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Trusted execution environments (TEEs) have gained significant traction over
the last few years. They allow mutually distrusting systems to entrust each
other with data and computation by running applications in strongly isolated
containers called enclaves. Different TEEs can run different versions of an en-
clave platform and their realization depends on the underlying hardware. As
enclaves migrate across many different TEEs, their integrity can be compro-
mised. By tracking the provenance of enclaves, TEEs can assess their trust-
worthiness based on their migration history. However, this requires that the
provenance data itself also be trustworthy.

In this work, we leverage the strong isolation guarantees and attestation ca-
pability of TEEs to build QUICKPROV, a framework for fast, trustworthy
data provenance for enclaves in heterogeneous distributed systems. We first
show how we achieve trustworthy data provenance without using blockchains
and consensus algorithms, and by using TEE capabilities. We then build a
TrustZone-assisted enclave platform to support our provenance framework.
Finally, we develop a proof-of-concept (PoC) implementation for QUICKPROV
that is minimally intrusive and is tamper-resistant even in the presence of some
compromised TEEs.
Keywords: remote attestation, provenance, trusted execution environ-
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Abbreviations and Acronyms

ACL access control list
API application programming interface
CSP cloud service provider
CA certificate authority
OEM original equipment manufacturer
OS operating system
WASM WebAssembly
WASI WebAssembly System Interface
WASMI WebAssembly Interpreter
TCB trusted computing base
HUK hardware unique key
SGX Secure Guard Extensions
GP Global Platform
REE rich execution environment
TEE trusted execution environment
TA trusted application
WTA WebAssembly trusted application
EA Enhanced Authorization
ROT root of trust
RPMB replay-protected memory block
BOF beginning of feed
EOF end of feed
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Chapter 1

Introduction

The widespread availability of cloud and mobile edge computing (MEC)
has drastically changed the way we think of computation by progressively
moving data ownership and processing away from our personal devices.
This has given rise to a whole new array of security issues that adver-
saries constantly try to exploit to break the confidentiality, integrity and
availability (CIA) of private data and computation. Therefore, there needs
to be a means for establishing trust, such that clients and service providers
can entrust each other with their data and be assured that co-located ma-
licious applications or a compromised operating system (OS) cannot hi-
jack it. Trusted execution environments (TEEs) enable this by providing
an isolated execution environment for confidential computation and data
storage.

TEEs have gained significant traction over the last few years and a
multitude of applications has been developed on top of them. One of these
is secure computation offloading, whereby a mobile device outsources its
workload to a TEE in a cloud or MEC provider, usually for performance
reasons. These workloads are executed in secure enclaves within TEEs and
can be migrated multiple times as a result of load balancing or scheduled
maintenance [25]. Although TEEs usually adopt a general protection pro-
file [21], distributed systems are heterogeneous by nature, meaning that
TEEs can exist in different realizations, depending on the underlying plat-
form hardware. Even the same TEE technology (e.g., TrustZone) can have
different implementations, depending on the manufacturer, and run dif-
ferent OSs.

As enclaves migrate across many different—and, possibly, less secure—
TEEs, their integrity will depend on their entire migration history. This
sequence of enclave migrations, called a chain of custody [67], along with
all the transformations on its data, constitutes its provenance. The prove-
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CHAPTER 1. INTRODUCTION 8

nance of data provides crucial information for evaluating the quality of
data and ascertaining its reliability [31]. It also enables TEEs to assess the
trustworthiness of enclaves and their data based on their migration his-
tory. However, this requires that the provenance data itself also be trust-
worthy, as insecure provenance can often be more harmful than having no
provenance at all [67].

For data provenance to be trustworthy, it needs to be collected and
stored securely, and there needs to be a means to convince interested par-
ties of its reliability. We can leverage the strong isolation guarantees and
trusted storage capability of TEEs to collect and store provenance data,
and use their remote attestation capability to certify its trustworthiness.
Attestation allows for establishing trust in the provenance data without
relying on slow, expensive consensus algorithms. In this work, we intro-
duce QUICKPROV, a framework for fast, trustworthy data provenance for
enclaves in heterogeneous distributed systems.

1.1 Motivation

State-of-the-art solutions for trustworthy data provenance, such as [28,
33], use TEEs for secure provenance collection and blockchains to keep
a highly-available, tamper-evident log of the provenance metadata. This
log is sometimes backed by an off-chain storage medium as in [64]. Block-
chains typically rely on expensive consensus algorithms to attain unan-
imous agreement on the state of the ledger. To achieve consensus, per-
missioned blockchains like Hyperledger Fabric [5] rely on Byzantine fault
tolerance (BFT) algorithms such as PBFT [12], Tendermint [9] and Stream-
let [14]. These algorithms guarantee low-latency, energy-efficient, deter-
ministic finality of transactions, but suffer from scalability issues [4]. In
public blockchains, Nakamoto consensus [47] is typically employed in-
stead and coupled with proof of work (PoW), which mitigates Sybil [20]
attacks. The probabilistic nature of PoW, however, entails a high confir-
mation latency, which is impractical for real-time applications.

None of the previous work has tackled the challenge of provenance
data for real-time applications like secure computation offloading, where
migration time can be critical depending on the application. Consider an
enclave that is migrated from a mobile device’s TEE to a remote TEE be-
cause of battery or CPU limitations [42]. The two TEEs are likely to rely on
different platform hardware and, possibly, different versions of the same
enclave platform. In this situation, the destination TEE may need to verify
the enclave’s provenance to assess its integrity before resuming execution.
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Conversely, the TEE on the mobile device will want to verify the prove-
nance of its enclave and its data before trusting it again. Depending on the
consensus mechanism, TEEs may have to wait seconds—if not minutes—
for all provenance data to be confirmed.

Another interesting application of data provenance for enclaves is in
Function-as-a-Service (FaaS), where a function provider publishes a func-
tion on a cloud service provider (CSP) that can be remotely invoked by
clients. These functions may operate on confidential data that the client
supplies on invocation and that they do not want divulged. Data prove-
nance would enable FaaS clients to audit the IO operations that the in-
voked function has performed and verify that it has only written data to
private objects that can only be accessed by the function itself. In essence,
provenance would enable clients to verify the security of TEE-assisted pri-
vacy preserving computation, an example of which is malware detection
services, where snapshots of the applications installed in clients’ devices
could be used by malicious parties for profiling [60].

1.2 Contribution

In this work, we leverage the strong security and isolation guarantees of
TEEs to build a framework for fast and trustworthy data provenance for
secure enclaves. We summarize our contributions as follows:

• We built a TrustZone-assisted enclave platform for portable WebAssem-
bly applications

• We developed a proof-of-concept (PoC) for QUICKPROV, a TEE-assisted
framework for trustworthy data provenance that is tamper-resistant
to compromised TEEs

• We showed how we achieved trustworthy data provenance without
using blockchains and consensus algorithms and by simply using
TEE guarantees of strong isolation, trusted storage and attestability



Chapter 2

Background

In this chapter, we present essential preliminary knowledge that will help
the reader get a better grasp of the concepts described in the next few
chapters. We first give an overview of TEEs (Section 2.1) and how they
can enable confidential computing in untrusted environments. We then
introduce WebAssembly as a technology that can be leveraged to build
more secure, platform-agnostic TEEs (Section 2.2). Finally, we conclude
this chapter by presenting provenance (Section 2.3), some of its associated
challenges, and existing applications.

2.1 Trusted Execution Environments

A trusted execution environment (TEE) is a computation environment
that on which relying parties can place a higher degree of trust than other
software components on the same device [26]. TEEs leverage the underly-
ing platform hardware to guarantee strong security and isolation guaran-
tees that enable them to be dependable even in the presence of malicious
software or a compromised OS in the untrusted side of the system, which
we hereafter refer to as the rich execution environment (REE). This quality
makes them more amenable to applications that require treating or storing
security sensitive information such as cryptographic material, biometrics
and digital wallet data.

In essence, a device is said to support a TEE if it is capable of the fol-
lowing [26]:

• Isolation: The device provides an execution environment for trusted
code that is strongly isolated from the REE. Software in the REE can-
not tamper with the execution of code running in the TEE or access
its memory

10



CHAPTER 2. BACKGROUND 11

• Trusted storage: The device provides trusted code with the ability of
persisting data that is guaranteed confidentiality and integrity, even
on an untrusted storage medium shared with the REE

• Attestation: The device provides a means for convincing a relying
party of the trustworthiness and the characteristics of its isolated ex-
ecution environment

TEEs exist in different realizations, which depend on where and how
the TEE components are allocated in the underlying platform hardware.
Figure 2.1 shows that TEEs can be completely implemented by external
security co-processors or provided by a combination of CPU extensions
and system-on-a-chip (SoC) components. The latter are typically referred
to as processor secure environments [26].
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Figure 2.1: Possible TEE realizations. Adapted from [21, p. 20].
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2.1.1 Processor secure environments

Processor secure environments are a specific realization of TEEs that re-
quire extensions to the CPU instruction set architecture (ISA) and, depend-
ing on the technology and implementation of its specification, to co-located
on-SoC components such as memory controllers. Two of the most widely
deployed technologies for processor secure environments are Intel Secure
Guard Extensions (SGX) and ARM TrustZone.

2.1.1.0.1 Intel SGX Intel introduced SGX as an ISA extension to the
Skylake family of CPUs in 2015. New instructions have been introduced to
secure code execution within hardware-enforced enclaves. These enclaves
are protected from the rest of the system, whose security and integrity can
be jeopardized by malicious applications and compromised OSs. The CPU
reserves a portion of memory, called Processor Reserved Memory (PRM),
for SGX functionality, and protects it from memory accesses that originate
from outside enclaves [16]. This includes memory accesses from the REE
OS kernel, hypervisor and System Management Mode (SMM), and direct
memory access (DMA) from untrusted peripherals [16]. The REE software
is tasked with allocating 4 KB pages to each enclave from a subset of the
PRM, referred to as the Enclave Page Cache (EPC). On the other hand, the
CPU ensures that each EPC page belongs to exactly one enclave by track-
ing their state in the Enclave Page Cache Metadata (EPMC) [16]. On REE
software’s demand, the CPU (1) loads trusted code and its data in the al-
located enclave, then (2) marks it as initialized. During initialization, the
contents of the enclave are cryptographically hashed to produce a MREN-
CLAVE value [26]. This hash, along with the signature of the code devel-
oper (MRSIGNATURE), form the basis of the SGX attestation mechanism,
which can be leveraged to convince relying parties that they are commu-
nicating with the expected application, and that the application itself is
running in an SGX enclave. A special ecall instruction allows for calling
a specific enclave function [26] after switching to Ring 0. Conversely, an
ocall instruction allows for an enclave calling a function in the context of
a client application.

2.1.1.0.2 ARM TrustZone ARM first introduced the TrustZone technol-
ogy for Cortex-A processors in 2004, and, in, 2016, adapted it to Cortex-
M to cater for the limitations and requirements of specialized, resource-
constrained devices. TrustZone for Cortex-A introduces two new protec-
tion domains for code and memory referred to as secure and non-secure
world. The world in which the CPU is running is determined by an extra
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33rd non-secure (NS) bit [53]. Memory transactions propagate this bit along
internal and external buses to indicate the world they originate from and
to restrict unprivileged code and untrusted peripherals from accessing
protected data [53]. This is achieved by the TrustZone Address Space Con-
troller (TZASC) and TrustZone Memory Adapter (TZMA) components,
which target on- and off-SoC memories respectively [26]. Finally, a spe-
cial Secure Monitor Call (SMC) allows for trapping into the secure monitor
(see Figure 2.2), which performs the necessary context switching opera-
tions (e.g., swapping stacks, registers, etc.) before switching to the secure
world. Unlike SGX, where enclaves are hardware-defined entities, en-
claves are realized logically by trusted software, i.e., an enclave platform,
running in the secure world. This software needs to ensure that these logi-
cal enclaves cannot interfere with each other as well as with TEE and REE
code and data.
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2.1.2 Trusted Platform Module

Introduced by the TCG, a Trusted Platform Module (TPM) is an on-SoC
tamper-resistant, embedded cryptographic co-processor. It provides a TEE
for reporting and attesting to the integrity of system components—such
as the bootloader, kernel image, user applications—and storing security
or privacy sensitive data that is guaranteed confidentiality and integrity.
This data can also be sealed, i.e., bound to the platform where it is stored.
Much of TPM functionality is enabled by a set of 16 protected Platform
Configuration Registers (PCRs) that can be used as accumulators (i.e., the
value they contain can only be extended, not replaced) for measurements.
The Integrity Measurement Architecture (IMA) proposed by IBM, for in-
stance, uses PCRs extensively to measure and store the hash of binaries
before they are executed [3].

Unlike SGX and TrustZone, TPM does not provide a native mecha-
nism for isolated execution [53]. Therefore, it is often only used as a hard-
ware root of trust (ROT) for storage and reporting.

2.1.2.1 Enhanced Authorization

Enhanced Authorization (EA) is an authorization mechanism introduced
in TPM 2.0 that allows regular users or administrators to mandate that
certain tests or actions be performed before an operation on an entity (e.g.,
a secret key) can be executed [62]. This is done by defining an authoriza-
tion policy on a per-entity basis, that captures all the restrictions on the
usage, and from which a digest value authPolicy is derived and later used
to grant (or deny) access to an entity as part of an authorization session.
During this session, a policyDigest value (policyDigest0 = 0 . . . 0 initially)
is extended with each fulfilled assertion as follows:

policyDigest′ = H(policyDigest ∥ Assert)

where Assert is obtained by concatenating the assertion’s command
code and its argument list. For a simple policy with two assertions, the
formula expands to:

policyDigest′ = H(H(policyDigest ∥ H(0 . . . 0,Assert0)) ∥ Assert1)

A special case is the TPM2 PolicyOR [62] assertion used for policy dis-
junction, where the policyDigest is reset, and then extended with the entire
original list of valid digests as follows:

policyDigest′ = H(0 . . . 0 ∥ TPM2 CC PolicyOR ∥ DigestList)
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The resulting policyDigest is independent of which of the valid digests was
used to fulfill the assertion.

The TPM2 PolicyAuthorize [62] assertion is another special case. It is the
only command that can replace a policyDigest, although indirectly, instead
of extending it. More specifically, TPM2 PolicyAuthorize allows an entity,
identified by its public key Kpub, to accept a policyDigest provided that it is
authorized by the entity’s private key [62]. If that is indeed the case, the
policyDigest is updated (not extended) as follows:

policyDigest′ = H(0 . . . 0 ∥ TPM2 CC PolicyAuthorize ∥ H(Kpub) ∥ . . . )

At the end of the session, if authPolicy = policyDigest, access to the re-
quested entity is granted. As with TPM2 PolicyOR, the final policyDigest
is independent of the the accepted policyDigest, since it is always replaced
with a hash of the public key of the authorized entity. This effectively
solves a long-standing problem referred to as PCR brittleness, which typ-
ically arises when data is sealed against PCRs so that it can only be de-
crypted if the PCR values are correct [62]. The brittleness comes from the
fact that data is strictly bound to PCR values, which can change, for exam-
ple, in case of a BIOS update [62].

In essence, EA seeks to provide a unified way of authorizing access
to entities by means of digest authValues that can encapsulate relatively
complex authorization policies while incurring storage overhead as little
as the digest size. In fact, EA makes it even possible to express policies
whose satisfiability is contingent upon certain dynamic values, e.g., the
current hash of a secure object.

EA associates policies with entities on their creation, which solves some
of the shortcomings of more traditional authorization methods. In fact, EA
allows for a multitude of authentication methods to be supported, which
includes biometrics like fingerprints [62, p. 128]. Multiple such methods
can also be chained to achieve multi-factor authentication, whereby each
of the authentication constraints included in a policy is resolved in an au-
thorization session as a deferred check.

2.1.3 Remote attestation

The advent of cloud and grid computing, as well as the unrelenting large-
scale expansion of the “internet of things“ (IoT), have gradually supplanted
the traditional model of local computation and storage in favor of dis-
tributed computing and remote storage. This change has, however, en-
gendered a whole new class of possible misbehaviors that computer sys-
tems can engage in, which all come down to one central issue: software
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can be tampered with and there is no silver bullet mitigation to software
attacks. This motivated the Trusted Computing Group (TCG) to introduce
hardware-based mechanisms such as TPM to enable for the integrity of
software to be reliably measured and attested to a relying party. This at-
testation is signed by the TPM with a TPM-resident attestation identity
key (AIK). The resulting attestation certificate typically contains the hash
of a target software and can be trusted by other entities by virtue of its
signature.

More specifically, remote attestation is a mechanism whereby a prover
conveys claims about the properties of a target system by providing evi-
dence to an appraiser over a network [15]. The appraiser is a party that
makes decision about other parties, whereas a target is a “party about
which an appraiser needs to make such a decision“ [15]. The prover and
the target system can co-exist in the same system. Analogously, the ap-
praiser and the party that relies on their verification results, can also be
the same entity. Multiple models for attestation exist that involve different
interaction patterns as well as allocation of roles, and which model is more
appropriate largely depends on the specific application.

2.2 WebAssembly

WebAssembly (WASM) is a portable instruction and executable format for
a generic stack-based virtual machine (VM). Its original stated objective is
to enable resource-intensive applications, which heavily depend on either
CPU or GPU acceleration, to run at near-native speed on web browsers.
Numerous browser engines, including V8 (Chrome/Chromium), Spider-
Monkey (Firefox) and WebKit (Safari), now include support for just-in-
time (JIT) compilation and execution of WASM code. Unlike similar proje-
cts, most notably asm.js, WASM can be targeted by a wide variety of high-
level programming languages besides JavaScript. In fact, any language
supported by the LLVM toolchain (e.g., C, C++, Rust) with a WASM target
can be compiled to WASM. Rust is an extremely popular choice because of
its memory-, type- and thread-safety, which, combined with the inherent
sandboxed nature of WASM, renders WASM an extremely attractive op-
tion for the realization of application sandboxes outside of web browsers.
In light of this, several standalone JIT compilers and interpreters have
been developed for WASM, including wasmtime [11], wasmer [66] and
WebAssembly Interpreter (WASMI) [52].

WASM defines an instruction format for a generic VM, without spec-
ifying which “operating system“ runs within the VM. This implies that,
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at least in the first few years after its inception, there was no standard-
ized way for WASM applications to access resources and functionality of
the underlying OS or web browser, other than VM-specific host functions.
This limitation has elicited a decisive change of direction in terms of stan-
dardizing a system interface for WASM. This is also attributable to the
growing application of WASM for sandboxing, evidenced by noteworthy
projects like substrate [59], which uses a WASM VM for smart contract ex-
ecution. A concerted effort by several stakeholders, especially the W3C,
has resulted in the proposal of WebAssembly System Interface (WASI),
which endows sandboxed WASM applications with a capability-based,
POSIX-like interface to the underlying OS functionality.

2.3 Data provenance

The trustworthiness of data largely depends on the quality and complete-
ness of information that pertains to it, as well as on the verifiability of its
ownership [67]. Data provenance effectively serves the trustworthiness of
data. In essence, provenance refers to metadata that summarizes the his-
tory of data [67]. More specifically, it describes how, when, and where a
specific piece of data was created, utilized, transformed, and transferred
to different owners over its entire chain of custody.

Provenance has numerous applications, ranging from big data plat-
forms to security and healthcare. The provenance data can be used to
estimate data quality, identify errors in data generation and replicate re-
sults [31]. By inspecting the entire chain of custody and the transforma-
tions (i.e., the provenance chain) that some data object has undergone since
its creation, a relying party can assess its quality, verify that no violations
have been committed with respect to its access control policy and, there-
fore, determine whether or not it is worthy of trust. However, this pro-
cess requires that the provenance data also be trustworthy, as incomplete
or altered provenance can mislead the auditor into trusting compromised
data [67]. For provenance to be trustworthy, it needs to be collected and
stored in such a way as to guarantee its confidentiality, privacy of the in-
volved entities, integrity, availability, unforgeability, non-repudiation and
chronological order (Zafar et al. [67]).

Besides the security requirements, provenance collection and storage
entail different challenges, ranging from its intrusiveness with respect to
the operating environment, performance and storage overhead, to inter-
operability. Interoperability is crucial because different provenance audi-
tors may need to query and analyze the provenance data. An important
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step towards interoperability between provenance systems can be traced
back to 2006 with the introduction of the Open Provenance Model (OPM),
an interoperable provenance model whose stated object is to allow for
provenance data to be exchanged between different systems ”by means
of a compatibility layer based on a shared provenance model” [45].



Chapter 3

Problem statement

As enclaves migrate through many different—and possibly vulnerable an-
d/or compromised—TEEs (see Figure 3.1), their trustworthiness can be
compromised. This entails that the integrity of an enclave and its data de-
pends on its entire migration history, i.e., its provenance. The objective
of this work is to design and build a fast, trustworthy data provenance
framework for enclaves in heterogeneous distributed systems, which are
typically comprised of nodes with different hardware and software con-
figurations. The problem this work aims to tackle is two-pronged. First,
we want to solve the issue of secure provenance collection in untrusted
systems, where co-located malicious applications or compromised OSs
can tamper with the collection process. Second, we want to answer the
question of whether the collected provenance data can be stored in a trust-
worthy fashion without resorting to slow and expensive consensus algo-
rithms. The answer to this last question will enable us to build a prove-
nance system that is faster, cheaper to operate, and more apt for real-time
applications, where the latency of enclave migration is critical and prove-
nance data may be required in this step.

19
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4. Can I trust this 
enclave again?

1. Migrate

2. Migrate
3. Migrate

App
App

App

?

Figure 3.1: The client TEE cannot trust the enclave without knowing its
entire migration history.

3.1 System model

We envision a QUICKPROV-enabled node within a distributed system (see
Figure 3.2) as being composed of the following components:

• A TEE that provides an isolated execution environment for the exe-
cution of trusted applications (TAs). Depending on the realization,
the TEE may or may not need (e.g., SGX) a trusted OS. TAs run in-
side enclaves provided by the TEE’s own TA execution environment
and can communicate with each other through an appropriate inter-
process communication (IPC) mechanism. The TAs can also interface
with the outer world through a TEE IPC agent

• A REE on top of which an untrusted OS hosts client applications
that can communicate with TAs through a REE IPC agent

• Platform hardware that provides different ROTs to enable TEE func-
tionality. The platform provides, at a minimum, a ROT for storage,
which allows a TEE to store data on an untrusted storage medium
shared with the REE
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1. Migrate

2. Check provenance

Provenance chain

3. Migrate5. Migrate

4. Check Provenance

6. Check provenance

Figure 3.2: QUICKPROV system model. TEEs migrate enclaves among
each other along with their provenance chain(s). When a destination TEE
receives an enclave, it can check the provenance data to assess the en-
clave’s integrity.

3.2 Assumptions

The QUICKPROV system hinges on the following assumptions to enable
trustworthy provenance collection and storage:

• TEEs can be attested: TEE can convince relying parties of the trust-
worthiness of the software that runs within it, and of other compo-
nents in the chain of trust that the TEE may depend upon. These
other components may include a TPM, in which case the TPM itself
endorses the components that depend on it, or a harware ROT, i.e.,
a module that the TEE trusts and relies on to perform cryptographic
operations, that holds the TEE’s hardware unique key (HUK).

• TEEs provide trusted storage: TEEs provide a hardware ROT for
persisting data and cryptographic keys on an untrusted storage medium
while guaranteeing data confidentiality and integrity. Since not all
TEE can guarantee the freshness (i.e., replay protection or detec-
tion) of secure storage data, we also assume that the platform hard-
ware provides some means (e.g., replay-protected memory blocks
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(RPMBs), non-volatile monotonic counters) for ensuring data fresh-
ness. This is a realistic assumption, since most current flash storage
mediums come equipped with a RPMB partition [26]

3.3 Adversary model

We introduce two types of adversary than can compromise the QUICK-
PROV system and we model the threats that they can pose to the system
described in the previous section.

3.3.1 Network adversary

A network adversary is a malicious entity that has access to a communi-
cation channel between two nodes over a network. For this adversary, we
assume the Dolev-Yao [19] threat model, meaning that they can virtually
read, alter and forge all traffic between the two nodes. Furthermore, the
extent to which the adversary can mount a successful attack is only limited
by the strength of the cryptographic methods used to secure the channel.

3.3.2 Local adversary

A local adversary has access to a victim TEE and their objective is to com-
promise TEE functionality. This can either be an external adversary that
exists in the REE (see Figure 3.3), or an internal adversary that resides in
the TEE through, e.g., an authorized TA. Cerdeira et al. [13] provide an
extensive description of the prominent security vulnerabilities that affect
TrustZone-assisted TEEs, although many of those vulnerabilities can be
found in other TEE realizations and trusted OSs.
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Figure 3.3: REE and TEE adversaries in the local adversary model. In the
REE, the adversary can be a malicious client app or rootkit in the OS. In
the TEE, an adversary can be a TA.

REE adversary The REE adversary can:

• Clone the TEE, including its trusted storage [63]

• Impersonate an authorized client by replaying its communication
with a TA

• Impersonate an authorized TA to gain illegal access to TEE services
[63]

• Exploit micro-architectural side-channels (e.g., Meltdown [41], Spec-
tre [36]) to exfiltrate TEE private data or achieve arbitrary code exe-
cution

• Alter TEE behavior through a vulnerability (e.g., buffer overflow,
use-after-free) in the TEE management layer [63]
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TEE adversary The TEE adversary can:

• Exploit micro-architectural side-channels

• Alter the behavior of the TEE or other TAs by exploiting a vulnera-
bility (e.g., buffer overflow, use-after-free)

• Gain illegal access to trusted storage data

• Exploit weaknesses in the TEE’s cryptographic functionality

We consider micro-architectural side-channels to be outside the scope of
this work.

3.4 QUICKPROV requirements and goals

We subdivide this section for QUICKPROV into security requirements and
performance goals.

3.4.1 Security requirements

In order for the provenance to be trustworthy, the QUICKPROV system
needs to collect and store provenance data such that the following security
properties hold [67]:

PS-1 Confidentiality: The provenance data must not be readable by unau-
thorized entities since it may contain private information about the data it
describes.

PS-2 Integrity: The provenance data must be tamper-evident, such that
any alterations can be detected. This includes the corruption and trunca-
tion of provenance records.

PS-3 Unforgeability: Unauthorized parties cannot forge valid provenance
records by altering existing entries or adding new entries without being
detected.

PS-4 Non-repudiation: Authorized parties cannot add provenance records
and later deny their involvement.
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PS-5 Chronology: Provenance data must be chronologically ordered. Prove-
nance is of little use if the exact order of operations performed on data is
not preserved.

PS-6 Attestability: Provenance data must be collected and stored in such
a way that the authenticity of the process that performs the collection and
the security of the storage medium can be attested to.

In QUICKPROV, we do not consider availability, in the sense that prove-
nance data must be ”available at any time from anywhere” [67], as a nec-
essary security requirement. Instead, we assume a weaker notion of avail-
ability, which is subsumed under PS-2, whereby provenance data cannot
be truncated or deleted by unauthorized parties. Finally, privacy is out-
side the scope of this work.

3.4.2 Performance goals

A provenance system such as QUICKPROV should also aim to achieve cer-
tain performance goals [67] such that it does not disrupt or adversely affect
normal operation of its execution environment.

PP-1 Minimal intrusiveness: The provenance collection process should
not incur minimal performance overhead.

PP-2 Minimal storage overhead: The provenance data should not, ide-
ally, require a considerable amount of storage space.

PP-3 Responsiveness: The provenance data should be complete and re-
trievable with minimal latency when it is queried.
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Design

This chapter presents the design of the components that constitute the
QUICKPROV system. First, we present a secure enclave platform for TEEs
that can enable QUICKPROV functionality while fulfilling the security re-
quirements and performance goals formulated in Section 3.4. Hence, we
describe the QUICKPROV framework and how it leverages the underlying
enclave platform to achieve trustworthy data provenance collection and
storage.

4.1 Enclave platform

We design an platform for the execution of TAs in isolated enclaves that
can be written once and used everywhere, regardless of the underlying
platform hardware and TEE OS. This is a necessary step in building a
data provenance system that aims to target heterogeneous distributed sys-
tems. The portability is enabled by (i) a runtime that embeds a just-in-
time compiler or interpreter for TAs written in a portable binary format,
such as Java or WASM bytecode, and (ii) an abstraction layer through
which TAs can access the underlying TEE functionalities, such as enclave-
specific data and remote attestation, in a platform-agnostic fashion. The
platform guarantees that enclaves are isolated from each other, the under-
lying runtime and the TEE. Enclave-level IPC and communication with
the outer world is only possible through a runtime-enclave interface that
exports a subset of the runtime functionalities that enclaves are allowed to
utilize. This effectively configures a two-way sandbox: REE and untrusted
peripherals cannot interfere with the TEE, and the TAs cannot escape the
enclaves they reside in except through operations explicitly permitted by
the runtime-enclave interface. The resulting architecture is illustrated in

26
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Figure 4.1: Architecture of the QUICKPROV enclave platform.

In the next few sections, we will describe enclave-specific data and
remote attestation functionality. These will enable enclave-specific data
and keys whose security can be remotely attested to, which is a funda-
mental building block for QUICKPROV’s provenance attestation mecha-
nism. Since we focus specifically on the collection, storage, and attestation
aspects of QUICKPROV, trusted channels, enclave migration, and secure
time providers (colored differently in Figure 4.1) are not considered—or
are only partly covered—in the design.
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4.1.1 Runtime- and enclave-specific data

We begin by describing the design of cryptographic and trusted storage
providers that will enable both TA functionality, as well as functionality
of the QUICKPROV system. These providers are part of the runtime and
serve as an abstraction layer on top of the TEE’s trusted core frameworks,
which are accessible through an internal core application programming
interface (API).

First, we need to endow enclaves with a notion of identity that can
be used by QUICKPROV to identify enclaves when collecting provenance
data as well as to restrict enclave access to trusted storage data based on
their identity. The latter is necessary so that enclaves cannot interfere with
each other’s data, unless explicitly permitted. The same holds for runtime-
private data, such as QUICKPROV provenance chains, which enclaves are
not authorized to write. Hence, we design an authorization mechanism
that will enable the runtime and TAs to express sufficiently rich access
control policies to protect resources, such as persistent data objects, cryp-
tographic keys and provenance chains. Lastly, we must design a runtime-
enclave interface for TAs to enable access to this functionality.

4.1.1.1 Enclave identity

Each enclave must possess a unique identity that can be used to distin-
guish between enclaves running different TAs, and between different in-
stances of the same TA. An individual instance of an enclave can be identi-
fied using a simple random identifier, but when a resource must be shared
between several enclave instances (such as when a long-term secret must
survive reboots), a purely random identifier will not suffice. In this case,
we can deterministically derive the enclave identifier from properties of
the enclave itself. These include:

• The hash of the TA binary hosted in the enclave

• The ID of the TA provided by the developer

• The TA developer’s certificate

• The TA developer’s full certificate chain

A good combination for a unique identifier that is also invariant to TA
updates can be the pair given by the TA ID and developer’s certificate
or certificate chain. Additional properties can be added to disambiguate
enclaves hosting binaries that are identical but are characterized by, e.g.,
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a different certificate chain. This is enough to uniquely identify enclaves,
at least locally. In QUICKPROV however, enclaves and data, including the
provenance data thereto associated, can migrate through different TEEs,
meaning that a global identifier is necessary to uniquely and consistently
identify an enclave across migrations. To address this, we also add a public
key to the identity derivation that uniquely identifies the TEE where the
enclave originates from. This key can be, for instance, derived from the
platform’s HUK, or provisioned by the CSP.

4.1.1.2 Authorization

We propose an authorization model that enables the runtime and TAs
to access TEE resources (e.g., persistent data objects, cryptographic keys,
QUICKPROV provenance chains) protected by highly-expressive policies.
Expressiveness provides more agency over who can access a TEE entity
and how. For instance, TAs should be able to express whether an entity is
private or shared among select other TAs. TAs should also, for example,
be able to grant access to a specific TA or to any TA from a specific de-
veloper, as described in Section 4.1.1.1. Finally, the runtime needs to store
private data, such as certificates and QUICKPROV provenance data, that
needs to be appropriately protected from access by TAs and internal local
adversaries (see Section 3.3.2).

To cater to these requirements, we design a mechanism based on EA
(see Section 2.1.2.1) authorization model. Compared to regular access con-
trol lists (ACLs), EA has the following advantages:

1. Policies of arbitrary size and complexity can be applied without nec-
essarily storing the assertions: in fact, only a hash representation of
the policy is stored and associated with the entities. This hash is
then checked against a reference value instead of matching a set of
requested privileges with an ACL. This allows creation of policies
of arbitrary complexity without increasing the memory footprint of
storing them.

2. A convenient consequence of (1) is that EA policies can enable names-
pacing of resources: two or more resources with conflicting IDs can
exist at any one time as long as their policy hashes are distinct. This
allows trusted storage clients, for instance, to create objects that are
private or shared among different applications (see Section 4.1.1.3),
such that multiple namespaces, one for each possible authPolicy, can
exist where data can be stored. This allows us to be arbitrarily ex-
pressive when specifying policies for shared entities.
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Our design of EA provides assertions on enclave-specific properties—
which include the instance and TA ID, the hash of the TA binary, its devel-
oper certificate and/or certificate chain—and trusted storage objects, such
as access rights (read and/or write) and whether replay protection (e.g.,
RPMB) is enabled for a specific object.

Policy construction An EA policy can be described as a directed acyclic
graph (DAG) where the nodes represent assertions. More specifically, it is a
rooted tree, where the root is either the first assertion of a non-compound
policy (i.e., one branch - see Figure 4.2) or the disjunction assertion of a
compound policy (i.e., multiple branches - see Figure 4.3). It is worth not-
ing that a disjunction assertion with only one branch is also a well-formed
policy, although it represents a different yet functionally equivalent pol-
icy compared to the policy that only contains the one branch without the
disjunction assertion as the root.

A Command describes an EA assertion, that is a node in the policy tree.
A disjunction assertion is represented as an Or variant, whereas regular
assertions are simple Check variants of a Command.

An Or is an ordered sequence of OrBranches, where each of the branches
is either another policy (as depicted in Figure 4.2) or a previously com-
puted policy digest, which can be thought of as a collapsed branch (see
Figure 4.4).

A Check, on the other hand, is a regular assertion that may optionally
take parameters. Checks can be made on properties that pertain to en-
claves, the TAs they host, or trusted storage objects, such as:

• Enclave ID (i.e., TA instance ID)

• TA ID

• TA binary hash

• TA developer certificate

• TA developer certificate chain

• Trusted storage type (e.g., shared with REE or RPMB)

• Trusted storage object access rights (read and/or write)

• Trusted storage object sharing [22]
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Some of these Checks make assertions of TA-specific properties that
cannot be reliably supplied by the TA itself. For instance, the binary hash
and ID properties of a TA must be provided by the runtime instead.

AppId=”foo”

Cert=”MIIB…+SY=” 

...

ObjectAccess=RW

A1,N

A1,2

A1,1

Figure 4.2: The tree of a non-compound policy. The root node is a simple
assertion on the TA ID. Every node is a Check (i.e., an assertion).
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Or

AppId=”foo”

Cert=”MIIB…+SY=” 

...

CodeHash=”fe90...f2cb”

CertChain=[der1, …, dern]

...

ObjectAccess=RW

A1,N

A1,2

A1,1

...

ObjectAccess=R

AN,N

AN,1

AN,2

Figure 4.3: The tree of a compound policy. The root node is the Or asser-
tion. The tree does not contain collapsed branches, i.e., branches with a
precomputed digest.
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Or

AppId=”foo”

Cert=”MIIB…+SY=” 

...

f7e0...19a1

...

ObjectAccess=RW

A1,N

A1,2

A1,1 AN,1

Figure 4.4: The tree of another compound policy. The root node is the Or

assertion. The tree contains one collapsed branch, the rightmost one.

Policy sessions A policy session computes a policy digest from a se-
quence of assertions using the method described in Section 2.1.2.1. A
session allows TAs to generate a policy digest by sequentially adding
Commands to the session’s state and, once the session is finalized, compute
and retrieve its final digest. This digest can either be a authPolicy value or
an policyDigest. An authPolicy is what is assigned to a resource when it is
created, whereas a policyDigest is what is computed as part of an autho-
rization session, i.e., when a TA tries to access the resource. The difference
between the two is that policyDigests are only updated when the Checks
are fulfilled. Because of this, two different types of policy session exist, a
TrialSession to generate authPolicy values, and an AuthSession to com-
pute policyDigests.

An AuthSession is, essentially, a TrialSession where all the Checks
need to be valid, i.e., the assertions need to be fulfilled. Whereas in a
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TrialSession the Checks need not be valid because the session is only
used to compute an authPolicy value, an AuthSession has to actually eval-
uate the Checks before updating the policyDigest value of the underlying
session. This is because some of these Checks can be used to express capa-
bilities for, e.g., object access rights, that need to be checked at runtime.

4.1.1.3 Trusted storage

We design an interface that enables the runtime and TAs to store and re-
trieve persistent data, cryptographic keys and QUICKPROV provenance
chains that are guaranteed confidentiality, integrity and freshness. This in-
terface leverages the EA authorization mechanism described in Section 4.1.1.2
and the underlying TEE trusted storage facilities to provide a flexible and
trustworthy storage mechanism. Since the storage model proposed by
Global Platform (GP) only provides one private storage space per TA, the
main issue to tackle is allowing multiple TAs running within the same
runtime to have their own private storage namespaces.

The EA mechanism provides us with a convenient way of enforcing
namespacing, which effectively allows TAs to create and store objects in
namespaces that are either private—and, thus, inaccessible to other TAs—
or in shared namespaces containing TAs specified in their objects’ associ-
ated policies. In the underlying storage, we prefix every object identifier
with an authPolicy value (i.e., the 32-byte SHA256 policy digest) of the pol-
icy assigned to the object.
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Figure 4.5: The proposed trusted storage model extends the standard GP
model with EA policy-based authorization. Each TA (and the runtime)
owns a set of policyDigest values (or is able to recompute part of them)
which can grant them access to specific namespaces.
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TA2

...

...

foo bar

Policy

ObjectId=”foo”

foo baz

Policy

ObjectId=”baz”

ObjectId=”baz”

ObjectId=”foo”

TA1

AppId=”App1” ∧ ObjectAccess=RW 
policyDigest =

H(AppId=”App1” ∧ ObjectAccess=RW) =
H(ObjectAccess | H(AppId=”App1”)) =

32...fe7ba

AppId=”App2” ∧ ObjectAccess=RW

policyDigest =
H(AppId=”App1” ∧ ObjectAccess=RW) =
H(ObjectAccess | H(AppId=”App1”)) =

32...fe7ba

policyDigest =
H(AppId=”App2” ∧ ObjectAccess=RW) =
H(ObjectAccess | H(AppId=”App1”)) =

bf...e43cb

policyDigest =
H(AppId=”App2” ∧ ObjectAccess=RW) =
H(ObjectAccess | H(AppId=”App1”)) =

bf...e433cb

Figure 4.6: Two different TAs trying to access objects from different
namespaces. There is a one-to-one correspondence between policies and
namespaces. Assertions highlighted in green are resolved by the runtime.
Access is granted only if the policyDigest value computed from the authen-
tication session matches the authPolicy of the tentatively accessed names-
pace and there exists, within this namespace, an object with the specified
ObjectId. TA1 and TA2 fail to access objects baz and foo, respectively,
because policyDigest ̸= authPolicy.

For instance, an object with identifier foo can exist in multiple names-
paces (private or shared), each protected by a different EA policy. In order
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for a TA to access a specific object, besides knowing its identifier, they
need to be able to reconstruct its assigned authPolicy value, as depicted in
Figure 4.6.

4.1.2 Remote attestation

This section presents a remote attestation mechanism that will enable re-
mote parties to ascertain the identity of an enclave—and, transitively, the
TA contained within—it is communicating with. Besides ascertaining the
identity of an enclave, this mechanism will also provide the remote party
with evidence on the state of the underlying platform. This will enable the
remote party, for instance, to verify that certain security properties hold of
the enclave’s data.

We design this functionality by reusing much of the runtime- and enclave-
specific data machinery presented in Section 4.1.1. This enables us, for
instance, to design an attestation functionality that certifies a private key
persisted on trusted storage as being protected by a particular EA access
control policy.

4.1.2.1 Key attestation

We describe a key attestation mechanism that allows for binding the public
component of a keypair to the EA policy that protects its private counter-
part. An enclave can only use this keypair if it fulfills all the assertions
specified in its policy. This mechanism will enable a remote party to es-
tablish a communication channel with an enclave that is contingent upon
certain security properties of the private key with which the enclave binds
and secures the channel. For instance, the remote party may demand that
this private key be only accessible by a specific enclave (i.e., TA instance),
which ensures that the key is ephemeral and can only be used to bind the
channel, and, not less importantly, it cannot be used by any other TEE
entity.

Evidence of such security claims, e.g., a private key is only acccessible
by a specific enclave, is bundled in an X.509 certificate. X.509 certificates
enable us to leverage a public-key infrastructure (PKI) that makes it pos-
sible to establish a chain of trust for attestation, whereby evidence can be
bundled and signed by an endorsing party. These certificates can be easily
integrated with transport layer security (TLS) to establish trusted channels
between enclaves, i.e., TLS channels that mandate one-way or mutual at-
testation in the handshake process. In particular, we leverage the X.509 v3
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format [32] custom extensions field to bundle the claims on the security of
a key, where we simply embed its EA access control policyDigest.

Finally, the enclave runtime, which handles the EA-based authoriza-
tion for data and keys persisted on trusted storage, manages a local certifi-
cate authority (CA) that signs the key attestation certificates. This certifi-
cate is signed by another higher-level CA that, in addition, attests to the
correct operation of the device and the runtime.

4.1.2.2 Attestation layers

Before trusting the claims about a key’s storage security contained in an
attestation certificate, remote parties first need to ascertain the integrity
of the runtime that produced it. The runtime integrity depends, in turn,
on the trustworthiness of the underlying trusted computing base (TCB).
In our model, we assume that the integrity of these components is mea-
sured either before or at runtime startup. Depending on the platform,
this may require for an original equipment manufacturer (OEM) or some
other trusted third party to obtain evidence on the measurements. Since
this mechanism is usually vendor-specific, remote parties communicating
with an enclave are oblivious to the internals of the enclave’s platform at-
testation process.

The vendor-specific attestation certificates form the right-most part of
the X.509 chain of trust depicted in Figure 4.7. As part of platform verifi-
cation process, the OEM signs the local CA key that the runtime utilizes
to generate the left-most part of the chain, which is composed by the sole
key attestation certificate. This allows for verifying the OEM’s endors-
ment using publicly-available PKI tooling, such as OpenSSL [61] or rustls
[1]. Figure 4.7 illustrates the complete chain of trust between the attesta-
tion certificate of an individual key and a root CA recognized by remote
parties.
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Device CA 
Certificate

Local CA Key OEM CA Key Root CA Key

Runtime- or enclave-
specific key

Access Control 
Policy

Figure 4.7: The attestation evidence chain of trust. The leaf, i.e., left-most,
certificate contains the EA access control policy of a keypair and its public
component. This certificate is signed by the local CA. Finally, the local CA
is endorsed by a further chain of authority certificates—from the OEM CA
to the root CA—produced when initializing the runtime.

4.2 QUICKPROV

We begin by presenting the structure and the properties of a QUICKPROV
provenance chain, as well as the various types of records it contains. Hence,
we describe how QUICKPROV leverages the underlying TEE’s enclave
platform to achieve trustworthy provenance collection and storage. Fi-
nally, we explain how a TEE can convince a remote party that some prove-
nance data is trustworthy through a provenance attestation mechanism.
This is important since QUICKPROV provenance data can also migrate
through systems along with the enclaves or objects they are associated
with.

4.2.1 Provenance chain

A provenance chain is a sequence of interlinked, append-only logs that
hold provenance data specific to the log’s owner, i.e., the TEE that owns
the log. The entries of each log are cryptographically signed with a signing
key generated by the TEE, which ensures that no other party can append
data to it, while enabling clients to verify its integrity using its signing
key’s public component. The next few subsections describe the compo-
nents that constitute a provenance chain in greater detail.
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4.2.1.1 Record

A record is a tuple ⟨index, previous, data, signature⟩ [35] where:

• index is the position of the record in the log

• previous is the hash of the preceding record, if present

• data is the actual payload of the record. A provenance record, for
instance, contains provenance information

• signature is the signature of the current record, which includes index,
previous and data

4.2.1.2 Log

A log is a single-writer sequence of records signed with the owner’s pri-
vate key. The public key counterpart identifies the log (and its owner)
and is used to verify the integrity of the log, since any unauthorized mod-
ifications would break the signature check, and forging records requires
having the owner’s private key. This effectively enables tamper-evidence.
Finally, the log is monotonic (append-only), meaning that a record can
only be added at the end of the log and are cryptographically bound to
the predecessor by its signature. A log is well-formed if [35] it is totally
ordered, i.e., no two records have the same predecessor, connected, i.e., all
records are (transitively) connected, and all the records are signed with the
same key.

4.2.1.3 Chain

A chain is a multi-writer sequence of logs that are mutually linked with
each other. Two special marker records, beginning of feed (BOF) and end
of feed (EOF), signal the point where a log in the chain starts, and where
it ends. These records also point to the preceding and succeeding logs in
the chain respectively, identified by their respective public keys. Practi-
cally, the BOF and EOF markers are records where data contains either the
previous or next authorized public key. When the current writer of the
chain finalizes their log, e.g., because the resource it describes needs to be
migrated, they authorize the next writer by placing their public key in the
EOF marker. Once the change of ownership is complete, the new writer
adds a new log to the chain and primes it with a BOF marker that contains
the public key of the previously authorized writer. These markers allow
for reconstructing the entire chain from any log as well as ensuring that
only the authorized writers can write to it.
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4.2.2 Provenance collection

We want to collect records for IO operations and enclave migrations, which
would enable TEEs to reconstruct the provenance history of a specific
object or enclave of interest. The provenance collection process needs
to be trustworthy, i.e., fulfill the security requirements in Section 3.4.1,
lightweight, and efficient, meaning that it needs to be minimally intru-
sive (see Section 3.4.2). Since the TEE functionality providers are inside
the runtime, the provenance collection module must be hardwired into
the runtime. This module needs to handle the following events of interest:

• Trusted storage data (e.g., data objects, cryptographic keys, etc.) mi-
gration

• Trusted storage IO

• Enclave migration

When an object or enclave is created, a fresh provenance chain is in-
stantiated. A provenance chain for a trusted storage object, for instance,
will contain information on the IO operations performed on it as well as
its migrations. Whenever a chain is instantiated or migrated to another
TEE along with the resource it tracks, the QUICKPROV collection module
creates and adds a new log to the chain as follows:

1. Generate a fresh keypair. The private key signs the provenance records,
while the public key identifies the log

2. Create a new log and bind it to the new keypair

3. Prime the log with a BOF marker. The marker contains the public
key that identifies the previous log in the chain. If this is the first log
in the chain, then BOF points to null.

Once the log is primed, provenance records can be added to the log
whenever an event of interest occurs.

4.2.3 Provenance storage

The provenance chains need to be persisted while guaranteeing their con-
fidentiality, integrity and freshness. This enables provenance data to sur-
vive TEE reboots and protects it from unauthorized access by local adver-
saries and offline replay attacks. The QUICKPROV storage module can be
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either a separate enclave that the runtime entrusts with storing the col-
lected provenance or a component hardwired into the runtime itself. This
module leverages the enclave platform’s trusted storage functionality and
its authorization model to securely store the chains. More specifically, it
creates a policy that grants it full exclusive access, and it assigns it to
the chain. This prevents other entities in the TEEs, such as TAs, from
reading or writing to the chain. The chain is then persisted on trusted
storage, which guarantees its confidentiality, integrity, and freshness, and
protected from unauthorized access by TAs with the access control pol-
icy. If the TEE does not guarantee freshness natively, we assume that the
platform hardware provides a freshness mechanism (see Section 3.2) for
protecting the chains from offline replay attacks. For instance, the prove-
nance storage layer can increment a hardware monotonic counter when-
ever a chain is updated and then store the new records (inc-then-store, see
Figure 4.8) along with the counter value on the trusted storage. Alterna-
tively, if the hardware provides a RPMB, the storage layer can use it to
securely store the latest state of the chain, e.g., the signature field of the
last record in the chain.
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Figure 4.8: Provenance freshness can be guaranteed by first incrementing a
monotonic counter and, then, storing the updated provenance data along
with the counter value.
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4.2.4 Provenance attestation

It is not enough to provide trustworthy provenance collection and storage.
One of the requirements in Section 3.4.1 is that QUICKPROV be attestable,
meaning that there needs to be a way to prove to an interested party that
the provenance data was collected and stored securely. Provenance data is
meaningless if there is no reliable means for verifying the trustworthiness
of the process that generates it and the security of the storage medium it is
persisted on. Therefore, we propose a provenance attestation mechanism
that QUICKPROV-enabled TEEs can leverage when migrating provenance
data to another TEE. The provenance attestation extends the key attes-
tation mechanism presented in Section 4.1.2 by adding evidence on the
following security claims:

• Collection security: The QUICKPROV collection module is trustwor-
thy. This guarantees that the collection process is correctly isolated
and unauthorized TEE entities cannot interfere with it

• Private key security: The private key used to sign the associated
provenance chain is only accessible to QUICKPROV collection mod-
ule. This ensures that no other TEE entity can use it to forge valid
provenance records

• Chain security: The provenance chain is only accessible to the QUICK-
PROV storage module. This prevents unauthorized TEE entities from
reading or writing to the chain

Since the collection module is part of the runtime, the evidence of its
trustworthiness (e.g., a signed hash measurement of the runtime) needs
to be bundled in the device CA certificate, which is signed by the OEM
CA. As for private key and chain security, the platform can provide the
evidence to these claims in the form of EA access control policyDigests that
certify that these resources are only accessible by QUICKPROV modules.
For a remote party to trust an attested provenance chain, they can check
the EA policy digests of the keypair and the chain against a list of known-
good reference values.



Chapter 5

Implementation

This chapter presents a PoC implementation of the enclave platform and
QUICKPROV system presented in Chapter 4.

5.1 Enclave platform

We have developed an enclave platform based on the OP-TEE [40] trusted
OS and, on top of it, we built a runtime for WebAssembly trusted applica-
tions (WTAs) based on the WASMI [52] WASM interpreter. We emulated
the ARM TrustZone [7] hardware-based isolation that OP-TEE is based on
using a QEMU [54] configuration that virtualizes an ARMv8-A board. We
also leveraged the Teaclave TrustZone SDK [6] for OP-TEE, which ”pro-
vides abilities to build safe TrustZone applications in Rust”. Rust provides
strong guarantees for memory and type safety, which adversaries can try
to compromise by exploiting buffer overflows or type confusion attacks.
The resulting architecture is depicted in Figure 5.1.

5.1.1 Isolation barriers

The OP-TEE trusted OS isolates code and data from the REE (i.e., the un-
trusted OS) by leveraging TrustZone hardware-based isolation, while the
runtime isolates the WTAs from each other and from the outer world. This
effectively provides a secure environment for two-way, sandboxed execu-
tion of WTAs inside enclaves, which effectively realizes the design pre-
sented in Section 4.1. In particular, the two-way sandbox guarantees that
enclaves cannot be tampered with by REE or TEE adversaries and, at the
same time, the WTAs that runs inside the enclaves cannot misuse REE and
TEE resources. In fact, the sandbox provides layered isolation across three

44
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execution worlds, namely, between WTAs, between WTAs and TEE, and
between TEE and REE.

5.1.1.0.1 Inter-WTA isolation Each WTA runs within a separate en-
clave hosted by a WASMI instance launched by the runtime. The runtime
ensures full inter-WTA isolation. This is because the WASMI interpreter
assigns a separate linear memory space, i.e., a contiguous array of bytes,
to each enclave. This memory space can only be manipulated with load
and store instructions and by specifying a relative virtual address, i.e., an
offset relative to the base address, within this space. In fact, there is no con-
cept of raw pointers, which ensures that WTAs cannot reference arbitrary
memory outside of their assigned linear space.

5.1.1.0.2 WTA-TEE isolation The partitioning of memory into isolated
linear spaces for each WTA offered by WASMI, combined with the inher-
ently limited instruction set provided by WASM, which does not support
raw pointers and trap instructions, guarantee that WTAs, at least theoret-
ically, cannot evade the enclave. The only way for WTAs to communicate
with the outer world is through host functions provided by the hosting
WASMI instance. This means that, in order to escape the sandbox, a WTA
must exploit a vulnerability in the WASMI interpreter or runtime, a diffi-
cult task given WASM’s emphasis on security due to its original use as a
browser-based platform.

5.1.1.0.3 TEE-REE isolation Isolation between the TEE and REE is ach-
ieved at the bus controller level by the TrustZone-based secure privileged
layer provided by OP-TEE. Code within this layer runs in the secure world;
memory transactions are restricted using an extra bit (NS bit) that prevents
the CPU and other other DMA masters and peripherals from hijacking TEE
memory. The isolation level that OP-TEE provides is, thus, stronger than
hypervisor-based isolation, although practical side-channel attacks, both
digital [68] and physical [10], have been demonstrated against TrustZone.
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Figure 5.1: Implementation of the QUICKPROV enclave platform.

5.1.2 WebAssembly Trusted Application

A WTA is an application written in any high-level language (e.g., C++,
Rust, etc.) that supports the WASM target (i.e., wasm32-unknown-unknown)
of the LLVM [37] compiler infrastructure. This application needs to come
packaged with a JSON manifest file that can be generated with a WTA
signing tool. The manifest file contains the following fields:

• Application ID: This uniquely identifies the WTA
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• Code signature: The signature of the WTA binary

• Developer certificate: This contains the developer’s public key, which
the runtime uses to verify the signature of the WTA when it is loaded

• Developer certificate chain: The chain of trust that comprises the root
CA and the intermediate certificates

• Manifest signature: The signature of the application ID and code sig-
nature attribute pair

An example of WTA manifest file is shown below:
{

"manifest": {
"app_id":"99558fd0 -47d4 -47de-a827 -14 cdb3915c1c",

"code_hash":"e4df ...0507"

},
"developer_certificate": "...",

"developer_certificate_chain": ["...", .., "..."],

"manifest_signature": "a8bd ...8402"

}

Listing 5.1: WTA manifest file

Since WTAs are built for the wasm32-unknown-unknown target, they do
not have access to the WASI. The runtime provides the WTAs with WASI-
like functionality through a runtime-enclave interface realized with a set
of WASMI host functions. WTAs can access these functions through the
Rust bindings crate (wasm-enclave-bindings) provided by the runtime (see
Section 5.2.2).

5.1.3 Runtime

The runtime (wasm-enclave-runtime) is an OP-TEE TA written in Rust that
embeds a WASMI runtime that is designed for accommodating multiple
WTAs in separate enclaves, although the PoC currently supports the exe-
cution of only one WTA. Each enclave is an instance of a WASMI module
equipped with a separate memory space and a set of host functions that
enable the WTAs to access runtime and TEE functionality.

5.1.3.0.1 Runtime The Runtime data type contains global state that is
shared among WTAs and runtime modules.
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struct Runtime {

/// Resolver for trusted storage host functions

sse_resolver: SseExternalsResolver,

/// Resolver for cryptography host functions

crypto_resolver: CryptoExternalsResolver,

/// Shared trusted storage instance

storage: Arc<Mutex<StorageExternal>>,

/// Shared runtime context

context: Arc<RwLock<RuntimeContext>>,

}

struct RuntimeContext {

/// List of loaded WTAs

apps: Vec<App>,

/// Currently active WTA

current_app_index: usize,

/// Enclave platform CA certificate

ca_cert: Certificate,

}

Listing 5.2: Runtime data type

An implementation on top of Runtime is provided that allows for load-
ing WTAs from disk or memory.
impl Runtime {

/// Reads a WASM binary from the supplied path, then creates

/// and returns an [‘App‘](wasmi::Module) from the binary.

pub(crate) async fn load_app_from_path(

&mut self,

binary_path: &Path,

manifest_path: &Path,

) -> Result<App, RuntimeError>;

/// Reads a WASM binary from the supplied buffer, then creates

/// and returns an [‘App‘](wasmi::Module) from the binary.

pub(crate) async fn load_app_from_slice(

&mut self,

code: &[u8],

manifest: &[u8],

) -> Result<App, RuntimeError>;

/// Migrates an enclave and its state to a remote runtime

/// instance

pub(crate) async fn migrate_app<A: std::net::ToSocketAddrs>(

&self,

to: A,

instance: ModuleInstanceRef,

) -> Result<()>;
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}

Listing 5.3: Runtime data type

5.1.3.0.2 App The App data type represents a WTA instance loaded in a
WASMI enclave.
pub(crate) struct App {

/// WTA code

code: Vec<u8>,

/// Wasmi enclave

module: wasmi::Module,

/// WTA manifest

manifest_envelope: ManifestEnvelope,

/// Enclave-specific keypair

instance_kp: Keypair,

/// Enclave identity

instance_id: Uuid,

/// Provenance data for the enclave

prov_feed: MultiFeed<RandomAccessSse>,

}

Listing 5.4: App data type

5.2 Runtime- and enclave-specific data

We have developed a Rust crate (libsse) that implements the EA autho-
rization mechanism and trusted storage interface described in Section 4.1.1.2
and Section 4.1.1.3. The runtime links statically against this library and ex-
ports its functionality to the enclaves through a set of WASMI host func-
tions, which enables WTAs to create policy sessions and use their associ-
ated handles to perform IO on trusted storage objects.

5.2.1 Rust API

We provide a Rust API that enables the runtime and its modules to create
EA policy sessions and use them as authorization tokens when accessing
trusted storage objects.

5.2.1.0.1 Command The Command data type represents an EA assertion,
as described in Section 4.1.1.2.
pub enum Command {

/// Regular EA assertion



CHAPTER 5. IMPLEMENTATION 50

Check(Check),

/// EA policy disjunction assertion

Or(Vec<OrBranch>),

}

Listing 5.5: Command data type

5.2.1.0.2 OrBranch The OrBranch data type represents an EA policy
disjunction assertion, as described in Section 4.1.1.2.
pub enum OrBranch {

SessionDigest(PolicyDigest),

Session(AuthSession),

}

Listing 5.6: OrBranch data type

5.2.1.0.3 Check The Check data type represents a regular EA assertion.

pub enum Check {

InstanceId,

CodeSignatureCertificate,

CodeSignatureCertificateChain {

der: Vec<u8>,

},

CodeHash,

ApplicationId,

ObjectStorage {

id: u32,

},

ObjectAccess {

flags: u32,

},

ObjectSharing {

flags: u32,

},

ObjectExtra {

flags: u32,

},

IsMigrationAuthority,

}

Listing 5.7: Check data type

5.2.1.0.4 AuthSession The AuthSession data type maintains a SHA-
256 hasher and the list of EA Commands that were supplied to the hasher.
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pub struct AuthSession {

/// Hasher for the commands

hasher: Sha256,

dirty: bool,

/// List of commands run in this session

commands: Vec<Command>,

}

Listing 5.8: AuthSession data type

An implementation on top of AuthSession is provided that enables the
runtime to instantiate an EA policy session, add assertions by invoking
run command, and retrieve the final digest representation of the policy it
incorporates.
impl AuthSession {

pub fn new() -> Self;

/// Runs a command in the context of this session

/// with the supplied [‘CheckResolver‘]

pub fn run_command<R: CheckResolver<Error = E>, E>(

&mut self,

command: Command,

resolver: &R,

) -> Result<(), AuthError<E>>;

/// Finalizes the session and returns its policy digest

pub fn finalize(self) -> PolicyDigest;

/// Returns the list of commands run in this session

pub fn get_commands(&self) -> &[Command] {

return &self.commands;

}

}

Listing 5.9: AuthSession implementation

5.2.1.0.5 PersistentObject The PersistentObject data type contains in-
formation on an open trusted storage object. The PoC implementation
does not currently store a copy of the internal TEE ObjectHandle received
from the OP-TEE internal core API. Instead, it keeps a regular file-system
file that emulates a trusted storage object. Furthermore, cryptographic
keypair objects are currently mocked with an ED25519 keypair that is ran-
domly generated on object creation.
/// Persistent object types

pub enum PersistentObject {

/// Cryptographic key object
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CryptoKey(CryptoKeyObject),

/// Cryptographic keypair object

CryptoKeypair(CryptoKeypairObject),

/// Regular data object

Data(DataObject),

}

/// Cryptographic key object

pub struct CryptoKeyObject {

inner: PersistentObjectInner,

}

/// Cryptographic keypair object

pub struct CryptoKeypairObject {

inner: PersistentObjectInner,

/// Mocked keypair

keypair: Ed25519KeyPair,

}

/// Regular data object

pub struct DataObject {

inner: PersistentObjectInner,

}

/// Persistent object structure

pub struct PersistentObjectInner {

/// Extended object information

info_ex: PersistentObjectInfoEx,

/// Object ID

oid: ObjectId,

/// Internal handle is replaced with a file

file: Option<File>,

}

/// Persistent object information

pub struct PersistentObjectInfo {

pub object_type: u32,

pub object_size: u32,

pub max_object_size: u32,

pub object_usage: u32,

pub data_size: u32,

pub data_position: u32,

pub handle_flags: u32,

}

/// Extended persistent object info

pub struct PersistentObjectInfoEx {

/// Internal info

info: Option<PersistentObjectInfo>,
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/// The EA session associated with this object

auth_session: AuthSession,

}

Listing 5.10: PersistentObject data type

5.2.1.0.6 Storage The Storage Rust interface exposes methods for per-
forming basic IO on trusted storage PersistentObjects. These objects can
be regular data objects with an application-specific structure or crypto-
graphic keys and keypairs. As anticipated in the previous paragraph, the
PoC implementation of the Storage interface does not currently invoke the
TEE internal core API for IO and instead mocks trusted storage objects
with regular files.
impl Storage {

/// Creates a persistent object given an auth-

/// entication session, an object id, and

/// associated flags and attributes.

pub fn create_object(

&mut self,

session: AuthSession,

obj_id: ObjectId,

obj_type: PersistentObjectType,

storage_id: u32,

flags: u32,

attributes: Option<&PersistentObject>,

) -> Result<PersistentObject, StorageError>;

/// Opens a persistent object given an authentication

/// session, an object id and flags.

pub fn open_object(

&mut self,

session: AuthSession,

obj_id: ObjectId,

storage_id: u32,

flags: u32,

) -> Result<PersistentObject, StorageError>;

/// Closes a persistent object by taking ownership

/// of it

pub fn close_object(

&mut self,

obj: PersistentObject,

) -> Result<(), StorageError>;

/// Closes a persistent object by taking ownership

/// of it, then deletes it from the storage

pub fn close_and_delete_object(
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&mut self,

obj: PersistentObject,

) -> Result<(), StorageError>;

/// Reads ‘size‘ bytes of data from the object

/// from the current seek position

pub fn read_object_data(

&self,

obj: PersistentObject,

size: usize,

) -> Result<Vec<u8>, StorageError>;

/// Writes ‘data‘ to the object at the current

/// seek position

pub fn write_object_data(

&self,

obj: PersistentObject,

data: &[u8]

) -> Result<(), StorageError>;

/// Moves the seek position for the object at

/// ‘offset‘ relative to ‘whence‘

pub fn seek_object_data(

&self,

obj: PersistentObject,

offset: usize,

whence: Whence,

) -> Result<(), StorageError>;

}

Listing 5.11: Storage interface

5.2.2 WebAssembly API

The runtime re-exports the Rust API in Section 5.2.1 to the enclaves through
host functions, i.e., the runtime-enclave interface, that accept opaque han-
dles to runtime-managed resources (e.g., EA authorization sessions and
persistent objects). On top of these host functions, higher-level Rust bind-
ings are also provided that abstract away the marshaling and unmarshal-
ing of the arguments across the WASM application binary interface (ABI)
boundary. We illustrate the WASM API for AuthSession in the following
paragraphs.

5.2.2.0.1 create session The create session host function creates a fresh
AuthSession and returns a Handle to it on success. A StorageError de-
scribes the reason why the operation failed.
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fn __rt_create_session(

// Pointer to the variable for the returned handle

out_handle: *mut u32

) -> i32;

Listing 5.12: create session host function signature

pub fn create_session() -> Result<Handle, StorageError>;

Listing 5.13: create session Rust binding function signature

5.2.2.0.2 session run command The session run command host function
takes an EA assertion packaged in a Command and the Handle of a session
within which the runtime will run the supplied Command. A StorageError

describes the reason why the operation failed. The Command parameter is
marshaled into JSON using serde [57] before passing it to the host function.
fn __rt_session_run_command(

// Handle to the trial or auth session

session_handle: u32,

// Pointer to the marshaled command buffer

cmd: *const u8,

// Length of the marshaled command buffer

cmd_len: u32

) -> i32;

Listing 5.14: session run command host function signature

fn session_run_command(

// Handle to the trial or auth session

session: Handle,

// Command to run within the supplied session

cmd: Command

) -> Result<(), StorageError>;

Listing 5.15: session run command Rust binding function signature

5.3 Remote attestation

We have implemented the key attestation mechanism described in Sec-
tion 4.1.2, which allows the runtime or an enclave to attest to the security
of an Ed25519 keypair. This keypair can be used either to bind a trusted
communication channel with another TEE or to sign QUICKPROV chains.
We have split the remote attestation functionality into two separate Rust
crates that the runtime depends on, one for cryptographic functionality
(libcrypto) and one specifically for remote attestation primitives (libra).
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The libcrypto crates provides cryptographic primitives for random num-
ber and Ed25119 keypair generation as well as the generation and verifi-
cation of X.509 certificates. The libra crate depends on libcrypto and
provides primitives for key attestation and attested signature. The latter
allows for generating signatures with an Ed25519 keypair that is certified
by a key attestation certificate.

5.3.1 Rust API

We provide a Rust API that enables the runtime and its enclaves to ob-
tain key attestation certificates signed by the local CA. Besides certificate
generation, the API exports an auxiliary method for computing attested
Ed25519 signatures.

5.3.1.0.1 AttestationEvidence The AttestationEvidence data type rep-
resents a claim that can be bundled as evidence in the custom extensions
field of an X.509 attestation certificate. The Keypair variant holds PolicyE-
vidence for a cryptographic keypair, while the CodeHash variant repre-
sents a hash measurement for an arbitrary binary, which can be the run-
time or a WTA. The AttestationEvidence and PolicyEvidence come with
*Asn1 variants that can be serialized in the ASN.1 format, which is a re-
quirement for X.509 custom extensions.
#[derive(Clone, Debug, PartialEq, Eq)]

pub enum AttestationEvidence {

/// PolicyEvidence for a cryptographic keypair

Keypair(PolicyEvidence),

/// Code hash measurement

CodeHash(Vec<u8>),

}

#[derive(Clone, Debug, PartialEq, Eq, asn1::Asn1Read, asn1::Asn1Write)]

pub(crate) enum AttestationEvidenceAsn1<’a> {

Keypair(PolicyEvidenceAsn1<’a>),

CodeHash(&’a [u8]),

}

#[derive(Clone, Debug, PartialEq, Eq)]

pub struct PolicyEvidence {

/// EA policy digest

pub policy_digest: Vec<u8>,

/// List of assertions in the policy

pub policy_commands: Vec<u8>,

}
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#[derive(Clone, Debug, PartialEq, Eq, asn1::Asn1Read, asn1::Asn1Write)]

pub(crate) struct PolicyEvidenceAsn1<’a> {

pub policy_digest: &’a [u8],

pub policy_commands: &’a [u8],

}

Listing 5.16: AttestationEvidence and PolicyEvidence data types

5.3.1.0.2 AttestedCrypto The AttestedCrypto data type maintains a tru-
sted storage instance shared with the runtime that can be used to retrieve
cryptographic keys.
/// Facade class that provides attested cryptographic

/// operations on top of a trusted [‘Storage‘] instance

pub struct AttestedCrypto {

/// Shared trusted storage instance

storage: Arc<Mutex<Storage>>,

}

Listing 5.17: AuthSession data type

5.3.1.0.3 AttestedSignature An AttestedSignature implementation on
top of AttestedCrypto is provided that exposes methods for obtaining key
attestation certificates and generating attested signatures. The implemen-
tation packages an attestation claim in the AttestationEvidenceAsn1 data
type described above, serializes it into ASN.1 format, and embeds them
as a custom extension field in the X.509 key attestation certificate. Two
unique object identifiers (OIDs) are used to discern the custom extension
field type:

• OID KEYPAIR POLICY EVIDENCE: The custom extension field contains
a PolicyEvidence claim

• OID CODE HASH POLICY EVIDENCE: The custom extension field contains
a code hash measurement

pub trait AttestedSignature {

/// Signs data with the supplied keypair

fn sign(&self, data: &[u8], keypair: &CryptoKeypairObject) -> Result<Vec<u8>>;

/// Returns a PEM-formatted X.509 certificate containing

/// attestation claims for the supplied keypair

fn attest_key(

&self,

keypair: &CryptoKeypairObject,
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ca_cert: &SignerCertificate,

) -> Result<String>;

}

Listing 5.18: Implementation of the AttestedSignature trait for
AttestedCrypto

5.4 QUICKPROV

We have developed a PoC implementation of the provenance collection
and storage layers of QUICKPROV system presented in Section 4.2 as a
Rust crate (wasm-enclave-prov) that the runtime depends on. The PoC im-
plements provenance chains on top of the tamper-evident, append-only
logs provided by the Rust implementation [18] of the Hypercore [30, 48]
protocol. Currently, the PoC only supports logging enclave migrations and
IO operations on trusted storage objects, although additional records can
be added easily. The generation and verification of the provenance attesta-
tion certificate described in Section 4.2.4 has not been implemented. How-
ever, adding support for this would simply involve reusing the attestation
mechanism for key attestation mechanism implemented in Section 5.3.

5.4.1 Rust API

We provide a Rust API that the runtime can leverage to access QUICK-
PROV functionality and perform the following operations:

• Create a provenance chain with an associated keypair

• Log provenance records on the chain

• Retrieve provenance records from the chain

• Store the chain and the keypair on trusted storage

• Finalize the chain and, optionally, authorize a next writer identified
by their public key

In the next few paragraphs, we describe the implementation of the
record, log and chain structures presented in Section 4.2.
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5.4.1.0.1 Record The Record data type represents a provenance record
that describes two possible types of event: the migration of an enclave
(MigrationRecord) and an IO operation (IoRecord).
/// Base type for provenance records

#[derive(Clone, Serialize, Deserialize)]

pub enum Record {

/// Enclave migration record

Migration(MigrationRecord),

/// Trusted storage IO record

Io(IoRecord),

}

/// Enclave migration record

#[derive(Clone, Serialize, Deserialize)]

pub struct MigrationRecord {

/// Status of the migration

status: MigrationStatus,

/// Base64-encoded public key of the source TEE worker

src_pk: String,

/// Base64-encoded public key of the destination TEE worker

dst_pk: String,

}

/// Trusted storage IO record

#[derive(Clone, Serialize, Deserialize)]

pub struct IoRecord {

/// Identity of the enclave that initiated the IO operation

src_enclave_id: Uuid,

/// Base64-encoded SHA-256 hash of the object before the IO operation

obj_hash: String,

/// The IO operation

io_op: IoOperation,

}

/// Trusted storage IO operation

#[derive(Clone, Serialize, Deserialize)]

pub enum IoOperation {

/// Write operation

Write(IoOperationWrite),

}

/// Trusted storage IO write operation

#[derive(Clone, Serialize, Deserialize)]

pub struct IoOperationWrite {

/// Base64-encoded SHA-256 hash of the written payload

write_hash: String,

}
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/// Enclave migration status

#[derive(Clone, Copy, Serialize, Deserialize)]

pub enum MigrationStatus {

/// Migration is started

Start,

/// Migration is aborted

Abort,

/// Migration is completed

Complete,

}

/// Records are serializable to JSON

impl JsonTrait for Record {}

Listing 5.19: Record data type and variants

5.4.1.0.2 Feed The hypercore Rust crate provides a Feed data type that
implements a tamper-evident, append-only log. The log is internally rep-
resented as a signed Merkle tree but it acts an append-only list by provid-
ing operations for appending and retrieving data. The library provides a
RandomAccess trait that allows for persisting logs on any storage medium
that supports random access IO. Besides the Feed data (i.e., the records),
Hypercore persists the following auxiliary structures:

• The merkle tree that encodes the data contained in the Feed. The leaf
nodes of this tree contain, from left to right, the hashes of the respec-
tive records in the Feed. This structures enables tamper detection if
the contents or the order of the records is altered

• A bitfield that efficiently represents the merkle tree and the data it
describes

• The signatures of the Feed data

• The keypair that signs the data

5.4.1.0.3 MultiFeed We provide a MultiFeed structure based on Feed

that implements a chain as described in Section 4.2.1.3. A MultiFeed is, in
essence, an ordered sequence of Feeds persisted as separate objects on the
trusted storage:
#[derive(Debug)]

pub struct MultiFeed<T>

where

T: RandomAccess<Error = Box<dyn std::error::Error + Send + Sync>>
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+ std::fmt::Debug + Send,

{

/// Last entry is EOF?

finalized: bool,

/// Sequence of feeds

feeds: Vec<Feed<T>>,

}

Listing 5.20: MultiFeed data type

Feeds, in turn, consists of an ordered sequence of entries, which can be
regular data entries (i.e., provenance Records), or BOF/EOF markers:
/// An entry in the [‘MultiFeed‘], which can be either a

/// [‘MultiFeedMarker‘] or user-defined data

#[derive(Serialize, Deserialize)]

pub enum MultiFeedEntry {

Marker(MultiFeedMarker),

Data(Vec<u8>),

}

/// [‘Feed‘] marker

#[derive(Clone, Debug, Serialize, Deserialize)]

pub enum MultiFeedMarker {

/// Beginning of multi-feed

BOF {

/// Pointer to the prev feed in the chain

prev_feed: Option<MultiFeedLink>,

},

/// End of multi-feed

EOF {

/// Pointer to the next feed in the chain

next_feed: Option<MultiFeedLink>,

},

}

/// A pointer to the previous or next [‘Feed‘] in the

/// [‘MultiFeed‘] chain. The direction of the pointer is

/// specified by the enclosing [‘MultiFeedMarker‘]

#[derive(Clone, Debug, Serialize, Deserialize)]

pub struct MultiFeedLink {

/// ID of the prev/next feed in the chain

feed_id: String,

/// Base64-encoded public key of the prev/next

/// authorized writer in the chain

auth_pk: String,

}

Listing 5.21: MultiFeedEntry data type and variants
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Finally, an implementation on top of MultiFeed is provided that allows
for appending and retrieving records from the chain, as well as finalizing
the chain and, optionally, authorizing a next writer.
impl<T> MultiFeed<T>

where

T: RandomAccess<Error = Box<dyn std::error::Error + Send + Sync>>

+ std::fmt::Debug + Send,

{

/// Returns the size of the multi-feed, i.e., the number of feeds

pub fn size(&self) -> usize;

/// Returns the total number of records in the multi-feed chain

pub fn len(&self) -> u64;

/// Gets the i-th element in the multi-feed

pub fn get<’a>(

&’a mut self,

index: u64,

) -> impl Future<Output = anyhow::Result<Option<Vec<u8>>>> + ’a;

/// Gets a reference to i-th feed in the multi-feed chain

pub fn get_feed(&self, index: usize)

-> Option<&Feed<T>>;

/// Gets a reference to the last feed in the multi-feed chain

pub fn last_feed(&self)

-> Option<&Feed<T>>;

/// Gets a mutable reference to i-th feed in the multi-feed chain

fn get_feed_mut(&mut self, index: usize)

-> Option<&mut Feed<T>>;

/// Gets a mutable reference to the last feed in the multi-feed chain

fn last_feed_mut(&mut self)

-> Option<&mut Feed<T>>;

/// Appends data to the multi-feed

pub fn append<’a>(

&’a mut self,

data: &’a [u8],

) -> impl Future<Output = anyhow::Result<()>> + ’a;

/// Appends a typed record to the multi-feed

pub fn append_record<’a, R>(

&’a mut self,

data: &’a R,

) -> impl Future<Output = anyhow::Result<()>> + ’a

where
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R: AnyhowFromStr + AnyhowToString;

/// Finalizes the last feed in the chain by adding an EOF

/// [‘MultiFeedMarker‘]

pub fn finalize<’a>(&’a mut self)

-> impl Future<Output = anyhow::Result<()>> + ’a;

/// Finalizes the last feed in the chain by adding an EOF

/// and authorizes a new writer identified by ‘auth_pk‘

/// to write a feed identified by ‘feed_id‘

pub fn finalize_and_auth<’a>(

&’a mut self,

feed_id: &str,

auth_pk: &PublicKey,

) -> impl Future<Output = anyhow::Result<()>> + ’a;

}

Listing 5.22: Concise view of the MultiFeed implementation

5.4.2 Provenance collection

We perform provenance collection by hooking the host functions for the
trusted storage Rust API and the migrate app enclave migration func-
tion described in Section 5.4.1. The hooks retrieve the enclave-specific
provenance chain from the App structure and log either an IoRecord or
a MigrationRecord.

For instance, logging an enclave migration event is done as follows:
pub(crate) async fn migrate_app<A: std::net::ToSocketAddrs>(

&self,

to: A,

instance: ModuleInstanceRef,

) -> anyhow::Result<()> {

// Log the migration

{

// Lock the runtime context for writing

let mut context = self.context.write();

// Get the public key of the local platform

let src_pk = base64::encode("Public key of local platform CA here");

// Get the public key of the remote platform

let dst_pk = base64::encode("Public key of remote platform CA here");

// Get the provenance chain for the current enclave

let prov_feed = context.current_app_mut().prov_feed_mut();

// Log the migration

prov_feed

.append_record(&Record::Migration(MigrationRecord::new(

MigrationStatus::Start,
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&src_pk,

&dst_pk,

)))

.await?;

}

// ...Do migration

}

Listing 5.23: Provenance hook for enclave migration in migrate app

On the other hand, we log IO write operations on trusted storage ob-
jects as follows:
pub(super) fn write_object_data(

&self,

handle: Handle,

data: &[u8],

) -> Result<(), StorageError> {

// Lock the runtime context for writing

let mut runtime_ctx = self.runtime_ctx.write();

// Get the enclave identity

let instance_id = runtime_ctx.current_app().instance_id();

// Get the provenance chain for the current enclave

let prov_feed = runtime_ctx.current_app_mut().prov_feed_mut();

// Log the IO operation

prov_feed

.append_record(&Record::Io(IoRecord::new(

instance_id,

base64::encode("hash of object referenced by ‘handle‘ here"),

IoOperation::Write(

IoOperationWrite::new(

base64::encode("hash of ‘data‘ here")

)),

)))

.await

.map_err(|_| StorageError::Error)?;

// ...Do object write

}

Listing 5.24: Provenance hook for IO object write in write object data

5.4.3 Provenance storage

We provide a RandomAccessSse implementation of the RandomAccess trait
that allows for persisting provenance chains on trusted storage. This im-
plementation stores the chain data—and the auxiliary structures described
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in Paragraph 5.4.1.0.2—as separate objects protected by EA policies. The
trusted storage functionality of OP-TEE guarantees the confidentiality and
integrity of these objects by encrypting data blocks with AES-GCM and a
FEK that is secured in memory and encrypted with an associated TSK (see
Figure 5.2). By specifying an EA policy that includes the RPMB storage
type, OP-TEE will store the chain on disk and a metadata file on a RPMB
partition that describes its latest state after every update. Thanks to the
metadata, these structures can be deleted or replayed but any such alter-
ations are detectable.

1. Derive SSK from HUK

Runtime TA UUID

2. Derive TSK from SSK and UUID
3. Generate

4. Encrypt FEK with TSK 5. Store FEK
File Allocation Table 

(FAT)

Hardware Unique Key 
(HUK)

Secure Storage Key (SSK)

Trusted Application Storage 
Key (TSK)

File Encryption Key (FEK)

Figure 5.2: The FEK derivation process. A 128-bit secure storage key (SSK)
is derived from the HUK, i.e., the ROT for storage, during OP-TEE ini-
tialization. This is kept in secure memory and never persisted to disk. A
TA storage key (TSK) is derived from this key and the runtime TA UUID.
For each trusted storage object, a random file encryption key (FEK) is gen-
erated, encrypted with the TSK, and stored in the object’s file allocation
table FAT entry [49]
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The runtime creates a provenance chain and specifies its EA access con-
trol policy for it when an enclave is first initialized. The process can be
summarized as follows:

1. Generate a random enclave-specific Ed25519 keypair

2. Derive an enclave-specific identity from the keypair

3. Create an EA policy session for the enclave-specific provenance chain
and specify the following checks:

• IsMigrationAuthority: The data is only accessibly by the mi-
gration authority, i.e., the runtime

• ObjectStorage = STORAGE PRIVATE | STORAGE RPMB: The data
is stored on disk with guaranteed confidentiality and integrity.
Metadata is stored on RPMB that guarantees deletion and re-
play detection.

• ObjectAccess = READ | WRITE | WRITE META: The data can be
opened with full access rights

4. Instantiate the enclave-specific provenance chain by building a Multi-
Feed and binding it to the keypair generated at step (1).

By default, the runtime does not wait for written records to be flushed
to disk before returning. To change this behavior and ensure that records
are definitively flushed to disk before signaling success, the auto sync op-
tion must be enabled for the chain’s backing RandomAccessSse instance.
While automatic synchronization, coupled with OP-TEE’s guarantee of
atomic writes, ensures that the chain on trusted storage is always up-to-
date and correct, flushing the chain data on every write may be expensive
depending on the logging frequency. Therefore, in the PoC we only man-
ually flush the chain to disk in case of enclave migration.
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Evaluation

We evaluate our PoC implementation of QUICKPROV with respect to the
security requirements and performance goals formulated in Section 3.4.
The QUICKPROV system must enable readily-usable, trustworthy data prove-
nance for mobile enclaves in heterogeneous distributed systems. For the
provenance data to be readily usable, the time it takes for it to be ready
after a migration is first initiated must be relatively minimal with respect
to the total migration time. In order for the provenance data to be trust-
worthy, it must be secured from unauthorized access and there must exist
a means for convincing other parties of its reliability.

6.1 Security analysis

In this section we will analyze the security requirements articulated in Sec-
tion 3.4.1 with respect to the PoC and the local adversary model formu-
lated in Section 3.3. As mentioned in Section 5.4, the PoC only implements
provenance collection and storage functionality. Therefore, we will dis-
cuss the attestability aspect (PS-6) in Chapter 7.

6.1.1 Confidentiality (PS-1)

The QUICKPROV system must guarantee that provenance data be unread-
able by unauthorized entities. Confidentiality must be guaranteed during
both provenance collection and storage, and from both REE and TEE ad-
versaries.

The runtime protects the collection process from REE adversaries by
leveraging OP-TEE’s TrustZone isolation, which prevents the cpu, untrusted
DMA masters and peripherals from probing TEE memory (see Section 5.1.1).

67
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The runtime stores the collected provenance data using OP-TEE’s trusted
storage functionality, which guarantees its confidentiality and integrity
through AES-GCM authenticated encryption.

The runtime shields the collection process from TEE adversaries by
taking advantage of wasmi’s sandboxing capability (see Section 5.1.1). It
also prevents enclaves from accessing the provenance data by storing in
its own private trusted storage namespace, i.e., by specifying an EA policy
that includes the IsMigrationAuthority check.

6.1.2 Integrity (PS-2)

The QUICKPROV system must guarantee tamper detection for the prove-
nance data in case any provenance records are corrupted or truncated by,
e.g., replaying a proper prefix of a provenance chain.

Besides OP-TEE’s guarantee of integrity for trusted storage, corruption
detection is provided at the application level by Merkle trees and cryp-
tographic signatures (see Paragraph 5.4.1.0.2) that back each provenance
chain and enable detection of provenance forgery, re-ordering and corrup-
tion.

To provide replay detection, we persist the provenance chains and their
auxiliary structures with an EA policy that includes the ObjectStorage =
STORAGE PRIVATE | STORAGE RPMB check. This configuration mandates that
OP-TEE store the provenance data on REE storage and a special dirfile.
db.hash file on RPMB that holds a hash representing the latest state of the
REE storage. This effetively enables the detection of deletion and replay
attacks by REE adversaries.

6.1.3 Unforgeability (PS-3)

The QUICKPROV system must prevent unauthorized parties from forg-
ing valid provenance records by altering existing entries or adding new
entries. Forging detection is guaranteed at the application level by crypto-
graphic signatures of the provenance chains. Since REE and TEE adver-
saries cannot access the keypair that the runtime uses to sign the prove-
nance data, they cannot forge phony provenance records without being
detected.

6.1.4 Non-repudiation (PS-4)

The QUICKPROV system must prevent authorized parties, i.e., runtimes,
from adding provenance records and later denying their authorship. Non-
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repudiation is guaranteed by cryptographically signing each provenance
chain with a unique keypair that only the runtime can access. While the
public component of this keypair identifies the chain, the public key must
also be cryptographically bound to the runtime for it not to be able to deny
its involvement. This is achieved with the provenance attestation mecha-
nism described in Section 4.2.4. However, this has not been implemented
by the PoC.

6.1.5 Chronology (PS-5)

The QUICKPROV system must guarantee that the provenance records be
collected and stored in a chronological order. The runtime runs in a sin-
gle thread, thus ensuring mutual exclusion for IO and enclave migration.
Since there cannot be interleaving, the runtime guarantees that prove-
nance records are collected in the correct order. Furthermore, provenance
chains are append-only, meaning that the collected records are always
stored at the end, which preserves the chronological order on storage as
well.

6.2 Performance analysis

In this section we will analyze the performance goals formulated in Sec-
tion 3.4.2. We have evaluated the performance of QUICKPROV on a ma-
chine equipped with a 6-core Intel® CoreTM i7-10750H CPU and 16 GB
of RAM. Due to complications1 in getting the enclave platform with the
QUICKPROV PoC to run correctly on OP-TEE with QEMU, we have run
our performance experiments on Linux. This implies that provenance data
is stored unprotected on regular files on the REE filesystem. For the test,
we have developed a minimal WTA that performs various IO operations
and triggers a migration2. The runtime loads and runs this WTA in a
wasmi enclave, and logs a provenance record for each of these operations.
The runtime logs a total of 4096 provenance records for the entire execu-
tion of the WTA: 4095 IoRecords and 1 MigrationRecord.
#[no_mangle]

pub extern "C" fn test_prov() -> i32 {

// Trigger 4095 IoRecords

for i in 0..4095 {

1The complications stem from QEMU limiting the amount of TrustZone secure mem-
ory (i.e., TZDRAM SIZE) to 15 MB.

2The migration code was developed by a colleague working on a separate sub-project.
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test_create_close_and_delete_object();

}

// Trigger a MigrationRecord

trigger_migration();

ERRNO_OK

}

Listing 6.1: The test prov function of the test WTA

6.3 Minimal intrusiveness (PP-1)

The QUICKPROV collection process should incur minimal performance
overhead. We have measured the time it takes to collect and log a prove-
nance record with respect to the execution time of the create object func-
tion. The execution time of create object is, on average, approximately
450µs. On the other hand, the time it takes to log a record is, on average,
230.18µs (±91.5). Since the log is based on a Merkle hash tree, we ex-
pect the logging time to grow as quickly as O(log n), where n is the total
number of records in the chain, since every append operating requires up-
dating all the intermediate hash nodes from the added leaf up to the root
node.

6.4 Minimal storage overhead (PP-2)

The collected provenance data should not require a considerable amount
of storage space. The test WTA produces, in total, 2177 KB of provenance
data, meaning approximately 544.25 bytes per record. We attribute the
considerable record size to the the data serialization code of the QUICK-
PROV PoC. We argue that, by adopting a binary encoding of the records
instead of JSON, we can achieve a total provenance data size of approxi-
mately 320 KB for the same workload.

6.5 Responsiveness (PP-3)

Finally, migrating the provenance data to another TEE worker should not
significantly affect the total migration time of an enclave. We have mea-
sured the migration time of an enclave that hosts the test WTA. This in-
cludes creating a snapshot of the enclave, transferring it to the destination
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worker node, and re-loading the enclave and its provenance data from the
snapshot. The results are shown below:

Migration step With QUICKPROV (ms) Without QUICKPROV (ms)
Snapshot creation 2.25 (±0.20) 1.43 (±0.09)
Snapshot transfer 467.51 (±12.16) 362.95 (±8.32)
Snapshot restore 99.55 (±5.22) 93.54 (±3.48)

Table 6.1: Enclave migration time with and without QUICKPROV. The
average and standard deviation values are computed over a sample of six
different workload runs.

As expected, transferring the 2177 KB of provenance data requires, ap-
proximately, an extra 100 ms. On the other hand, creating and restoring a
snapshot of the enclave does not seem to be noticeably affected by QUICK-
PROV. This is also expected, since creating and restoring a snapshot of an
enclave only requires copying its memory and writing its provenance data
on disk.
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Discussion

The objective of QUICKPROV is to enable fast, trustworthy data prove-
nance for mobile enclaves. As enclaves migrate through many systems,
systems can check the provenance data to check their history and decide
whether to trust them or not. The PoC we developed addresses all the
security requirements of QUICKPROV except attestability (PS-6). QUICK-
PROV needs to be attestable in order to convince other systems that prove-
nance data is actually trustworthy. Therefore, part of future work con-
sists in implementing the provenance attestation scheme described in Sec-
tion 4.2.4. This scheme will also need to include a challenge in the attesta-
tion certificates to provide freshness, which will ensure that cached certifi-
cates cannot be replayed.

Another security aspect that is relevant to QUICKPROV but has not
been covered in detail in this work is that of key erasure, that is whether
or not a keypair must be erased once the chain it signs is migrated. Every
TEE generates a new keypair when an enclave is first initialized or when
it resumed after a migration. This keypair is then used to sign a new log
in the chain. Erasing a keypair once a chain is migrated ensures that, if
the owning TEE is ever to be compromised, it will be unable to reuse the
old key to produce valid provenance records or overwrite history from a
chain it signed in the past. This prevents the TEE from pretending that
a log starts from an older point in the chain than it actually does. Attest-
ing that a key was indeed deleted from the TEE requires a proof of secure
erasure (PoSE) [34]. We argue that we can leverage the TEE security guar-
antees to provide this proof as a claim that can be included in attestation
certificates. This would allow a TEE to perform key erasure that can be
verified by remote parties, as proposed by Hao et al. [27].

One of the performance goals for QUICKPROV is for it to be minimally
intrusive (PP-1). The results from our experiments reveal that provenance
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logging accounts for about 33% of an IO operation, and, theoretically, the
logging time will grow logarithmically with respect to the length of the
provenance chain. However, the experiments did not take into account
the overhead of replay protection, which generally requires incrementing
a monotonic counter, either directly or indirectly (e.g., RPMB).

Matetic et al. [44] show that incrementing monotonic counters in non-
volatile memory is generally slow (80–250 ms).

We also argue that we can achieve a much lower storage overhead
(PP-3) by adopting a more optimized representation for the provenance
records (e.g., binary) and compressing the chains and their auxiliary struc-
tures.

Experiment results on QUICKPROV’s responsiveness (PP-3) show that
each KB of provenance data adds, on average, a delay of approximately
48µs to the migration process. We argue that we can achieve significantly
lower figures by optimizing QUICKPROV’s storage overhead, since prove-
nance transport accounts for about 94% of the migration latency. The re-
ported times, however, do not account for provenance verification, that
is traversing an enclave’s provenance chain (e.g., to inspect its migration
history). Since the ownership information is encoded in the BOF and EOF
markers of each log in the chain, we believe that verifying an enclave’s
history will hardly have any impact on the measured times.
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Related work

The first work on automatic secure provenance collection and storage re-
lied on user processes or the OS kernel as the “root of trust“ for the collec-
tion and storage of provenance data. In 2006, Muniswamy-Reddy et al. in-
troduced a provenance-aware storage system known as PASS [46]. PASS
implemented transparent provenance collection and storage in the kernel
as a module and a virtual file system (VFS) called PASTA, respectively.
PASTA was a provenance-aware VFS that, unlike provenance systems uti-
lizing a separate user-space database (e.g., LinFS [55]), provided ”greater
synchronicity” between data and its provenance by caching the prove-
nance in an in-kernel Berkeley DB [50]. In 2008, Simmhan et al. proposed
Karma2 [58], a provenance framework for data-driven workflows that, un-
like PASS, implemented provenance collection at the workflow and pro-
cess level [67]. Moreover, instead of Berkeley DB, Karma2 was based on an
XML database [67]. To address the deployment issues caused by the dif-
ferent storage models adopted by each provenance system (e.g., Berkeley
DB, XML, etc.), Hasan et al. introduced a ”highly-configurable, platform-
independent library for secure provenance” called SPROV2 [29].

The growing interest and availability of TEEs to the public, in conjuc-
tion with the advent of blockchains, has ushered in a new era for data
provenance. TEEs provide a trusted and strongly isolated environment
for the execution and storage of security and privacy critical code and
data, which perfectly serves the requirements of secure and trustworthy
provenance. Blockchains can ensure the availability and tamper-evidence
of provenance by providing a witness that auditors can query to verify its
integrity. Taha et al. [8] were the first to leverage the TPM to achieve trust-
worthy provenance collection, although this was still integrated at the OS
level. Liang et al. were the first to securely store provenance metadata
on a blockchain with their ProvChain [39] system. However, Kaaniche et
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al. were the first to secure both provenance collection and storage with
Prov-Trust [33]. They achieved this by running the collection module in-
side an SGX enclave and storing the provenance metadata on a Hyper-
ledger blockchain [5]. Hyperprov [64] is another provenance framework
that uses Hyperledger Fabric to securely store the metadata, while storing
the actual provenance data on a pluggable off-chain, storage medium.

Since blockchains can have several writers, they have to rely on consen-
sus algorithms to reach unanimous agreement on the state of the ledger.
Depending on the algorithm, it may take several seconds, if not minutes,
to commit a transaction on a blockchain. Permissioned blockchains guar-
antee lower transaction finality times by restricting the blockchain writers
to a select few authorized ones, which allows for adopting more efficient,
deterministic consensus mechanisms like PBFT [12]. When we only have
one writer per blockchain, there is no need for consensus at all. This obser-
vation is exactly what underpins projects like Hypercore [30], Secure Scut-
tlebutt (SSB) [56] and Chronicle [51], which rely on single-writer, append-
only logs that, in the case of Hypercore and SSB, can be replicated by other
peers over a network. Although these logs can indeed be replicated, Hy-
percore and SSB do not specify an incentive for replication, which is what
derived projects like DatDot [17] attempt to solve by bridging the log repli-
cation protocol with a blockchain’s built-in incentive model. These logs,
which are part of a wider class referred to as verifiable data structures [2],
are a fundamental building block of Google’s Trillian [24] project, which
powers certificate transparency [38], one of the most widely used produc-
tion grade ledger-based ecosystems. Certificate transparency constitutes
an exemplary instance of another problem that can be solved without
blockchains. Certificate transparency and, more in general, verifiable data
structures, provide several proofs that auditors can periodically verify to
ascertain their immutability (i.e., integrity and append-only) and correct
operation. However, there is no guarantee that an append-only log can-
not be truncated, i.e., rolled back to a proper prefix, in between two audit
operations, since there is no permanent secure communication channel be-
tween the auditors and whomever maintains the log [65]. This problem,
referred to as freshness, is all the more critical if the log is maintained
and operated in an untrusted environment, where attackers may want to
truncate information to conceal their malicious activity or just to disrupt
correct operation.

Strong rollback detection requires either that information be stored on
a replay-protected medium (e.g., RPMBs) or that its state be anchored to
a secure hardware monotonic counter. When the freshness of data can-
not be guaranteed by hardware, trusted monotonic counter services such
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as ROTE [44] and ADAM-CS [43] exist that allow for allocating a virtual
monotonic counter on a remote TEE. ROTE securely stores the counters in
SGX enclaves and replicates them with a flexible gossiping protocol that
can withstand up to 1 Byzantine enclave for every 2 processors (each en-
clave is run on a separate processor), instead of the usual 3 f + 1 constraint
of standard Byzantine consensus protocols [44]. ADAM-CS, on the other
hand, relies on TPMs to multiplex hardware counters into multiple vir-
tual counters protected against data loss and rollback attacks, and only
uses replication to increase performance [23].



Chapter 9

Conclusion

In this work, we have designed QUICKPROV, a framework for fast, trust-
worthy data provenance for enclaves in heterogeneous distributed sys-
tems. Instead of relying on slow and expensive consensus algorithms to
achieve trustworthiness, we leveraged tamper-evident logs and the strong
security and isolation guarantees of TEEs to guarantee the confidential-
ity, integrity and authenticity of provenance data during its collection and
storage phases. We also designed a remote attestation mechanism that
TEEs can utilize to convince remote parties that the provenance data is
trustworthy. This can be used when migrating enclaves and their prove-
nance data between TEEs. Hence, we developed a PoC implementation
of the QUICKPROV provenance collection and storage modules and an
enclave platform for WebAssembly applications on top of which QUICK-
PROV can track enclave migrations and IO operations. We showed that
the PoC fulfills all the security requirements except attestability, which is
left as future implementation work. Finally, we argued that further opti-
mizations can be implemented to drastically reduce storage overhead of
the PoC, thereby also achieving an overall higher responsiveness.

To conclude, we envision two interesting directions for future work.
The first direction is concerned with researching how TEE capabilities can
be leveraged to prove the secure erasure of signing keys, which is what
we earlier referred to as PoSE. This can be used by a proving TEE, for in-
stance, to convince a relying TEE that a provenance signing key has been
completely erased from TEE memory and secure storage. This ensures
that the key cannot leak and be reused to forge provenance data. The sec-
ond direction consists in researching optimized data structures for prove-
nance data that will enable more efficient querying and analysis, which is
extremely important for large provenance chains. This will enable prove-
nance auditors, such as a client TEE, to more efficiently retrieve records

77
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from a chain that match a specific query, instead of traversing the entire
chain to filter the records they are interested in.
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