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Abstract
We study the problem Symmetric Directed Multicut from a parameterized complexity per-
spective. In this problem, the input is a digraph D, a set of cut requests C = {(s1, t1), . . . , (sℓ, tℓ)}
and an integer k, and the task is to find a set X ⊆ V (D) of size at most k such that for every
1 ≤ i ≤ ℓ, X intersects either all (si, ti)-paths or all (ti, si)-paths. Equivalently, every strongly
connected component of D − X contains at most one vertex out of si and ti for every i. This
problem is previously known from research in approximation algorithms, where it is known to have an
O(log k log log k)-approximation. We note that the problem, parameterized by k, directly generalizes
multiple interesting FPT problems such as (Undirected) Vertex Multicut and Directed
Subset Feedback Vertex Set. We are not able to settle the existence of an FPT algorithm
parameterized purely by k, but we give three partial results: An FPT algorithm parameterized by
k + ℓ; an FPT-time 2-approximation parameterized by k; and an FPT algorithm parameterized by
k for the special case that the cut requests form a clique, Symmetric Directed Multiway Cut.
The existence of an FPT algorithm parameterized purely by k remains an intriguing open possibility.
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1 Introduction

Graph separation problems have been studied in parameterized complexity for a long time,
and with significant success. In particular for undirected graphs, a wide range of powerful
FPT algorithms have been constructed, from the early results on Odd Cycle Transversal
by Reed et al. [21] and Multiway Cut by Marx [16], to quite generic problems such as
Vertex Multicut [2, 17]. In the latter problem, the input is an undirected graph G, a set
of cut requests C = {(s1, t1), . . . , (sℓ, tℓ)}, and an integer k, and the goal is to find, if it exists,
a set of at most k vertices whose removal disconnects si from ti, for every 1 ≤ i ≤ ℓ. Marx
showed an FPT algorithm for this problem parameterized by k + ℓ [16], but the question
of an FPT algorithm parameterized by k alone remained open for a long time, until finally
settled simultaneously by Bousquet et al. [2] and Marx and Razgon [15].

For directed graphs, by comparison, the success is more limited, and the line between
FPT and W[1]-hard cut problems is much less clear. On the one hand, some high profile
FPT algorithms do exist for directed graph problems. One of the earliest was Directed
Feedback Vertex Set, where the goal is to find a set of at most k vertices in a directed
graph which intersects all directed cycles. This problem was shown to be FPT in 2007 by
Chen et al. [3] by reduction to an auxiliary directed graph separation problem later dubbed
Skew Multicut. Later FPT results, following the FPT algorithms for Multicut on
undirected graphs, include the problems Directed Multiway Cut [6] and Directed
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Subset Feedback Vertex Set [5]. However, other problems which are FPT on undirected
graphs are intractable on digraphs. Directed Odd Cycle Transversal was shown
to be W[1]-hard by Lokshtanov et al. [14], although it admits an FPT 2-approximation.
For another example, Directed Multicut is the natural generalization of Multicut to
digraphs. Here, the input is a digraph D, a set of cut requests C = {(s1, t1), . . . , (sℓ, tℓ)} and
an integer k, and the goal is to find, if it exists, a set of at most k vertices whose removal
cuts every path from si to ti, for every 1 ≤ i ≤ ℓ. This problem is W[1]-hard parameterized
by k alone [17], even on directed acyclic graphs (DAGs) [13] or for just four cut requests [19].

With this background, it may be considered highly unlikely to find a natural cut problem
on digraphs that directly generalizes Vertex Multicut and which is FPT parameterized
by the solution size alone. Yet, we consider a problem for which this appears intriguingly
plausible.

For a first attempt at a modified problem definition, consider the variant where for every
cut request (si, ti) we require both directions (si, ti) and (ti, si) to be cut. However, this
problem remains W[1]-hard; indeed, it is equivalent to the original problem if the input graph
is a DAG. Furthermore, it captures Directed Vertex Multicut on general digraphs: if
I = (D, T, k) is a Directed Vertex Multicut instance, construct D′ by adding a new
vertex s′

i and an arc s′
isi for every (si, ti) ∈ T . Then, there is no (ti, s′

i)-path in D′, and
cutting every (s′

i, ti)-paths and (ti, s′
i)-paths is equivalent to cut every (si, ti)-path. This

shows that this first symmetric version of Directed Vertex Multicut is W [1]-hard too,
even for ℓ = 4.

However, another directed generalization of Vertex Multicut has still unknown
parameterized complexity.

Symmetric Directed Vertex Multicut
Input: a digraph D, a set of pairs of vertices C = {(s1, t1), . . . , (sℓ, tℓ)}, and an integer
k.
Parameter: k

Output: find, if there exists, a set X of at most k vertices whose removal cuts, for
every i = 1, . . . , ℓ, either all (si, ti)-paths or all (ti, si)-paths.

As with many directed cut problems, there are simple reductions between the edge- and
the vertex deletion variants. We focus on the vertex deletion variant since it is easier to work
with (cf. shadow removal, discussed below).

Let us make a few observations to get a feeling for the problem. Let I = (D, C, k) be an
instance of Symmetric Directed Vertex Multicut (Symmetric Multicut for short),
and note that a set X ⊆ V (D) is a solution if and only if si and ti are in distinct strongly
connected components in D −X for every cut request (si, ti). This observation is important
for understanding the structure of the problem.

We also note that Symmetric Multicut generalizes several of the above-mentioned
landmark FPT problems. Indeed, first consider Vertex Multicut. Let I = (G, C, k) be an
instance of this problem. We can then produce an instance I ′ = (D, C, k) of Symmetric
Multicut simply by replacing every edge uv ∈ E(G) by the arcs uv and vu. Indeed, for
every set X ⊆ V (D), the strong and weak components of D −X coincide. Hence X is a
symmetric multicut in D if and only it is a vertex multicut in G.

Next, let D be a digraph, and let C =
(

V (D)
2

)
be the set containing all pairs of vertices

over D. Then I = (D, C, k) captures Directed Feedback Vertex Set. More generally,
consider Directed Subset Feedback Vertex Set. In this problem, the input is a digraph
D, a set of arcs S ⊆ E(D), and an integer k, and the goal is to find a set of at most k vertices



E. Eiben, C. Rambaud, and M. Wahlström 14:3

which intersects every cycle containing an arc of S. By the above observation, I = (D, S, k)
can be interpreted as-is as an equivalent instance of Symmetric Multicut. Thus, if
Symmetric Multicut is indeed FPT parameterized by k, it would make a significant
generalization over the previous state of the art.

Our results We are not able to settle the status of Symmetric Multicut parameterized
by k, but we give three partial results. First, we give an FPT algorithm for the combined
parameter of k + ℓ. Second, we show an FPT 2-approximation for Symmetric Multicut
with parameter k. Finally, we consider the problem Symmetric Directed Multiway
Cut, where the cut requests are a set C =

(
T
2
)

containing all pairs over a set of terminals T ;
i.e., every strongly connected component of D −X is allowed to contain at most one vertex
of T . We show that this restricted variant is FPT parameterized by k.

Technical overview The first of these results is relatively straight-forward. We consider the
solution structure of the problem, and show a simple FPT reduction to Skew Multicut.
Since Skew Multicut is FPT parameterized by k, this finishes the result. This is analogous
to the FPT algorithm for Vertex Multicut parameterized by k + ℓ via reduction to
Multiway Cut, noted by Marx [16].

The FPT 2-approximation is more interesting. First, by iterative compression we can
assume that we have a solution Y , say |Y | ≤ 2k + 1, and want to determine the existence of
a solution X with |X| < |Y | (or otherwise prove that there is no solution of cardinality at
most k). By branching on the intersection X ∩ Y we can assume that no vertex of Y is to
be deleted. Furthermore, recall from above that a solution X to an instance I = (D, C, k)
is characterized by the strongly connected component structure of D −X. Hence, we may
also guess a partition of Y into strongly connected components and a topological order
on these components. After all these steps, we have an instance I = (D′, C, k′) and a set
Y = {y1, . . . , yr} ⊆ V (D), such that Y is a symmetric multicut for (D, C) and with the
assumption that we are looking for a symmetric multicut X such that X ∩ Y = ∅ and in
D′ −X, yi reaches yj only if i ≤ j. Thus, there are two remaining tasks to coordinate. X

cuts all paths from yj to yi for i < j, and simultaneously, for every terminal yi and cut
pair (sj , tj), X cuts at least one of sj and tj from the strongly connected component of yi.
We achieve a 2-approximation by treating these steps separately. The first property can be
ensured by a reduction to Skew Multicut; we note that Skew Multicut is still FPT
(using the algorithm of Chen et al. [3]) even if the underlying graph is not a DAG. The
key observation is now that after deleting such a skew multicut for Y , the remaining task
separates into |Y | disjoint instances, one for each terminal y ∈ Y . Hence, it remains to solve
the problem for an instance where there is a central vertex y such that for every cut request
(si, ti), every closed walk on si and ti passes through y. Solving this problem in FPT time
finally yields and FPT-time 2-approximation for Symmetric Multicut.

The FPT algorithm for Symmetric Directed Multiway Cut is more technical. It
works by adapting the algorithm for Directed Subset Feedback Vertex Set of Chitnis
et al. [5], but there are some technical complications. First, as a more robust formulation we
consider the following setting. The input is a digraph D, a list A1, . . . , Aℓ of sets of arcs of
D, and an integer k, with the restriction that each Ai is a “near-biclique”, Ai = Si × Ti for
some possibly overlapping vertex sets Si and Ti. The task is to find a set X ⊆ V (D) of at
most k vertices such that no closed walk in D −X contains arcs from two distinct sets Ai

and Aj . Note that this version allows us to capture both the setting where terminals are
deletable and where terminals are non-deletable, e.g., by replacing a non-deletable terminal
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by k + 1 false twins, and for each terminal ti ∈ T letting Si contain the twin copies of ti

and Ti their out-neighbours. More importantly, arc sets of the form Ai = Si × Ti are closed
under the vertex bypassing operation used in shadow removal, which the original problem
formulation is not. (See Section 5.)

By the same setup as the FPT 2-approximation (and as Chitnis et al. [5]), we reduce
to the iterative compression version where we additionally have a solution set Y and an
ordering y1 < . . . < yr over Y , with the assumption that yi reaches yj in D −X if and only
if i < j. We can now apply the shadow removal technique and consider the set of vertices
R reachable from yr in D −X. By shadow removal, this set is strongly connected to yr in
D −X. But here is the second complication. In Directed Subset Feedback Vertex
Set, R cannot contain any “terminal arc” at all, which allows the algorithm to proceed via
an intricate branching step over graph separations in an auxiliary graph (using the so-called
anti-isolation lemma and important separators branching). In our setting there can be an
index i0 such that R contains arcs of i0 (and Ai0 can be unboundedly big). However, via an
extra color-coding step, we are able to modify the method of Chitnis et al. [5], to allow us to
guess i0 and find R. We can then find a solution by repeating the process. In total, we show
that Symmetric Directed Multiway Cut has an algorithm in time O∗(2O(k3)).

Related work The problem Symmetric Multicut was first studied by Klein et al. [12] in
the context of approximation algorithms. The results were improved upon by Even et al. [9],
who showed that Symmetric Multicut admits an O(log k log log k)-approximation, where
k is the size of the optimal solution. By contrast, the best approximation ratio we are aware
of for Directed Multicut is just slightly better than O(

√
n) (Agarwal et al. [1], improving

on previous work [4, 10]). Chuzhoy and Khanna [7] showed that achieving a subpolynomial
approximation ratio for Directed Multicut is hard.

We will make use of much of the toolbox developed for FPT algorithms for graph
separation problems. In particular, the method of iterative compression, first used for
Odd Cycle Transversal by Reed et al. [21]; the notion of important separators, which
underpins Marx’ results on Multiway Cut and related problems [16]; and the notion of
shadow removal, developed by Marx and Razgon for Vertex Multicut [17]. These notions
are explained in Section 2. The work that is closest to our results is the FPT algorithm for
Directed Subset Feedback Vertex Set of Chitnis et al. [5].

Kim et al. [11] recently further extended the toolbox for directed graph separation
problems by a method of flow augmentation for directed graph cuts. This settled several
long-standing problems, among other results developing an FPT algorithm for the notorious
ℓ-Chain SAT problem. Unfortunately, this method is not directly applicable to Symmetric
Multicut as the cut structure in the latter problem is more complex than simple (s, t)-cuts.

Ramanujan and Saurabh [20] considered Skew-Symmetric Multicuts, a problem family
of multicuts on skew-symmetric digraphs (which is effectively a generalization of Almost
2-SAT). However, except for the problem name, this bears no relation to Symmetric
Multicut, as studied in this paper, or to Skew Multicut, the auxiliary problem in the
classic FPT algorithm for Directed Feedback Vertex Set [3].

Structure of the paper After introducing some useful tools in Section 2, we show in
Section 3 that Symmetric Directed Vertex Multicut is FPT when parameterized
by both k and ℓ. Then, in Section 4, we give a 2-approximation algorithm with running
time f(k)nO(1). Finally, in Section 5, we show that a particular case, called Symmetric
Directed Multiway Vertex Cut, is FPT.
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2 Preliminaries

2.1 Important cuts
In a digraph D, if X, Y are disjoint sets of vertices, an (X, Y )-cut S is a set of vertices in
V (D) \ (X ∪ Y ) such that there is no (X, Y )-path in D− S. A classical tool in the design of
FPT algorithms for problems of cut in a graph is the notion of important cut. An (X, Y )-cut
is said to be important if there is no (X, Y )-cut further from X with smaller or equal size.

▶ Definition 1. Let D be a digraph and X, Y be two disjoint sets of vertices. An (X, Y )-cut
S with set R of vertices reachable from X in D − S is said to be important if
1. S is an inclusion-wise minimal (X, Y )-cut, and
2. there is no (X, Y )-cut S′ ̸= S of size at most |S| such that the set of vertices reachable

from X in D − S′ is a superset of R.
Symmetrically, S is said to be anti-important if it is an important (Y, X)-cut in Dop, the
digraph obtained from D by reversing every arc.

All fundamental results on important cuts are summarised in the following property. We
refer the reader to [8, Part 8.5] for proofs.

▶ Proposition 2. Let D be a digraph, X, Y be disjoint sets of vertices and k be an integer.
1. One can test in polynomial time whether an (X, Y )-cut S is important.
2. If S is an (X, Y )-cut with set R of vertices reachable from X in D− S, one can compute

in polynomial time an important (X, Y )-cut S′ such that |S′| ≤ |S| and the set of vertices
reachable from X in D − S′ contains R.

3. If S is the set of important (X, Y )-cuts, then
∑

S∈S 4−|S| ≤ 1.
4. If Sk is the set of important (X, Y )-cuts of size at most k, then |Sk| ≤ 4k and Sk can be

enumerated in time 4knO(1).

2.2 Iterative compression
Iterative compression is a standard method in the design of FPT algorithms.

To avoid repetition, we give here a general property to deal with iterative compression.
Let L be a parameterized algorithmic problem such that an instance of L has the form
I = (D, T, k) where D is a digraph, T depends on the problem and k is an integer. We
suppose a few properties on L:

an instance I = (D, T, k) is a yes-instance if and only if there exists a set X of at most
k vertices satisfying a given property P (D, T, X), which is supposed to be checkable in
polynomial time,
if D is empty, then ∅ is a solution, and
for every vertex v ∈ V (D), if X satisfies P (D−v, T, X), then X∪{v} satisfies P (D, T, X∪
{v}).

These three properties will clearly hold for every problems considered in this paper.
We say that an algorithm A is an α-approximation for some α ≥ 1 if for every input

instance (D, T, k), either it concludes that there is no solution of size at most k, or it returns
a solution of size at most αk. For α = 1, this is an exact algorithm.

We now define the compression problem L′ by: given I ′ = (D, T, Y, k) where (D, T, Y )
satisfies P , find a solution of the L instance (D, T, k). The parameters are now (k, |Y |). The
compression problem is equivalent to the original one in the following sense:

IPEC 2022
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▶ Proposition 3. Let α ≥ 1, and t(k, |Y |) be a real function which is increasing for each
parameter if the other one is fixed, and c ≥ 0 a constant. If there exists an algorithm A′

finding an α-approximation for L′ in time t(k, |Y |)nc then there exists an algorithm A finding
an α-approximation for L in time t(k, αk + 1)nc+1. In particular, if L′ is FPT, then L is
FPT too.

The proof is in the appendix. For further information on iterative compression we refer
to [8, Chapter 4].

2.3 A general framework for shadow removal
The concept of shadow was first introduced by Marx and Razgon [17]. The idea is to
make the problem easier by assuming that there exists a solution X such that every vertex
v ∈ V (D) \X is reachable from a given set of vertices T , and can also reach T in D −X.
Here, we give a general framework that was designed by Chitnis et al. [5].

Let D be a digraph and T a set of vertices. For every set of vertices X disjoint from T ,
we define the shadow of X to be the set of vertices in V (D) \ (T ∪X) that either can not
reach T in D−X, or are not reachable from T in D−X. Chitnis et al. [5] provided a set of
sufficient conditions under which we can comupte an over-approximation of the shadow of a
solution to a problem; in other words, we can compute a set W , disjoint from T , such that
there exists a solution X, disjoint from W , where the shadow of X is contained in W .

To state the result we need a few definitions from Chitnis et al. [5].

▶ Definition 4. Let F = {F1, . . . , Fq} be a set of subgraphs of D. We say that F is T -
connected if for every i = 1, . . . , q, every vertex in Fi can reach T by a walk completely in
Fi, and is reachable from T by a walk completely in Fi. A set of vertices X ⊆ V (D) is said
to be an F-transversal if for every i ∈ {1, . . . , q}, Fi ∩X ̸= ∅.

For example, if F is a set of walks, as is the case in our application, then X is an
F-transversal if and only if X cuts every walk in F . We can now give the main theorem
that gives a superset of the shadow.

▶ Theorem 5 ([5]). Let T ⊆ V (D) and k ∈ N. One can construct in time 2O(k2)nO(1) a
family Z1, . . . , Zt of t = 2O(k2) log2 n sets of vertices such that for any set F of T -connected
subgraphs of D, if there exists an F-transversal of size at most k, then there exists an
F-transversal X and i ∈ {1, . . . , t} such that:
1. |X| ≤ k,
2. X ∩ Zi = ∅,
3. the shadow of X is included in Zi.

2.4 Skew Vertex Multicut is FPT
In this section, we present a problem which is known to be FPT. This problem was first
introduced by [3] in the first proof that Directed Feedback Vertex Set is FPT.

Skew Vertex Multicut
Input: a digraph D, an ordered list of pair of vertices (s1, t1), . . . , (sr, tr) and an
integer k.
Parameter: k

Output: find, if there exists, a set X of at most k vertices such that there is no
(sj , ti)-path in D −X if j ≥ i.
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▶ Theorem 6 ([3]). The problem Skew Vertex Multicut is FPT and can be solved in
time O(4kk3n2).

3 An FPT algorithm when parameterized by k + ℓ

This section aims to prove the following theorem (remember that in Symmetric Directed
Vertex Multicut, k is the size of the desired solution, and ℓ is the number of cut requests).

▶ Theorem 7. There is an algorithm that solves Symmetric Directed Vertex Multicut
in time O

(
(2ℓ + 1)2ℓ4kk3n2)

.

Proof. Let I = (D, C, k) be a Symmetric Directed Vertex Multicut instance. We
suppose that I is a yes-instance and let XOP T be a solution for I. Let T =

⋃
(s,t)∈C{s, t}.

Let T0, T1, . . . , Tr with r ≤ 2ℓ be a partition of T such that:
T0 = XOP T ∩ T ,
for every i ∈ {1, . . . , r} and every t, t′ ∈ Ti, t and t′ are strongly connected in D−XOP T ,
there is no (Tj , Ti)-path in D −XOP T if j > i.

Such a partition exists: consider the strongly connected components of D−XOP T and order
them into a topological order C1, C2, . . . , Cr, that is an ordering such that for every arc
uv in D −XOP T with u ∈ Ci and v ∈ Cj , we have i ≤ j. Then set Ti = Ci ∩ T for every
i ∈ {1, . . . , r}.

The first step of our algorithm guesses that partition, thereby multiplying the running
time by at most (2ℓ + 1)2ℓ. Reject any partition where s, t ∈ Ti for any (s, t) ∈ C and any i.
Now, we consider the digraph D′ obtained by removing T0 from D and merging each Ti into
a single vertex ti, for every i = 1, . . . , r.

Let I ′ = (D′, {(t1, t2), . . . , (tr−1, tr)}, k − |T0|), a Skew Vertex Multicut instance.
Clearly, XOP T \ T0 is a solution for I ′, by definition of T0, . . . , Tr. Reciprocally, if I ′ has a
solution X ′, then consider X = T0 ∪X ′, which has size at most (k − |T0|) + |T0| = k. If X

is not a solution for I, then there exists (s, t) ∈ C strongly connected in D −X. Then, s

and t are in the same Ti for some i, and thus s and t are strongly connected in D −XOP T ,
contradicting the fact that XOP T is a solution for I.

Thus, one can solve Symmetric Directed Vertex Multicut by first guessing
T0, . . . , Tr and then solving that Skew Vertex Multicut instance using Theorem 6.
This algorithm has running time at most O

(
(2ℓ + 1)2ℓ4kk3n2)

. ◀

4 A 2-approximation algorithm

In this part, we give an FPT algorithm that finds a solution of size at most 2k for Symmetric
Directed Vertex Multicut if it is known that there exists a solution of size at most k.

4.1 Iterative compression and first guesses

This section aims to prove that it is enough to find a 2-approximation algorithm for the
following problem:

IPEC 2022
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Symmetric Directed Vertex Multicut Compression
Input: A digraph D, a set of pair of vertices C = {(s1, t1), . . . , (sℓ, tℓ)}, an integer k,
and a solution Y of the Symmetric Vertex Multicut instance (D, C, k), of size at
most 2k + 1, with an ordering y1, . . . , yr of Y .
Parameter: (k, |Y |)
Output: Find, if there exists, a set X of at most k vertices disjoint from Y such that:
1. for every pair of terminals (s, t) ∈ C with s, t ̸∈ X, s and t are not strongly connected

in D −X, and
2. there is no (yj , yi)-path in D −X if j > i.

▶ Proposition 8. Let t(k, |Y |) be a positive function that is non decreasing if one parameter
is fixed, and c ≥ 2 a constant.

If Symmetric Directed Vertex Multicut Compression has a 2-approximation al-
gorithm A′ with time complexity t(k, |Y |)nc, then Symmetric Directed Vertex Multicut
has a 2-approximation algorithm A with time complexity at most (2k +2)2k+1t(k, 2k +1)nc+1.

Proof. First, we directly apply Property 3 with α = 2 and thus it is enough to reduce
the compression problem of Symmetric Directed Vertex Multicut to Symmetric
Directed Vertex Multicut Compression.

Consider an instance I = (D, C, k, Y ) of that compression problem which is supposed to be
a yes-instance, with an optimal solution XOP T . It is enough to show that a 2-approximation
for I can be found with at most (|Y |+ 1)|Y | calls to A′. To do that, we guess the structure
of Y in D −XOP T . More precisely, we guess a partition of Y into Y0, Y1, . . . Yr such that:
1. Y0 = XOP T ∩ Y , and
2. if y, y′ ∈ Yi then y and y′ are strongly connected in D −XOP T , and
3. there is no (Yj , Yi)-path in D −XOP T if j > i.
Such a partition exists by taking the intersection of the strongly connected components
of D − XOP T with Y . This guess multiplies the running time by at most (|Y | + 1)|Y | ≤
(2k + 2)2k+1.

We now claim that the instance of the compression problem I ′ obtained by
1. removing Y0 from D and decreasing k by |Y0|, and
2. merging each Yi into a single vertex yi,
is equivalent to I. More precisely, if I is a yes-instance, then I ′ too by taking XOP T \ Y as a
solution. Reciprocally, if I ′ has a solution X ′ of size at most 2(k − |Y0|) then X ′ ∪ Y0 is a
solution for I of size at most 2(k − |Y0|) + |Y0| ≤ 2k. This proves the property. ◀

The remaining of this section shows that Symmetric Directed Vertex Multicut
Compression has a 2-approximation algorithm.

4.2 Finding a skew multicut of Y

The first step of our algorithm computes a set X0 ⊆ V (D) \ Y of at most k vertices such
that there is no (yj , yi)-path in D −X0 if j > i.

To do that, we use the problem Skew Vertex Multicut that is known to be FPT. We
directly apply Theorem 6 to the instance (D, ((y1, y2), (y2, y3), . . . , (yr−1, yr)), k) to compute
a set X0 of at most k vertices as wanted. Indeed, by definition of Skew Vertex Multicut,
for every j > i, there is no (yj , yi)-path in D −X0. This strong property will allow us to
find in the next subsection a solution of size at most k in D −X0.
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4.3 Finding a solution in the simplified instance
This section shows how to compute a solution for I = (D−X0, C, k, Y ). This will result in a
set X1 of size at most k such that there is no pair si, ti strongly connected in D −X0 −X1,
that is, X0 ∪X1 is a solution of size at most 2k.

To do that, first note that any vertex v ∈ V (D) \ Y can be strongly connected with at
most one vertex in Y in D −X0. Our first claim shows that we can assume that exactly one
vertex in Y is strongly connected with v.

▷ Claim 9. If v ∈ V (D) \ (X0 ∪ Y ) is strongly connected to no vertex in Y in D−X0, then
I ′ = (D −X0 − v, C \ {ab ∈ C | a = v or b = v}, k, Y ) and I have the same set of solutions.

Proof. Clearly, if I has a solution X ′, then X ′ is a solution for I ′ as every closed walk in
D − X0 − v is also in D − X0. Reciprocally, if X ′ is a solution for I ′, then adding v to
D −X0 − v −X ′ does not create any closed walk passing through at least one vertex in Y .
But any closed walk passing through a cut request (s, t) ∈ C must pass through at least one
vertex in Y . It follows that no pair of terminals is strongly connected in D −X0 −X ′ and
X ′ is a solution for I. ◀

Thus, we can remove every vertex strongly connected to no vertex in Y . We now denote
by ℓ(v) the unique integer such that v is strongly connected with yℓ(v).

▷ Claim 10. Let (s, t) ∈ C be a terminal arc. If ℓ(s) ̸= ℓ(t), then I ′′ = (D, C \ {(s, t)}, k, Y )
and I ′ have the same set of solutions.

Proof. Clearly, if I ′ has a solution, then I ′′ too. Reciprocally, if I ′′ has a solution X ′′, then
every terminal arc different from s, t is not strongly connected in D −X0 −X ′′. But s and t

can not be strongly connected as s and t are not strongly connected in D−X0. Thus, X ′′ is
a solution for I ′′ too. ◀

We now assume that for every pair of terminal s, t, ℓ(s) = ℓ(t). The next claim shows
that we can process each strongly connected component in D −X0 independently.

▷ Claim 11. If there is an arc uv with u and v not strongly connected in D −X0, then
I ′′ = (D − uv, C, k, Y ) and I ′ have the same set of solutions.

Proof. If I ′ has a solution X ′, then X ′ is clearly a solution for I ′′. Reciprocally, if X ′′ is a
solution for I ′′, then adding uv to D −X0 − uv does not create any closed walk, and thus
X ′′ is a solution for I ′ too. ◀

Now, we assume that D − X0 has |Y | weakly connected components Y1, . . . , Yr such
that for every i, V (Yi) ∩ Y = {yi}. Observe that now the weakly connected components
are strongly connected. Let XOP T be an optimal solution for I ′. Then we guess the
values ki = |XOP T ∩ Yi|, which multiplies the complexity of our algorithm by at most
(k + 1)|Y | = kO(k). Now, we solve each instance Ii = (Yi, C, ki, {yi}) independently.

The key result is the following “pushing” claim, that shows how to construct X1 as a
union of important cuts. We denote by Xi,OP T = XOP T ∩Yi a solution of Ii, that we suppose
to exist.

▷ Claim 12. Let (s, t) ∈ C be a terminal arc strongly connected in Yi. Let (a, b) ∈
{(s, yi), (yi, s), (t, yi), (yi, t)} be such that Xi,OP T includes an (a, b)-cut.

if a = yi, let S be the set of vertices in Xi,OP T with an in-neighbour reachable from
yi in Yi − Xi,OP T and S′ be the anti-important (a, b)-cut given by Property 2. Then
X ′ = (XOP T \ S) ∪ S′ is a solution for Ii too,
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symmetrically, if b = yi, let S be the set of vertices in Xi,OP T with an out-neighbour that
reaches yi in Yi −Xi,OP T and S′ be the important (a, b)-cut given by Property 2. Then
X ′ = (XOP T \ S) ∪ S′ is a solution for Ii too.

Proof. As s and t are not strongly connected in Yi − Xi,OP T , Xi,OP T must contain an
(a, b)-cut for at least one (a, b) ∈ {(s, yi), (yi, s), (t, yi), (yi, t)}. It is enough to show the first
point, as the second one is the first one applied to Dop the digraph obtained from D by
reversing every arc.

First, as |S′| ≤ |S|, we have |X ′| ≤ |Xi,OP T | ≤ ki. It remains to show that there is no
pair (s′, t′) ∈ C strongly connected in Yi −X ′. Suppose that such a counterexample (s′, t′)
exists. Then there exists a closed walk P passing through yi, s′ and t′. This walk must pass
through S′ \S as it does not exist in Yi−Xi,OP T . But then there exists v ∈ S \S′ reachable
from yi in Yi − S′, contradicting the fact that the set of vertices reachable from yi in Yi − S

includes the set of vertices reachable from yi in Yi − S′. ◀

We can now give the algorithm that solves Ii = (Yi, C, ki, {yi}) as Algorithm 1.

Xi ← ∅;
while there exists (s, t) ∈ C ∩ V (Yi)2 strongly connected in Yi −Xi do

guess a direction (a, b) ∈ {(s, yi), (yi, s), (t, yi), (yi, t)};
if a = yi then

guess an anti-important (a, b)-cut S′ of size at most ki − |Xi|;
else

guess an important (a, b)-cut S′ of size at most ki − |Xi|;
end
add S′ to Xi;

end
return Xi;
Algorithm 1 Algorithm for single-terminal case Ii = (Yi, C, ki, {yi})

If the algorithm returns a value, then it is clearly a solution. We now show that there
exists a sequence of guesses that leads to a solution if it exists. More precisely, we show
that the following invariant holds: At every iteration of the loop, there is a possible value
of Xi such that Xi can be extended to a solution for Ii if it exists. This invariant initially
holds. If the results holds at some iteration for a set Xi, let Xi,OP T be a solution that
contains Xi, and for the first guess take (a, b) such that Xi,OP T contains an (a, b)-cut S. By
Claim 12 there exists an important or anti-important (a, b)-cut S′ of size at most |S| such
that (Xi,OP T \ S) ∪ S′ is still a solution. Thus, there exists a solution that contains S′ and
we can safely add it to Xi.

To see that the algorithm works in time 8knO(1), consider the recursion tree formed by
recursively branching over all possible values of a guess, for each guess made in the algorithm.
We denote by t(k) the number of leaves of this recursion tree in the worst case. We show by
induction on k that t(k)4−k ≤ 4k. If k = 0, the result is clear. Otherwise, if we assume the
result for smaller values of k, then we have

t(k)4−k ≤ 4
∑

S∈Sk

t(k − |S|)4−k ≤
∑

S∈Sk

t(k − |S|)4−(k−|S|) ≤
∑

S∈Sk

4k−|S| ≤ 4k
∑

S∈Sk

4−|S|

where Sk is the set of important (or anti-important) (a, b)-cuts that is enumerated in the
algorithm. It follows by Property 4 that t(k) ≤ 8k. We note that the algorithm can easily be
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made deterministic by replacing each guessing step by an exhaustive branching; we omit the
details.

These two steps give us a 2-approximation algorithm.

▶ Theorem 13. The exists an algorithm with running time kO(k)nO(1) such that given an
instance of Symmetric Directed Vertex Multicut and an integer k, either it concludes
that there is no solution of size at most k, or it returns a solution of size at most 2k.

Proof. Let I = (D, C, k, Y ) be a Symmetric Directed Vertex Multicut Compression
instance. First, compute a skew multicut of Y using Section 4.2. This gives a set X0 of at
most k vertices, if I has a solution. Then we apply Section 4.3 to find a set X1 of at most
k vertices that is a solution for (D −X0, C, k, Y ). We can now conclude that X0 ∪X1 is a
2-approximation as |X0 ∪X1| ≤ 2k. ◀

5 An exact algorithm for Symmetric Directed Multiway Cut

In this section, we give an exact (i.e., non-approximate) FPT algorithm for a particular case
of Symmetric Directed Vertex Multicut.

Symmetric Directed Multiway Vertex Cut
Input: A digraph D, a set of terminals T ⊆ V (D), k ∈ N.
Parameter: k

Output: find, if there exists, X ⊆ V (D) with |X| ≤ k such there is no pair of distinct
terminals t, t′ ∈ T \X strongly connected in D −X.

▶ Theorem 14. Symmetric Directed Multiway Vertex Cut can be solved in time
2O(k3)nO(1).

Actually, we will prove that a more general problem very closely related to Directed
Subset Feedback Arc Set is FPT. Chitnis et al. [5] proved that the problem Directed
Subset Feedback Arc Set is FPT. We adapt here their method to the following problem.

Arc Terminal Symmetric Multiway Cut
Input: A digraph D having possibly loops, a list A1, . . . , Aℓ of arcs in D, such that
for every i, Ai = Si × Ti for some (not necessarily disjoint) sets Si and Ti of vertices.
Parameter: k

Output: find, if there exists, a set X of at most k vertices such that any closed walk
in D −X intersects at most one Ai.

Note that we allow repetition in the list A1, . . . Aℓ. In this case, if Ai = Aj for some i ̸= j,
then every closed walk intersecting Ai = Aj has to be cut. We will call the arcs in

⋃
i Ai the

terminal arcs.
First we show that Symmetric Directed Multiway Vertex Cut reduces to Arc

Terminal Symmetric Multiway Cut in FPT time. Indeed, given an instance I =
(D, T = {t1, . . . tℓ}, k) of Symmetric Directed Multiway Vertex Cut, we consider
the Arc Terminal Symmetric Multiway Cut instance I ′ = (D, (A1, . . . Aℓ), k) where
Ai = {ti} ×N+

D (ti). Now one can easily see that X is a solution for I if and only if it is a
solution for I ′. Hence it is enough to find an FPT algorithm for Arc Terminal Symmetric
Multiway Cut.
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5.1 Iterative compression and first guesses
By Property 3, it is enough to find an FPT algorithm for the compression problem associated
to Arc Terminal Symmetric Multiway Cut. Thus suppose that a first solution Y of
size k + 1 is given, and we want to find a solution XOP T of size at most k. First, we guess
the intersection Y ∩XOP T , and we remove it. Now we assume that XOP T is disjoint from
Y . If two vertices y, y′ ∈ Y are strongly connected in D −XOP T , then we can merge them
without breaking the solution XOP T , and without making the instance easier. Now we can
suppose that no two vertices in Y are strongly connected in D −XOP T . Hence there is a
topological ordering y1, . . . y|Y | of Y such that there is no (yj , yi)-path in D−XOP T if j > i.
Given this ordering, we can add the arc yiyj for every i < j without breaking the solution
XOP T , and without making the instance easier. To summarise, by multiplying the running
time of the algorithm by at most (k + 2)k+1nO(1), it is enough to find an FPT algorithm for
the following problem.

Arc Terminal Symmetric Multiway Cut Compression
Input: A digraph D (having possibly loops), a list A1, . . . , Aℓ of arcs in D, such that
for every i, Ai = Si × Ti for some (not necessarily disjoint) sets Si and Ti of vertices,
and an ordered set Y = (y1, . . . , yr) of vertices such that:
1. for every i ̸= j, no closed walk in D − Y intersects both Ai and Aj , and
2. for every 1 ≤ i < j ≤ r, yiyj is an arc in D.

Parameter: k + r

Output: find, if there exists, a set X of at most k vertices such that
1. X is disjoint from Y ,
2. any closed walk in D −X intersects at most one Ai, and
3. there is no (yj , yi)-path in D −X if j > i.

5.2 Shadow removal
Let I = (D, (A1, . . . Aℓ), k, Y ) be an Arc Terminal Symmetric Multiway Cut Com-
pression instance. To show that we can assume the solution to be shadowless, let F be
the family containing all closed walks intersecting at least two distinct sets Ai, Aj and all
(yj , yi)-walks for j > i. Note that F is Y -connected and that the problem is precisely to find
an F-transversal X disjoint from Y . We apply Theorem 5 with F , giving us a family of
t = 2O(k2) log2 n sets disjoint from Y , and we guess one of them, say Z, to be such that if I

has a solution, then there exists a solution X disjoint from Z and with shadow contained in
Z. As we consider the shadow from Y , vertices in Y can not be in the shadow of a solution,
so we can assume Z and Y disjoint by replacing Z by Z \ Y .

We now define another instance I/Z = (D′, (A′
1, . . . , A′

ℓ), k, Y ) equivalent to I in the
following sense:
1. if I has a solution that is disjoint from Z and with shadow contained in Z, then I/Z has

a shadowless solution, and
2. if I/Z has a solution, then I does too.
The construction is the following. If D[Z] contains a closed walk W such that at least two
Ai, Aj intersects W , reject Z. Otherwise construct the following. Let a Z-walk be a walk in
D with endpoints in V (D′) and internal vertices, if any, in Z.

V (D′) = V (D) \ Z;
E(D′) is the set of all arcs uv such that there is a Z-walk from u to v in D;
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for every i = 1, . . . , ℓ, A′
i is the set of arcs uv such that there is a Z-walk from u to v

intersecting Ai. In particular, Ai ∩E(D′) ⊆ A′
i as a Z-walk can have no internal vertices.

First, we need to check that I/Z is indeed an instance of Arc Terminal Symmetric
Multiway Cut Compression

▷ Claim 15. For every i = 1, . . . , ℓ, A′
i = S′

i × T ′
i for some sets S′

i and T ′
i of vertices.

Proof. It is enough to show that if uv, u′v′ ∈ A′
i, then uv′ ∈ A′

i. By definition, there exists a
Z-walk W (resp. W ′) from u to v (resp. u′ to v′), with possibly no internal vertices, which
goes through a terminal arc ab ∈ Ai (resp. a′b′ ∈ Ai), where the terminal arc may be a loop.
As Ai = Si × Ti, we have ab′ ∈ Ai, and so by combining a prefix of W with a suffix of W ′,
there is a Z-walk from u to v′ containing an arc in Ai. This shows that uv′ ∈ A′

i. ◀

▷ Claim 16. I/Z is an instance of Arc Terminal Symmetric Multiway Cut Com-
pression.

Proof. By Claim 15, A′
i = S′

i × T ′
i for every i, and the arcs yiyj , i < j remain in D′. It

remains to check that Y is a solution for D′. Assume to the contrary, and let W be a closed
walk in D′ − Y intersecting two sets Ai and Aj , i ̸= j. But then W expands into a closed
walk W ′ in D by replacing every arc of W with a corresponding Z-walk. Since Y ∩ Z = ∅,
this is a closed walk in D intersecting Ai and Aj , disjoint from Y . This is a contradiction. ◀

▷ Claim 17. If I has a solution disjoint from Z and with shadow contained in Z, then I/Z

has a shadowless solution.

Proof. Let X be a solution of I disjoint from Z and with shadow contained in Z. We claim
that X is a shadowless solution of I/Z.

First, let’s see why X is a solution of I/Z. Suppose for contradiction that D′−X contains
a closed walk W ′ containing two terminal arcs uv ∈ A′

i and u′v′ ∈ A′
j for some distinct

indices i and j. Then we construct a closed walk W in D −X intersecting both Ai and Aj :
replace in W ′ the arc uv (resp. u′v′) by a Z-walk from u to v (resp. u′ to v′) intersecting Ai

(resp. Aj), and for every other arc xy ∈W ′ which is not in D, replace xy by a Z-walk from
x to y. This gives a closed walk W in D −X intersecting both Ai and Aj , contradicting the
fact that X is a solution of I. Similarly, if there is a (yj , yi)-path P ′ in D′ −X for some
j > i, then we can expand P ′ into a (yj , yi)-walk W in D −X, which can be shortcut into a
(yj , yi)-path P in D −X.

Now we show that X is shadowless in I ′. For every vertex u ∈ V (D) \ Z, we know that
there is a (u, Y )-path P + (resp. (Y, u)-path P −) in D −X, as the shadow of X is included
in Z. Then we replace every Z-walk in P + (resp. P −) by the arc linking its endpoints. This
gives a (u, Y )-path (resp. (Y, u)-path) in D′ −X, and so v is not in the shadow. This proves
that X is shadowless in D′. ◀

▷ Claim 18. If I/Z has a solution then I too.

Proof. Suppose that I/Z has a solution X. We claim that X is a solution for I too.
Suppose for contradiction that D −X has a closed walk W intersecting both Ai and Aj

for some distinct indices i and j. Then construct the closed walk W ′ in D′ −X as follows:
replace every Z-walk in W by the arc linking its endpoints. This creates a closed walk W ′ in
D′ −X intersecting both A′

i and A′
j , contradicting the fact that X is a solution for I ′. A

similar step applies if D −X contains a (yj , yi)-path for some j > i. ◀
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As a consequence, we are able to transform the original instance I into an equivalent
instance I/Z which has a shadowless solution. Guessing Z multiplies the running time by at
most 2O(k2) log2 n, and then computing I/Z is performed in polynomial time.

5.3 Finding a shadowless solution
We now suppose that I = (D, (A1, . . . Aℓ), k, Y ) has a shadowless solution XOP T . Remember
that y1, . . . , yr is an ordering of Y such that there is no (yj , yi)-path in D −XOP T if j > i,
and for every j > i, yiyj is an arc in D. As the solution XOP T we are searching for is
shadowless, every vertex in D −XOP T reaches Y , and so yr (because yr is dominated by
Y \ {yr}).

Another observation is that for at most one index i0, Ai0 contains a terminal arc strongly
connected with yr in D − XOP T . In what follows, we implicitly suppose that i0 exists,
otherwise we can set by convention Ai0 = ∅. As XOP T is shadowless, an arc uv is strongly
connected with yr in D −XOP T if and only if
1. yr reaches u in D −XOP T and
2. v ̸∈ XOP T .

The next claim allows us to find the set of vertices v which violates the second condition.
Let R denote the set of vertices reachable from yr in D −XOP T and note by shadowlessness
that R precisely describes the strongly connected component of yr in D −XOP T . Say that
Ai is active in XOP T if i ̸= i0 and Si ∩R ̸= ∅ (and note that this implies Ti ⊆ XOP T ).

▷ Claim 19 (Derived from Theorem 5.4 [5]). One can find in time 2O(k)nO(1) a collection of
pairs (I, Tc) where I ⊆ [ℓ] and Tc ⊆ V (D), such that the following hold:
1. the number of pairs (I, Tc) produced is kO(1) log n

2. for every pair, |I|+ |Tc| ≤ (2k + 1)42k+1

3. for at least one pair (I, Tc) we have i0 ∈ I if Ai0 ̸= ∅, and for every i ∈ [ℓ] such that Ai is
active in XOP T we have Ti ⊆ Tc

Proof. Assume that Ai0 ̸= ∅ as otherwise the result is easier, and let uv ∈ Ai0 with u, v ∈ R.
We begin by computing a subset U ⊆ V (D) such that v ∈ U and U ∩XOP T = ∅. This can be
done randomly with success probability Θ(1/k) by sampling every vertex independently with
probability 1/k, but the process can also be derandomized by a (n, k, k2)-splitter ; see Naor et
al. [18]. In particular, in polynomial time we can compute a family of subsets Ui ⊆ V (D) such
that the family contains kO(1) log n members and at least one member meets the conditions
for U . We repeat the steps below for every member Ui in the family.

From now on, let us assume that we have such a set U . Create a graph D′ as follows.
For every v ∈ V (D), create two vertices v−, v+. For every i ∈ [ℓ], create a vertex zi and add
the arcs {u+zi | u ∈ Si} and {ziv

− | v ∈ Ti}. For every arc uv ∈ E(D), add the arc u+v+.
Finally, add vertices s and t, the arc sy+

r , and the arc v−t for every v ∈ V (D). Finally, for
every vertex v ∈ U give v− capacity 2k + 2 by replacing v− by a set of 2k + 2 false twins. Let
T ′

c be the union of all important (s, t)-cuts in D′ of size at most 2k +1. By Property 4, T ′
c can

be computed in time 2O(k)nO(1) and |T ′
c| ≤ (2k + 1)42k+1. Finally we set I = {i | zi ∈ T ′

c}
and Tc = {v ∈ V (D) | v− ∈ T ′

c}. Clearly |I|+ |Tc| ≤ |T ′
c| ≤ (2k + 1)42k+1.

We claim that I contains i0, and that for every Ai that is active in XOP T we have Ti ⊆ Tc.
Indeed, define the set X ′ = {v−, v+ | v ∈ XOP T } ∪ {zi0} and recall by assumption that
XOP T ∩ U = ∅. Note that X ′ is an (s, t)-cut. Indeed, assume to the contrary that there is
an (s, t)-path P in D′ −X ′. Then the last arcs of P must be u+zi, ziv

− and v−t for some
i ∈ [ℓ], uv ∈ Ai. We may also assume that the entire prefix of P before zi visits only s and
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vertices w+, w ∈ V (D). But then that prefix proves u ∈ R; zi /∈ X ′ implies i ̸= i0; and
v− /∈ X ′ implies v /∈ XOP T . This contradicts that only Ai0 is strongly connected to yr in
D −XOP T . Also note |X ′| ≤ 2k + 1. Now by Property 2 we can push X ′ to an important
(s, t)-cut X ′′ of size at most 2k + 1, hence X ′′ ⊆ T ′

c.
We claim that zi0 ∈ X ′′ and for every Ai active in XOP T we have {v− | v ∈ Ti} ⊆ X ′′.

For the former, by assumption u ∈ R, hence either zi0 ∈ X ′′ or the cut has been pushed
closer to t. But since v ∈ U and v has been given high capacity, pushing the cut past zi0

would contradict the size bound of 2k + 1. Hence zi0 ∈ X ′′. For the latter, assume that Ai is
active in XOP T . Then there is a vertex u′ ∈ Si ∩R, hence zi ∈ R, and the cut cannot push
past the vertices v−, v ∈ Ti since v−t ∈ E(D′). ◀

Now we can guess the correct pair (I, Tc). Therefore, we can guess i0 ∈ I (or the case
that Ai0 = ∅) and XOP T ∩Tc, and remove these vertices from D. This multiplies the running
time by at most (2k + 1)42k+1((2k+1)42k+1

k

)
log n = 2O(k2) log n, and now we can assume that

for every i ∈ [ℓ] except i0, Ai is not active. Furthermore, if Ai0 ̸= ∅ then we add all arcs
{yr} × Ti0 to the graph. Next claim shows how to start the construction of a solution using
these assumptions.

▷ Claim 20. Adding the arcs {yr} × Ti0 does not affect the solution. Furthermore, let S

be the set of vertices in XOP T which have an in-neighbour reachable from yr in D −XOP T .
There exists an important ({yr}, Y \ {yr} ∪

⋃
i ̸=i0

Si)-cut S′ of size at most |S| such that
(XOP T \ S) ∪ S′ is a solution to I.

Proof. We first note that since R∩Si0 ̸= ∅, then for every v ∈ Ti0 either v ∈ R or v ∈ XOP T

(for example due to blocking paths from yr to some yi, i < r). Hence adding the arcs
{yr} × Ti0 has no effect on the solution. However, it does simplify the important separator
step below.

Now observe that S is a ({yr}, Y \ {yr} ∪
⋃

i̸=i0
Si)-cut. By Property 2, there exists an

important ({yr}, Y \ {yr} ∪
⋃

i̸=i0
Si)-cut S′ with |S′| ≤ |S| such that every vertex reachable

from yr in D − S is still reachable from yr in D − S′. We prove that X ′ := (XOP T \ S) ∪ S′

is a solution for I. Clearly |X| ≤ k, so we only need to show that X ′ cuts all the closed
walks intersecting several of the sets A1, . . . , Aℓ and all (yj , yi)-paths, j > i.

Suppose for contradiction that there exists two distinct indices i ̸= j and a closed walk
W such that W intersects both Ai and Aj . First, i ̸= i0 and j ̸= i0: since the arc yrv is
added for every v ∈ Ti0 , either v ∈ XOP T or v ∈ R. Thus there is no path from Ti0 to Si for
any i ̸= i0 in D−X ′ by the choice of the cut S′. Moreover, W must intersect S, as otherwise
W is a closed walk in D −XOP T , contradicting the fact that XOP T is a solution. Let s be
a vertex in S ∩W , then either s ∈ S′, and so S′ intersects W ; or s is reachable from yr in
D − S′. But then Si is reachable from yr in D − S′, contradicting the fact that S′ is an
(yr,

⋃
i ̸=i0

Si)-cut. This contradiction proves that X ′ is a solution. By a similar argument,
X ′ also cuts all (yj , yi)-paths for j > i. ◀

Note that (XOP T \ S)∪ S′ might have a non empty shadow. This is not a problem as we
will apply the shadow removal procedure at each step.

We can now give the algorithm A′ on the instance (D, (Ai), k, Y ) of Arc Terminal
Symmetric Directed Multiway Cut Compression:
1. reduce to the shadowless case by applying Subsection 5.2;
2. compute (and guess) (I, Tc) with Claim 19, guess i0 ∈ I ∪{0} and Xc := XOP T ∩Tc ⊆ Tc;
3. let D′ = D −Xc, and if i0 ̸= 0, add all arcs {yr} × Ti0 ;
4. guess an important ({yr}, Y \ {yr} ∪

⋃
i ̸=i0

Si)-cut S of size at most k − |Xc| in D′;
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5. if A′(D−S−Xc, (Ai), k− |S| − |Xc|, Y \ {yr}) returns a solution X ′, return S ∪Xc ∪X ′;
otherwise proceed with the next guess or return “no solution”.

First, it is easy to see that if this algorithm returns a set X, then X is a solution of the
input instance. Moreover, by all the previous claims, if there exists a solution, then there
exists a sequence of guesses which will find it. This algorithms explores a tree of depth at
most k with maximum degree 2O(k2) log3 n, and each node is processed in time 2O(k2)nO(1).
Hence the total running time is at most(

2O(k2) log3 n
)k

2O(k2)nO(1) = 2O(k3)nO(1)

using in particular Lemma 21 from the appendix. This completes the proof of Theorem 14. ◀
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A Missing proofs

Proof of Proposition 3. Let A′(D, T, k) be an algorithm solving the problem L′ in time
t(k, |Y |)nc. We now solve the original problem L as follows. Consider an arbitrary ordering
v1, . . . , vn of V (D). We will compute iteratively a set Xi ⊆ {v1, . . . vi} of size at most αk

which is a solution of the partial instance Ii induces by {v1, . . . vi}.
We start with X0 = ∅, which is a solution of I0 by assumption. Then, if Vi is already

computed, we apply A′ to (D[{v1, . . . , vi+1}], T, Xi∪{vi+1}, k), which returns by assumption
a solution of size at most αk, or says that there is no solution of size at most k, and in this
latter case we return ”no” directly. This call is valid because Xi ∪ {vi+1} is a solution of
(D[{v1, . . . , vi+1}], T, Xi ∪ {vi+1}) of size at most αk + 1.

This algorithm consists in n calls to A′ with the solution to compress of size at most
αk + 1. Hence its running time is at most t(k, αk + 1)nc+1. ◀

▶ Lemma 21. If n ≥ 216 and p ≥ 0, then (log n)p ≤ n + p2p.

Proof. If p ≥
√

log n then n ≤ 2p2 and (log n)p ≤ p2p.
Otherwise, p <

√
log n. First, we show the following property:

n ≥ 216 ⇒
√

log n ≤ log n

log log n

To prove that, note that this property is equivalent to 2 log N ≤ N with N =
√

log n. Then
N ≥ 4 is a sufficient condition, and n ≥ 216 too. Now we apply this result and we get
p ≤
√

log n ≤ log n
log log n . It follows that (log n)p ≤ n. ◀
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