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Abstract—Human action recognition can be applied in a
multitude of fully diversified domains such as active large-
scale surveillance, threat detection, personal safety in hazardous
environments, human assistance, health monitoring, and in-
telligent robotics. Owing to its high demands in real-world
applications, it has drawn significant attention. In this research,
we propose hybrid deep neural networks, i.e. Convolutional
Long Short-Term Memory (ConvLSTM) Networks, Long-term
Recurrent Convolutional Networks (LRCN), for tackling video
action classification. In particular, for the LRCN model, dif-
ferent CNN encoder architectures such as VGG16, ResNet50,
DenseNet121 and MobileNet, as well as several Long Short-
Term Memory (LSTM) variant decoder architectures, such as
LSTM, bidirectional LSTM (BiLSTM) and Gated Recurrent
Unit (GRU), are used for spatial-temporal feature extraction to
test model performance. We adopt diverse experimental settings
including using different numbers of frames per video and
learning configurations to optimize performance. The empirical
results indicate the superiority of MobileNet in combination
with a BiLSTM network over other hybrid network settings for
the action classification using the UCF50 dataset. Owing to the
lightweight MobileNet encoder, this LRCN model also achieves a
better trade-off between performance and training and inference
computational costs, while outperforming existing state-of-the-art
methods.

Index Terms—Human Action Recognition, Video Analyt-
ics, Convolutional Neural Network, Long Short-Term Memory
(LSTM), Gated Recurrent Unit, Long-term Recurrent Convolu-
tional Network, and ConvLSTM.

I. INTRODUCTION

Human action recognition is one of the open problems
that has been in the research community for the past two
decades. This is mostly because of the complexity involved
in accurately predicting the action from the video sequences.
Humans have substantial contextual data and advanced sensory
inputs that help in effectively recognizing the action being
performed in real-time. That is not the case with machines.
To correctly classify the action, a machine needs to consider
which data points in the image represent the object of interest.

It also needs to observe the changes between the frames that
represent the motion, trajectory, interaction between different
objects. Moreover, in comparison with image-based action
recognition, Video analysis requires more discriminative fea-
tures spanning over spatial and temporal dimensions [1]–[4]
to capture motion, human subjects and background variations
for classifying different action classes.

Therefore, besides the capturing of spatial features, video
action recognition tasks introduce the need for an extra di-
mension that encodes temporal dependencies. The effective
capturing of the spatial-temporal cues plays vital roles in ac-
tion classification. In recent years, many new approaches have
been used for extracting spatial-temporal features. The most
popular methods among them are deep learning techniques,
which conduct layer-wise feature learning and are able to
capture spatial and temporal variations between image frames.
Such deep neural networks thus show impressive performances
for solving object detection, pose estimation [5], human body
segmentation [6] pertaining to action recognition tasks.

Although there has been rapid development in deep learning
algorithms, in the case of video analytics, deep learning
algorithms require huge computation resources and complex
pre-processing procedures for optical flow extraction to aid
action classification [7]. In order to tackle action recognition
in a large scale, the deployment of such systems to resource
constrained environments poses significant challenges. In order
to reduce the computational cost, much of the effort is focused
on reducing the number of frames [8]–[10], which has proven
to be promising. But, in this research, we focus on exploring
further to find the best trade-off between the performance
and the extraction of different numbers of frames for action
recognition using diverse hybrid deep networks.

Specifically, in this research, we propose multiple hybrid
deep networks, i.e. Convolutional Long Short-Term Memory
(ConvLSTM) networks and Long-term Recurrent Convolu-
tional Networks (LRCN), with different backbone and hyper-



parameter settings as well as different numbers of frames,
for tackling action recognition. Diverse encoder-decoder ar-
chitectures are also implemented in these hybrid networks
to test their performances. Precisely, several Convolutional
Neural Networks (CNNs), such as VGG-16 [11], ResNet
[12], [13], MobileNet [14] and DenseNet [15], are used as
the encoder, while Long Short-Term Memory (LSTM), bidi-
rectional LSTM (BiLSTM) and Gated recurrent unit (GRU)
are used as the decoder in the above two types of hybrid
networks. We subsequently compare the intricate performance
details of these approaches along with the insights gained from
experimentation using a large-scale human action data set.

II. RELATED WORK

In the earlier times, before the rise of deep learning, there
were different strategies used for performing action recogni-
tion. Some of these approaches use feature descriptors such as
Local Binary Patterns (LBP), Scale Invariant Feature Transfor-
mation (SIFT), Histogram of Oriented Gradients (HOG) [16],
and Histogram of Optical Flow (HOF). Optical flow (i.e. the
patterns of moving objects in a scene) as well as trajectory
based methods such as Motion Boundary Histograms (MBH)
[17] and Dense trajectories [18] are used in other studies. Such
extracted spatial and temporal features are then used as inputs
to classifiers, e.g. Support Vector Machines (SVM) [19] to
perform the predictions for the image frame. But, after the
successful demonstration of deep learning methods for image
classification, deep networks have been quickly adopted in
the field of video analysis, where videos are divided into
a sequence of images. We will now discuss diverse deep
networks that have been proposed in recent years for action
classification.

As an example, [20] introduced multiple variants of infor-
mation fusion methods across a frame sequence of a video for
action classification. They extracted temporal features purely
using CNNs based on single frame under the settings of
early, late and slow fusions, for action prediction. The work
also proposed multi-resolution networks that focused on the
aspect of computation required to build such fusion networks
[21], [22]. Since CNNs are resources demanding and require
significant amount of time and computation power for model
training. Increasing the number of times we apply convolution
operations or increasing the depth of the network may result in
extreme slow processing and that is not acceptable in case of
video analysis as the network needs to work with high frame
rates. There are multiple ways to reduce the computational
cost. One potential strategy is to reduce the number of convo-
lutional layers, but this approach reduces the performance of
the network significantly. Therefore, instead of reducing CNN
layers, their work reduced the image resolution of the input
stream and used two networks, one with low-resolution context
and the other with high-resolution foveate. This strategy has
speeded up the training by 4 times. For predicting a video
label, a sample set of 20 frames was augmented using different
cropping and flipping operations. These augmented datasets
passed four times through the network for action classification.

Then the predictions of each frame are averaged at the end.
This reduced the amount of complexity involved and the
inference time required to perform video action recognition.

In the hybrid networks such as a CNN combined with a
Recurrent Neural Network (RNN), i.e. CNN-RNN, we observe
that the temporal features are local and information present in
the sequence is not represented efficiently. Hence there is a
need for a global representation which can be realized using
temporal aggregation like temporal pooling. In the work of
[23], the authors present various methods to perform temporal
pooling along with the usage of LSTM Networks for learn-
ing from the sequential information generated from CNNs.
These methods outperformed the previous models in terms of
both computational efficiency and model performance, with
an accuracy rate above 80% when evaluated using public
action datasets. Their LSTM variant with 30 frames of optical
flow images combined with the original images produced
an accuracy rate of 88.6%. Motivated by this research, two
variant networks, namely LRCN and ConvLSTM, with differ-
ent network architectures and encoder-decoder backbones, are
employed for action classification.

Three-dimensional CNNs (3D ConvNets) introduced in [24]
are essentially similar to CNN architectures employed for 2D
image classification, except that there is an extra dimension
that is added while performing convolution and pooling. In
traditional 2D CNN, the input shape will be W x H x C, where
W, H, and C represent width, height, and depth/channels of the
image being parsed, whereas, in case of 3D CNN, the input
shape is F x W x H x C, where F represents the number of
frames being parsed into the network. In 3D CNN, the network
looks at the entire sequence of frames as a single image
and extracts spatial-temporal features in single pass. But the
amount of computation required to perform 3D-convolutions
is extremely high as the increase in the input dimensions
increases the number of multiply and accumulate (MAC)
operations. But, their work argued that the performances of
the networks out-weigh the computational costs as the 3D
CNNs such as the C3D network achieve better performance in
comparison with those of the fusion methods. Multiple variants
[25]–[27] of this architecture have been adopted for solving
tasks of video recognition and time series forecasting in other
existing studies.

III. THE PROPOSED HYBRID DEEP NETWORKS FOR
ACTION CLASSIFICATION

In this research, we propose two hybrid deep networks, i.e.
ConvLSTM and LRCN Networks, with different backbone
and hyper-parameter settings as well as different numbers
of frames, for tackling action recognition. Diverse encoder-
decoder architectures are also implemented in these hybrid
networks to test model performances. Specifically, several
Convolutional Neural Networks (CNNs), such as VGG-16,
ResNet, MobileNet and DenseNet, are used as the encoder,
while LSTM and BiLSTM are used as the decoder in the above
two types of hybrid networks. Comprehensive evaluations have



also been conducted to test model efficiency using a large-
scale action recognition data set. We introduce each proposed
hybrid encoder-decoder network in the following subsections.

A. The Proposed ConvLSTM Network for Action Recognition

The Convolutional LSTM (ConvLSTM) network was first
introduced in the work of [28]. In a fully connected LSTM
Network, flattening the image into a 1D space will not reserve
any spatial information, thus creating the need for a CNN
feature extractor to extract spatial features and transform
them into a 1D vector space. Therefore, the ConvLSTM net-
work was proposed for video classification tasks [29], which
consumes 2D convolutions as inputs. It is able to directly
work with a sequence of images and perform convolutional
operations on the input images for spatial feature extraction,
whereas the LSTM layers are able to extract temporal dynam-
ics between the frames. Thus the ConvLSTM network is able
to essentially capture both spatial and temporal cues, which
can not be performed using a fully connected LSTM.

Fig. 1. An example ConvLSTM block

In this research, we employ the ConvLSTM network for
Video classification. A lightweight ConvLSTM network is
proposed, which consists of four ConvLSTM2D layers and
a final dense layer, to improve computational efficiency while
achieving promising performance. The detailed network ar-
chitecture is shown in Figures 1 and 2. Specifically, we
use tensorflow’s implementation of ConvLSTM2D written in
Python to build the action recognition model. We first create
an instance of class Sequential() that has pre-built methods to
construct a model structure with a validation functionality that
checks if the structure provided is feasible.

A ConvLSTM2D layer is first added, which uses the tanh
activation function and has a kernel size of 3 X 3 and
the numbers of filters ranging from 8 to 64. Moreover, the
return sequences configuration is set to true in order to make
the LSTM layer work in a synced many-to-many mode,
such that multiple outputs can be passed to the next hidden
ConvLSTM layer. We also use a recurrent dropout rate of
0.2, which means that 20% of the neurons outputs will be
dropped while performing the linear transformation in the
recurrent layer. In the end, we specify the input shape which
is a 4D tensor with the number of frames, image height,

Fig. 2. An example ConvLSTM network with four ConvLSTM blocks and
one dense layer

image width, and the number of channels. A pooling layer is
then added after each ConvLSTM2D layer, in order to reduce
the resolution 2-fold and make the network shift invariant.
A time distributed dropout layer is subsequently added after
each pooling operation, with the attempt to skip 20% of
the output frames generated to prevent over-fitting. A set
of aforementioned three layers, i.e. ConvLSTM2D, pooling
and time distributed dropout layers, constitutes a ConvLSTM
block as shown in Figure 1. Multiple such blocks are stacked
together to make a ConvLSTM model, as illustrated in Figure
2. In the end, we use a flatten layer to convert the 2D vector
to 1D vector and then connect it to a dense layer through
a softmax activation. The model makes a prediction of the
input video by selecting the highest probabilities among all
the classes.

The proposed ConvLSTM model is then used to extract
spatial-temporal dependencies to test its performance using a
large human action dataset. Different numbers of frames are
also extracted from the input video to test model efficiency.
The identified best setting of the number of frame will be used
in subsequent experiments to test model performance.

B. Model size and Parameters of ConvLSTM

The proposed ConvLSTM model with the input frames of 20
as the sequence length, 64 X 64 X 3 as the image resolution,
and 12 as the target number of output classes, has a total
of 317,292 trainable parameters and the split of parameters
in each layer is shown in the Figure 3. We can observe that
there are no trainable parameters associated with maxpooling
and dropout layers as they are just transformations.

Besides the ConvLSTM model, we also propose another
hybrid network, i.e. LRCN, for tackling action classification.



Fig. 3. ConvLSTM model parameters

C. The Proposed Long-term Recurrent Convolutional Network
for Action Recognition

Long-term Recurrent Convolutional Networks (LRCN) is a
deep learning architecture that is capable of extracting both
visual and sequential features from a sequence of images. It
was originally proposed by [30] to showcase that a LRCN
can be used for action recognition, image captioning, and
video description generation. This is achieved by employing
different variations of RNNs. LRCN has two components, i.e.
a CNN and an RNN. The CNN encoder extracts the spatial
features and transforms them into a 1D vector. This 1D vector
yielded by CNN is then passed into the RNN decoder to
extract the temporal dynamics. With the use of shared weights,
multiple frames can be passed into the network as inputs in a
single shot. Such encoder-decoder architecture gives sufficient
freedom in terms of the architecture selections for CNN and
RNN, as both components are independent of each other and
can be seen as two separate entities. This is possible because
of the fact that a recurrent neuron can take a varying length
vector as input. So, any CNN architecture whose last layer is
flattened can be passed as input to the next stage irrespective
of the dimensions of the flattened output of CNN.

To test model efficiency, we employ a number of CNNs such
as a 4-layer CNN block, VGG16, ResNet50, DenseNet121 and
MobileNet as the encoder, as well as different types of RNNs
such as LSTM, BiLSTM and Gated Recurrent Unit (GRU) as
the decoder for action classification. We subsequently compare
the model performances of different model architectures. The
model architecture of the CNNs with four convoluational
layers in combination with three LSTM layers is shown in
Figure 4.

Fig. 4. An example LRCN model with four CNN layers and three LSTM
layers

D. Model size and Parameters of LRCN

We will now compare the model sizes for all the variants
of the proposed architectures. Table I presents the split of
trainable and non-trainable parameters in all the variant mod-
els. Among them, MobileNet with GRU has the least number
of parameters in total, owing to the adoption of the depth-
wise separated convolution filters instead of the traditional
convolution filters. We can see that total number of parameters
in Table I seem relatively large when compared with the
ConvLSTM method in section III-B, this is because of the
large CNN parameters and their output dimensions, as the
number of parameters in an RNN depends on the size of
the input. Since we just use CNNs as the feature extractor,
all the parameters in CNN blocks are frozen so no training
takes place at the CNN encoder. This reduces the training time
significantly. But, at the same time, the network increases the
inference time, as the model size increases the number of MAC
operations to be performed while predicting, thus increasing
the time required for prediction.

IV. EXPERIMENTS

To test model efficiency, a comprehensive evaluation has
been conducted. Specifically, multiple experiments with differ-
ent numbers of extracted frames per video, and different hyper-



TABLE I
TRAINABLE PARAMETERS IN PRE-TRAINED LRCN MODELS

Model Type CNN(Pre-trained) RNN Total
VGG16+LSTM 14,714,688 2,397,708 17,112,396
VGG16+BILSTM 14,714,688 4,795,020 19,509,708
VGG16+GRU 14,714,688 1,799,244 16,513,932
ResNet50+LSTM 23,564,800 8,689,164 32,253,964
ResNet50+BILSTM 23,564,800 17,377,932 40,942,732
ResNet50+GRU 23,564,800 6,517,836 30,082,636
DenseNet121+LSTM 7,037,504 4,494,860 11,532,364
DenseNet121+BILSTM 7,037,504 8,989,324 16,026,828
DenseNet121+GRU 7,037,504 3,372,108 10,409,612
MobileNet+LSTM 3,228,864 4,494,860 7,723,724
MobileNet+BILSTM 3,228,864 8,989,324 12,218,188
MobileNet+GRU 3,228,864 3,372,108 6,600,972

parameter (e.g. the learning rate, model depth, and dropout
rate) settings, have been conducted. A large action data set,
i.e. UCF50 [31], is used for model evaluation.

The UCF datasets [31]–[35] are a family of video analysis
and classification datasets published by researchers at Univer-
sity of central Florida. They have a large variety of datasets
for video classification. Among them, we will use UCF50, a
dataset with 50 actions collected from YouTube videos. It is an
extension of UCF11 dataset consisting of 11 actions. UCF50
is one of the most popular bench-marking datasets widely used
for action recognition.

Moreover, we further split UCF50 by creating 4 datasets
of incremental sizes, i.e. 12, 25, 38, and 50 classes, as
experimenting on entire dataset will take a long time and
require enormous amounts of computation. Hence we will
first experiment with the dataset of 12 classes, then based on
the results we will choose the best models for tackling other
comparatively larger experimental settings.

A. Number of Frames

In order to identify the best frame settings, we first conduct
the experiments using the lightweight ConvLSTM network as
well as the LRCN model using the dataset of 12 action classes.
We set the number of frames per video ranging from 20 to
150.

TABLE II
RESULTS OF EXPERIMENTS USING THE CONVLSTM MODEL WITH

DIFFERENT NUMBERS OF EXTRACTED FRAMES PER VIDEO.

Number of Accuracy Loss Training Inference
frames time(sec.) time(sec.)
20 0.75 1.11 165 5
30 0.7 1.02 240 7
50 0.72 0.93 381 14
70 0.73 1.25 509 18
100 0.65 0.98 563 26
150 0.68 1.01 590 40

Table II showcases the results of experiments conducted
with the ConvLSTM model with respect to different num-
bers of extracted frames. After substantial experimentation

with multiple hyper-parameter settings, we have employed
the parameters that have performed the best in subsequent
experiments to establish a relationship between the number
of extracted frames (evenly distributed in time) and the time
required to train and test the model. Please note that the
training time reported in Table II is the time elapsed per epoch,
while the inference time, loss and accuracy rates are for the
entire test set. For fair comparison, we have kept the size of
the test set consistent along with all other hyper-parameters,
except for the number of frames, i.e. the controlled parameter,
to identify the best frame setting. We observe that there is
a linear increase in the processing time with the increase in
the number of frames but the accuracy rate does not improve.
Instead, it decreases as the number of frames increases. This is
probably caused by the redundant features extracted between
the frames. The model using 20 frames per video achieves the
best performances, i.e. an accuracy rate of 75%. Therefore we
fix the number of frames as 20 for subsequent experiments.

We repeat the same experiment using the LRCN model. For
this experiment, we have used an LSTM layer with 32 units
in the RNN block and a 4-layer CNN block with 3 x 3 filters
as the visual feature extractor.

TABLE III
RESULTS OF EXPERIMENTS USING THE LRCN MODEL AND DIFFERENT

NUMBERS OF FRAMES.

Number of Accuracy Loss Training Inference
frames time(sec.) per epoch time(sec.)
20 0.86 0.57 8 0.8
30 0.87 1.51 11 1.26
50 0.82 0.61 20 2.06
70 0.85 0.81 29 2.72
100 0.81 0.67 43.8 3.36
150 0.72 1.13 61.9 7.92

Again we have fixed all the hyper-parameters except for
the number of the frames and used the same subset of 12
classes from UCF50 in the experiments. Table III presents
the results for different frame settings. We observe that the
performances in this case are slightly better with the best
accuracy rate of 87% achieved using 30 frames per video,
followed by the results obtained using 20 frames per video.
This is also because of the number of trainable parameters in
LRCN as it has 5 times less size than that of ConvLSTM
to enable the network to be fully trained using the subset
of UCF50. We have also stacked up additional two hidden
layers with LSTM cells and BiLSTM cells in our subsequent
experiments, to further test LRCN model efficiency.

B. Number of Hidden Layers for RNN Block

Table IV presents the results of this further investigation
using 20 frames per video and the dataset of 12 classes as the
best trade-off between performance and computational cost.
Hyper-parameter fine-tuning has also been conducted using
the training and validation sets after running multiple random
configurations of the learning rate, learning scheduler, dropout
rate, and loss functions. We set the identified most optimal



TABLE IV
RESULTS OF EXPERIMENTS WITH THE RECURRENT BLOCK OF LRCN

MODELS

Model Type Accuracy Loss Training Inference
time(sec.) time(sec.)

LSTM 0.81 0.71 19 1
3 Layer LSTM 0.54 1.39 31 2
BILSTM 0.87 0.71 20 2
3 Layer BILSTM 0.81 0.75 32 3.72

hyper-parameters to test model performance using the test
set. The empirical results indicate that increasing the layer
depth in the RNN block does not improve the performance
significantly, as the three-layer LSTM or BiLSTM architecture
performs worse in the same experimental settings than the
single layer LSTM or BiLSTM architecture in a setup of
20 frames per video. Therefore, a single layer RNN block
is adopted in the LRCN model for further studies.

C. Base CNN Architectures

We have performed experiments with a lightweight LRCN
model (i.e. a 4-layer CNN block) in the previous section and
have also learnt that a single layer in the RNN block performs
significantly better.

We subsequently make attempts to increase the CNN layer
depth and modify the CNN block (i.e. the visual feature ex-
tractor) in the LRCN model to further enhance performances.
We fix the number of frames as 20 and the RNN block with a
single layer as recommended by the previous experiments. We
use pre-trained CNN architectures with layer depths ranging
from 16 to 121 leading to a steady increase in the numbers of
parameters as compared with those of the LRCN model used
in previous section. Table V presents the results to determine
the relation between the number of epochs in training and
the performance metrics, essentially looking at the learning
curves to investigate any over-fitting issues and determine if
early stopping should be used or not. We observe that there
is not much difference between the performance metrics of
100 and 25 training epochs enabled with early stopping. All
the results presented in Table V are obtained using the 12-
class action dataset. From the above experiment, we notice
that over-fitting occurs when using 100 epochs as the test set
loss is higher than that obtained using the 25 training epochs.

We now extend the experiments based on the best findings
of our previous investigations and scale up the number of
classes from 12 to 25, 38, and 50 (i.e. the complete UCF50
dataset). We use 20 frames per video and a single layer RNN
block with a learning rate of 10−3, and compare the results
of different CNN encoders in the LRCN model. Specifically,
we employ VGG16, ResNet50, DenseNet121 and MobileNet
as the encoder in the LRCN model. Tables VI, VII, and VIII
present the results of the experiments on the 25, 38, and 50-
class datasets, respectively. We observe that, in all the three
datasets, MobileNet in combination with BiLSTM performs
better with an accuracy rate of 87% and 19 seconds of

TABLE V
COMPARISON BETWEEN THE METRICS FOR DIFFERENT TRAINING PERIODS

Model 100 Epochs 25 Epochs (with early stopping)
Type Accuracy F1-score Loss Accuracy F1-score Loss
VGG 16
+ LSTM

0.92 0.92 0.38 0.93 0.93 0.27

VGG 16
+ BiL-
STM

0.80 0.83 0.61 0.91 0.91 0.33

VGG 16
+ GRU

0.94 0.93 0.71 0.93 0.93 0.23

ResNet
50 +
LSTM

0.90 0.89 0.58 0.92 0.92 0.29

ResNet
50 +
BiL-
STM

0.88 0.88 0.68 0.91 0.92 0.26

ResNet
50 +
GRU

0.91 0.91 0.52 0.92 0.91 0.32

DenseNet
121 +
LSTM

0.93 0.93 0.37 0.93 0.92 0.30

DenseNet
121 +
BiL-
STM

0.92 0.92 0.33 0.91 0.91 0.32

DenseNet
121 +
GRU

0.92 0.92 0.56 0.85 0.85 0.48

MobileNet
+ LSTM

0.91 0.91 0.45 0.91 0.90 0.35

MobileNet
+ BiL-
STM

0.92 0.92 0.38 0.93 0.93 0.32

MobileNet
+ GRU

0.93 0.92 0.46 0.90 0.90 0.31

inference time using the full UCF50 dataset (with 50 classes).
Although VGG16 with GRU also has obtained an accuracy
rate of 87%, it takes 149 seconds to compute the predictions
for the same test set, which is roughly 7.5 times of the time
required for MobileNet (as indicated in Table VIII). Hence the
MobileNet model is the lightest and best choice as a visual
feature extractor in an LRCN model based on our experiments.

To summarize, we have first performed experiments with the
a comparatively smaller 12-class dataset to identify the best
hyper-parameters and model architectures. We then used those
findings to build larger and more complex hybrid models that
can perform well on larger datasets. Therefore we performed
the experiments using a constructive design process thus
reducing the amount of time and effort needed to obtain
promising performances.

V. CONCLUSION AND FUTURE WORK

In this research, we have proposed several hybrid deep
learning models for undertaking human action recognition
tasks using videos or image sequences. Specifically the Con-
vLSTM and LRCN hybrid networks with different backbone
and frame settings have been employed to tackle action classi-
fication using the UCF50 dataset. In particular, with respect to



TABLE VI
RESULTS OF EXPERIMENTATION WITH 25 CLASSES EXTRACTED FROM

UCF50. (NOTE THAT ACCURACY, LOSS RESULTS ARE CALCULATED ON
THE TEST SET FOR ALL THE MODELS. TRAINING TIME IS CALCULATED
PER EPOCH, WHILE INFERENCE TIME IS CALCULATED FOR THE ENTIRE

TEST SET.)

Model Type Accuracy Loss Training Inference
time(sec.) time(sec.)

VGG16 LSTM 0.87 0.49 336 80
VGG16 BILSTM 0.9 0.42 398 83
VGG16 GRU 0.9 0.37 514 112
ResNet50 LSTM 0.8 0.75 447 75
ResNet50 BILSTM 0.82 0.64 597 88
ResNet50 GRU 0.8 0.71 376 86
DenseNet121 LSTM 0.78 0.86 458 109
DenseNet121 BILSTM 0.8 0.7 441 147
DenseNet121 GRU 0.76 0.87 372 100
MobileNet LSTM 0.88 0.44 164 26
MobileNet BILSTM 0.91 0.34 204 29
MobileNet GRU 0.87 0.43 115 31

TABLE VII
RESULTS OF EXPERIMENTATION WITH 38 CLASSES EXTRACTED FROM

UCF50. (NOTE THAT ACCURACY, LOSS RESULTS ARE CALCULATED ON
THE TEST SET FOR ALL THE MODELS. TRAINING TIME IS CALCULATED
PER EPOCH, WHILE INFERENCE TIME IS CALCULATED FOR THE ENTIRE

TEST SET.)

Model Type Accuracy Loss Training Inference
time(sec.) time(sec.)

VGG16 LSTM 0.84 0.61 565 119
VGG16 BILSTM 0.84 0.65 923 204
VGG16 GRU 0.87 0.56 767 206
ResNet50 LSTM 0.81 0.76 545 129
ResNet50 BILSTM 0.84 0.78 659 94
ResNet50 GRU 0.76 0.94 588 118
DenseNet121 LSTM 0.76 0.87 300 78
DenseNet121 BILSTM 0.79 0.84 322 84
DenseNet121 GRU 0.69 1.12 256 62
MobileNet LSTM 0.85 0.56 155 29
MobileNet BILSTM 0.89 0.51 216 33
MobileNet GRU 0.84 0.67 122 22

TABLE VIII
RESULTS OF EXPERIMENTATION WITH 50 CLASSES FROM UCF50. (NOTE

THAT ACCURACY, LOSS RESULTS ARE CALCULATED ON THE TEST SET FOR
ALL THE MODELS. TRAINING TIME IS CALCULATED PER EPOCH, WHILE

INFERENCE TIME IS CALCULATED FOR THE ENTIRE TEST SET.)

Model Type Accuracy Loss Training Inference
time(sec.) time(sec.)

VGG16 LSTM 0.84 0.72 774 163
VGG16 BILSTM 0.86 0.67 1249 237
VGG16 GRU 0.87 0.6 727 149
ResNet50 LSTM 0.76 0.98 519 96
ResNet50 BILSTM 0.78 0.94 643 77
ResNet50 GRU 0.68 1.19 388 68
DenseNet121 LSTM 0.63 1.37 339 97
DenseNet121 BILSTM 0.74 1.06 454 91
DenseNet121 GRU 0.63 1.31 277 65
MobileNet LSTM 0.83 0.76 136 20
MobileNet BILSTM 0.87 0.6 193 19
MobileNet GRU 0.79 0.82 117 19

the LRCN model, different CNNs, such as VGG16, ResNet50,
DenseNet121 and MobileNet, are used as the encoder, while
LSTM variants, such as LSTM, BiLSTM and GRU with
distinctive hidden neuron settings, are used as the decoder.
Diverse experiments using the different numbers of frames
ranging from 20 to 150 are conducted to test model efficiency.
The empirical results indicate that the LRCN model with Mo-
bileNet as the encoder and a BiLSTM network as the decoder
achieves the best accuracy rate, i.e. 87%, for the classification
of 50 action classes in UCF50. For future directions, we aim to
extend our network by taking into account pose estimation and
human object interaction as additional feature extractors, along
with the current visual feature extractor, to better describe the
subtle variations between different actions. We also aim to
incorporate with evolutionary algorithms to further fine-tune
model hyper-parameters and architectures to further enhance
performance [36]–[53].
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