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A B S T R A C T   

Background: Patients suffering from functional neurological disorder (FND) experience disabling neurological 
symptoms not caused by an underlying classical neurological disease (such as stroke or multiple sclerosis). The 
diagnosis is made based on reliable positive clinical signs, but clinicians often require additional time- and cost 
consuming medical tests and examinations. Resting-state functional connectivity (RS FC) showed its potential as 
an imaging-based adjunctive biomarker to help distinguish patients from healthy controls and could represent a 
“rule-in” procedure to assist in the diagnostic process. However, the use of RS FC depends on its applicability in a 
multi-centre setting, which is particularly susceptible to inter-scanner variability. The aim of this study was to 
test the robustness of a classification approach based on RS FC in a multi-centre setting. 
Methods: This study aimed to distinguish 86 FND patients from 86 healthy controls acquired in four different 
centres using a multivariate machine learning approach based on whole-brain resting-state functional connec-
tivity. First, previously published results were replicated in each centre individually (intra-centre cross- 
validation) and its robustness across inter-scanner variability was assessed by pooling all the data (pooled 
cross-validation). Second, we evaluated the generalizability of the method by using data from each centre once as 
a test set, and the data from the remaining centres as a training set (inter-centre cross-validation). 
Results: FND patients were successfully distinguished from healthy controls in the replication step (accuracy of 
74%) as well as in each individual additional centre (accuracies of 73%, 71% and 70%). The pooled cross 
validation confirmed that the classifier was robust with an accuracy of 72%. The results survived post-hoc 
adjustment for anxiety, depression, psychotropic medication intake, and symptom severity. The most discrimi-
nant features involved the angular- and supramarginal gyri, sensorimotor cortex, cingular- and insular cortex, 
and hippocampal regions. The inter-centre validation step did not exceed chance level (accuracy below 50%). 
Conclusions: The results demonstrate the applicability of RS FC to correctly distinguish FND patients from healthy 
controls in different centres and its robustness against inter-scanner variability. In order to generalize its use 
across different centres and aim for clinical application, future studies should work towards optimization of 
acquisition parameters and include neurological and psychiatric control groups presenting with similar 
symptoms.   
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1. Introduction 

Functional neurological disorders (FND) describe the presence of 
neurological symptoms not caused by a classical neurological disease 
(American Psychiatric Association, 2013) but related to brain dysfunc-
tions (Drane et al., 2020). Patients can experience a wide range of 
neurological symptoms, most frequently motor (e.g., weakness or 
abnormal movements), sensory (e.g., numbness), or attacks of clouded 
consciousness which are sometimes accompanied by convulsions (World 
Health Organization, 1993). Nowadays, the diagnosis of FND is made on 
the basis of positive clinical signs (Daum et al., 2015; Stone and Carson, 
2015), and less emphasis is put on an exclusion process (i.e., not iden-
tifying an underlying explanatory neurological disease). Indeed, even if 
there is no gold standard against which to compare the validity of these 
signs, several recent studies have shown excellent specificity for several 
bedside clinical signs (Daum et al., 2015; Espay et al., 2018a; Syed et al., 
2011). However, due to heterogeneity of FND symptoms and a broad 
spectrum of potential differential diagnosis, specialists often request 
multiple time- and cost-consuming additional tests to rule out an un-
derlying organic lesion or comorbid condition (Espay et al., 2009), even 
if they were convinced of the diagnosis based on their initial clinical 
evaluation (Espay et al., 2018a). This highlights the need to identify an 
adjunctive positive biomarker to support clinicians in their daily clinical 
routine. Such a marker could allow rapid confirmation of the clinical 
diagnosis, rather than engaging in a long and exhaustive process of 
excluding all evoked differential diagnoses. 

In the search for new biomarkers in neuropsychiatric disorders, 
resting-state (RS) functional magnetic resonance imaging (fMRI) has 
gained growing attention as a promising and easily applicable tool 
(Greicius, 2008). Resting-state fMRI allows studying blood oxygen 
dependent level (BOLD) signal fluctuations in the brain under resting 
condition and therefore does not depend on the patient’s active partic-
ipation. Furthermore, inter-regional correlations of temporal fluctua-
tions are thought to reflect functional connectivity (FC) between 
spatially distinct brain regions. Therefore, RS fMRI can reveal important 
information about underlying neuropathophysiological changes in 
functional networks of patients (Sokolov et al., 2019; Takamura and 
Hanakawa, 2017; van den Heuvel and Hulshoff Pol, 2010). Even though 
task-based fMRI studies are predominant in FND, RS studies in FND were 
able to confirm findings from task-based studies and identified consis-
tent results. Amongst the existing RS studies, (1) increased limbic con-
nectivity to motor control areas (Baek et al., 2017; Maurer et al., 2016; 
van der Kruijs et al., 2012), (2) aberrant connectivity from the right 
temporoparietal junction (TPJ) to sensorimotor regions (Diez et al., 
2019; Hassa et al., 2017; Maurer et al., 2016; Mueller et al., 2022; 
Wegrzyk et al., 2018), as well as (3) altered connectivity from memory- 
related temporal structures (Longarzo et al., 2020; Monsa et al., 2018; 
Szaflarski et al., 2018) were identified. 

In parallel, the application of machine learning algorithms offers a 
complementary tool for RS fMRI data analysis. Moreover, machine 
learning approaches have shown to be robust and sensitive to disease- 
specific alterations in functional and structural medical images (Erick-
son et al., 2017). As such, its value has been demonstrated in several 
neurological diseases and heterogenous psychiatric disorders by suc-
cessfully distinguishing patients from healthy controls based on RS FC 
(for review see (Nielsen et al., 2020)). 

In the field of FND, our previous study (Wegrzyk et al., 2018) showed 
promising results with regards to accurately distinguishing FND from 
healthy controls (HC). We applied a multivariate classification approach 
based on whole-brain RS FC aiming at discriminating motor FND pa-
tients from healthy controls in a predictive setting. Similarly, in another 
study the seizure-subtype of FND (psychogenic non-epileptic or func-
tional seizures) was successfully classified against healthy controls, 
based on RS FC (Ding et al., 2013) and T1-weighted structural MRI data 
(Vasta et al., 2018). Even though real-life use of such a biomarker will 
need control groups with similar symptoms to FND and not only healthy 

controls, these studies provided a strong rationale to continue the vali-
dation of such classification algorithms. Indeed, most bedside positive 
signs for FND are specific and reliable, but neuroimaging classification 
based on machine learning might provide a future clinical tool in the 
form of an additional rule-in test against other neurological and psy-
chiatric diseases and disorders. 

The translation of neuroimaging data from bench to bedside has al-
ways been challenging due to the clinical heterogeneity (Espay et al., 
2018a; Galli et al., 2020) and within-group differences of neuropsychi-
atric disorders (i.e., FND patients), and consequently its limited gener-
alizability within and between patient populations (Stone et al., 2011). 
Importantly, overcoming the problem of low generalizability requires 
large samples, which includes patients with different symptom types and 
symptom severities, and preferably from different centres. Furthermore, 
establishing RS FC as an adjunctive positive biomarker for FND requires 
its applicability within and across different centres, i.e., different 
symptom types and symptom severity, consequently increasing the 
sample size and the heterogeneity of the dataset, which might benefit 
the classification performance. The next step towards a clinical appli-
cation therefore includes the validation of multivariate classification 
approaches in different datasets (i.e., with regard to FND subtypes or 
scanners), and to assess their performance when using multi-centre data. 

To bridge this gap, we set out to further evaluate the classification 
performance of our previously published classification approach 
(Wegrzyk et al., 2018) through three different validation steps (Dyrba 
et al., 2013; Nunes et al., 2020; Rozycki et al., 2018). First, our aim was 
to replicate the previous results by applying the method in additional 
datasets collected at other centres (intra-centre cross-validation step) 
and test its robustness when used in a multi-centre setting by pooling the 
data of these centres together (pooled cross-validation step). Our second 
aim was to assess the generalizability of the method by using data from 
each single centre once as test set after training on the data from the 
other centres (inter-centre cross-validation step). Successfully dis-
tinguishing FND patients from HC in a multi-centre setting could set 
path towards a clinical application by including neurological and psy-
chiatric controls with similar symptoms (but other diagnoses) in future 
studies. 

2. Materials and methods 

2.1. Participants 

Data were collected retrospectively from four different European 
University Neurology Departments: i) Geneva (Switzerland, previously 
published in (Wegrzyk et al., 2018)), ii) Bern (Switzerland), iii) Prague 
(Czech Republic, previously published in (Mueller et al., 2022)) and iv) 
Groningen (The Netherlands, previously reported in (Marapin et al., 
2021, 2020)). Board-certified neurologists confirmed the diagnosis of 
FND according to DSM-5 (World Health Organization, 1993) and using 
positive signs (Stone and Carson, 2015).We included FND patients with 
motor and sensory symptoms (F44.4 and 44.6), with functional seizures 
(F44.5), and mixed symptom type (F44.7). For movement disorders 
(F44.4), clinically definite and documented diagnoses according to 
(Gupta and Lang, 2009) were included. Exclusion criteria were a current 
neurological disease or disorder (other than FND), alcohol or drug 
abuse, pregnancy or breast-feeding, and contraindication for MRI 
scanning. The studies were approved by local ethics committees at each 
of the centres, i.e., the ethics committee of the University Hospitals of 
Geneva (CER 14-088), the Competent Ethics Committee of the Canton 
Bern (SN_2018-00433), the Ethics Committee of the General University 
Hospital in Prague (approval number 26/15) and the Medical Ethical 
Committee of the Amsterdam University Medical Center, location AMC, 
the Netherlands (identification number MEC10/079). All subjects pro-
vided written informed consent. 

The dataset included 220 MRI scans from patients suffering from 
FND and age- and sex-matched HC. Data from 21 subjects were excluded 
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due to too high motion artefacts (see section 2.3), and 10 subjects were 
excluded due to insufficient quality of the functional data (slice artefacts 
in frontal and/or parietal regions). To maintain an equal number of age- 
and sex matches, the equivalent age- and sex match of each excluded 
subject was discarded as well (n = 17), in order to have a well-balanced 
dataset (Dyrba et al., 2013; Nielsen et al., 2020). We confirmed matched 
ages within and between the centres using a type III - ANOVA with factor 
group and centre. The remaining 172 MRI scans included data from 86 
patients and their 86 age- and sex-matched healthy controls (Table 2), 
correspondingly, it needs to be underlined that - as compared to the 
previous work - two healthy controls were excluded from the original 
dataset of centre I in order to have equal number of subjects in both 
groups. Similarly, as compared to the dataset in (Marapin et al., 2021; 
2020), two subjects were excluded due to motion artefacts along with 
their corresponding age- and sex match). 

2.2. Data acquisition 

Mood disorders are known comorbidities in FND patients (Carson 
and Lehn, 2016). Therefore, anxiety and depression scores, as well as 
psychotropic medication (i.e., benzodiazepines, neuroleptics, antide-
pressants, antiepileptics, and opioids) are commonly assessed in studies 
on FND patients. Accordingly, centre I, II, and III collected behavioural 
data of patients and controls on anxiety and depression using the 
Spielberg State-Trait Anxiety Inventory (STAI, Spielberger et al., 1983) 
and the Beck’s Depression Inventory (BDI, Beck, 1961). Centre IV 
collected behavioural data on anxiety and depression in patients using 
the Beck’s Anxiety Inventory (BAI, Beck et al., 1988) and the Beck’s 
Depression Inventory (BDI, Beck, 1961). Symptom severity was evalu-
ated using the Clinical Global Impression (CGI) score (0 = no symptoms 
to 5 = very severe symptoms) in centre I; using the CGI score (0 = no 
symptoms to 7 = very severe symptoms) in centre II and IV; and using 
the Simplified Version of the Psychogenic Movement Disorder Rating 
Scale (S-FMDRS, Nielsen et al., 2017) in centre III. CGI scores with 
different scales were converted into the same scale. S-FMDRS scores 
were converted into CGI scores (see Supplementary Material, Appendix 
1). Differences in symptom severity between centres (CGI score) were 
analysed using one-way ANOVA. 

Functional and structural MRI data were all acquired on 3-Tesla units 
using different MRI manufacturers, machines and protocols. Acquisition 
parameters for the fMRI data of each centre are summarized in Table 1. 
In one centre (centre IV), fMRI data were based on fast field single echo 
planar imaging (FEEPI), whereas in the others, it was based on whole- 
brain single shot multi-slice BOLD echo-planar imaging (EPI). Struc-
tural scans were obtained using a T1-weighted Magnetization Prepared 
Rapid Gradient-Echo (MPRAGE) image in centre I, II, and III; and using a 
T1 weighted turbo field echo (TFE) image in centre IV. 

2.3. MR pre-processing 

Data were pre-processed and analysed using MATLAB (R2017b, 
MathWorks Inc., Natick, USA). Each centre was pre-processed individ-
ually. An adapted version of the previous pre-processing pipeline from 
(Wegrzyk et al., 2018) based on the Statistical Parametric Mapping 
version 12 (SPM12) tools (https://www.fil.ion.ucl.ac.uk/spm/softwa 
re/spm12/) was used, including: functional realignment and co- 

registration of the mean functional image to the structural image, and 
segmentation of the structural image into grey matter, white matter, and 
cerebrospinal fluid. The functional images were additionally checked for 
excessive head motion using the framewise displacement (FD) method 
of Power and colleagues (Power et al., 2014). Mean FD and number of 
volumes above threshold of >0.5 mm were calculated per subject. A 
type III – ANOVA was used to evaluate differences in motion artefacts for 
the factors group and centre. Then, for each subject an individual 
structural brain atlas based on the AAL atlas (Tzourio-Mazoyer et al., 
2002) was built using a customized version of the IBASPM toolbox 
(Aléman-Gomez et al., 2006). From the AAL atlas, we used 88 regions 
(whole atlas without the cerebellum and pallidum (due to signal drop- 
out), same as in (Wegrzyk et al., 2018)). The individual structural 
atlas was mapped onto the native resolution of the functional data. 
Furthermore, region-averaged time-series were extracted and motion 
parameters, as well as the average signal from the white matter and the 
cerebrospinal fluid were regressed out (Richiardi et al., 2011; Wegrzyk 
et al., 2018). The region-averaged time-series were Winsorized to the 
95th percentile to reduce the effect of outliers and linearly detrended. 
For optimization purposes of the first validation step (see section 2.5), 
the region-averaged time-courses were either bandpass filtered 
(0.01–0.08 Hz) or wavelet subband filtered (Richiardi et al., 2011) (see 
Supplementary Material, Appendix 2 for further details and explana-
tions on the pre-processing pipelines). 

2.4. Resting-State functional connectivity modelling 

Pairwise Pearson correlation coefficients between each pair of atlas 
regions were calculated for each subject to obtain a correlation matrix 
(number of regions × number of regions) (Smith et al., 2011). The 
correlation coefficients were Fisher-Z transformed to make the connec-
tivity matrices Gaussian. The Fisher-Z transformed connectivity 
matrices of each centre were then connection-wise Z-scored to 
normalize the data with regard to centre, which acts as a site harmo-
nization. To evaluate the effectiveness of the normalization, we analysed 
within- and between centre and group effects of functional connectivity 
differences between each pair of regions using n-way ANOVA before and 
after normalization. For each subject, the upper triangular part (without 
the diagonal) of the correlation matrix was extracted and lexicograph-
ically organized in a two-dimensional feature representation, which was 
used further as input feature vectors for the classifier. The feature vector 
of each subject therefore contained [(88 × 87)/2 ] = 3828 features. The 
exact procedure can be found in (Richiardi et al., 2011; 2010). 

2.5. Classification 

To perform a binary classification, a Support Vector Machine (SVM) 
classifier with a linear Kernel function and L2 regularization was used, 
which learned a discriminative function that separated the two groups as 
accurately as possible. The SVM implementation for MATLAB of the 
LIBSVM package (Chang and Lin, 2011) (software available at 
https://www.csie.ntu.edu.tw/~cjlin/libsvm/) was used, where the C 
parameter was set at 1. The classification process includes two main 
steps: 1) training and testing of the model and 2) evaluation of the 
model. In order to estimate the performance of our model, we chose 
three cross-validation approaches adapted and similarly implemented as 

Table 1 
Scanner acquisition parameters.  

Centre Model Manufacturer TR [s] TE [ms] Acquisition time [min] Volumes flip angle [◦] Voxel size[mm3] 

I Magnetom TrioTim Siemens 2 20 05:08 150 80 3.0 × 3.0 × 2.5 
II Magnetom Prisma Siemens 2 20 05:08 150 80 3.0 × 3.0 × 2.5 
III Magnetom Skyra Siemens 2 30 10:16 300 90 3.0 × 3.0 × 3.0 
IV Philips Intera Medical Systems Philips 2 30 07:30 225 70 3.5 × 3.5 × 3.5 

Abbreviations: TR: repetition time; TE: echo time. 
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in (Dyrba et al., 2013) and (Nunes et al., 2020): 

(1) Intra-centre cross-validation: Each dataset was evaluated indi-
vidually by separating training and test set by using an n-fold 
leave-one-out (LOO) cross-validation approach, where n repre-
sents the number of subjects. For each iteration, n-1 subjects were 
used as training data and the remaining subject was used as test 
data. This was repeated until each subject within a centre was 
used once to test the classification performance. During this intra- 
centre cross-validation, we therefore replicated the results in 
centre I, and validated its applicability in three other datasets 
originating from three separate centres (centre II-IV).  

(2) Pooled cross-validation: All the data of the four centres were 
pooled and separated in a training set and a testing set by using 
the n-fold LOO cross-validation approach again. The classifier 
was trained on n-1 subjects, including all subjects of the four 
centres, and tested on the remaining subject. This was repeated 
until each subject from each centre was used once to test the 
classification performance. During this pooled cross-validation, 
we evaluated the classifiers performance when working with 
data that arise from different scanners introducing a scanner- 
specific variability.  

(3) Inter-centre cross-validation: The data from s-1 scanners were 
used as a training set and the data from each remaining single 
centre was used once as a testing set. During this inter-centre 
cross-validation, we investigated if the learned linear SVM 
model can be applied to data from an unknown scanner and 
therefore evaluated its generalization power. 

This setting poses great challenges due to the many sources of un-
controlled variance across scanners and datasets (Abraham et al., 2017; 
Noble et al., 2017). We thus further examined the classification per-
formance when gradually transferring subjects from the test set to the 
training set. Doing so, the test set is not fully naïve to the potential 
centre-specific bias introduced in the inter-centre cross-validation 
setting. This procedure, however, can help to understand the impact of 
scanner-specific bias to the classification performance. We iteratively 
transferred data from two subjects (one HC and one FND) from the test 
set to the training set to examine the learning curve. In each iteration, 
two more subjects were transferred from the test set to the training set 
until a maximum number of 28 subjects (i.e., 14 HC, 14 FND) was 
transferred. Namely, 28 subjects represent the maximum number of 
subjects that can be transferred in order to have at least two remaining 
subjects in the test set. 

In each setting, the classification performance was calculated as the 
average performance across all folds. Fig. 1 gives an overview of the 
three different validation steps (for a detailed description, see Supple-
mentary Material, Appendix 2). 

2.6. Evaluation 

To evaluate the classifier’s performance, accuracy, sensitivity, 
specificity, as well as the area under receiver operating characteristic 
curve (AUC) were computed. The accuracy provides information about 
the overall performance of the classifier with respect to both groups and 
was defined as accuracy = (TP + TN)/n where TP is the number of true 
positives (patients correctly classified as patients), and TN is the number 
of true negatives (controls correctly classified as controls) and n is the 
total number of subjects. The sensitivity is the true positive rate and the 
specificity the true negative rate, i.e., sensitivity = TP/(TP + FN), 
specificity = TN/(TN + FP), where FN and FP refer to the number of 
false negatives and false positives, respectively. The AUC assesses the 
probability of correctly classifying a random pair of patient and control. 
It reflects test accuracies as follows: AUC = 1 refers to perfect accuracy, 
AUC between 0.7 and 0.9 refers to moderate, AUC between 0.5 and 0.7 
= refers to low and, AUC = 0.5 is uninformative. To assess the 

significance of the classification, we performed permutation testing, i.e., 
the classification was repeated 1000 times using its null distribution 
with the group labels (patients/control) randomly permuted. 

2.7. Post-hoc analyses 

2.7.1. Most discriminative connections 
To shed light on which brain areas may be linked to the patho-

physiology of FND and common across all four centres, we focussed the 
post-hoc analyses on the validation steps which pooled all the data from 

Fig. 1. Flow chart of the three cross-validation approaches including (A) intra- 
centre cross-validation, (B) pooled cross-validation, and (C) inter-centre cross- 
validation. Throughout the training, a leave-one-out cross-validation (LOOCV) 
approach was applied. 
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the four centres (step 2: pooled cross-validation). In order to explore the 
connections that were most discriminative to distinguish patients and 
controls, we analysed the highest weights assigned by the classifier to 
the different functional connections (i.e., correlation coefficients). 

Within these most discriminative connections, we then further 
identified those regions that appeared with the highest frequency. From 
this set of regions, we analysed the connectivity differences between 
patients and controls by exploring whether these regions were hypo- or 
hyper-connected in patients versus controls. For this purpose, we 
calculated the mean connectivity between the corresponding pairs of 
regions for each group (healthy controls and FND patients). 

2.8. Impact of anxiety, depression, medication, and clinical score on 
classification performance 

In order to verify that our results were not driven by potential con-
founding factors like anxiety (STAI), depression (BDI), psychotropic 
medication (yes/no), and clinical scores/symptom severity (CGI), we 
used a logistic regression analysis (using glm function in R, which 
automatically removes missing data from regression analysis). Specif-
ically, we test whether the aforementioned factors could predict if a 
subject was classified correctly or not (yes/no). We tested each factor 
individually and in combination. 

3. Results 

3.1. Demographic and clinical data 

Data from 86 FND patients and 86 age- and sex-matched healthy 
controls, arising from four different centres were included in this study. 
All patients and 71 HC completed the Beck’s Depression Inventory (BDI, 
(Beck, 1961)); 71 patients and 71 HC completed the State-Trait Anxiety 
Inventory (STAI-S, (Spielberger et al., 1983)). Two patients of centre II 
were not rated using CGI. Demographic and clinical data are presented 
in Table 2. There was no significant difference in age between centres 
and groups. One-way ANOVA on symptom severity (CGI scores) iden-
tified a significant effect of factor centre. Post-hoc Tukey’s honestly 
significant difference (Tukey’s HSD) showed that the difference in 
symptom severity between centre I and IV (p = 0.02), between centre II 
and IV (p = 0.001) and centre III and IV (p = 0.011) were statistically 
significant, meaning centre IV had more severe cases than the three 

other centres. 
FND symptom type was similar between centre I to III with a ma-

jority of abnormal movement (F44.4) diagnosis (see Table 2 for details) 
as well as functional seizures (F44.5) or mixed (F44.7) whereas centre IV 
had exclusively abnormal movements (F44.4) cases. 

3.2. Framewise displacement 

FD measures showed a significant main effect of centre (F(3,164) =
5.5210, p = 0.001). Post-hoc multiple comparison of means showed that 
the difference between centre I and centre III (p < 0.0001) and centre IV 
(p = 0.0006), as well as between centre II and centre III (p = 0.0002) and 
IV (p = 0.008) were statistically significant (Supplementary Material, 
Figure S1), meaning that centres III and IV had more motion artefacts as 
compared to centre I and II. 

3.3. Replication and robustness of classification approach  

(1) Replication: Applying the method from (Wegrzyk et al., 2018) on 
the slightly modified sample size (see section 2.1) found very 
similar values: accuracy of 73.9 % (published 68.8%), as well as a 
highly balanced sensitivity of 69.6% (published 68%), specificity 
of 78.3% (published 69.6%), and with AUC of 0.86.  

(2) Intra-centre cross-validation: The exact same method, when 
applied to centres II, III and IV, yielded accuracies ranging from 
70 to 72.9% (p = 0.02–0.001). Equivalently, the sensitivity and 
specificity were balanced (sensitivity: 70.8–79.2%, specificity: 

Table 2 
Demographic and clinical characteristics of the four centres.   

Centre I Centre II Centre III Centre IV 

FND (n = 23) HC (n 
= 23) 

FND (n = 24) HC (n 
= 24) 

FND (n = 24) HC (n 
= 24) 

FND (n = 15) HC (n 
= 15) 

Age, mean (SD), 
years 

42.4 (13.9) 41.8 
(13.3) 

39.8 (13.2) 35.5 
(13.3) 

42.6 (10.6) 44.3 
(9.41) 

40.8 (12.2) 40.7 
(13.2) 

Sex (females/males) 21/2 20/3 14/10 16/8 21/3 21/3 7/8 8/7 
Disease severity 

(CGI, median, 
quantile) 

2 [0.5–3] NA 1 [1–2] NA 1 [1–2] NA 3 [2–3] NA 

Psychotropic 
medicament intake 
(yes/no) 

14/9 0/23 6/18 1/23 11/13 7/17 NA NA 

Symptom typea 12 weakness 4 seizures 2 
gait disorder 5 dystonia 7 
tremor 1 myoclonus 

NA 11 weakness 3 seizures 12 
gait disorder 1 dystonia 7 
tremor 2 myoclonus 

NA 18 weakness 1 seizures 4 
gait disorder 2 dystonia 9 
tremor 1 myoclonus 

NA 3 tremor 13 
myoclonus 

NA 

BDI score, mean (SD) 11.3 (5.18) 6.44 
(6.27) 

11.0 (11.7) 3.54 
(3.82) 

18.0 (14.9) 11.8 
(13.1) 

8.33 (8.41) NA 

STAI-S score, mean 
(SD) 

60.6 (13.8) 60.7 
(15.1) 

73.5 (23.0) 64.5 
(17.1) 

90.7 (28.4) 84.0 
(22.7) 

NA NA 

BAI score, mean (SD) NA NA NA NA NA NA 17.2 (13.3) NA 

Data from centres I and IV are not the exact same data as used in the previous publications, due to the exact age- and sex match. Abbreviations: FND: functional 
neurological disorders, HC: healthy controls, BDI: Beck’s Depression Inventors, STAI: State-Trait Anxiety Inventory, CGI: Clinical Global Impression Score ranging from 
0 = none, 1 = mild, 2 = moderate, 3 = severe, 4 = very severe, SD = standard deviation, NA = not applicable. 

a Patients can present with more than one symptom type. 

Table 3 
Classification performance of the intra-centre and pooled validation steps on the 
four different centres.  

Centre Accuracy (%) Specificity (%) Sensitivity (%) AUC p-value 

Intra-centre cross-validation 
I 73.9  78.3  69.6  0.86  0.001 
II 72.9  66.7  79.2  0.73  0.002 
III 70.8  70.8  70.8  0.67  0.002 
IV 70  66.7  73.3  0.75  0.02  

Pooled cross-validation  
71.5  75.6  67.4  0.79  0.003  
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66.7–70.8), and their diagnostic abilities - indicated by the AUC - 
were moderate to good in all three centres (see Table 3 for 
details).  

(3) Pooled cross-validation: When data from the four centres were 
pooled, a significant classification accuracy of 71.5% (sensitivity: 
67.4%, specificity 75.6%, AUC: 0.79, p = 0.003, see Table 3 for 
details) was found. We present below the list of most discrimi-
native features with their SVM weights, the confusion matrix, and 
the receiver operating characteristic (ROC) curve and of the 
pooled cross-validation in Fig. 2. 

A visual representation of accuracy, sensitivity, specificity across all 
centres, and ROC curve of the intra-centre- and inter-centre cross-vali-
dation can be found in Supplementary Material, Figure S2/S3. 

3.4. Post-hoc analyses 

3.4.1. Most discriminative connections 
In the pooled cross-validation, regions such as the hippocampus, the 

bilateral angular gyrus, the cingulate cortex, bilateral frontal regions 
and the bilateral supramarginal gyrus were most frequently found 
within the most discriminative connections. When exploring the con-
nectivity differences between patients and controls in the regions 
yielding the most discriminative connections, we identified increased 
connectivity in patients between:  

(a) the hippocampus and temporal regions (e.g., right superior 
temporal gyrus and middle temporal pole), the cingulate cortex, 
and the bilateral precuneus 

(b) the bilateral angular gyrus and sensorimotor regions (e.g., post-
central gyrus), the bilateral fusiform gyrus, and the left superior 
occipital gyrus  

(c) right cingulate cortex and right frontal regions (e.g., orbitofrontal 
gyrus) and the right thalamus 

Similarly, we identified decreased connectivity in patients between.  

(a) the right hippocampus and right frontal regions (e.g., inferior 
orbitofrontal gyrus), subcortical regions (e.g., bilateral para-
hippocampal gyrus and bilateral amygdala) and subcortical 
structures (left putamen)  

(b) the anterior cingulate cortex and the right caudate  
(c) the right and left amygdala  
(d) left supramarginal gyrus and frontal regions (e.g., orbitofrontal 

and middle frontal gyrus) 

For visualization purposes, regions yielding the most discriminative 
connections for the pooled cross-validation are presented in Fig. 3 (the 
corresponding figure for each single centre can be found in Supple-
mentary Material, Figure S5). A figure displaying hyper- and hypo-
connectivity between the regions yielding the most discriminative 
connections can be found in Supplementary Material, Figure S4. Data 
were visualized using BrainNet Viewer (Xia et al., 2013). Mean func-
tional connectivity in controls and patients between pairs of regions 
showing most discriminative functional connectivity of the pooled cross- 
validation can be found in the Supplementary Material, Table S1). 

Fig. 2. Classification results of the pooled cross-validation, showing in (A) on overview over the 30 most discriminative features to distinguish FND from HC 
representing the weights assigned by the classifier (Median LOOCV importance). LOOCV refers to leave-one-out cross-validation. (B) confusion matrix for the pooled 
cross-validation, and (C) the receiver operating characteristics (ROC) curve, and area-under-the-curve (AUC) for the pooled cross-validation. 
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3.4.2. Logistic regression of anxiety, depression, medication, and clinical 
scores 

Whether a subject was classified correctly or not (yes/no) could not 
be predicted by anxiety, depression, medication and clinical scores - 
neither in the intra-centre nor in the pooled cross-validation setting 
(Supplementary Material, Table S2). These potential confounding fac-
tors thus did not drive the classification performances. 

3.5. Generalizability to multi-centre data  

(1) Inter-centre cross-validation: When data from each single centre 
were used once to test the classifier and data from the remaining 
three centres were used to train the classifier, we found classifi-
cation accuracies ranging from 37.5 to 50% (sensitivity: 37.5 – 
56.5%, specificity: 33.3 – 54.2%), below chance level. Corre-
spondingly, the AUC was below chance (see Table 4 for details). 

(2) Centre normalization of functional connectivity data: After normal-
ization (see section 2.3), n-way ANOVA on the different con-
nections with factor group and centre, corrected for multiple 
comparisons using false discovery rate (FDR), showed only a 
significant effect of factor group in 287 connections. No centre 

Fig. 3. Regions yielding the most discriminative connections of the pooled classification based on the AAL atlas. Size of the nodes correspond to nodal degree, 
respectively occurrence within the most discriminative connections. Colour of the nodes corresponds to different lobes of the AAL. Thickness of edges correspond to 
SVM weights. Thicker edges therefore indicate higher SVM weights, respectively higher discrimination power. The mean functional connectivity values corre-
sponding to this figure can be found in Supplementary Material, Table S1. The figures corresponding to each single centre can be found in Supplementary Mate-
rial, Figure S5. 

Table 4 
Classification performance of the inter-centre cross-validation step on the four 
different centres.  

Inter-centre cross-validation 

Centre Accuracy 
(%) 

Specificity 
(%) 

Sensitivity 
(%) 

AUC p- 
value 

Test set: I 50  43.5  56.5  0.46  0.1 
Test set: II 37.5  33.3  41.7  0.43  1.0 
Test set: III 45.8  54.2  37.5  0.41  1.0 
Test set: IV 46.7  46.7  46.7  0.48  1.0  
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nor interaction effect was found. After normalization, functional 
connectivity thus only differed between groups (FND and HC), 
but no centre effect remained.  

(3) Adapting the inter-centre cross-validation: By gradually transferring 
two subjects (1 HC and 1 FND) from the test set to the training set, 
we observed an improvement of the overall classification per-
formance to the level of the intra-centre and pooled cross- 
validation. However, after the transfer of approximately 16–20 
subjects, the model started overfitting the results. The different 
learning curves of accuracy, sensitivity, and specificity of the four 
centres are presented in the Supplementary Material, Figure S4). 

4. Discussion 

4.1. Classification 

In line with our first aim, these results show that classification of RS 
fMRI brain images with a machine learning algorithm (Wegrzyk et al., 
2018) could be successfully replicated in three separate samples stem-
ming from different recruiting centres. This means that, overall, this 
method can successfully distinguish FND patients from healthy controls 
with accuracies at or above 70% (centre I: 73.9%/II: 72.9%/III: 70.8%/ 
IV: 70.0%). Importantly, these results confirm that the method provides 
an accurate and robust classification of FND patients and healthy con-
trols within different MRI scanners – as the four centres had different 
manufacturers and acquisition parameters – when the models are 
trained at each site. It also shows robustness against clinical heteroge-
neity, because the FND populations of the four centres were not identical 
in terms of symptom type and severity. Namely, centre IV included only 
functional movement disorders (F44.4), whereas centre I to III included 
mixed (F44.7) cohorts. Patients included in centre IV rated their 
symptoms as more severe compared to the FND patients included in the 
other centres. 

To strengthen this first validation step, we examined if the classifi-
cation approach is also robust when merging the data from all four 
centres together. Therefore, we ran the exact same analysis in a second 
validation step by pooling all the data together, this yielded a similarly 
high classification accuracy of 71.5%. Similar results have been found 
among diverse neurological and psychiatric conditions (for review: 
Nielsen et al., 2020; Orrù et al., 2012). This strongly suggests that ma-
chine learning is an appropriate and robust tool to detect differences in 
functional connectivity in FND patients and HC. Furthermore, despite 
the clinical heterogeneity and potential inter-centre confounding factors 
(e.g., inter-scanner variability), the classifier yielded high classification 
accuracies. Using a post-hoc logistic regression analysis, we could 
additionally show that neither anxiety, depression, psychotropic medi-
cation intake, nor clinical scores had an impact on classification per-
formance. These results indicate that our model probably discriminated 
between patients and controls based on features specific to the under-
lying FND pathology (i.e., aberrant functional connectivity) and not the 
clinical comorbidities, nor the symptom severity of FND patients. The 
underlying changes in functional connectivity – independent of symp-
tom type and severity - might represent a FND specific trait, rather than 
a state. To further verify what these FND specific traits are, however, it is 
of utmost importance to compare the classification performance against 
other patient groups with similar symptoms but different diagnoses (e. 
g., other neurological disorders and/or psychiatric controls). Moreover, 
it must be considered that other predisposing factors might potentially 
drive the classification performance. Namely, the aetiology of FND is 
multifactorial. For instance, genetic risk factors or preceding traumatic 
life events are thought to affect the pathophysiological mechanisms of 
FND (Hallett et al., 2022). Particularly, traumatic life experiences and 
childhood adversities are known risk factors with average odds ratio 
between 2 and 4 (Ludwig et al., 2018). Moreover, functional and 
structural alterations have been detected in FND patients in the context 
of trauma exposure, particularly in regions pointed out by the pooled 

analysis such as the cingulate cortex, insula, and the hippocampus 
(Aybek et al., 2015, 2014; Diez et al., 2020; Maurer et al., 2016; Perez 
et al., 2017). To the best of our knowledge, this is the first study using 
multi-centre data of FND patients including different symptom types and 
symptom severity for a multivariate classification approach. Moreover, 
machine learning algorithms seem to be robust enough against different 
symptom types and severity scores, as represented in our results. 

In line with our second aim, we evaluated the generalizability of this 
classification approach by examining whether data from a naïve centre 
can be correctly classified when applying a model that has been trained 
on data from the three other centres. Even though we normalized with 
respect to centre, this third validation step showed that individual 
classification accuracies did not exceed chance level. Compared to the 
pooled validation, this step introduced scanner bias of the left-out centre 
only during the testing, whereas during the pooled cross-validation 
setting the scanner bias was already included in the training set. This 
suggests that variance introduced by inter-scanner variability is too high 
to be overcome using inter-centre cross-validation and might be sub-
stantially different from variance introduced by other confounding 
factors such as comorbidities or symptom severity. With our post-hoc 
adaptation of the inter-centre cross-validation setting, in which we 
gradually transferred subjects from the test set to the training set in 
order to introduce centre-specific scanner bias already during the 
training, we observed a gradual increase in overall classification per-
formance. This observation strengthens our assumption of that inter- 
scanner variability plays a critical role and cannot be overcome in our 
inter-centre cross-validation setting. Indeed, inter-scanner variability is 
a well-known bias for multi-centre RS fMRI data (Noble et al., 2017; 
Zhao et al., 2018) that yet has to be overcome. Specifically for multi- 
centric fMRI graph data, not only functional, but also structural imag-
ing data has been shown to influence graph representation, as fMRI data 
is parcellated according to the structural MRI data (Castrillon et al., 
2015). Neither did regressing out the site substantially aid the classifi-
cation (Castrillon et al., 2015). Alternatively, our sample size might be 
too small to properly capture sufficient variation within each site 
(whether subject-driven or related to technical factors) to generalize to 
completely unseen sites. Another study on multi-site resting-state con-
nectivity classification for Autism spectrum disorder showed that, given 
sufficient subjects in the training set (between 280 and 500 depending 
on inclusion criteria), inter-site performance could reach intra-site per-
formance, but that this was not the case at smaller sample sizes 
(Abraham et al., 2017). The assumption that a sample size may be too 
small, can be strengthened by the fact that after normalizing the data, no 
significant centre effect remained. 

In summary, a multi-centre scenario increases the sample size (i.e., in 
our second validation step) and consequently the heterogeneity of the 
sample, which might benefit the classification performance. On the 
contrary, it introduces systematic inter-scanner variability (“site bias”) 
which is unrelated to the underlying disorder of interest and thus might 
complicate the discriminative power (Abdulkadir et al., 2011). Conse-
quently, there are only a few studies investigating the applicability of 
multi-centre classification based on RS FC. In line with our findings, 
equivalently good classification performances were achieved in pooled 
multi-centre classification settings using a SVM classifier based on RS FC 
e.g., for autism spectrum disorder (N = 240 subjects, accuracy = 79%; 
Chen et al., 2016), for mild cognitive impairment (N = 367 subjects, 
accuracy = 72%;Teipel et al., 2017), as well as for major depressive 
disorder (N = 358 subjects, accuracy = 73%; Nakano et al., 2020). The 
latter also investigated robustness against site bias on classification 
using a leave-one-site-out cross-validation (LOSO-CV; equivalent to our 
inter-centre cross-validation). Comparable with our results, their LOSO- 
CV did not succeed in classifying major depressive disorder in a fully 
unknown dataset. 

The inter-scanner variability clearly limited the classification per-
formance and generalizability when data from a specific scanner was 
only used for testing but not during the training. Combining data from 
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different modalities, has been found to be one solution to overcome the 
limitations of multi-centre RS fMRI (Zhuang et al., 2019). For instance, 
high classification accuracies were achieved in pooled as well as LOSO- 
CV combining T1-weighted (structural/anatomical) images with RS 
functional connectivity from patients with frontotemporal dementia and 
healthy controls (Donnelly-Kehoe et al., 2019). Accordingly, the suc-
cessful classification of functional seizures based on structural imaging 
data (Vasta et al., 2018) would suggest employing multi-modal data of 
FND patients for future classification approaches when working towards 
a clinical application. Furthermore, previous studies attempted to 
identify and characterize inter-scanner variability and how they influ-
ence fMRI data (Dansereau et al., 2017; Friedman et al., 2006). As such, 
classification was found to be improved by site harmonization methods 
(Nakano et al., 2020; Yamashita et al., 2019; Yu et al., 2018). Site 
harmonization approaches, however, still face methodological chal-
lenges: Recent studies raised concerns that site harmonization methods 
might interfere with analytical methods (Chen et al., 2022), depend on 
choice of atlas (Yu et al., 2018), or can be substantially impacted by the 
use of fMRI acquisition parameters (Mori et al., 2018; Yamashita et al., 
2019). Apart from using site harmonization approaches, promising re-
sults have also been found when applying unsupervised machine 
learning algorithms such as deep learning. Although they are compu-
tationally more complex, they appeared to be robust against site dif-
ferences (Dewey et al., 2019; Zeng et al., 2018). At last, a feature 
selection could be implemented in order to reduce the high dimen-
sionality of our feature vectors (Guyon et al., 2003). However, the aim of 
this project was to examine the generalizability of the previously applied 
method on different movement disorders/FND centres, rather than 
developing the best possible machine learning approach suitable for a 
multi-centre setting. Nevertheless, this could be the goal of future 
additional validation studies. 

4.2. Connectivity patterns 

Upon visualization of the most discriminative weights of individual 
connections, we could evaluate their individual contribution to the 
overall classification. Our study identified regions as most discrimina-
tive that indeed were commonly reported in the literature, such as the 
cingulate cortex (Aybek et al., 2015; Baek et al., 2017; Blakemore et al., 
2016; Marapin et al., 2020), right temporal regions (i.e., the tempor-
oparietal junction, TPJ) (Aybek et al., 2014; Espay et al., 2018b; Maurer 
et al., 2016), the amygdala (Aybek et al., 2015; Morris et al., 2017; Voon 
et al., 2011), the insula (Espay et al., 2018b; Stone et al., 2007; Voon 
et al., 2011), the inferior frontal gyrus (IFG, Espay et al., 2018b) or the 
dorsolateral prefrontal cortex (dlPFC, Aybek et al., 2014; Voon et al., 
2016; 2011). However, feature weights need to be interpreted with 
caution, as a machine learning algorithm values the utility for classifi-
cation, rather than the clinical relevance of a feature (Nielsen et al., 
2020; Nunes et al., 2020). Therefore, one should not infer upon the 
potential underlying mechanisms of a disorder, but rather examine the 
weights for their potential pathophysiological validity. As such, our 
results provided connectivity patterns that are particularly interesting to 
further construe: connections including 1) the angular- and supra-
marginal gyri, to sensorimotor regions and 2) cingular- and insular 
cortex, to hippocampal regions. The angular and supramarginal gyrus 
are located within/bordering the temporo-parietal junction (TPJ), a key 
structure for FND. Abnormal interaction between the TPJ and sensori-
motor regions has been repeatedly found in FND patient and is thought 
to be associated with their impaired sensory prediction signal (i.e., the 
sense of agency) (Perez et al., 2012; Voon et al., 2010). Similarly, RS- 
fMRI study in FND identified decreased connectivity from the TPJ to 
sensorimotor regions (Maurer et al., 2016), to the precuneus (Mueller 
et al., 2022), and between the TPJ, motor regions, cingulate cortex and 
insula (Diez et al., 2019), as well as decreased connectivity between the 
right inferior parietal cortex to the dlPFC and the anterior cingulate 
cortex (Baek et al., 2017) supporting the theory of impaired 

sensorimotor integration and impaired sense of agency. On the other 
hand, the cingular- and insular cortex, and hippocampal regions belong 
– amongst others - to the limbic network and are considered to be part of 
the emotion-cognition integrative system (Pessoa, 2008). Altered con-
nectivity in FND in limbic regions have been associated with abnormal 
frontal lobe emotional control and emotion-motion interactions (Aybek 
et al., 2014; Monsa et al., 2018). In particular, aberrant hippocampus 
activity was found in response to aversive stimuli in task-based fMRI 
using emotional stimuli (Aybek et al., 2014; Blakemore et al., 2016; 
Szaflarski et al., 2018). Moreover, increased FC was found between the 
cingulate cortex, precuneus, and the ventromedial prefrontal cortex 
during a motor task (Cojan et al., 2009). Similarly, RS fMRI studies on 
FND identified increased connectivity from parahippocampal structures 
to the right superior temporal gyrus (Longarzo et al., 2020) and to the 
middle- and inferior temporal gyrus (Szaflarski et al., 2018), increased 
connectivity between the hippocampus and default mode network 
(DMN) related regions (Monsa et al., 2018), as well as increased FC from 
the amygdala to the dlPFC (Morris et al., 2017). Alterations in RS FC in 
these regions thus support previous findings on task-based fMRI stating 
an impaired emotion regulation in FND (Aybek et al., 2015, 2014; Espay 
et al., 2018b). 

4.3. Towards a clinical application 

Excellent sensitivity and specificity (between 80 and 100%) has been 
found for bedside clinical signs (Daum et al., 2015; Espay et al., 2018a; 
Syed et al., 2011). However, these maneuvers may still face several 
limitations, including a lack of gold standards against which to compare 
them and unblinded assessments in most studies along with other 
methodological issues such as a poor description of how the diagnosis of 
FND was made. Additional diagnostic procedures might support the 
clinical diagnostic process. With regard to a multivariate classification 
approach applied within a clinical setting, an accuracy of 70% might not 
present a final solution. The setting of classifying patients against 
healthy controls does not represent the clinical need and limits the 
generalizability of these results to clinical application at this stage. For 
daily clinical routine, one should rather aim at distinguishing a func-
tional symptom from identical/similar neurological and psychiatric 
symptoms, and not from a healthy control. The potential applicability of 
such a machine learning approach would be for example to assist 
screening of patients in the emergency department in cases of ambig-
uous neurological symptoms or could provide more details in difficult 
cases. Therefore, rather than replacing a clinical diagnosis, it might 
provide additional diagnostic support in the form of additional rule-in 
tests. A patient with a functional disorder could easier be identified as 
such - in addition to the bedside clinical signs - and could be directly 
referred to a specialist, before undergoing multiple medical tests and 
examinations (Espay et al., 2009). Besides, the medico-legal context 
highlights the importance of identifying an adjunctive positive 
biomarker in order to help distinguishing FND from intentionally pro-
duced neurological symptoms as observed in malingering or factitious 
disorders in which patients fabricate their symptoms or simply are 
feigning or lying about their symptoms (Colombari et al., 2021). 
Therefore, to test the power against differential diagnoses, it is of utmost 
importance – as a next step - to classify FND patients against similar 
psychiatric patients, trauma patients or against neurological patients 
with the same or similar symptoms (e.g., dystonia, essential tremor, 
Parkinson’s disease, or multiple sclerosis). In summary, machine 
learning algorithms could thus further support differential diagnoses 
and optimize treatment prevention and patient management. However, 
diagnostic utility is only provided if these results can be replicated in 
other patients with the same or similar symptoms, but different 
diagnoses. 
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4.4. Limitations and future directions 

This study has several limitations. Even though data from four 
different centres were used, the sample size is small compared to other 
multi-centre classification studies using multi-centre data bases, such as 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Jack et al., 
2008) or the Autism Brain Imaging Data Exchange (ABIDE) project (Di 
Martino et al., 2014). To date, a large, multi-centre database sharing 
imaging data of FND patients unfortunately does not exist. Small sample 
sizes have been associated with higher reported accuracies without 
properly controlling for overfitting (Vabalas et al., 2019). We avoided 
overfitting by perfectly matching our groups within- and between cen-
tres and by applying a leave-one-out cross-validation approach, which is 
a powerful tool against overfitting and recommended in small samples 
(Vabalas et al., 2019). Accordingly, our results of the intra-centre and 
pooled cross-validation are comparatively high with significant accu-
racies and highly balanced sensitivities and specificities. Nevertheless, a 
multi-centre database would bring the advantage of adjusting scanner 
protocols on each centre and scanner type and would thus provide 
comparably high data quality and low inter-scanner variability. 
Thereby, multi-centre imaging studies must be planned carefully with 
regards to scanner hardware and software, implementation of an 
appropriate quality assurance program to properly validate and monitor 
data, and application of proper site standardization methods (for rec-
ommendations see Glover et al., 2012). 

A second limitation is the use of only one atlas with 90 cortical- and 
subcortical regions. As for now, the purpose of this project was to vali-
date the previously published method across different centres, no 
changes were made to the pre-processing pipeline. Despite involving a 
higher computational load, a more fine-grained parcellation (e.g., 
Glasser atlas (Glasser et al., 2016)) or a voxel-wise approach could 
detect different information (Eickhoff et al., 2018), and may aid the 
future development of an adjunctive imaging-based biomarker. On the 
contrary, using an approach with a higher spatial resolution also bears 
the risk of overfitting or missing important information due to the 
comparable high amount of probably uninformative features (Erickson 
et al., 2017). 

A third limitation is that centres III and IV were found to have higher 
head motion than centres I and II, what might negatively affect func-
tional connectivity (Van Dijk et al., 2012). The significant results ob-
tained in intra-centre and pooled-centre validation, however, indicate 
that even patients known to have a lot of movements (Centre III and IV 
had more motor subtypes of FND F44.4) can be correctly classified. For 
future studies, subjects should be strictly advised to lay calmly, and their 
head should be fixed using foam cushions. Ideally, prospective motion 
correction techniques including motion-tracking cameras or a pilot tone 
approach (Ludwig et al., 2021) could be used to further improve data 
quality in this respect. 

A last limitation is that clinical data where not uniformly collected 
and used different scales (CGI, S-FMDRS scales), which meant that scales 
needed to be adjusted. Including symptom severity in our post-hoc lo-
gistic regression analysis is therefore not optimal, as the transformation 
we have done from S-FMDRS to CGI is intuitive but not validated. 
Similarly, as anxiety and/or depression scores were collected using 
different questionnaires (STAI, BDI or BAI), the regression analysis 
showing no influence of mood on the classification performance should 
be interpreted with caution until future studies confirm this with pro-
spectively collected uniform clinical data. Together with the uneven 
distribution of symptom types, we cannot fully account for it with good 
reliability. From a technical point of view, a future project should aim at 
balancing the different symptom types, so that a data-driven machine 
learning approach would learn to recognize those patients as well who 
are normally underrepresented in a clinical setting. To overcome the 
problem of different symptom type distribution, patients could also be 
stratified according to their symptom types and/or include the clinical 
data (e.g., CGI) into the model (Patel et al., 2015). In order to achieve 

this in a multi-centre setting, it would be necessary that the same clinical 
data and psychiatric comorbidities are collected using the same clinical 
scores and identical questionnaires in each centre. Additionally, data on 
traumatic life events or childhood adversities should be collected, in 
order to assess the potential influence on functional brain aberrancies. 

5. Conclusion 

In summary, multi-centre RS FC has shown its potential to distin-
guish FND patients from HC. These findings set the ground for future 
research on adjunctive biomarkers for FND as the method will need to be 
improved regarding its generalizability regarding inter-scanner vari-
ability and the heterogeneity of symptoms, comorbidities, and severity 
of symptoms. To provide diagnostic utility, future studies must investi-
gate the classification power when classifying FND patients against 
classical neurological diseases and/or psychiatric disorders as this 
would represent a closer setting to the clinical daily routine and could be 
used as a decision support method for the clinical diagnosis. Impor-
tantly, not to replace the clinical diagnosis, but to provide additional 
rule-in criteria for the diagnosis instead. 
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Xia, M., Wang, J., He, Y., Csermely, P., 2013. BrainNet viewer: a network visualization 
tool for human brain connectomics. PLoS One 8 (7), e68910. https://doi.org/ 
10.1371/journal.pone.0068910. 

Yamashita, A., Yahata, N., Itahashi, T., Lisi, G., Yamada, T., Ichikawa, N., Takamura, M., 
Yoshihara, Y., Kunimatsu, A., Okada, N., Yamagata, H., Matsuo, K., Hashimoto, R., 
Okada, G.o., Sakai, Y., Morimoto, J., Narumoto, J., Shimada, Y., Kasai, K., Kato, N., 
Takahashi, H., Okamoto, Y., Tanaka, S.C., Kawato, M., Yamashita, O., Imamizu, H., 
Macleod, M.R., 2019. Harmonization of resting-state functional MRI data across 

multiple imaging sites via the separation of site differences into sampling bias and 
measurement bias. PLoS Biol. 17 (4), e3000042. https://doi.org/10.1371/journal. 
pbio.3000042. 

Yu, M., Linn, K.A., Cook, P.A., Phillips, M.L., McInnis, M., Fava, M., Trivedi, M.H., 
Weissman, M.M., Shinohara, R.T., Sheline, Y.I., 2018. Statistical harmonization 
corrects site effects in functional connectivity measurements from multi-site fMRI 
data. Hum. Brain Mapp. 39, 4213–4227. https://doi.org/10.1002/hbm.24241. 

Zeng, L.-L.-L., Wang, H., Hu, P., Yang, B., Pu, W., Shen, H., Chen, X., Liu, Z., Yin, H., 
Tan, Q., Wang, K., Hu, D., 2018. Multi-site diagnostic classification of schizophrenia 
using discriminant deep learning with functional connectivity MRI. EBioMedicine 
30, 74–85. https://doi.org/10.1016/j.ebiom.2018.03.017. 

Zhao, N., Yuan, L.-X.-X., Jia, X.-Z.-Z., Zhou, X.-F.-F., Deng, X.-P.-P., He, H.-J.-J., 
Zhong, J., Wang, J., Zang, Y.-F.-F., 2018. Intra- and inter-scanner reliability of voxel- 
wise whole-brain analytic metrics for resting state fMRI. Front. Neuroinform. 12, 
1–9. https://doi.org/10.3389/fninf.2018.00054. 

Zhuang, H., Liu, R., Wu, C., Meng, Z., Wang, D., Liu, D., Liu, M., Li, Y., 2019. Multimodal 
classification of drug-naïve first-episode schizophrenia combining anatomical, 
diffusion and resting state functional resonance imaging. Neurosci. Lett. 705, 87–93. 
https://doi.org/10.1016/j.neulet.2019.04.039. 

S. Weber et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S2213-1582(22)00155-3/h0420
http://refhub.elsevier.com/S2213-1582(22)00155-3/h0420
http://refhub.elsevier.com/S2213-1582(22)00155-3/h0420
https://doi.org/10.1212/WNL.0b013e3181ca00e9
https://doi.org/10.1212/WNL.0b013e3181ca00e9
https://doi.org/10.1016/j.nicl.2017.10.012
http://refhub.elsevier.com/S2213-1582(22)00155-3/h0435
http://refhub.elsevier.com/S2213-1582(22)00155-3/h0435
https://doi.org/10.1371/journal.pone.0068910
https://doi.org/10.1371/journal.pone.0068910
https://doi.org/10.1371/journal.pbio.3000042
https://doi.org/10.1371/journal.pbio.3000042
https://doi.org/10.1002/hbm.24241
https://doi.org/10.1016/j.ebiom.2018.03.017
https://doi.org/10.3389/fninf.2018.00054
https://doi.org/10.1016/j.neulet.2019.04.039

	Multi-centre classification of functional neurological disorders based on resting-state functional connectivity
	1 Introduction
	2 Materials and methods
	2.1 Participants
	2.2 Data acquisition
	2.3 MR pre-processing
	2.4 Resting-State functional connectivity modelling
	2.5 Classification
	2.6 Evaluation
	2.7 Post-hoc analyses
	2.7.1 Most discriminative connections

	2.8 Impact of anxiety, depression, medication, and clinical score on classification performance

	3 Results
	3.1 Demographic and clinical data
	3.2 Framewise displacement
	3.3 Replication and robustness of classification approach
	3.4 Post-hoc analyses
	3.4.1 Most discriminative connections
	3.4.2 Logistic regression of anxiety, depression, medication, and clinical scores

	3.5 Generalizability to multi-centre data

	4 Discussion
	4.1 Classification
	4.2 Connectivity patterns
	4.3 Towards a clinical application
	4.4 Limitations and future directions

	5 Conclusion
	Funding/support
	CRediT authorship contribution statement

	Declaration of Competing Interest
	Acknowledgement
	Appendix A Supplementary data
	References


