Major forces behind the flourish of deep learning

Machine learning methods combine three key components, namely data,
model and loss, within computationally efficient implementations to contin-
uously adapt and search for the best hypothesis [25]. Machine learning isn’t
mathematics that can be solved with a pen and a piece of paper. Instead, it is
engineering science with an underlying principle of “trial and error”, [5, 25].
Backboned by such principle, the field has grown through experimental find-
ings, not by theory. Therefore, new ideas only become feasible when massive
data and appropriate hardware are in place. According to Chollet F. (2018)
[5], the three main forces which have driven the advancements in machine
learning in general, and deep learning in specific are powerful computation
ability (hardware), large-scale datasets, and advanced algorithms.

• Hardware. In the past few decades, we witnessed the bloom in the
gaming industry with an emergence of the more powerful and high
performance graphics chips. Throughout 2000s, technology giants such
as NVIDIA and Advanced Micro Devices (AMD) were dedicated to
developing fast and high performance parallel computer systems to
render complex 3D scenes on screen in real time and enhance video
games photo-realism. [5, 63]. In 2007, NVIDIA launched CUDA - a
parallel computing platform and API for its line GPUs, which simul-
taneously powered the AI community considerably thereafter. A few
decades ago, running a small deep learning model on a personal latop
was tractable but that was no longer the case with the modern hard-
ware. A small number of GPUs can replace a massive cluster of CPUs
in highly parallellizable applications, which allows an efficient training
of deep neural networks. Large companies have invested in developing
increasingly specialized and special chips to train deep learning model
such as NVIDIA Tesla K80 or Google TPU. Google chips have been
reported 10 times faster and far more energy efficient than top-of-the-
line GPUs in the market. [5]. Recently, the third generation of TPU
card in 2020 represents 10,000 times more computing power than the
Intel Touchstone Delta (1990). [6].

• Datasets and benchmarks. As we all know, deep learning algo-
rithms learn the feature representations directly from data [28]. In
other words, without massive data as raw materials, deep learning
would be unable to power our intelligent machine. The internet took off
allows the distribution of very large datasets to our machine learning
community. [5]. The emergence of the large-annotated training data
set such as ImageNet since 2007 has been attributed to the recovery of
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deep learning from “AI winter” period [63]. Some benchmark datasets
and their characteristics are provided in Table 2.1. Each was released as
a publicly available set of images together with annotations (bounding
boxes, instance segmentation, etc.), given in specific detection chal-
lenges (classification, localization, visual relationship etc.) [28].

• Advanced algorithms. Deep learning before did not prove its re-
liability and potential due to fairly shallow neural networks model;
specifically, using only one or two layers of representations [5]. Later on,
there are not only advances in the design of network structures but also
in training strategies [63]. There appears many more algorithmic im-
provements such as better activation functions (ReLU), better weights
initialisation and better optimization schemes (RMSProp and Adam).
Additionally, the emergence of new techniques such as drop-out regular-
ization, batch normalization, residual connections and depth-wise sep-
arable convolutions allows the training of thousand-layer-depth model.
[5]. Overfitting problem has been relieved and the training has be-
come far more efficient [63]. Deep neural networks (DNNs) is a robust
training algorithm which acts differently from traditional approaches.
Its deep architecture allows to learn complex features without a man-
ual feature design [63]. Indeed, DNNs completely automates feature
engineering and learns all features in a single-forward pass.

2.2 Crown-of-Thorns Starfish Detection

The Great Barrier Reef (the Reef) is a World Heritage Area of Outstand-
ing Universal Value, one of the most remarkable natural gifts - the world’s
largest breathtakingly beautiful coral reefs. It has been symbolizing Aus-
tralia’s national identity for many decades. The Reef, consisting of over 3000
individual reef systems and coral cays, provides a continental-scale underwa-
ter structures and ecosystem services for an abundance of marine creatures.
The healthy and functioning coral reefs underpin the integrity and biodiver-
sity of the Reef, as well as retain the cultural and heritage values, coupled
with the economic benefits [1]. Recently, the overall health of the Reef has
been threatened severely by the Crown-of-Thorns Starfish outbreaks. It is
worth understanding this species’s biology and the stimulus behind this phe-
nomenon, which are briefly described in the following sections. In addition,
there discusses different monitoring actions to minimize coral mortality and
promote recovery when the outbreaks are underway.
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Dataset Total images Year Classes

PASCAL
VOC

VOC07: 5K images + 12.6K anno-
tated objects

2007 20

VOC12: 11.5K images + 27.4K an-
notated objects

2012 20

Characteristics: common objects (person, ani-
mal, vehicle, indoor objects), multiple objects in
one image, larger instra-class variations, close to
real-world applications.

ILSVRC ILSVRC-13: 416K images + 401K
annotated objects

2013 200

ILSVRC-17: 477K images + 534K
annotated objects

2017 200

Characteristics: many more images and cate-
gories than VOC.

MS COCO MS COCO18: 123K images + 897K
annotated objects

2018 80

Characteristics: bounding box annotations +
per-instance segmentation, small objects (area is
smaller than 1% of the image), densely located.

Open images OICOD18: 1.7M images + 12.2M
annotated objects

2018 500

Characteristics: derived from Open Image V4,
tasks include object detection + visual relationship
detection (paired objects in a specific relation).

Table 2.1: Typical benchmark datasets and their characteristics [28, 64]
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2.2.1 COTS biology, the outbreaks and major causes

The Crown-of-Thorns Starfish (genus Acanthaster cf. solaris) are a natural
part of the Reef ecosystem for millennia and not an introduced species [1].
They are named by the poisonous spines that cover their whole surface (body
and arms). In general, the COTS have a pelagic larval duration of 10 to
40 days. This long period enables the widespread of dispersal across the
seascape. Once they settle to a reef, they feed on live coral throughout their
adulthood, thereby grow drastically and reach reproductive maturity within
only two years. In fact, they can consume half-of-their-own-body area of
coral on a daily basis and leave behind a lifeless white-scarred reef (Figure
2.4) [32].

During the spawning season, lasting from October to February, a full-
grown female can produce a minimum of 30 million eggs. Simply speaking,
under favourable conditions, the COTS are highly fecund and they can easily
reach pest-level densities. In a positive manner, the COTS at low densities
maintain the Reef’s coral diversity by feeding on preferentially faster-growing
corals thereby leaving room for slower-growing species to colonise. [1]. Yet,
when the COTS’s consumption rate exceeds the coral’s growth rate, what’s
been known as COTS outbreaks, the Reef’s health will be affected enormously.

The Reef is considered an environmentally sensitive and vulnerable area
where several outbreaks of the COTS have occurred in the last 60 years.
Four major COTS outbreaks on the Reef were documented: in the 1960s,
the late 1970s, the early 1990s, and the recent outbreak detected in 2010 [7].
Unlike coral bleaching, the COTS outbreaks do not emerge as a seasonal phe-
nomenon of an exact estimated interval. It instead initiates approximately
every 10 to 20 years and the wave pervades over the Reef for at least 10 to
12 years afterwards [1].

Specifically, an outbreak undergoes two distinct phases, a primary phase
with the upsurge of mature COTS in a small area and afterwards a secondary
outbreak by the outspread of larvae. The mature starfish over successive
generations build up a strong cluster, and with their fecund reproductive
capability, they signal the primary outbreak in their own relatively small
sea land. Such cluster then spawns in mass, and their larvae through the
prevailing ocean currents is dispersed widely and forcefully. There comes
the secondary wave of the outbreak. Observations between the initiations of
successive outbreaks can approximate the timing of primary outbreaks - an
average of 15 to 17-year period. Prophetically, the next outbreak is predicted
to come around 2026. [3]. The historic timeline together with the total
population and intensity of the outbreaks are illustrated comprehensively in
part A of Figure 2.5.
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Figure 2.4: Feeding scars found on colonies upon which a COTS preys during
the COTS outbreak. ©Photos Mohsen Kayal [27].
A: An observed COTS on a living coral.
B: A partially-killed coral after successive predating events by the COTS.
Based on pigmented tissues, the coral’s area is divided into different portions:
(1) live portion; (2) freshly-killed portion(less than 1 day after the predation);
(3) recently-killed portion, covered by algae and cyanobacteria (approximately
10 days after the predation); (4) completely dead portion, covered by turf
algae (more than 3 weeks after the predation).
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Figure 2.5: An overview of COTS outbreaks: timeline, duration, intensity,
population and movement direction [3].
A: Historic timeline of the outbreaks together with their duration, the in-
tensity and control programs/actions on the Reef:
- Density curves denote total population of COTS during each outbreak. An
indicative timeline is projected for the latest and ongoing outbreak (2010).
- Shaded orange bars indicate the duration and intensity of each outbreak.
- Blue bars represents the duration of funding and control programs.
B: COTS populations on the Reef.
- Initiation box, locates mid-shelf reefs in the north-central (Wet Tropics)
region where connectivity among the reefs is dense [1], denotes the starting
point of the outbreaks.
- Green circle illustrates an estimation of COTS population in the primary
stage of the outbreaks.
- Red circle illustrates an estimation of COTS population in the second phase
of the outbreaks. Larvae spills southwards by ocean currents at a rate of 60
kilometres per year [1].
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The outbreaks have narrowed the coverage of living corals substantially
and weakened the habitat structure, damaged the diversity of reef-associated
organisms and the overall resilience of the Reef. A multitude of factors con-
tributing to COTS’s growth and escalation is not fully concluded. Yet, af-
ter successive waves of efforts, several researchers have uncovered the main
causes, namely biological traits of the COTS, environmental factors, favourably
geographical conditions and human activities. Considering the environmen-
tal conditions, there is an abundance of food sources for COTS populations:
high coral prey availability and land-based nutrient run-off entering the Reef
lagoon after flooding events [9]. A declined number of the COTS natural
predators owing to fishing pressure and poor water quality etc. is also the
predominant factor; however, they can be mitigated through local manage-
ment intervention. The Wet Tropics region of the Reef between Lizard Island
and Cairns has relatively intensive connectivity among the reefs and hydrody-
namic circulation patterns, which by all means accelerates the outbreaks. In
essence, it takes years or even decades for the damaged coral reefs to recover,
given that it is not exposed to other disturbances such as coral bleaching,
severe tropical cyclones and flood events; otherwise, awfully persistent. [1].

2.2.2 Outbreaks monitoring

Different parties have been engaged in the effort to understand, monitor
and control COTS outbreaks to an ecologically sustainable level, namely
government agencies (Marine Park Authority and Queensland Government),
research institutions and universities (James Cook University, University of
Queensland, Central Queensland University, and Griffith University), and
environmental organisations (Commonwealth Scientific and Industrial Re-
search Organisation (CSIRO), the Australian Institute of Marine Science
etc.). There exist extensive efforts to conduct targeted in-water assessment
of COTS numbers by different survey techniques, listed as follows:

• Eye on the Reef, Sightings Network reports provide managers
with an approximate number of COTS and their spatial locations ob-
served in the Marine Park. This survey requires no survey equipment
nor specialised training and the results are used to guide the more
in-depth assessments.

• Manta tow surveys gives reef managers, marine park rangers and
marine scientists the outbreak status with regards to an assessment
of the reproductive-mature-COTS population and their feeding activ-
ities by assaying the visible scars. This survey requires complicated
equipment and the snorkel divers are expected to undergo specialised
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training. Specifically, a manta tow boat tows a trained observer and
carry him at a constant speed through 100 to 1000 meters of reef habi-
tats to collect information. This is the key method used for COTS
and coral-cover surveillance. Generally effective, yet Manta tow sur-
vey has some limitations with regards to operational scalability, data
resolution, reliability and traceability [32].

• Scuba transect surveys are particularly conducted by experienced
observers, such as the scientists and reef managers, to collect thor-
oughly detailed assessments of COTS densities and body sizes of both
juvenile and mature starfish. As the first and foremost prerequisite, the
survey area (of around 100 m2) must be pre-defined with its respective
priority. Apparently, scuba transect is significantly time-intensive and
it requires the most specialised knowledge and expertise. [1].

In short, current monitoring of the outbreaks on the Great Barrier Reef
is conducted merely by humans and thus considerably prone to error. The
survey results are limited and utterly dependent on the observer’s perspec-
tive and experience. To that end, these techniques either underestimate or
possibly overlook the major COTS populations when the undertaken tran-
sect is unrepresentative of the region [7]. Considering the gigantic area of the
Reef, it requires enormous resources to generate a large-scale COTS distribu-
tion map, including experienced divers, ships, durable equipment and other
conditions such as hindrance of weather, health and safety issues. All things
considered, it calls for a cost-effective, safe and robust alternative to per-
form the autonomous COTS population monitoring. Such methods should
involve two key capabilities: (1) autonomously collect the images from the
reefs through deploying underwater imaging devices, and (2) perform robust
COTS recognition [32]. Indeed, the first capability is achieved fairly easily by
an Autonomous Underwater Vehicle (AUV), digital cameras and unmanned
underwater vehicles (UUV) while robust texture detection of the COTS from
underwater image videos is relatively an untouched area of research [7, 12].
In the long-term outlook of the Reef, AI-driven environmental survey is the
potential for broad-scale surveillance of underwater habitats and it may re-
markably improve the efficiency of the COTS control program by delivering
accurate, timely and reliable assessments of reef-scale ecosystems. [32].

2.3 Related Work in COTS Object Detection

COTS detection is a subset of underwater object detection problems, which
focuses on detecting the COTS from living corals. Historically, marine life in
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general and underwater terrain-related studies have been conducted manu-
ally. There exist only a few vision-based studies in COTS detection, typically
Local Binary Pattern model by Clement et al. (2005) [7] and Random Forest
Classifier by Feras et al. (2015) [9]. This results from a variety of chang-
ing underwater conditions, including but not limited to turbid water state,
light scarcity, messy undersea background, and diverse viewing angles (from
the back, close-up and side view) which hinder the collection of high-quality
underwater videos and images. Indeed, deep learning algorithms require a
plethora amount of high-quality underwater videos and images to extract
discriminant features and high-level abstraction. The existing databases are
insufficient for training proper deep learning based COTS detector; hence
a scarcity in related literature. From another angle, COTS recognition is
closely related to other marine organisms (such as fish or coral) detection,
which has been a relatively emerging and attractive area of study. This means
that studying other research in similar domains would benefit substantially.
The following section will review existing COTS detection works, together
with different fish detectors built upon deep learning algorithms. Similar do-
main knowledge is considered under a pre-defined scope of the thesis, hence
providing a solid foundation for deep learning based COTS model.

2.3.1 Local Binary Pattern (LBP)

In 2012, Clement et al. [7] laid a foundation in robust image detection of
COTS by a texture-based classification procedure using Local Binary Pattern
[7]. Clement and his co-researchers believed that COTS’s color varied by their
age, location and altitude at which the images were taken. Besides, the red
wavelengths of light get absorbed much faster than the other shorter wave-
lengths (such as blue); for this reason, the underwater environment appears
blue/green when the depth increases. To that end, color segmentation would
be unreliable to recognise the starfish from survey images. In like manner,
COTS are skillfully camouflaged and highly flexible; therefore, there exist
different poses varying from flat, curled to partially hidden etc. [9]. In other
words, shape-based matching is infeasible for this detection scheme. Instead,
their thorns are particularly distinctive and recognisable; hence a potential
and reliable distinguishing feature (texture).

By the Local Binary Pattern operator, 2D surface textures can be de-
scribed by local spatial patterns and grey-scale contrast. These two com-
plementary measures allow the LBP operator to label an image’s pixels by
comparing the threshold of neighbouring pixels with the center value and
assigning a binary number as a result. The authors extended the original
operator by employing uniform patterns, rooted in the fact that some binary
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patterns appear more commonly than others. If a binary pattern contains at
most two bitwise transitions (either from 0 to 1 or vice versa) when the bit
pattern is traversed circularly, it is considered a uniform pattern (for example
01110000 and 11001111) ([37]. Uniform patterns reduces the feature vector’s
length and implements a simple rotation-invariant descriptor, on the whole
provides sufficient information for a proper correlation when comparing with
images [7, 37].

In the research paper, a total of 27 384x384 pixel textures were created
from representative images, among which 12 were COTS and the rest were
other marine surfaces and coral textures. When the texture database was
generated, the dataset underwent an end-to-end image processing pipeline,
details as below:

• Top Hat filtering was used to enhance images by highlighting shad-
owed regions and reducing major grey-scale shifts. This operation sub-
tracted the original image from the result of performing a morphological
closing operation on that original image. Specifically, a structuring ele-
ment was used to erode the image and that element continues to dilate
the resulting image afterward.

• Grey-scale conversion was done on image-level by subtracting a se-
lected pixel from the value of each neighbouring pixel and thereafter
normalizing by the addition of these differenced neighbouring pixels.

• Local binary pattern generated by labeling pixels with the binary
numbers based on a specific threshold (a pixel was assigned 0 if its
grey-scale subtracted value was less than 0 and otherwise).

• Histograms were created for texture comparison. First, an individ-
ual histogram was computed by a 50x50 pixel block, coupled with an
overlap region of 200 pixels. This 450x450-pixel block allowed better
recognition of the COTS area, especially around their legs where it
could change from COTS to coral and then vice versa. This operation
looped over different blocks of the image and all the histograms were
summed up to create 9 bins.

• Log-likelihood measure was performed on image blocks to find the
best matched texture (coral, sand or COTS) by comparing against the
database texture.

• Count number of detected COTS
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Figure 2.6: Number of COTS detected and counted for all images. Figure is
derived directly from the original research [7].

Running on 80 images from the Australian Institute of Marine Science
(AIMS), the algorithm accurately detected the presence and non-presence of
COTS in 65% of the images, Figure 2.6. The starfish were counted correctly
in 48% of the images. However, LBP falsely classified non-starfish at the rate
of 31%. After analyzing false-positive cases, the authors highlighted a couple
of major conditions. At higher altitudes, the COTS and its texture were
relatively small compared to the overall image area; thus a higher chance
of misclassification. Besides, straight thorns were the key discriminant of
this technique but they failed to differentiate COTS from shelf or stag coral.
That said, image quality was vital to ensure clear and sharp thorns textures.
Lastly, interconnected COTS could be correctly identified; yet the counting
was troublesome when the COTS were touching each other. All in all, the
research not only provided a preliminary investigation of the Local Binary
Pattern method for texture mapping and correlation of COTS from under-
water images but also posed different challenges to open up the improvement
ideas for future research. [7].
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2.3.2 Random-Forest based classifier (RFC)

The second research about COTS detection and tracking was released by
Feras D., Matthew D. and Peter C. in 2015. They introduced the use of
a robotic system capable of COTS monitoring instead of manual interfer-
ence from humans. The traditional method has proved its inefficiency while
also encountering several barriers such as operational expensiveness of re-
sources (divers and equipment), safety concerns (limited diving time), re-
stricted daylight hours and bad sea conditions. Overcoming the challenges
of the conventional method, the vision-based robotic arm extended to AUV
device might present the next advancement in COTS detection and monitor-
ing. As described in the paper, random-forest based classifier was embedded
in a particle filter tracker of Baxter robot’s hand moving camera (simulating
an underwater vehicle), which was capable of robust COTS tracking over a
complex coral reef environment. [9].

In like manner, Feras and his group saw the limitations of prior research in
using shape and color as the major descriptors for COTS. They also assumed
that thorns of the starfish as a texture-based feature alone was insufficient
since corals structures upon which the COTS live could exhibit a relatively
similar texture to the COTS. Yet, long thorns could provide strong edge
information. All things considered, a feature vector was created by combin-
ing Local Binary Patterns (for texture) and Histogram of Oriented Gradient
(HoG) (for edge information). The former technique is already discussed in
the previous section. With the latter method, the feature was computed by
firstly dividing the detecting window into equal cells, each of which had a
histogram generated from a weighted vote by each pixel based on the mag-
nitude and orientation of its intensity gradient. [9]. Regarding the samples,
3,157 images were used to train Random Forest Classifier algorithm. 30%
were positive examples with full-body COTS captured or partially captured
(close-up view of a single-arm). Five folds of cross-validation were performed
with the best parameters from the grid-search execution.

The paper did not focus solely on detecting COTS from images but also
on tracking a fixed point on their bodies to conduct the injection of biological
agents. For this reason, Random Forest Classifier (recognizing scheme) was
combined with Particle Filter (constant tracking while the camera moves over
the scenes). Specifically, the predicted class probability from Random Forest
Classifier was used as an observation measurement to weigh the particles for
updating the Particle Filter. Besides, the research group chose F1-score to
evaluate the performance of RFC. 0.98 F1-score was achieved for No-COTS
class and 0.96 for COTS. To assess the detection system based on height and
speed, a Baxter robot carried a camera by its left hand at five different speeds
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Figure 2.7: The average precision achieved by the detector at different speeds
and heights. Figure is derived directly from the original research [9].

(0.03, 0.04, 0.09, 0.1 and 0.2 m/s) and at three heights (108, 208 and 338
mm above the simulated scene). This scene referred to five high-resolution
images taken of COTS in different reef environments, printed as posters and
laid flat on the table.

Precision was an essential metric for this evaluation since the robot would
attempt to inject false positives rather than the COTS. Figure 2.7 shows the
average precision resulting from 15 different combinations of speed and height
over all the simulated scenes. The more accelerated the speed of the camera,
the lower the precision, especially when the camera was closer to the reef. In
simple terms, at lower altitudes, motion blurs and latency increases, hence
shrinking the accuracy of the detector. Furthermore, as the altitude declines,
the reduction of texture in the sample image would negatively influence the
precision score. In conclusion, the results demonstrated the robustness of the
algorithm in COTS detection, which proposes a promising future for AUV
devices with robotic arms to inject and control the COTS populations to a
sustainable level.

2.3.3 Deep Learning

To the best of our knowledge and exploring efforts, no research papers were
found for COTS detection using deep learning algorithms. This thesis, by
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Figure 2.8: Typical deep learning algorithms in underwater object detection
[12].

the time of its release, will indeed provide the officially first deep learning-
based algorithm to detect COTS accurately, efficiently and in near real-time.
Comparatively not much underwater surveillance marine object detection
technologies are exhaustively explored due to momentous challenges like light
scattering and absorption occurring underneath the sea [12]. Conventionally,
underwater object detection is conducted manually or by statistical analysis
and ocean model simulation. These methods are highly dependent on the
availability of optical characteristics, thus demonstrating inefficiency, low
accuracy and inability to process large underwater datasets. Deep learning,
on the other hand, can process immense underwater data by hierarchical
feature extraction through deep and big networks.

The advent of deep learning has enabled the researchers to solve many
problems such as critical underwater habitat monitoring and protection, sub-
aquatic species detection and recognition, emergency rescue, undersea dis-
aster mitigation and prevention etc. [9]. That said, this literature review
significantly focuses on the existing underwater object detection using deep
learning techniques. Convolutional Neural Networks are the cornerstone of
many current renowned algorithms. However, CNN is computationally time-
consuming and inappropriate to be employed in real-time object detection.
This section provides an overview of existing deep learning methods employed
in underwater sub-aquatic organism detection (Figure 2.8), together with a
proper comparison. The advantages and shortcomings of these methods are
demonstrated, which reveals the rationales behind the chosen algorithm of
this thesis - You Only Look Once (YOLO).
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2.3.3.1 Convolutional Neural Networks (CNN)

Briefly mentioned in the above section, Convolution Neural Networks, also
known as convnets, are now used universally in computer vision applications
[6]. Convolution operates over input feature maps with height and width
as spatial axes and depth as channel axis. For an RGB image, there are
three channels: red, green, and blue while a monotonic image only poses
a single-dimensional depth (gray intensity). The convolution operation ex-
tracts patches from the input feature map (dot product with the kernel)
and applies the same transformation to all input patches. There constructs
an output feature map which remains as a rank-3 tensor with an arbitrary
depth. Specifically, different channels no longer characterise specific colors in
the RGB scheme but filters, encoding specific aspects/traits of input data.
[6]. Apart from convolution, pooling is also a basic component of convnet.
Pooling is introduced between successive convolution layers to aggressively
down-sample the feature maps. To put it differently, the spatial size of the
image is reduced while the depth remains unaltered. Max pooling is the most
commonly used operator which transforms local patches via a max tensor op-
eration instead of a linear transformation as convolution [6, 12, 15].

CNN architecture has been employed exclusively in many research works
for undersea object detection. Notably, Elawady et al. [11] used supervised
CNN to classify coral on datasets from Heriot-Watt University’s Atlantic
Deep-Sea and University of California San Diego’s Moorea Labeled Corals.
His group extracted shape and texture features by computing Weber Local
Descriptor (WLD), Phase Congruency (PC), and Zero Component Analysis
(ZCA) Whitening. These feature-based maps were supplementary descrip-
tors besides color channels of the coral input maps. In 2019, Suxia et. al
[8] deployed CNN to detect a fish in a blurry underwater environment (data
collected from the Gulf of Mexico). Their target was to embed the detec-
tor system into the Autonomous Underwater Vehicle design with all possible
optimizations to enable the real-time capability. The authors employed the
CNN model and back-propagated the gradient of the refined loss function to
update the parameters of the network. In addition, different transformations
augmented the original data to obtain more learning resources, including
rotation, scale, crop and mirror symmetry. The network was simplified by
the drop-out algorithm to mitigate overfitting. Above all, the experimental
results were promising: high accuracy and low processing time. Thus, the
proposed model could be developed further for AUV implementation. [8].
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Figure 2.9: How convolution works. Figure is derived directly from Deep
Learning with Python, Second Edition by François Chollet [6]
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Figure 2.10: Summary of models in the R-CNN family. Figure is derived
directly from the original article [59]

2.3.3.2 Region-based Convolutional Neural Networks

Regional Convolutional Neural Network (R-CNN), presented by Girshick et
al. in 2014, was the combination of the CNN model with Region Proposal
Network [14]. Specifically, among bounding boxes of the target object’s pos-
sible appearance in the underwater images, R-CNN carried out a selective
survey to identify a manageable number of boxes (approximate 2K candi-
dates/image), the so-called regions or region of interest (ROI) [59]. Regions
were formed based on the resemblance of texture, color, shape and size of
the objects [12]. It then extracted features from each region independently
using CNN operation. The features obtained by each region proposal were
subsequently used to classify the target and predict the bounding box. Single-
binary Support Vector Machine (SVM) was trained for each class indepen-
dently to classify background and object. Following that, a linear regression
model was trained to produce tighter bounding boxes for every identified
object in the underwater images, thus reducing localization errors [59]. More
details are put in Figure 2.10. R-CNN might be impractical for processing a
massive dataset as the model workflow involves tremendous work:

• Run selective search to propose ∼ 2000 ROIs for every image.

• Feature extraction by CNN for every image region, which means N
images * 2000 ROIs.
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• Three models, namely CNN, binary SVM and linear regression are
performed separately without much shared computation.

To reduce the computational time of R-CNN, Girshick published an up-
graded version of R-CNN, called Fast R-CNN in 2015 [12, 36]. Remarkably,
one CNN forward propagation passed over the entire image instead of 2000
runs to extract feature vectors. All the ROIs (underwater object localiza-
tion) were obtained at the same time. The ROI pooling layer was then used
to ensure that all the regions were of equal size. After this step, every region
was fed into a Fully Connected Network (FCN) layer coupled with a soft-
max layer. The feature vectors were used for learning the object classifier
and bounding box regressor simultaneously. Notably, Girshick introduced a
multi-task loss function that considered both the classification and localiza-
tion error [36]. The model branched out into two outputs: discrete probabil-
ity distribution of each ROI from a SoftMax estimator and offsets prediction
relative to the original bounding box for each class. [59]. The architecture
of CNN allowed a multi-task learning manner. Three independent models
were unified into one jointly trained framework: feature extraction from pro-
posed regions, classification, and bounding boxes generation simultaneously.
By all means, computation sharing sped up the workflow substantially. Fast
R-CNN was much faster as compared to the R-CNN model; nevertheless, the
improvement was still insignificant when processing an enormous dataset as
the region proposals were computed separately by selective search. [12].

Fast Accurate Fish Detection and Recognition of Underwater Images with
Fast R-CNN paper by Xiu et al. (2015) [30] is among the rare research using
Fast R-CNN for marine organisms surveillance. Training and testing images
were derived from the video dataset LifeCLEF Fish of Fish4Knowledge video
repository, containing 24,872 fish images from Taiwan coral reefs. The re-
search group built a model based on Fast R-CNN and compared the method
to other detection approaches namely Deformable Part Models (DPM) and
R-CNN. Fast R-CNN based-model contained five convolutional layers, an
ROI pooling layer, two Fully Connected layers and two siblings layers (an
FC layer underneath a softmax layer). Normalization and max-pooling lay-
ers were added after every of the fist two convolutional layers. ReLu activa-
tion function was applied to the output of every convolutional or FC layer.
AlexNet was pre-trained and adapted with three major modifications: (1)
the network takes two inputs: a batch of N images and a list of ROIs, and
selective search generates 2000 region proposals; (2) the last pooling layer
was replaced with an ROI pooling layer to pool all ROIs into fixed-size fea-
ture maps; (3) the finally FC layer was replaced with two siblings layers,
one of which output softmax probabilities over 12 fish classes and a back-
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Figure 2.11: Underwater Object Detection using R-CNN [12].
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Figure 2.12: The overall architecture of automatic fish detection and recog-
nition system using Fast R-CNN. Figure is derived directly from the original
research [30].

Metrics R-CNN Fast R-CNN
Training time (h) 67 4
Training speedup 1x 16.75x
Testing time (second/image) 24.945 0.311
Testing speedup 1x 80.2x
mAP (%) 81.2 81.4

Table 2.2: Runtime comparison between R-CNN and Fast R-CNN [30].

ground class while the other output bounding-box coordinates for all detected
fishes. A simple illustration was provided in Figure 2.12. Considering the
performance, Fast R-CNN improved mean average precision (mAP) by 11.2%
relative to 70.2% achieved from the DPM method and detected fish from a
single image 80 times faster than R-CNN (Table 2.2). On the whole, Fast
R-CNN demonstrated superior performance over the DPM method in fish
detection and substantially sped up the prior version in the RCNN family.
[30].

An intuitive improvement idea from Fast R-CNN architecture is to inte-
grate the ROIs selection into the same detection network. Accordingly, Faster
R-CNN (Ren et al., late 2015) - a fully-convolutional network came into real-
ity [41]. The framework constructed a unified model, utilizing a novel Region
Proposal Network (RPN) for region proposal generation and fast R-CNN for
classification and bounding box regression. Compared to Fast RCNN, Faster
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Figure 2.13: Region proposal network (RPN) by Ren et al. The research
group introduced a concept of anchor boxes in multi-reference object de-
tection. These reference boxes are considered per window location, which
facilitates the detection of objects with different shapes and sizes [36, 41]

RCNN used Region Proposal Network to generate ROIs instead of a selec-
tive survey. The RPN fully optimized region proposal generation by using an
FCN that could utilize GPU parallelization. It predicted objectness scores
together with bounds for the potential object regions. [36] (Figure 2.13).
Both RPN and Fast R-CNN shared the same convolutional input feature
maps which were extracted from the base convolutional network (for ex-
ample VGG16). Although Faster R-CNN has gained great achievements in
object detection and classification lately, there still exist some shortcomings.
It does not see the entire image at once but different portions of the image
in sequence. That is, it requires several passes through one image to detect
all objects (classes). [12].

Being inspired by the algorithmic changes in the R-CNN family, Xiu et al.
(2016) [29] continued their previous work [30] in fish detection and classifica-
tion using Faster-RCNN. This time, proposal generation by Region Proposal
Network shared convolutional features with the following fish detection and
recognition network, as depicted in Figure 2.14. Thus, the new architecture
pushed the detection system toward a real-time manner. As clearly seen from
Table 2.3, detection speedup was improved significantly when comparing dif-
ferent R-CNN-based algorithms. Besides, the faster region-based detector
achieved frame rate of 9.8 fps which demonstrated its reliability in moving
object detection in underwater videos. Apart from speed and computation
optimisation achieved by Faster R-CNN, higher detection accuracy based on
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Figure 2.14: Overall architecture of Faster R-CNN fish detector by Xiu et al.
[29]. Figure is derived directly from the original research.

Metrics R-CNN Fast R-CNN Faster R-CNN
Detection time (s/image) 24.945 0.311 0.102
Detection speedup 1x 80.2x 244.5x
mAP (%) 81.2 81.4 82.7

Table 2.3: Runtime comparison between R-CNN, Fast R-CNN and Faster
R-CNN [30].

temporal information from underwater videos would be further discussed and
experimented with.

There exist other papers about marine organism detection and recogni-
tion based on Faster R-CNN. In a different manner than the above examples,
Huang et al. 2019 [66] researched the efficiency of Faster R-CNN model by
enhancing the underwater images against different marine turbulence. The
group worked on 2000 labeled images of sea cucumber, sea urchin and scal-
lop provided by the National Natural Science Foundation of China (NSFC).
They performed data augmentation including perspective transformation, il-
lumination synthesis and marine turbulence simulation. The model workflow
goes as (1) training an end-to-end RPN by backpropagation and stochastic
gradient descent (SGD), (2) using the proposal regions from step one to train
a separate detection network Fast R-CNN which was initialized with VGG16
pre-trained ImageNet model, (3) sharing the detection network’s convolu-
tional layers with RPN and fine-tuning the layers unique to RPN, (4) same
as step three but fine-tuned the layers unique to Fast R-CNN. The results
prove the robustness of the proposed methods when compared with the orig-



CHAPTER 2. LITERATURE REVIEW 41

Figure 2.15: YOLO architecture. The base model is similar to GoogLeNet
[53] with an inception module replaced by 1x1 and 3x3 conv layers. The
prediction vector is produced by 2 FC layers over the whole convolutional
feature map. Figure is derived directly from the original article [60]

inal dataset. The Faster R-CNN model showed great performance on the
whole dataset (augmented plus original), which was potential for marine or-
ganism detection and recognition. [66].

2.3.3.3 You Only Look Once (YOLO)

You Only Look Once (YOLO) model by Redmon et al., 2016 [38] was the
very first attempt to build a one-stage detector with real-time property [60].
YOLO does not undergo region proposal stage but it looks at the whole im-
age at once (Figure 2.15). That is, the algorithm needs only one forward
propagation via a neural network to predict bounding box coordinates and
different class probabilities associated with each box (as depicted in YOLO
workflow). Such unified architecture is extremely fast in performance [38].
With a single look, YOLO sees the full image and encodes contextual infor-
mation about classes according to its authors, unlike region proposal method.
Henceforth, YOLO detects significantly less background false-positive than
Fast R-CNN [36, 38]. Through different experimental results, YOLO outper-
forms and proves its generalization property, implying its object representa-
tion are highly generalized. Yet, YOLO does not excel at extremely small
object detection and localization, especially when they are clustered [12, 36].
So far, YOLO framework has five versions (from YOLOv1 to YOLOv5), each
of which improvises upon its prior releases.

Since the initial release, YOLO model has continued to evolve and become
the de factor paradigm in object detection. In 2017, Redmon and Farhadi
released an enhanced version - YOLOv2/YOLO9000. YOLO9000 was a vari-
ant of YOLOv2 with the training of COCO dataset combined with the top
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YOLOv1 Workflow
1. Pre-train a CNN network on image classification task.
2. Split an image into S × S cells. If an object’s center falls into a cell,
that cell is “responsible” for predicting:

• Bounding boxes coordinates - defined by a tuple of (center x-
coord, center y-coord, width, height) − (x, y, w, h) which are nor-
malized by the image width and height, x and y are set to be offset
of a cell location.

• Confidence score - the likelihood that the cell contains an object,
defined by Pr(object) × IoU(pred, truth) where Pr = probability
and IoU = Intersection over Union.

• Probability of object class conditioned on the existence of
an object in the bounding box - defined by Pr(object belongs to
Ci |containing an object), class Ci, i = 1, ..., K.

3. Modify the last layer of the pre-trained CNN to output a prediction
tensor of size S × S × (5B +K).

9000 classes from ImageNet [39]. Various modifications were applied on top
of YOLO architecture, most notably including:

• Batch normalization - on all convolutional layers resulted in sub-
stantial convergence improvement [12, 57, 60]. In specific, batch nor-
malization reduced the offset of unit values in the hidden layer; hence
stablizing the neural network.

• High-resolution input classifier - the base model was fine-tuned
with high resolution images (size of 448 × 448 instead of 224 × 224
for about 10 epochs on dataset ImageNet) to improve the detection
performance (roughly 5% increase in mAP).

• Convolutional anchor box detection - previously, fully connected
layers over the whole feature map is used to predict bounding box posi-
tion. In YOLOv2, the prediction of spatial locations and class proba-
bilities were decoupled, the former of which was predicted in the form
of anchor boxes by convolutional layers.

• Dimension cluster - YOLOv2 run k-mean clustering to search for
priors on anchor box dimensions, rather than selected manually as in
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faster R-CNN architecture. Anchor boxes generated by k-mean clus-
tering led to better average Intersection over Union (IoU) scores on the
condition that the priors were independent of box size [12, 60].

• Lightweight base model - Darknet-19, consisting of 19 conv and 5
max pooling layers, was adopted as the base model, thus faster pro-
cessing and better performance [12].

After a number of iterative improvements, Redmon and Farhadi pub-
lished YOLOv3 in 2018, which has become one of the most readable papers
in computer vision. The model contained two main components: a backbone
feature extractor based on Darknet53 and a detection block for bounding
box localization and classification [26]. To mitigate the vanishing gradient
problem of a very deep network and preserve fine-grained features for small
objects, residual skip connection is applied to the model, coupled with up-
sampling and concatenation method [65]. YOLOv3 was improved upon the
previous version with some inspirations from recent advancements in the
object detection world, involving:

• Logistic regression for confidence scores - YOLOv3 predicted
confidence score for each bounding box by logistic regression while prior
versions used squared errors summation. Multi-label classification was
performed by multiple independent logistic classifiers. Sotfmax layer
was no longer used, which was helpful especially in multi-label image
where all labels were not mutually exclusive (e.g. person and woman
are overlapping labels). [12, 40, 60].

• Hybrid base model, Darknet53 - YOLOv3 used 3 × 3 and 1 × 1
CNN layers in succession, just like the original darknet architecture,
but added residual blocks. Subsequently, the network consisted of 53
CNN layers, hence the name Darknet53.

• Multi-scale prediction - being inspired by feature pyramid networks,
YOLOv3 added several convolution layers after the base feature extrac-
tor and the last layer made a prediction at three different scales (suit-
able for large, medium and small objects relative to the image size),
encoding boundary box, class predictions and objectness [12, 26].

The original researcher stepped away from the field after YOLOv3; how-
ever, there are emerging innovators such as Alexey Bochkovskiy (YOLOv4),
Glenn Jocher (YOLOv5) and Baidu (PP-YOLO) etc. There exist different
improved algorithms, not within the scope of this thesis, including YOLOX,
YOLOS (You Only Look at One Sequence), Scaled-YOLOv4, YOLOR (You
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Only Learn Once Representation) etc. Released in April 2020, YOLOv4 by
Alexey Bochkovskiy was the next version in YOLO family without being
authored by Joseph Redmon. The main focuses were speed enhancement
for performing operations of a neural network and optimization for parallel
computations. Notable difference from YOLOv3 was the addition of Spa-
tial Pyramid Pooling (SPP) [17] component for the more accurate bound-
ing box localization. YOLOv4 had three main stages: a feature extractor
Cross-Stage-Partial-Connections (CSP) Darknet53, a neck that connected
the backbone to the head with SPP and PANet path-aggregation network
[33], and a head that was identical to YOLOv3 [26].

One month later, Glenn Jocher - researcher and CEO of Ultralytics LLC
published YOLOv5 which was written purely in Python programming lan-
guage instead of C as in the previous versions. The model was lightweight and
highly suitable for embedded devices in real-time object detection. There ex-
ist four architectures in YOLOv5, namely YOLOv5s, YOLOv5m, YOLOv5l,
YOLOv5x which were differentiated by the amount of feature extraction
modules and convolution kernels in a specific location of the network [65].
Indeed, YOLOv5s and YOLOv5m were the preset simplified model while
YOLOv5l was the benchmark and YOLOv5x was the extended model [51].
There was no official paper released by Glenn, just a public repository in-
stead. Yet, major enhancements could be summarized as follows:

• PyTorch translation - the whole Darknet research framework was
translated into PyTorch framework; which was highly integratable with
IoT devices [10, 50].

• Data augmentation - the introduction of mosaic data enhancement
has well addressed the “tiny object problem”. The technique includes
splicing four random pictures by arbitrary scaling, cropping and ar-
range them; thus exposing small targets better for feature extraction
stage (more details are discussed in section 4.3).

• Auto-learning anchor boxes - Glenn developed the idea of deriving
anchor boxes dimension from the distribution of bounding boxes in the
custom dataset by K-means and generic learning algorithm. Thereby,
YOLOv5 anchor boxes were automatically learned from our custom
dataset. [50].

Regarding the architecture, YOLOv5 is constituted of three main com-
ponents: backbone, neck and head (Figure 2.16). Cross Stage Partial Net-
work (CSP) and Spatial Pyramid Pooling (SPP) are used as the backbone
to extract and aggregate image features at different granularities. The model
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Figure 2.16: YOLOv5 architecture. Figure is derived directly from the orig-
inal article [61]

adopts Feature Pyramid Network (FPN) + Path Aggregation Network (PANet)
structure (similar to YOLOv4) to boost the information flow. Solid seman-
tic features are conveyed from top to bottom while positioning features are
robustly conveyed reversely up [61]. Primarily, feature pyramids enhance
generalization on object scaling. In simple terms, the same objects can be
identified with different sizes and scales. Lastly, the head consumes features
from the neck and performs detection task. It applies the anchor boxes
(learned from fitting to ground-truth bounding boxes in the custom dataset)
on features and generates the output vectors with class probabilities, objec-
tiveness score and bounding boxes dimensions.

YOLO family is suitable for processing video in real-time and highly re-
liable for detecting fish in severely noise, high attenuation of lights and hazy
underwater images [26, 65]. There appears an increasingly more amount of
studies focusing on an end to end underwater object detection models which
address specific problems of marine organisms in complex living habitats.
Remarkably, Sung et al. [52] (2017) employed YOLO model to detect and
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classify fish using 829 underwater images. They achieved 93% classification
precision on 100 images of fish species and 16.7 frames per second of fish
detection [12, 52]. YOLO model has indeed outperformed other fish detec-
tors using sliding window algorithm and classifier trained with a histogram of
oriented gradient features and SVM. Jalah et al. (2020) [23] proposed a uni-
fied approach to detect and classify fish from underwater videos (LifeCLEF
2015 benchmark from Fish4Knowledge repository and a dataset collected by
The University of Western Australia (UWA). Originally, YOLO model was
employed to capture static and clearly visible fish. To enable the detection of
freely moving fish or skillfully camouflaged fish, the authors used temporal
information acquired via Gaussian mixture models and optical flow. This
unified approach achieved high F-scores of 95.47% and 91.2%, and accuracy
of 91.64% and 79.8% for each dataset respectively. The results have become
benchmark performance for these datasets for the time being. [23].

Among many qualified studies, a recent publication Automated detec-
tion, classification and counting of fish in fish passages with deep learning
by Kandimalla et al. (2022) is worth noticing. The authors applied YOLO
algorithm which accurately detected and classified eight species of fish from a
public high-resolution DIDSON dataset (video from both cameras and imag-
ing sonar) captured from the Ocqueoc River in Michigan, USA. This study
contributed to the Ocean Aware project, funded by Canada’s Ocean Super-
cluster which aimed to build commercialized solutions for tracking fish health
without the use of traditional tags. The researchers used convolution weights
pre-trained from ImageNet dataset with 80 classes. The model was adapted
accordingly to the specific parameters such as the number of output classes,
batch size, and image dimensions etc. Additionally, image augmentation
during training was performed, which enhanced the result substantially. The
highest mAP achieved by YOLOv3 is 0.73 which is 0.11 higher than Mask
R-CNN counterpart at an IoU threshold of 0.4. Besides, YOLOv3 was 3x
faster than the other method in terms of processing image frames per sec-
ond. These experimental results demonstrated great feasibility for deploying
YOLO model into embedded devices which requires real-time processing.
[26].

In 2021, Wang et al. published a paper comparing four sizes of YOLOv5
and also together with other detection algorithms in detecting underwater
objects (holothurian, echinus, scallop, starfish and waterweeds) from the Un-
derwater Robot Professional Contest (URPC2) dataset [58]. The experi-
mental results showed that YOLOv5 achieved the highest accuracy and effi-
ciency compared to other two-stage detectors. The ranking was YOLOv5s,
YOLOv5m, YOLOv5l, YOLOv5x in ascending order regarding mAP and
in reverse order in terms of efficiency (obviously, the larger size, the more
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parameters). Under a similar context, Zhong et al. (2022) [65] recently pub-
lished a comparison of YOLOv3, YOLOv5, and YOLOR models in detecting
fish and turtle in the coral reef. YOLOv5 indeed was able to achieve high pre-
cision with the most efficiency (the average execution time was only 13.3ms,
nearly half of the others’). By this, YOLOv5 algorithm is truly promising
for developing real-time underwater object detection.

This literature review has extensively covered the following areas: the
outbreak of COTS in the Great Barrier Reef and its severe consequences,
current methods to prevent the outbreak, existing studies of COTS detection
based on underwater images, the feasibility of building a deep learning-based
detector rooting from similar domain knowledge (fish and coral detection).
Particularly, we focused on works related to deep learning methods which
would be the main theme of this thesis. By this, we accumulate sufficient
background knowledge of current technologies for underwater object detec-
tion problem. Apparently, the hybrid approaches (the ones with architectures
similar to R-CNN) may be daunting in performance optimisation as region
proposals and classification take place in two completely separate stages [36].
On the contrary, this thesis mainly focuses on an end-to-end deep learning
based detection framework - YOLO. We are confident enough with a com-
prehensive understanding and specialized expertise of various techniques to
build a reliable COTS detector based on YOLOv5. CSIRO Crown-of-Thorns
Starfish Detection Dataset by Lin et al. [32] is a suitable testbed for con-
structing and evaluating YOLO based detector. All things considered, we
can now proceed to problem formulation, methodology, implementation and
evaluation phases of this thesis in the upcoming chapters.



Chapter 3

Problem Formulation

The literature review has given an intensive understanding of the current ob-
ject detection problem, which involves only one explicit foreground class of
interest. Different recent approaches, reviewed in Section 2.3, shed light on
the research area, albeit the scarcity of underwater images. Now, it’s time to
discuss our thesis research problem in great details. This chapter covers the
problem-solution frame and it is organized into three main sections. Firstly,
we provide background of the dataset used to build the COTS detector. Some
findings and observations from the exploratory data analysis (EDA) are pre-
sented to give a thorough understanding of the given input images. On top
of that, comparing this dataset against the benchmark datasets (reviewed in
Section 2.1.3) to extract explicit characteristics helps formulate the problem
much more decently. Next, we introduce the set of main evaluation metrics,
mostly and reliably used in object detection, to rank different model perfor-
mances and select the final model. Lastly, an evaluation scheme is described
in brief to show how the predictions are matched against the real objects and
thereafter compute the important evaluation metrics.

3.1 Data set Description

For the research purpose, we use the CSIRO Crown-of-Thorns Starfish (COTS)
Detection Dataset by Jiajun Lin et al. [32] to tackle the coral loss on the
Great Barrier Reef due to the COTS outbreaks. The data set was collected
by COTS Control teams from the Australian agencies, in collaboration with
domain experts and marine scientists. The main method used to collect
these underwater images was “Manta Tow”. A snorkel-diver with a cam-
era is attached to the bottom of a manta-tow boat moving at a speed of
fewer than five knots and stopping every 200-meter transect. This gives the

48
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snorkel-diver two minutes to observe variables, assess the underwater habitat
virtually, and record the results back to a data sheet. We call this process
“surveys”. Indeed, the camera captures an oblique view of the reef and the
distance between the diver and the reef changes dynamically when the diver
moves around and explores the area. It can be as closed as just 10 centimeters
or substantially as far as 10 meters. The setting of the camera is 24 frames
per second at 3840x2160 resolution. The videos are captured continuously
and processed manually afterward. Specifically, the periods of no activity
between transects are cut and removed. The data set was collected by Go-
Pro Hero 9 cameras in only one day in October 2021 at five different areas in
the Swain Reefs region of the Great Barrier Reef. Undoubtedly, there exist
variations in the coral habitat, lighting, visibility, depth, distance from the
bottom, and viewpoint. [32].

The data set contains many sequences of underwater images. Among 35K
collected images, 23,500 images are publicly released for research purposes.
Each image contains mostly zero or one or even more than one starfish.
Thousands of individual COTS are visible, and they are annotated by the
bounding boxes around each COTS. The raw images have been annotated by
expert annotators, with the help of a pre-trained COTS detection model and
successfully undergone the quality assurance process. Specifically, only 4, 919
images contain the starfish, and we choose this particular number of images
to train the model. Most frames have 1 to 3 annotations, a few outlier frames
contain more than 10 bounding boxes and one image exists the maximum of
18 visible COTS.

Being compared to some conventional object detection benchmark datasets
(PASCAL VOC, ILSVRC, MS-COCO), this collection of underwater images
differs considerably in some manners. Firstly, there is only one class which is
the Crown-of-Thorns Starfish while there are 20 classes in PASCAL VOC07
and VOC12, 200 classes of visual objects in ImageNet (ILSVRC) and 80
categories in MS-COCO-17 [64]. Secondly, the camera records sequences of
images; therefore, COTS are framed in a sequence-based fashion (Figure 3.1).
Multiple images of the same COTS are taken when the survey boat passes
by. However, the detection is carried out individually, which is similar to the
MS-COCO challenge. Thirdly, the starfish are good at hiding themselves;
therefore, their visibility can be partly captured. Besides, multiple COTS
are detected in the same image, sometimes overlapping annotations.

As shown in Figure 3.2, the Crown-of-Thorns Starfish are considerably
small. On the average, the object’s dimensions are approximately 50x50
pixels, which in general presents merely 0.25% of the whole image (size of
1280x720). Undoubtedly, such tiny size poses an astounding challenge to
object detection and localization tasks. This is a similar problem that AI
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Figure 3.1: Detected COTS are annotated by bounding boxes in the image
sequence [32]

practitioners encounter in the MS-COCO challenge. The data set contains
common objects in their natural habitats whose area are less than 1% of the
image and they are densely located in the frame [64]. Indeed, to accurately
locate the COTS, the region sample size needs to be scaled substantially.

We decided to only use the images with the existence of COTS for train-
ing. Nearly 80% of the published CSIRO data set does not contain COTS
annotations. Therefore, there is no point to waste computing resources and
effort on background images. We split 4, 919 annotated images into a training
set of size 4242 (86.2%) and a validation set of size 606 (12.3%) to approach
generalization ability. The input images are pre-processed and augmented
during training while the original testing images are kept untouched. This,
indeed, ensures the overall performance of the model and its reliability.

3.2 Evaluation Metrics

In simple terms, a metric is some numerical value which can be measured in a
reproducible manner, demonstrating a specific correlation with the ultimate
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Figure 3.2: An image is annotated with the bounding box coordinates given
from the original dataset. This image contains many COTS, 15 have been
detected (video 2, sequence 22,643, video frame 5,777, sequence frame 414)

objective of the problem, thus providing significant insights into the model
performance. In COTS detection, we do binary classification, either starfish
or non-starfish (it can be background, coral, or other marine organisms).
As such, ground truth instances are referred to as a positive example for
starfish presence and as a negative example for the latter scenario accordingly.
The prediction falls under a specific category of true positive (TP), false
positive (FP), true negative (TN), or false negative (FN). Particularly, true
positive indicates that the detected image region actually contains COTS.
Likewise, true negative accurately recognizes no starfish in the predicted
bounding box. In an adverse manner, false positive raises a false alarm when
wrongly identifying the starfish in background/other object regions and false
negative is the outcome when the model incorrectly predicts COTS presence
as negative. From a naive perspective, the ultimate objective is to detect most
of the Crown-of-Thorns Starfish presented in the given underwater images
while omitting the least number of COTS. Such ambiguous objectives should
be quantified through a set of appropriate metrics, defined as follows:

• Precision: This metric attempts to understand what proportion of
positive identifications are actually correct. For instance, the precision
of 79% indicates that among all identified starfish, 79% of them are
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truly correct. The precision is defined as the percentage of correctly
labeled items belonging to the positive class (COTS presence) divided
by the total number of predicted positive instances, calculated as below:

Precision =
TP

TP + FP
(3.1)

• Recall: Intuitively, recall captures the percentage of positive ground
truth labels which are identified correctly. Specifically, a recall of 49%
tells that the model correctly classifies 49% of all genuine COTS. The
metric is calculated by dividing the number of correctly labeled COTS
by the total number of actual COTS in the dataset.

Recall =
TP

TP + FN
(3.2)

• F2 score: It would be preferable to have a single metric for performance
assessment [36]. Precision and recall are in tension, which means that
precision improvement typically reduces recall and vice versa. By this,
combining these metrics can generate a harmonic average F1. For our
problem, omitting positive instances leads to severer consequences, as
clearly stated in section 2.2.1. Fβ, a more general F score, uses a pos-
itive real factor β to weigh recall β times more heavily than precision.
Thereby, F2 score is chosen to emphasize recall 2 times over precision.
It makes sense to tolerate only a few false positives, meaning very few
starfish are missed. In essence, precision and recall are provided as
complementary comparisons while the average F2 at different intersec-
tion over union (IoU) thresholds is the main metric to select the best
model for this thesis.

Fβ = (1 + β2)× (Precision×Recall)

(β2 × Precision) + Recall
, with β = 2 (3.3)

3.3 Evaluation Schemes

In order to compute the above-mentioned metrics for performance assess-
ment, an evaluation scheme is essential, as inspired by Pasi’s work [36]. It
determines the whole computational process of calculating these numerical
results given the object detector’s outputs and the ground truth labels. First
and foremost, the predicted bounding boxes must be individually matched
against the ground truth bounding boxes. This is the so-called ground truth
matching process [36]. The logic is provided in Algorithm 1. The predictions
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coupled with corresponding confidence scores s and ground truth bounding
boxes for a single image are taken as input. The algorithm greedily matches
each prediction with a single ground truth based on a specific IoU threshold
ε. In case of many predictions over one ground truth bounding box, the
predicted box with the highest confidence score will be matched first. After
matching, the ground truth is taken out from consideration; therefore, the
remaining same predictions will be regarded as false positives. Simply put,
this comprehensively incentivizes the elimination of duplicate predictions.
Subsequently, the results encode the true positive Bp

TP and false positive
Bp
FP which are input into the calculation of the required evaluation metrics

thereafter. In this thesis, we apply an adapted MS COCO evaluation scheme
which computes the metrics over different IoU threshold ε and outputs the
average F2 scores, being described as pseudo-code in Algorithm 2.

Algorithm 1 Prediction & ground truth matching for a single class [36]

Input:
Bp = {(bpi , si)}Ni=1 N predicted bounding boxes with confidence score si

for from image I
Bg = {bgj}Mj=1 M ground-truth bounding boxes from image I
ε Evaluation IoU threshold

Output: Y ∈ {0, 1}N
N-length binary vector indicating true positive and false negative for each
prediction bip

1: function MatchBoxes(Bp,Bg, ε)
2: Y ← ∅
3: Sort Bp in descending order based on confidence score s
4: for i← 1, . . . , N do ▷ iterate over predictions
5: t← IoU(bpi ,Bg)
6: k ← argmax(t) ▷ find index of GT box with max IoU in t
7: if tk ≥ ε then
8: Bg ← Bg − bkg
9: Y ← Y ∪ {1} ▷ matched, add one TP

10: else
11: Y ← Y ∪ {0} ▷ nothing matched, add one FP

12: return Y
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Algorithm 2 Detection results evaluation based on MS COCO scheme [36,
55]

Input:
I = {(Bp,Bg)k}Kk=1 K pairs of bounding boxes, each pair of which cor-

responds to image Ik
iouε Evaluation IoU threshold vector, there are n ε val-

ues in range of [εmin, εmax] by a specific step size,
normally 0.05

Output:
P Average Precision
R Average Recall
F2 Average F2 scores

1: function Evaluate(I, iouε)
2: m← ∅
3: for ε in iouε do ▷ iterate different IoU ε threshold
4: E ← ∅
5: for all (Bp,Bg) in I do
6: Sort Bp in descending order by confidence score s
7: E = E ∪MatchBoxes(Bp,Bg, ε)

8: Sort E in descending order by confidence score s
9: E ′T = BitwiseAnd(E , 1)

10: E ′F = BitwiseAnd(E , 0)
11: ET = CumulativeSum(E ′T )
12: EF = CumulativeSum(E ′F )
13: Pε = ET ⊘max(ET + EF ) ▷ element-wise division
14: Rε = ET ⊘

∑K
k=1 | B

g
k |

15: F2(ε) = ComputeFbeta(Pε,Rε)
16: m1 ← m1 ∪ Pε

17: m2 ← m2 ∪Rε

18: m3 ← m3 ∪ F2(ε)

19: P = average(m1) ▷ calculate average precision
20: R = average(m2) ▷ calculate average recall
21: F2 = average(m3) ▷ calculate average F2

22:

23: return P ,R, F2



Chapter 4

Methods

In the previous chapter, we presented a comprehensive problem formulation
for this thesis. Accordingly, this chapter focuses on describing our approach
toward the COTS detection built on top of the famous single-shot object de-
tection - YOLOv5 algorithm. As such, here we demonstrate our adaptations
and small modifications to the standard YOLOv5 detector. Those changes
make our model better align with the dataset and serve our purpose of ro-
bustly detecting the Crown-of-Thorns Starfish. As YOLOv5 was published
as an open-source GitHub repository, without any official paper regarding
detailed development. For this reason, we are trying to give more insights
regarding different aspects, particularly loss function and bounding box ag-
gregation. We firstly describe the multi-task losses in details; then present
our ideas on initializing the network weights and image-processing during the
training process, and finally define our approach to result postprocessing.

4.1 Loss Function

Among key components for solving a machine learning problem, the choice
of loss function plays an indispensable role [25, 36]. As defined previously, an
end-to-end COTS detector is selected, which allows to perform multiple tasks
simultaneously. Therefore, a multi-task loss for object selection is absolutely
a preferable choice. Many researchers have applied this concept, notably the
one proposed by Girshick (2015) [13]. Multi-task loss sums up two separate
loss functions, one from classification and the other from regression tasks;
holistically enabling joint optimization [36]. In YOLOv5, the loss function
includes three components: bounding box regression loss, objectness loss
(also known as confidence loss), and classification loss [51]. It is defined
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through the following formula:

Ltotal = Lobj + Lreg + Lcls (4.1)

Given that COTS detection is a single-class problem, only one class exists (0
denotes COTS class). Hence, Lcls is omitted.

4.1.1 Objectness loss

The first component in the formula (4.1) is the objectness loss. Objectness
concept refers to the existence of the object in an image. Objectness score for
each bounding box is predicted using logistic regression. One ground truth
object is assigned only one bounding box prior. Therefore, the non-best
predicted bounding box priors (the one satisfying the overlapping threshold
but not being the most matching) will be ignored. These boxes incur no
coordinate nor classification losses, only objectness one. [40]. For the grid
containing no object, the confidence score equals 0. IoU ratio between the
predicted box and the true counterpart is assigned to replace that zero con-
fidence score, instead. In short, objectness loss reflects the difference in the
predicted “objectness” versus the ground truth’s one. The loss is adapted
from binary-cross entropy loss, defined as follows:

Lobj =−
s2∑
i=0

B∑
j=0

Iobji,j

[
Ĉj

i log(C
j
i ) + (1− Ĉj

i )log(1− Cj
i )
]

− λnoobj

s2∑
i=0

B∑
j=0

Inoobji,j

[
Ĉj

i log(C
j
i ) + (1− Cj

i )log(1− Ĉj
i )
] (4.2)

• s2: the number of grids

• B: the number of bounding boxes in each grid

• Iobji,j equals 1 when an object exists in the bounding box, else 0. Inoobji,j ,
likewise but reverse.

• Ĉj
i : prediction confidence of the j-th bounding box in the i-th grid

• Cj
i : true confidence of the j-th bounding box in the i-th grid

• λnoobj : confidence weight when no object exists in the bounding box
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4.1.2 Bounding box regression loss

In object localization, Intersection over Union (IoU) is the de facto standard
to measure the similarity between two bounding boxes. The overlapping area
(intersection) is divided by the total area (union) of the boxes; that is the
greater the IoU, the more matching the boxes are (Figure 4.1). IoU’s range
is between [0, 1]. If two boxes do not overlap, the IoU equals 0. Under such
a scenario, the metric indeed does not give any information regarding their
positions, reflecting if the bounding boxes are in vicinity or further away
from each other [42]. By this, Generalized IoU (GIoU) would be a better
substitute as it inherits major properties from IoU while rectifying the stated
weakness. Formula 4.3 defines GIoU, where C is the smallest convex shape
that encloses both bounding boxes B1 and B2. The area of C excluding
B1 and B2 is divided by the total area of C. This ratio is subsequently
subtracted from the IoU. The value range of GIoU is [−1, 1] and the higher
the metric, the closer the bounding boxes.

Figure 4.1: IoU illustration by Zafar et al. [20]

GIoU =
| B1 ∩ B2 |
| B1 ∪ B2 |

− | C \ (B1 ∪ B2) |
| C |

= IoU− | C \ (B1 ∪ B2) |
| C |

(4.3)

Figure 4.2: GIoU illustration in non-overlapping context

Regarding the second component of the formula (4.1), the difference be-
tween the predicted bounding box properties and the real counterparts is
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measured, representing the bounding box regression loss. Generalized inter-
section over union (GIoU) loss is considered the loss function for bounding
box regression. We are directly using GIoU metric as a loss to optimize
deep neural network-based object detectors. IoU has zero gradient for non-
overlapping cases, which potentially influences the training process and con-
vergence rate. GIoU, on the other hand, has a gradient in all contexts; hence
eliminating the vanishing gradients in non-overlapping cases. The regression
loss is calculated as LGIoU = 1−GIoU , expressed in full form:

Lreg = LGIoU =
s2∑
i=0

B∑
j=0

Iobji,j

[
1− IoU +

Ac − U

Ac

]
(4.4)

• s2: the number of grids

• B: the number of bounding boxes in each grid

• Iobji,j equals 1 when an object exists in the bounding box, otherwise 0

• IoU : intersection over union between the predicted bounding box and
the ground truth frame

• Ac: the area of the smallest enclosing box C

• U : the total area of the predicted bounding box and the real counter-
part, excluding their overlapping area

4.2 Transfer Learning

Being compared with different benchmark datasets, CSIRO Crown-of-Thorns
Starfish Detection Dataset is relatively small. Indeed, training a proper deep
learning model requires a sizable amount of input data. Transfer learning
appears to be an effective technique to mitigate this deficiency of training
data. Specifically, transfer learning is a paradigm of pre-training a deep
network on a large dataset and using those trained weights and features to
initialize the training on a much smaller and typically task-specific dataset
[36]. The main idea is to learn low-level features in the early layers of the
CNN, including but not limited to edges, shapes, corners, and intensity etc.
which do not appear to be dataset nor problem-specific. By this, these fea-
tures are not necessarily relearned entirely but are transferred from another
computer vision task. Experimental results from Wang et al. (2020) [56]
demonstrates the improvement in mAP by 4% using transfer learning when
detecting objects using underwater robots.
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For a successful learning transfer of pre-trained features to the current
object detection task of interest; the relationship between the source and the
CSIRO COTS dataset matters [28]. In addition, many empirical experiments
have shown that transfer learning can speed up model training convergence
given a sufficiently large dataset and prevent deep models from overfitting
to a small dataset [16, 36, 47]. Objects365 has 365 categories from 2 million
images with 30 million bounding boxes. The 365-category dataset covers
also classes defined in the PASCAL VOC and the COCO benchmarks. [46].
This dataset focuses on object detection more than image classification task.
Indeed, it eliminates those images which only serve the latter purpose, in a
similar manner as the COCO dataset. There is a large number of images
and a diversity in object categories, particularly those belonging to marine
animals which perfectly meets our preference. In this thesis, we test CNN
backbones for our detector which is pre-trained on the Objects365 dataset.
As said, we do fine-tuning for the same CNN on our starfish dataset, contin-
uing from a pre-trained weight initialization from Objects365-based training.
Besides, we also train our model from scratch as an alternative, albeit more
training time and resources are required.

4.3 Data Augmentation

As discussed, to achieve a desirable generality, deep learning requires a large
amount of labeled training data. In fact, a similar external dataset seems
not to exist. Underwater data is relatively scarce and under-qualified, even
corrupted. Apart from transfer learning, data augmentation is another com-
mon method to mitigate data shortage while eliminating the laborious effort
of manual data collection and labeling. Indeed, the benefit is two-fold: artifi-
cially inflate the dataset with new examples generated from the existing one
on-the-fly, and facilitate feature extraction with the more useful information.
A downside of introducing more data into the model is a significant increase
in the training hours [67]. To compile an optimal training dataset for the
model to train efficiently, different data augmentation techniques should be
chosen properly, tested, and well evaluated. From a practical perspective,
some manual observations from the original dataset could be helpful for the
selection of data augmentation techniques.

4.3.1 Dataset observations

The underwater environment poses a great challenge to detect marine species.
There are different unfavourable conditions of light such as light scattering,
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uneven illumination in addition to water absorption of light, and massive
impurities in the water. Thus, the underwater videos and images normally
have low contrast, poor visibility, and substantially blue-green colour. This
is not an exception for our CSIRO COTS dataset. As expected, all of the
images are masked with the blue color, some intensively. Only when the
camera is moving toward the starfish within a distance of less than 1 meter
can we spot them clearly without being overshadowed by the blue color.
Plainly speaking, the blue color at high intensities has darkened the images.
Not only should color correction be applied, but also highlight adjustment.
Around 10% of the images show noisiness by many white blur spots, giving
them a sensation of being obscured with a thin layer of blurriness on top.

As mentioned in the dataset description, the videos were recorded within
only one day in five different areas of the Reef; hence countless variations of
water conditions and coral habitats. Apart from the main properties of the
image (illumination and color), observations from the objects themselves are
worth discussing. The dataset includes three main videos, each of which con-
tains many sequences. Each sequence, in specific, is recorded in a relatively
similar fashion. The diver is gradually approaching the coral reef; there-
fore, the early frames do not contain much useful information. COTS look
extremely tiny and partially obscure, angled from bottom-up or top-down.
The visible COTS in these frames have no definite and clear shapes. The
unique thing that characterises the COTS is their distinguishable thorny legs.
As the diver gets closer, the angle becomes more direct and top-down; hence
well-shaped COTS visibility. Moreover, the water becomes more transparent
and the images in this position of the sequence have the highest quality. The
starfish are still visible at the end of the sequence; however, they are moving
out of the frame little by little. Some reach the edges of the image eventually.
On the whole, many images contain the COTS with approximately 40-60%
of body exposure. In these circumstances, rotation and flipping techniques
may be helpful. By all means, these images should undergo an enhancement
process before being input into the training model. This not only retains the
information of the target object but also removes interference information
caused by the background and other sea animals.

4.3.2 Augmentation

We apply an online and random augmentation strategy to training images
only, keeping validation and test data untouched. The transformations pro-
ceed on the fly during the training process in this “online” fashion rather
than being generated beforehand. With YOLOv5, each training batch un-
dergoes an augmentation process through a data loader which includes three
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Figure 4.3: Different steps in mosaic augmentation [48]

main transformations: geometric scaling, color-space adjustments, and mo-
saic augmentation [50]. Mosaic augmentation is a cutting-edge technique
which combines an original image with other three random images into four
tiles by a random ratio. The model does not learn information from only
one original image but tries to localize objects in different corners formed by
different contexts. The images are never presented twice in the same way.
The technique is shortly described in Figure 4.3. Indeed, the applicability of
this method is proven through many experiments on different data sets, espe-
cially useful for the COCO object detection benchmark. Holistically, mosaic
is exceptionally robust to address the problem of “small object detection”.

Different geometric augmentation techniques are applied in our imple-
mentation, listed with details in Table 4.1. By these, new sample instances
are generated by the combination of techniques such as randomly flipping
the image by the y-axis; scaling the object along the x-axis by a specified
factor (thus modifying the size of the original image); shifting the image
around (random translation); rotating the image by a random degree; or
shearing the image along the horizontal axis to produce a parallelogram-like
shape. To visualize these ideas more specifically, we provide the image after
transformations as in Figure 4.4.

Operations Possible Values Probabilities
(a) Rotation (+/- degree) [-45, 0, 45] [0.25, 0.5, 0.25]
(b) Translation (+/- fraction) [-0.1, 0, 0.1] [0.25, 0.5, 0.25]
(c) Scale (+/- gain) [0.8, 1, 1.2] [0.25, 0.5, 0.25]
(d) Shear (+/- gain) [-0.1, 0, 0.1] [0.25, 0.5, 0.25]
(d) Horizontal Flip [true, false] [0.5, 0.5]

Table 4.1: Geometric Transformation

Regarding color-space transformation, some techniques have been tried
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Original Image Horizontal Flip

Rotation Translation

Scale Shear

Figure 4.4: Geometric transformations applied to an image video 1 9374.jpg

and selectively chosen. Gamma correction is used to either encode or decode
luminance. In our training dataset, it helps mostly brighten our underwater
images. As observed in section 4.3.1, some of our images suffer from a foggy
layer. Thus, Contrast Limited Adaptive Histogram Equalization (CLAHE)
is applied to improve the visibility level [62]. Regarding HSV, the hue of
the color is captured by the hue channel while the saturation controls the
colorfulness and lastly, the brightness is parameterized by a value channel.
Adjusting these three channels jointly will generate a variety of color spaces.
The transformations are illustrated individually in Figure 4.5.

Some advanced techniques which belong to oversampling strategy have
been applied. New training instances are generated by mixing existing im-
ages; hence allowing the model to learn from a wider array of contexts [49].
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Operations Possible values Probabilities
HSV-Hue (+/- fraction) [-0.015, 0, 0.015] [0.25, 0.5, 0.25]
HSV-Saturation (+/- fraction) [-0.7, 0, 0.7] [0.25, 0.5, 0.25]
HSV-Value (+/- fraction) [-0.4, 0, 0.4] [0.25, 0.5, 0.25]
CLAHE clip limit = 2, 0.25

tile grid size = (8, 18)
Gamma Correction gamma = 1.3 0.5

Table 4.2: Color-space Transformation

Original Image Gamma Correction

HSV CLAHE

Figure 4.5: Colorspace transformations applied to an image video 1 9374.jpg

Mixup augmentation is a technique that generates a weighted combination
of random pairs of images from the training data. In our implementation,
this method is applied with a probability of 0.1. An illustration is provided
in Figure 4.6. Briefly discussed above, Mosaic is native to YOLOv5 model
and its probability parameter is set to 1. Simply put, the mosaic data loader
randomly places four pictures into the final frame and apply the above aug-
mentations (rotation, gained scaling, shear, color space scaling, etc.) on the
fly. By different mixtures of techniques in randomness, we give examples
of some synthesized images during training as in Figure 4.7. COTS class is
denoted with 0, coupled with the annotated bounding boxes.
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Image video 1 9374.jpg Image video 0 55.jpg

Mixup

Figure 4.6: Mixup combines images video 0 55.jpg and video 1 9374.jpg

4.4 Bounding Box Aggregation (BBA)

You Only Look Once algorithm divides an image into an s×s grid where each
cell predicts several bounding boxes, clustering around an object. Although
some anchors exceed the predetermined IoU threshold ξ to be considered pos-
itive instances, a single unambiguous bounding box per object is preferable
in most cases. Obviously, we need to perform a bounding box aggregation
to eliminate duplicate predictions which are typically counted as false posi-
tives during the ground-truth matching assessment. In our implementation,
Non-Max Suppression (NMS) is performed as a postprocessing step of the
algorithm. Indeed, Non-Max Suppression is a traditional and greedy ag-
gregation method used in many computer vision tasks. It enforces a strict
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Figure 4.7: An example of an augmented data during training with certain
techniques applied randomly

alignment and a unique mapping between the predicted bounding box and
the real counterpart. [36].

From a practical perspective, our COTS detector will futuristically be
embedded into underwater-surveillance devices which automatically navigate
toward the starfish and possibly remove them from the coral. For this reason,
the application requires a fine-grained delineation of individual objects. We
aim to crudely yet surely detect as many COTS as possible. By this, we do
not choose the Merging of Overlapping Bounding Boxes (MOB) method since
it merges all overlapping and dense candidate boxes into a single enclosing
box [36]. This method somewhat sacrifices our desired performance. As
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for precise object localization, NMS may increase false-negative rate in case
there are many small, densely-located and heavily overlapping objects [18].
Since the objects are occluded to a certain extent by the forefront ones, their
bounding boxes are suppressed by a specific overlapping threshold during
evaluation phase [4]. Hence, this degrades the object detection performance
in general. Yet, this is not the case for our CSIRO dataset since the COTS
are not densely-packed and overlapping, as discussed in Section 3.1.

In this thesis, we employ the Non-Max Suppression algorithm as the main
bounding box aggregation method with an IoU threshold of 0.45 for valida-
tion during training, and with 0.6 for the evaluation of model performance on
testing data. This threshold defines the minimum IoU value to suppress the
bounding box predictions, keeping only the most reliable predictions without
any duplication. When being compared to the predicted frame with the high-
est confidence score, among the remaining predictions, some will be removed
when they individually exceed the overlapping area ratio. The algorithm is
described as follows:

Algorithm 3 Bounding Box Aggregration & NMS for a single class

Input:
Bp = {(bpi , si)}Ni=1 | N predicted bounding boxes, confidence score si
c | Confidence threshold
ϵ | Bounding box aggregation IoU threshold

Output: Detection vector D

Require: 0 ≤ c ≤ 1, 0 ≤ ϵ ≤ 1
1: function NonMaxSuppression(Bp, c, ϵ)
2: D ← ∅
3: xc← Bp > c
4: while xc ̸= ∅ do
5: m← argmax {s} ▷ confidence score s of all predicted BB in xc
6: D ← D ∪ (bpm, sm)
7: xc← xc− (bpm, sm)
8:

9: for bpi ∈ xc do
10: if iou(bpm, b

p
i ) ≥ ϵ then

11: xc← xc− (bpi , si)

12: return D
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Experiments and Results

In this chapter, we thoroughly describe important implementation details
regarding different facets of the training and validation process. Our goal
is to provide a comprehensive yet concise overview of the implementation
pipeline. Specifically, the parameter values mentioned in the following sec-
tions are tested and analyzed comprehensively before being used in the ma-
jority of trials. Only the most relevant details from the experimental spaces
are provided to keep the focus on prominent aspects. After hundreds of trials,
we have achieved satisfying performances; hence conducting model inference
thereafter. We discuss this testing phase together with the outcomes in the
form of tables and figures to vividly illustrate the final model selection.

5.1 Training the Model

This section provides the most crucial implementation details of the training
and evaluation of our Crown-of-Thorns Starfish detector. Regarding the
infrastructure, our solution is based on the YOLOv5 framework developed
purely in Python by Glenn Jocher. Besides, we use Google Colab Pro+ as
the main service for our computational hardware. For most experiments,
we have Nvidia Tesla P100-PCIE-16GB, 16281MiB, 8 CPUs core, and 51.0
GB of RAM. Such hardware and software environments are sufficient for our
training purposes, which ensures the rapid and frequent experimentation.
We use Weights & Biases as the centralized experiment management and
tracking which can log trained parameters as well as the results of key metrics.

Before considering any changes to the base model YOLOv5, we first train
with the default settings to establish a performance baseline and spot areas
for improvement. After each epoch, we run inference on a fixed and separate
validation dataset, derived from the original CSIRO COTS Dataset by 12.3%.

67
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The average F2 score from different IoU thresholds (0.3 to 0.8, step size =
0.05) as our main evaluation metric is calculated in accordance with our
adapted MS-COCO based evaluation scheme, reviewed thoroughly in section
3.3. The validation F2 result is used to determine and save the best version
of the model. The training parameters are listed as follows:

• Epoch (one complete pass of the entire training data, engaged in online
preprocessing, augmentation, and shuffle). We initially trained for 50
epochs; however, the model encountered overfitting mostly after 20th

epochs. Therefore, we adjusted the number of epochs accordingly and
additionally enabled early stopping when the validation performance
was no longer improved. The epoch with the highest average F2 score
will be considered the best epoch whose weights are ultimately saved as
the outcome of the training.

• Batch size. The model was trained with a first batch size of 8, then
evolved to 16 and further. However, due to the computing resource
constraints, it was devastating to train a complicated model with a
larger batch. On that note, we chose the largest batch size that our
hardware allowed and it indeed yielded stable and high results after
the evaluation.

• Weights. We initialized the CNN backbone with weights pretrained on
the Objects365 dataset (briefly discuss in Transfer Learning section).
Specifically, this backbone is the best epoch from training YOLOv5m
on the Objects365 dataset and it is available in the YOLOv5 official
repository. Moreover, the CNN backbone weights were not frozen to en-
able adaptation to our custom dataset during training. In fact, we also
froze the backbone just for the sake of random experiment; however,
the model performance was significantly worse. As another alterna-
tive, we also trained the model from scratch given that the time and
resources were expensively consumed. As it happened, we initiated
training with different YOLOv5 frameworks, naming just the notable
ones, YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5l6 and YOLOv5x.

• Input image size. This controls the resizing operation for an im-
age. We first tried with the default image size of 640; however, the
performance was not as profound as high-resolution images. After sev-
eral experiments, the image size of 1280 indeed is the most suitable
alternative; yet longer run-time and highly resource-demanding.

• Hyperparameters. There are different types of parameters that con-
trol the whole learning process of the deep learning model. We use the
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default training settings of the underlying YOLOv5 framework with the
SGD optimizer, an initial learning rate of 0.01 as well as other opti-
mizer parameters such as momentum, warm-up epoch, weight decays,
etc. In particular, momentum replaces the gradient with an aggre-
gate of gradients in the gradient descent algorithm. Weight-decay is
a regularization technique which shrinks the weights during the back-
propagation process by adding a penalty term to the cost function of
the network. [35].

• NMS IoU threshold. For Non-Max Suppression, we set the BBA
IoU threshold ϵ = 0.45 for all candidate models coupled with confidence
score threshold c = 0.001. This choice of the confidence score is for the
valid mAP values.

• Anchor Box. In YOLOv5, anchor boxes automatically learn from the
custom training dataset [50]. Simply put, AutoAnchor algorithm runs
anchor verification and generation before the training starts. Apart
from our dataset, it will determine whether the original anchor is a good
fit or if an adjustment is required based on the input image size. Indeed,
the four Feature Pyramid Network (FPN) layers from the YOLOv5
detector (from P3 to P6) are individually associated with a specific
anchor box. Each pyramid level is responsible for detecting the objects
according to their model scales (s - small, m - medium, l - large, x -
xlarge).

Discussed briefly above, we want to provide a deeper understanding about
our experiments with different hyperparameters. As we’re mostly aware, hy-
perparameters are not trainable during the machine learning optimization
process, but they indeed tune this process to find the best model architec-
ture [36]. We first used the hyperparameters from the base model and then
tuned them to have some benchmark on the training performance. Then
we ran a finite grid search (due to our limitation in computing resources)
over a hyperparameter space to automatically find the best ones. Besides
optimization hyperparameters as listed above, we experimented with dif-
ferent settings for data augmentation regarding geometric, color-space, and
advanced transformations. By all means, finding a suitable set of hyperpa-
rameters is considerably far from trivial. Therefore, we only presented the
most notable hyperparameters which were considered significant contributors
to the overall performance, not a dedicated list of all experiments.
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5.2 Experimental Results

In this section, we summarize key findings from our experimental results and
provide the rationales behind the best model choice. One should notice that
our experiments are incremental in nature where the subsequent trial is built
upon the previous training outcomes. We also tune the default parameters
to make sure that the chosen architecture would be superior to the rest. We
run many random experiments to search for new ideas; however, only the
most relevant observations are presented in the findings. Undoubtedly, our
goal is to provide insights into the most essential properties of our optimal
model rather than being redundant. Besides, the allocation of GPU differs
from time to time; thus we can’t provide an accurate speed comparison. We
endeavor to present the outcomes in a logical manner rather than in the
chronological order of the experiments. The performances are selectively
provided in Table 5.1

We applied transfer learning to initiate the training model with pretrained
weights directly from the YOLOv5m Objects365 and the results were pro-
found. The training duration is just 1/3 when being compared to training
from scratch run time, under the same settings of hyperparameters. Addi-
tionally, the computational resources allowed to train with a larger batch size
(the maximum of 9 when we used auto-batch)1 with the former technique
than the latter of 5. For the sake of experiment, we locked the weights of
YOLOv5m Objects365’s backbone (12 layers) and not surprisingly, the re-
sults inclined us to favor this attempt. The results were much lower than in
other experiments while the objectness loss was approximately three times
higher. Hence, this implies that some domain adaptation is absolutely nec-
essary when training a custom dataset.

Training from scratch is our alternative method to compare with the pre-
trained weights initialization. We started with the simplest model YOLOv5s,
especially YOLOv5s6 (with an additional large object output layer P6). With
this architecture, we gained a fairly average result which was considered a per-
formance baseline. YOLOv5l6 was chosen since it showed the best alignment
with our object detection problem despite the long training hours. There
was a harmonic balance between precision and recall achieved by YOLOv5l6
model. Not stopping there, we also tried the most complicated architecture
- YOLOv5x. As introduced before, YOLOv5x is an extended model of the
YOLOv5 series. It requires substantial computing resources (CUDA mem-
ory) as it has more parameters. During the experimental phase, YOLOv5x
shows a poorer performance than YOLOv5l and the calculation speed is

1The maximum that could fit into current GPU memory
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Validation set results (%)
Experiment Precision Recall F2

Default settings to set performance baseline, image size = 640
(a) Objects365, pretrained 74.8 42.2 46.2
(b) Objects365, freeze backbone 30.9 38.3 36.5
(c) YOLOv5s, default 34.8 50.3 46.2
(d) YOLOv5s6, default 35.3 42.6 40.9
(e) YOLOv5m, default 44.9 46.8 46.4
(f) YOLOv5m6, default 40.2 46.6 45.1
(g) YOLOv5l, default 57.7 46.3 48.2
(h) YOLOv5l6, default 42.6 50.1 48.4
(i) YOLOv5x, default 62.2 41.5 44.5
The best tuned models, image size = 1280
(j) Objects365, pretrained, HSV 75.7 75.2 75.3
(k) Objects365, pretrained, no HSV 81.5 86.4 85.4
(l) YOLOv5l6, HSV 74 75.9 75.6
(m) YOLOv5l6, no HSV 81 85.3 84.4

Table 5.1: The experiments on different model architectures. (a) training ini-
tiated with pretrained weights from Objects365 YOLOv5m, default settings
(b) training initiated with pretrained weights from Objects365 YOLOv5m
with the frozen backbone of 12 layers, default settings. (c) to (i) training
from scratch with YOLOv5 models of different sizes: small, medium, large
and extended-large. (d), (f), (h) are YOLOv5 P6 models. (j) to (m) are
the best models with optimally tuned hyperparameters. (j) and (l) have Hue
Saturation Value transformation while (k) and (m) don’t. One should notice
that not all the experiments results are presented albeit our huge effort in
random experiments.

significantly slow. Unambiguously, this extended model does not meet the
expectation of accurate detection nor satisfy the lightweight pursuit of UUV.
All aspects considered, YOLOv5l6 is the most cost-effective implementation
yet bringing about outstanding outcomes.

The training is done with different image input sizes, starting from 640.
After all, we find out that the size of 1920 generates the best result without
compromising the whole computing resources. A higher resolution image
drastically improves the performance, which is totally explainable due to the
increased pixel information. As clarified in Section 3.1, 4,242 images are used
for training while the validation set contains 606 images. As the images are
extracted from the video so they belong to specific video sequences. By this,



CHAPTER 5. EXPERIMENTS AND RESULTS 72

the images in sequence are almost identical to a certain extent, depending on
the diver’s speed of moving. On that note, our split ensures that no training
sequence is leaked into the validation; hence a reliable evaluation of the
model performance. Besides, we consider the recommendation from YOLOv5
documentation of training with 0-10% background images to produce the best
results. Yet, 0% background works best in reality. For the testing dataset, we
combined the rest of 71 images in which COTS are presented and the other
50 images in the same video sequence but without any starfish (background
images/ negative instances).

Regarding the image augmentation, different combinations of techniques
have been tested and analyzed for the best outcomes. The geometric trans-
formations significantly improve the performance of our COTS detector. A
notable observation is that removing rotation of 45 degrees would lower re-
call by 7% while precision remained mostly unchanged. This is somewhat
considerable as we place a strong emphasis on the recall metrics. On the
other hand, some techniques in the color-space conversion are less preferable.
Brightness enhancement helps significantly while HSV is deemed detrimen-
tal. We decide to remove HSV transformations eventually. Regarding the
advanced techniques, mosaic has proven its superiority by strong empirical
evidence, the training without mosaic in similar settings degrades the model
performance (F2 score) by 5%. Undeniably, mosaic is really a compelling
property of the YOLOv5 algorithm.

5.3 Model Inference

We finally have the best models from the experimental spaces after iterative
experiments. Hence, the next step is to assess the models’ performance and
their generalization ability by running model inference on the testing dataset.
Indeed, we choose two models which have almost equivalent performance for
the testing phase. Additionally, we infer the model with different modes:
with/without Test Time Augmentation (TTA). According to YOLOv5 doc-
umentation from Ultralytics, TTA enhances mAP and Recall considerably
during testing and inference. In specific, TTA upscales the image size by 30%
coupled with horizontal flipping and the images are processed at three differ-
ent resolutions. The outputs are merged before the non-maximum suppres-
sion postprocessing stage [2]. Indeed, inference with TTA takes 2-3x more
times than normal evaluation. Due to the large amount of small starfish in
the dataset, our model may benefit from higher resolution image [50]. To
achieve the best inference results, we detect the COTS at 1280 resolution in
the same manner as in the training process.
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With TTA, results (%) Without TTA, results (%)
Experiment Precision Recall F2 Precision Recall F2

(k), c = 0.2 70.6 80 77.9 85.7 88.9 88.2
(k), c = 0.25 90.9 80 82 92.8 91.7 91.9
(m), c = 0.25 76.1 81.4 80.3 77.8 0.8 79.5
(m), c = 0.3 84.2 86.5 86 83.3 86.2 85.6

Table 5.2: Model inference results with/without Test Time Augmentation,
image size = 1280, NMS IoU threshold ϵ = 0.6, NMS confidence threshold c
for (k) and (m) - the best models depicted in Table 5.1.

As observed, no obvious overfitting patterns are visible in the table. The
best model obtains a relatively high precision as well as recall which implies
that the model can calibrate properly with the testing images. This result is
given in the condition of a confidence score c = 0.25. The low the confidence
score results in low precision since the model accepts more predictions as
positive instances, most of which contribute to false positives. Indeed, the
precision increases nearly 20% when the c changes from 0.2 to 0.25 in the
model (k) with TTA mode. To some extent, the precision metric is clearly
correlated with the confidence threshold. Although our goal is to crudely
predict as many COTS as possible, high precision is indispensable for model
reliability. Regarding TTA, it is obvious that the inference without augmen-
tation is preferable. In practice, we select c = 0.25 for the pretrained model
to highlight the precision of 92.8% while keeping a commendable recall of
91.7%. We provide the inference results for a single image and for a sequence
of images in Figure 5.1 and Figure 5.2 accordingly. Eventually, training with
pretrained weights from YOLOv5m Objects365 yields the best results. The
model generalizes well to our testing dataset and detect the object at speedy
rate (1.7ms NMS/ image).

video 2 7999.jpg Predicted video 2 7999.jpg

Figure 5.1: Model inference on a random test image video 2 7999.jpg
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Figure 5.2: Model inference on a video sequence. The upper image contains
the original images with their ground-truth labels. The lower image contains
the predictions (bounding boxes and confidence scores for the COTS).



Chapter 6

Evaluation

Given our experimental results, this chapter will provide deeper insights into
the evaluation of our starfish detector. This part is given as a self-reflection on
our dedicated effort (what has been done well) as well as improvements ideas
for future development. The evaluations are taken against different aspects
such as the CSIRO dataset, best practices when training YOLOv5 model
from official documentation, loss and evaluation schemes, etc. Thus, we can
derive potential enhancements regarding COTS detection task specifically,
or even marine organisms detection on the whole.

6.1 Model Evaluation

Our COTS detector has fulfilled its mission to a satisfying extent. The
selected model can recognize many of the Crown-of-Thorn Starfish in the
given underwater images and also localize them quite correctly. The results
from the testing dataset have proven its generality when “seeing” new images
for the first time. Although we place a strong emphasis on recall to make
sure that we miss the least amount of this seabed creature for mitigating the
outbreak possibility. Furthermore, we also attempt to ensure the accuracy
of the model by not compromising the precision too much.

Benchmarking the implementation documentation from Ultralytics - the
owner of this state-of-the-art YOLOv5 algorithm, we are moderately confi-
dent with our model reliability. As suggested, there should be more than
1, 500 images per class with an approximate 10, 000 labeled objects. Our
dataset indeed contains 4, 919 detected COTS images with 11, 898 annotated
instances. Variation in the images is utterly vital for achieving representa-
tive ability. The CSIRO dataset meets this requirement since the underwater
videos are captured from different watery conditions at different times of the
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day, under various light exposures, and through diverse camera angles, etc.
As discussed in Chapter 3, this dataset underwent an AI-assisted annota-
tion and passed a rigorous quality assurance test before being published.
Therefore, label consistency is somehow ensured in the same manner as la-
bel accuracy. Simply put, no positive instances should miss the labels or be
enclosed by loose bounding boxes.

Regarding the selection of key hyperparameters, at first, we tried with
a large batch size (e.g. 20); however, this number was infeasible when we
trained a more complicated architecture such as YOLOv5l6 and with high-
resolution images. For this reason, we chose the largest batch size that
our hardware would allow for (9 is the maximum for the pretrained and
5 for YOLOv5l6, the input image size is 1280). We acknowledged that a
small batch size might produce poor batch norm statistics. Yet, the train-
ing and evaluation results have demonstrated persuasive evidences of stable
performances and successful generality. Introducing augmentation on the fly
during training also mitigates the risk of overfitting. We observed the in-
fluences of different augmentation techniques on model performance either
separately or in combination. Through these findings, the hyperparame-
ters were evolved accordingly to justify their inclusions in the augmentation
strategy. All things considered, we have obtained desirable results against
our initial expectations for this task.

Nevertheless, the underwater images are in sequence, and each image
almost replicates its previous frame, the use of mosaic augmentation with
the probability of 1 enhances the overall performance substantially. That
is, every image is unique since it is a random and centered crop from a
combination of four images. Therefore, the same image never appears twice.
This compelling characteristic of mosaic indeed alleviates the pain of data
shortage and duplication. In addition, transfer learning from YOLOv5m on
the Objects365 dataset is truly a critical cornerstone of our implementation.
The pretrained-weight initialization does not only compensate for our small
dataset but also enables a cost-effective implementation. The training and
evaluation time in total is just about one-third, compared to the run time of
training from scratch. Moreover, less computing resources are required, hence
the pretrained model allows training with the larger batch size. Without
freezing the model’s backbone, this model learns the data representations
efficiently and performs the best detection so far.
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6.2 Discussion

At this point, we have gained certain insightful observations and findings
from our implementations. By this, we recognize different areas for further
improvements. These aspects belong to either outside of our research scope
or limitations in the implementations.

With regards to image augmentation, there are other useful techniques
that can be integrated directly through the Albumtations library. However,
we only applied the most frequently used approaches referenced from some
existing works. With the limited availability of computing resources, we only
performed simple tuning for our predefined data augmentation scheme. As
stated before, the underwater environment is truly special in the sense of
blue/green color due to light absorption. We have experimented with dif-
ferent color-space transformations to rectify the underwater images; however
they surprisingly worsen the performance. Apart from gamma correction, we
need further analysis on the color correction to somehow boost the overall
model performance. To that end, color correction for underwater images
and a thorough augmentation strategy on the whole for this specific task are
among potential development direction.

Finding an external dataset is another potential alternative; however,
it requires a considerable amount of work. Synchronizing many sources of
images is far from trivial from both technical and theoretical perspectives.
Indeed, we fail to discover any similar dataset but we believe that more qual-
ified datasets will be published soon in the urgent of COTS surveillance. Due
to such uniqueness, the CSIRO COTS Dataset motivates us to utilize it to
the fullest. From a data-centric point of view, there exist various approaches
to process this dataset which open boundless development possibilities.

Implementation with pretrained weights can also be experimented further
by other benchmark datasets. In our case, Objects365 has the most similarity
with our custom dataset; therefore, being chosen for the trial. Researching
or implementing other alternatives is not our main priority; hence out of
scope. Regarding evaluation metrics, we choose F2 score as the main criteria
for model evaluation and selection as recall is more essential for our COTS
detector. However, in native YOLOv5, widely used average precision (AP)
is the evaluation choice. The fitness of the model during the training and
evaluation phase is defined by mAP@0.51 and mAP0.5-0.952 with the ratio
of 0.1 and 0.9 accordingly. Thus, using this evaluation scheme can be a
worthwhile endeavor.

1Average mAP at IoU threshold 0.5
2Average mAP over different IoU thresholds, from 0.5 to 0.95, step 0.05
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In our research, we don’t use Focal Loss for loss computation. Specifi-
cally, Focal loss is a variant of cross-entropy loss that addresses the extreme
imbalance between foreground and background classes which may partially
exist in our COTS detection problem. One-stage object detectors in general
evaluate approximately 104−105 candidate locations per image; only a few of
which contain the class. By this, easily classified background examples incur
a non-trivial loss which overwhelms the infrequent observations and domi-
nates the gradient [31, 36]. Focal loss down-weighs easy examples by adding
a modulating factor to the conventional cross-entropy loss, hence focusing the
model on hard negatives. Much severe imbalance happens in the case of tiny
objects and large images. From our perspectives, such is not our scenario;
hence not within our consideration. To summarize, we only recommend the
most relevant and straight-forward directions for further improvements. Un-
der our assumption, this list of improvement ideas is not conclusive yet and
there are many other possibilities yet to be discussed.



Chapter 7

Conclusions

In this thesis, we developed a modern detector based on deep learning in
COTS surveillance for maintaining the biological diversity of the Great Bar-
rier Reef. We have tackled different challenges presented in the CSIRO COTS
dataset, including small object size, low visibility due to the starfish’s cam-
ouflage ability, varying coral habitat, lighting, sea depth, and variations in
the camera perspective, to name just a few. These aspects truly simulate
the real-world scenario in underwater object detection tasks. Yet, our COTS
detector is able to extract object representations directly from the underwa-
ter images, and it remains robust to the high intra-class variation presented
in the given dataset. Furthermore, images in video sequences are diversified
through mosaic augmentation techniques during processing. Hence more use-
ful and relevant information about the starfish can be extracted. Since this
dataset was released recently, there have not been any published papers yet.
It is hard for us to benchmark our performance and evaluate the superiority
of our model. However, we believe that our work contributes significantly to
this area of research and sets a milestone for using deep learning to detect
this seabed creature.

On the whole, the model performance is not the only criteria to rank our
effort but other outstanding facets. The author has conducted an intensive
literature review in addition to a comprehensive picture of the problem and
its major causes. Thereafter, the problem is framed in a decent manner that
aligned with the goal of the project. By this, a particular evaluation scheme
is defined to ensure fairness and credibility of model assessment. This in-
deed has been ignored in many research works, albeit its significance. The
lack of proper evaluation definition leaves room for ambiguous results. Re-
garding the implementations, we did not experiment with all possibilities;
however, we attempt to cover most of the essential aspects such as transfer
learning, rich data augmentation, hyperparameters tuning, model calibra-
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tion, etc. Yet, our effort is by no means conclusive. That is, we provide a
foundation work for further developments built upon. Real-world applicabil-
ity is necessary, which is outside this academic exercise.

In closing, our model has obtained a satisfying performance. It is able
to generate an automatic, fast, and reliable COTS detection. Indeed, the
accuracy and speed need improving further to ensure an adequate quality
for being embedded into underwater object devices. Furthermore, the gen-
eralization ability of our COTS detector should be further verified against
different conditions of the undersea environment. This is among our recom-
mendations for future research direction. Considering the usability of our
model, it is likely to suit other applications and problems in the same do-
main such as detecting other marine organisms. Looking forward, more fine-
grained vision-based detectors with novel algorithms are expected to emerge
in the near future.
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