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Abstract

Executable binaries are made up of functional components interacting with
each other and the operating system they run on. When high-level source
code is compiled into executable binaries, information on the name, size,
location, and type of these functional components is included in the exe-
cutable through the use of symbols. Most software distributed today that
is compiled into machine code is released without this symbol information
i.e., they are stripped. This makes understanding and analysing binary
software very difficult due to the lack of recognisable information in a
structured and ordered manner.

In this thesis, we propose new techniques used to recover the names
of functions in stripped binaries. We explore problems inherent in recov-
ering textual information in the large label space associated with naming
functions and develop deep-learning embeddings for both binary func-
tions and their names. Furthermore, we demonstrate how symbol name
information can be used to aid the exposure of previously undiscovered
software bugs by injecting faults in the high-level logic of client USB ker-
nel drivers.

We design a scalable approach for symbol recovery that uses static and
symbolic program analysis to extract high-level features from machine
code. These features are then used to learn the structure of how binary code
and data interact with each other to infer name information from functions
in executables. We build a toolkit, DESYL (DEbug Symbol Learning), that
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is able to modify stripped executable binaries and add symbol information
using machine learning models learnt over a very large dataset. Finally,
we develop USBDT (USB Driver Testing), our tool for hooking known ker-
nel functions and using selective symbolic execution to analyse Linux USB
kernel drivers. Our work extends QEMU to build a software defined vir-
tual USB device used to analyse the Linux USB stack and helped develop
two previously unreported mainline Linux kernel zero-day exploits.
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Introduction 1
Modern software has adapted to accommodate the demand for better so-
lutions to more problems across an ever-increasing set of devices. The ex-
ponential increase in computational performance from Moore’s Law and
the prevalent access of computing devices has driven the need for more
advanced software to fill the performance and storage capacity now avail-
able in Common-Off-The-Shelf (COTS) devices. Ubiquitous access to small,
cheap, and powerful systems has compelled manufacturers to fill new
simple devices with complex functionality in an attempt to be more user
friendly and altogether smarter. This ever growing number and type of
devices has resulted in a marked increase in the security risk posed from
their deployment. The analysis and security of software that drives these
devices is therefore of paramount importance.

Indeed, much has been done in the history of security for computational
devices, however it is a constant arms race between defences and contem-
porary attack methods. The race has driven changes in the design of hard-
ware to enforce separation of memory regions and in software to create
well established principles to safely allow multiple users running differ-
ent processes in different security domains. Despite an abundance of de-
fence mechanisms built into modern hardware and software, the majority
of consumer grade devices are routinely exploited. Techniques that pro-
vide low-level programming languages strong or complete guarantees for

1



1 Introduction

spatial and temporal memory safety [111, 110], fault isolation, and the sep-
aration of information flow [159, 52], incur too high a performance over-
head for them to be used on consumer devices in the real-world. Alterna-
tively, applications may present vulnerabilities not only through memory
corruption, but through external environmental factors and the mishan-
dling of data. In mishandling data, sensitive information may leak from a
high security context to that of a lesser privilege and cross the bounds of a
security model. Similarly, data may be constructed by an attacker to ma-
nipulate a program to carry out unintended actions in a data-only attack;
a style of software attack that will succeed even in spatial and temporal
memory correct software. These methods of insecurity drive a need for
the security analysis of modern-day software that is relevant now more
than ever.

Even on modern devices, software is still written in low-level program-
ming languages such as C/C++ or built upon abstractions of them. Whilst
much work has been done to move programs into higher-level program-
ming languages that offer certain security guarantees such as Rust, Python,
JavaScript, Lua, or Go, all computers execute Instruction Set Architec-
ture (ISA) specific machine code and are blissfully unaware of any higher-
level constructs available in their respective languages. Security failures
are still possible in the instrumentation of these higher-level languages
and until hardware moves away from processing low-level code, secu-
rity failures may still flow from the interpretation or compiled execution
of them. WebAssembly, for example, is an established compilation target
designed to be widely deployable and offers security guarantees on mem-
ory safety that has recently been shown [92] to be vulnerable to primitive
stack-based buffer overflow attacks.

The typical methods for finding security issues in modern software is
through performing static and dynamic analysis, source code auditing, re-
verse engineering, and fuzzing. The approach taken depends on the level

2



of information presented to the person analysing it; source code auditing
and white-box fuzzing cannot be done without access to the source code.
In light of the large number and large scale of analyses needed to be car-
ried out, new deep learning approaches that combine static analysis and
machine learning have attempted to develop Artificial Intelligence (AI) to
automate software analysis. Modern static analysis tools have been used
to detect critical, previously unseen bugs in source code, but they cannot
reliably detect carefully crafted malicious code or complex application-
specific vulnerabilities. When carried out by a human, source code au-
diting is tediously time-consuming and error prone. Where the source
code of software is unavailable, an analyst must audit the software by re-
verse engineering the corresponding executable binary. This process is
even more time-consuming and is often exceptionally more difficult.

As a result, one of the most common methods for discovering new bugs
is through dynamic analysis and fuzzing. Fuzzing approaches may be
white-box, grey-box, or black-box, depending on the level of informa-
tion with regards to the software’s source code that is available. Black-
box fuzzing is the most difficult of the three, as no information can be
used by an analyst to steer or control the program prior to execution other
than random or generated inputs. White and grey box fuzzing allow full
or partial information with regards to the software’s source code and al-
lows a security analyst to focus their fuzzing efforts on relevant pieces
of the software’s components or generate inputs that explore new exe-
cution paths. Furthermore, many different types of fuzzers exist, with
the most common being mutational, generational, grammar-based, and
symbolic fuzzers. Each of these categories have their own strengths and
weaknesses, with some modern approaches combing multiple types to in-
corporate the advantages of each individual type. For one to reduce the
overall security risk, we need to develop new automated methods of soft-
ware testing that can easily scale to meet the demands of the marketplace.

3



1 Introduction

Although there has been much development in source code based static
analysers that are capable of detecting bugs in large software repositories,
automated binary-only analyses are limited in their effectiveness without
additional user input.

1.1 Reverse Engineering

Reverse engineering is useful not only for finding vulnerabilities in soft-
ware, but is used extensively in malware analysis, commercial software
audits, software debugging, and exploit development. It is a process of
understanding how software components interact and conform to carry
out the desired functionality of a program. Aside from security analysis,
reverse engineering has been used for detecting patent infringements in
released code that violate GPL licensed software and no doubt has also
been used for copying commercially sensitive methods. Typically, reverse
engineering methods are used to understand how, potentially obfuscated,
executable binaries operate. When software engineers develop and de-
bug programs, symbols are used to relate objects in memory back to the
software’s source code. This allows the developer to get a better under-
standing into the current execution properties by reading the source code
in a higher-level language.

When software is released for distribution, symbols are usually removed
to reduce the file size and speed up execution, as well as impeding re-
verse engineering if the software is released for commercial or malicious
purposes. Many software security products that provide spatial mem-
ory safety through dynamic binary rewriting or intraprocedural security
analyses rely on known function boundaries through symbol definitions
or their boundaries being recovered for stripped binaries. Products often
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rely on IDA Pro1 to recover function boundaries before performing their
own additional analysis [30][73][117]. For Windows binaries, symbols may
be downloaded in Program Database (PDB) files through Windows Sym-
bol Servers, however, only public symbol information is included, with a
substantial set of private symbols omitted.

To impede reverse engineering, commercial software and malware are
typically obfuscated to further hide their functionality from users. There-
fore, it is often extremely difficult to reverse engineer and understand a
program’s intended purpose when it is presented as a flat region of mem-
ory with little distinguishable features. Anti-reverse engineering tech-
niques are also commonplace in Digital Rights Management (DRM) soft-
ware to protect its distribution or the content it delivers. Similar to the
arms race between software attacks and defences, new reverse engineer-
ing tools aim to overcome the latest approaches to hiding the true content
from the user.

1.2 The Problem

The problem in the current security landscape is that vulnerabilities ex-
ist in the majority of software and advanced defence mechanisms are too
costly to implement, not sufficient, or not applicable. This has led to large
collections of vulnerable software running on the majority of computer
systems in the world.

Current methods for the security analysis of binary code are slow or
inefficient, and sometimes completely ineffective. When considering the
analysis of kernel drivers, of which many are written in C/C++, most
methods lack the ability to model the full spectrum of interactions be-
tween hardware, the kernel, and the user. Most fuzzing tools today focus

1https://hex-rays.com
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on analysing user space applications where the bounds and interactions
of each program can be more easily defined. This has led to a large set of
software that exhibits more complex interactions, executes in the highest
privilege level, and is installed in the majority of devices. This software
set is a ripe target for exploitation as it is less thoroughly analysed, and its
binaries are compiled from unsafe, low-level programming languages.

When performing static or dynamic software analysis, the number of
feasible execution paths typically grows exponentially in relation to its
size; however, unbounded loops may lead to infinitely many paths. This
fundamental problem, so called the path explosion problem, impedes the
security analysis of executables with the increasing number of instructions
executed. Modern techniques used in white-box fuzzing focus on small,
interesting sections of programs in order to target specific code regions
that would not otherwise be possible to reach or too high an overhead
to analyse effectively. The same approach cannot be applied to black-box
fuzzing and thus without reverse engineering the interesting components,
one cannot effectively analyse closed source proprietary software.

The goal of this thesis is to build automated systems that analyse com-
piled binaries and recover symbol information for use in binary analysis.
This information includes the name and size of function names and data
structures present in the binary, and the relevant source code file associ-
ated with them. While it would be most useful to recover all symbol infor-
mation, this thesis focusses on recovering the names of functions. Auto-
matically inferring textual name information of components in stripped bi-
naries may enhance existing binary analysis techniques and thus improve
the contemporary security landscape. It is useful, but not limited to, re-
verse engineering, patch code analysis, code clone detection, vulnerability
detection, software hardening through binary rewriting, exploit develop-
ment, fuzzing, binary only software debugging, and malware analysis.
Any tools or techniques developed must be able to scale to large quantities
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of programs used in real-world scenarios. This thesis develops techniques
that provide the ability to quickly pre-process a stripped binary to identify
known similar components learnt from a large collection of open source or
previously reverse engineered binaries.

1.3 Challenges

One major problem when reverse engineering software is the lack of porta-
bility in the work done to transfer the knowledge to another binary. A field
of research exists for the special use case whereby sequential updates to
the same software exist with minor changes. In this case, an analyst looks
at the difference between the binaries using tools such as BinDiff [162, 60]
or BinNavi2 to port information across to the new binary. The same tech-
nique is also used in patch code analysis to identify changes in updated ver-
sions which may reveal fixed vulnerabilities in older versions. This may
be a difficult problem as there are large differences between compilations
of the same source code with different optimisations or compilers.

The problem of automatically naming components in stripped binaries
is exacerbated by compilers and their myriad of optimisation combina-
tions which can manipulate the compiled code in unexpected ways. In
the following paragraphs we briefly discuss the core components of this
challenge.

Each compilation is different. Machine code generated from different com-
pilations of the same source code is vastly different between different com-
pilers. Large differences also commonly occur with different optimisations
enabled when using the same compiler. Early works in function identifica-
tion used simple heuristics and common function prologue and epilogue
signatures stored per compiler. DynInst [27], a dynamic binary re-writer,

2https://github.com/google/binnavi
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uses this method to identify function boundaries in its instrumentation of
several run-time security measures.

Non-contiguous functions. Procedures declared in high-level source code
are typically defined by a contiguous set of alphanumerical characters.
During compilation, gaps of null bytes, random data, or machine code in-
structions with no effect on execution, may be inserted as padding to en-
sure code aligns along pages in memory or CPU cache lines. In doing so
the compiler optimises low-level ISA specific memory loads for frequently
occurring code and reduces run-time overhead. When analysing a binary
function given the predetermined set of bounds, start and end, not every
byte belongs to the function. Gaps may also be created by large data struc-
tures, jump tables, or instructions from completely different functions.
Techniques that minimise the size of compiled binaries [69] can create the
scenario of functions sharing code, and as a result, create non-contiguous
functions.

Unreachable functions. Binary decompilation is usually carried out by
lifting machine code into assembly code starting at an entry point and re-
cursively following control flow paths, or through a linear sweep. When
decompiling machine code using the recursive method, some functions
may be present in the binary that are never called and are thus non-reachable.
The presence of unreachable functions may influence their analysis, or
they may be missed entirely during the detection of function boundaries.
Therefore, it may be impossible to predict the names of functions one can-
not detect. Such non-reachability may be changed depending on the level
of optimisation employed by the compiler, for example, Figure 1.1 shows
the function fac that computes a number’s factorial. When the program
is compiled with clang in a highly optimised manner (-O3) the result is
precomputed and placed inline with the function fac still present in the
binary, even though it is never called. Determining the reachability of
functions is necessary in black-box security mechanisms, for example, en-
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1 uint64_t fac(uint64_t x)
2 {
3 if (x==1) return 1;
4 return x * fac(x-1);
5 }
6 int main(int argc , char

**argv)
7 {
8 printf("%llu", fac(5));
9 return 0;

10 }

(a) C source code of a program com-
puting 5 factorial.

1 <0x19b0.fac >:
2 ...
3 <0x1040.main >:
4 sub rsp , 8
5 mov esi , 0x78
6 lea rdi , str._llu
7 xor eax , eax
8 call sym.imp.printf
9 xor eax , eax

10 add rsp , 8
11 ret

(b) Assembly generated by compil-
ing the source code in Figure 1.1a
with clang -O3.

Figure 1.1: Source code of the fac function and its compiled assembly
code. fac is never called in the assembly code as its result is
precompiled with a value of 0x78 or 120.

forcing CFI [1], XFI [54], or memory safety through binary rewriting.
Multi-entry functions. Source code for high-level languages typically

define a single entry point to a procedure, with the possibility of hav-
ing multiple return locations. However, when compiled, functions may
have multiple entry points due to optimisations made by the compiler
and may correspond to multiple symbol definitions. An example of this
behaviour occurs when passing specific arguments that perform a subset
of the procedure’s logic compared to the full procedure. This implements
slight variations of a complex function using a simplified interface.

Functions may be removed. Compilers perform function inlining to re-
duce the size of the compiled binary and speed up execution by remov-
ing the need to create and destroy a stack frame. This is typically done
for small functions and completely removes the functions existence in the
compiled binary. When comparing to source code, completely inlined
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functions may be impossible to detect.

Naming Functions. When training machine learning models to learn the
names of functions, one needs to overcome differences in the label space
as different authors pick subjectively different names for the same function.
This may be due to programmer labelling style, naming conventions, or
project specific requirements. When treated as a multi-class classification
problem with each unique function name as a separate class, one faces a
large number of classes and little training samples per class. These “tail
labels” prove difficult for model generalisation and accurate prediction on
previously unseen data.

1.4 Our Approach

This thesis develops a novel tool and binary analysis framework, DESYL,
for analysing stripped binaries and inferring function names. Our analy-
sis framework aims to give coherent results across different compilations
of the same or similar source code and engineers a feature vector for use
in machine learning pipelines. We primarily explore the state-of-the-art
methodologies in representing and learning the structure of binary code.
DESYL does this by learning the importance of pairwise and multivariate
relationships between symbols in binary code expressed as feature func-
tions. We design feature function types and apply it to millions of unique
features to learn the interactions between code and data on a large real-
world dataset. With plugins for major reverse engineering tools such as
Ghidra and Radare2, DESYL can quickly pre-processes stripped binaries to
predict the names of functions along with their boundaries.

We extend our approach to aiding the reverse engineering process by
creating a distributed representation of binary code and use it to label
functions. Our machine learning pipeline is able to learn key character-
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istics and assign a human readable set of labels to functions that are useful
to reverse engineers and security analysts. Our embedded representation
of binary code is built using a deep autoencoder and captures significantly
more information than what is possible using traditional machine learn-
ing techniques. Our dense, vector representation of binary code is created
in an unsupervised approach such that similarly labelled functions appear
close in the new embedded representation.

Finally, we investigate new fuzzing methods that make use of known
or recovered symbols and can exercise deep paths in the operating system
model. We build a new system capable of emulating hardware USB de-
vices and use it with selective symbolic execution to precisely fuzz high-
level USB device drivers in the Linux kernel. Our approach is significant
due to the difficulty of analysing kernel drivers that depend on hardware
for interactions as existing approaches are limited in their effectiveness
of targeting the core logic in driver code. A simple and common ap-
proach is to fuzz input from the hardware by using devices such as the
Facedancer [63] board. Such a device allows an analyst full control over
a particular bus to imitate, mutate, and inject faults into operations. The
limiting factor with this approach is that the fuzzing device is operating at
a level too low to effectively stimulate code paths in higher level modular
drivers. For example, a USB over Ethernet driver imports common func-
tionality from core USB and networking kernel subsystems and is not con-
cerned with bit-flips present in raw meta-packets. The drivers imported
interface simply presents a subsystem that exports a passed or failed state,
and can be easily handled by even novice programmers.

We structure the remainder of this thesis into four chapters. Chapter 2
looks at the relevant background material on program analysis, machine
learning, the USB protocol, and the Linux kernel’s implementation of USB.
Chapter 3 brings forward a model that uses program analysis and machine
learning to identify function names in stripped binaries. Chapter 4 intro-
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duces new deep learning vector representations of binary code that may
be used for generic purposes in other machine learning pipelines. Chap-
ter 5 looks into the fundamental problems of identifying function names
in stripped binaries and describes theoretical limitations if applied in prac-
tise. A function labelling approach is developed that is more general and
able to create new function names not seen during training for unseen
stripped binaries. Chapter 6 then presents a new model of analysing USB
kernel drivers that depends on symbol information for hooking relevant
kernel subsystems. Such a model would be applicable to closed source
kernel drivers where symbol information may be recovered or inferred
using techniques presented in prior chapters.

1.5 Contributions

In this thesis, we first discuss the relevant background (Chapter 2) and
then make the following contributions:

• We present a new approach for identifying function names in stripped
binaries (Chapter 3). We discuss our method of recovering symbol
information based on the structure of executable binaries to assist in
the reverse engineering process. This chapter comprises an extended
version of work first published in the Annual Computer Security
Applications Conference (ACSAC) 2020 [119].

• We present an approach for generating embedded representations
of machine code (Chapter 4) and prove that it is superior to prior
approaches. This chapter provides an extended look at work first
published in the ACSAC 2020 and work in submission to IEEE Sym-
posium on Security and Privacy (S&P) 2022 [118, 120].
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• We present a design to labelling symbol information in stripped bi-
naries (Chapter 5) and prove that it is superior to prior approaches.
This chapter provides an extended look at work in submission to
S&P 2022 [120].

• We present a novel approach for finding software flaws in USB drivers
targeting the Linux kernel (Chapter 6). This chapter looks the hard-
ware and software security model presented by the Linux kernel,
identifies shortcomings in existing approaches, and reports two new
zero-day vulnerabilities (CVE-2016-5400 and CVE-2017-15102) as dis-
cussed in the IEEE Workshop on Offensive Technologies (WOOT)
2017 [118].
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Background 2
This chapter gives the necessary background information required to un-
derstand the remainder of this thesis. We start by discussing the program
analysis technique symbolic execution (Section 2.1) and explore the indi-
vidual strengths and weaknesses for different variants. Secondly, we give
an overview of the machine learning techniques used to create distributed
representations (Section 2.2) on which material in this thesis builds upon.
Thirdly, we explain the fundamentals required for understanding Condi-
tional Random Fields (Section 2.3) that is relevant to structured prediction
of symbols in executable binaries. Then we cover software abstractions nec-
essary to understand the USB protocol and the USB stack as implemented
in the Linux kernel (Section 2.6). Finally, we give an overview of security
mechanisms employed by the Linux kernel (Section 2.7) that have to be
overcome by modern attacks and briefly discuss the powerful SystemTap
kernel debugging infrastructure.

2.1 Symbolic Execution

Symbolic Execution (SE) is a program analysis technique based on the idea
of interpreting a program on symbolic instead of concrete data and having
instructions manipulate symbolic expressions instead of concrete values.
This allows one to explore all control flows through a program contingent
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on symbolic inputs at any point during execution of the program. This
is typically done by replacing some program inputs with symbolic values
and using a special interpreter to execute the program. Conditional in-
structions are interpreted by computing the symbolic expressions for the
condition and forking the program state if both outcomes are feasible. The
feasibility of symbolic expressions are computed with a constraint solver by
checking the satisfiablity of the branch conditions from the start of execu-
tion to the current contional instruction. Symbolic execution suffers from
path explosion, the problem of exponential growth in the number of paths
through a program. The complete exploration of paths through a program
is therefore generally infeasible for real-world programs.

Dynamic Symbolic Execution (DSE) (also called concolic execution) ex-
tends this idea by also executing the program concretely at the same time.
It does this by maintaining a symbolic state which maps program variables
to symbolic expressions. When executing conditional instructions depen-
dent on symbolic inputs, new conditions are added in the form of path
conditions. At the end of the program execution, the symbolic state can be
used to negate path conditions along branches in the previous execution
trace to generate new constraints. The advantage of DSE over SE lies in
the fact that where symbolic conditions cannot be satisfied or functions
external to the program under test need to be analysed, DSE is able to
concretise symbolic variables whilst maintaining its correctness.

Selective symbolic execution, a technique introduced in S2E [35], re-
duces path explosion by switching between concrete and symbolic exe-
cution modes at module boundaries. It improves over DSE by reducing
the amount of code that needs to be executed symbolically, thus reducing
path explosion. S2E uses QEMU [16] and KLEE [31] to provide a symbolic
virtual machine that allows one to inject symbolic data into arbitrary mem-
ory addresses for full-system emulation. Figure 2.1, for example, depicts
the analysis of a library on top of an operating system (OS) kernel un-
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der S2E. The function libFn is called from the application function appFn.
Upon doing so the execution domain changes and the library function is
executed symbolically. During libFn’s execution it invokes the system call
sysFn, which is outside of the symbolic domain, and concretises function
arguments and data that pass the boundary. In S2E, each code block (trans-
lation blocks from QEMU’s Tiny Code Generator) that manipulates sym-
bolic data is compiled to LLVM instructions and symbolically executed
by the KLEE symbolic execution engine. S2E minimises the path explo-
sion problem inherent with symbolic execution by switching execution
domains on the entries and exits of a target module’s boundaries, latently
converting symbolic expressions to concrete data and vice-versa.

Figure 2.1: Execution diagram showing the multi-path/single-path execu-
tion through three different modules (left) when using S2E and
the resultant execution tree (right). Shaded areas in the exe-
cution tree represent the symbolic execution domain from the
library under test, while white areas execute in the concrete do-
main. The diagram is taken directly from S2E documentation
and is used in the original paper [35].
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A plugin system allows for interactions with the virtual machine and
provides an interface to processes running in the guest OS. Typically, the
stock-plugins either collect analysis information about execution traces or
provide a search strategy for exploring the target module.

2.2 Distributed Representations

Local representations of data points used for computational tasks is the most
simplistic rendition of them whereby each data point is represented by
one computational element, e.g., one-hot encoding. Distributed represen-
tations however, are encodings of data points (typically vectors) that are
distributed over many computing elements, and each element is involved
in representing different data points. Their use in contemporary research
has helped machine learning algorithms achieve better performance than
local representations for their corresponding tasks. Distributed represen-
tations of words, for example, drastically increase performance of natural
language processing tasks by providing a vector space that captures their
semantic meaning and groups similar words. These techniques may be
used to create a numerical representation of data that inherently lacks a
numerical basis and are incredibly powerful methods leveraged in mod-
ern deep learning approaches. Specifically, categorical data that would
previously have been represented using one-hot-encoding may be repre-
sented by dense vectors whose relative distances in the embedded vector
space are meaningful relative to other categories.

This section covers the foundations of distributed representations start-
ing from the original Word2Vec paper by Mikolov et al. [104] and describes
contemporary advancements in the field leading to distributed represen-
tations of assembly and binary code.
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2.2.1 Word2Vec

Historical methods used for computing continuous representations of words
and Natural Language Processing (NLP) tasks focused around Latent Dirich-
let Analysis (LDA) and Latent Semantic Analysis (LSA) [158]. Both tech-
niques were used extensively in topic modelling and sentiment analysis;
however, recent work has shown that neural networks perform signifi-
cantly better [105, 160] when preserving linear regularities among words.
Furthermore, modern training methods for neural networks allow them
to express millions of words whereas LDA becomes very computationally
expensive on large real-world datasets.

Limitations inherent in these classical approaches and the advancement
in Neural Network based techniques drove the design of Neural Network
Language Models (NNLMs). Initial NNLMs [18, 103, 154] consisted of
a simple design where one-hot-encoded vectors that represented words
from a fixed corpus were used to predict sentence sentiment or the next
word with a Recurrent Neural Network (RNN) architecture. Mikolov et
al. [102] identified that most of the complexity in contemporary Neural
Network Language Models (NNLMs) of the time was caused by the non-
linear hidden layer in each model. Therefore, they proposed two new log-
linear models in their work on Word2Vec [104] that would minimise the
computational complexity and could be trained on data more efficiently:
Continuous Bag of Words (CBOW) and the Continuous Skip-gram model.

Continuous Bag of Words (CBOW). The CBOW model is similar to the
feed-forward neural network language model architecture in that a pro-
jection layer is shared between all words and the order of words does
not influence the projection. However, unlike the standard bag-of-words
model, it uses a distributed representation of the context by using four pre-
vious words and four future words to correctly classify the current (mid-
dle) word.
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Figure 2.2: The CBOW model architecture predicts the current word based
on the context words. The diagram shows how a sliding win-
dow of 2 is used to sum the context words in the projection
layer.

Skip-gram Model. The Continuous Skip-gram model aims to find word
representations that are useful for predicting surrounding words in a sen-
tence or a document. It reverses the CBOW setup and trains a feed-forward
neural network to predict context words from a given target word. Both
the CBOW and Skip-gram model aim to minimise the training complexity
and perform differently on different NLP tasks. Their authors report that
the Skip-gram model outperforms CBOW and NNLM models at semantic
tasks but is outperformed by CBOW in syntactic related tasks.

Furthermore, Mikolov et al. [104] describe negative sampling as an al-
ternative training method for the Skip-gram model that results in a sig-
nificant speed up and better representations. The technique replaces the
objective function in the Skip-gram model with a new negative sampling
function,NEG, that trains a model to distinguish a target word from a ran-
dom sample of k negative examples. This technique allows a significant
speedup in training NNLMs and gives more regular word representations

20



2.2 Distributed Representations
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Figure 2.3: The Skip-gram model architecture predicts surrounding con-
text words given the current word.

across repeated experiments.

A major result of Word2Vec brought continuous word vectors that cap-
tured semantic information of words that allowed its vector representa-
tions to express abstract relationships. The pinnacle result being that the
vector(king) − vector(man) + vector(woman) ≈ vector(queen).

2.2.2 Paragraph2Vec

Despite the popularity of models based on bag-of-words such as Word2Vec,
these techniques ignore the ordering of words and their semantics. For ex-
ample, Le et al. [91] report that in their Word2Vec model, the vectors for
strong, powerful, and Paris are equally distant. Paragraph2Vec [91] pro-
posed an unsupervised algorithm that learns a fixed-length vector repre-
sentation of variable length text, such as paragraphs or whole documents.
The rationale behind including paragraphs (or documents) as input nodes
is based upon considering them as another context. The model has the
potential to overcome weaknesses of bag-of-words models and their re-
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sults on text classification and sentiment analysis out-perform prior ap-
proaches.

Wwt+2

Wwt+1
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DParagraph ID W wt
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Figure 2.4: Overview of the Paragraph Vector Distributed Memory (PV-
DM) model presented by Paragraph2Vec. Paragraph IDs are
used to look up paragraph vectors in D. Word vectors are
looked up by their associated word in W.

Paragraph2Vec uses the Paragraph Vector Distributed Memory (PV-DM)
model as depicted in Figure 2.4 that associates each paragraph in a dataset
with a unique identifier. The identifier indexes the row of the matrix D
that is used to store paragraph vectors. Similarly, the matrix W is used as
a look up table to store the word vector for the word wi. Paragraph and
word vectors are initialised to random values and learnt as the model is
trained. Stochastic Gradient Descent (SGD) is used to update the corre-
sponding vectors on the error calculated through back-propagation.

The authors report that the PV-DM model consistently out-performs
CBOW models and concatenation of vectors is superior to using the sum
method.
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2.2.3 Asm2Vec

Asm2Vec [48] describes an approach to producing vector representations
of binary code based on Paragraph2Vec [91]. The model learns vector rep-
resentations for assembly code that captures lexical semantic relationships
between assembly operations, operands, and functions. The technique
models binary functions as sequences of abstract tokens, iteratively learn-
ing vectors for each assembly operation, assembly operand, and function,
using back-propagation in a similar design to paragraph vectors and ab-
stract word tokens.

To describe binary functions as sequences of assembly code, Asm2Vec
first assumes the function boundaries are known, and then generates se-
quences of code executions based on the recovered Intraprocedural Con-
trol Flow Graph (ICFG). In doing so, the corresponding vector representa-
tions will be learnt from data that more accurately describes the function-
ality of each function. To generate sequences of assembly code, Asm2Vec
performs the following techniques on the recovered ICFG:

Selective Callee Expansion. To mitigate function inlining, small callee
function’s assembly code is selectively inlined into the caller function’s
assembly sequence. Procedures are selectively inlined based on the ratio
of size between the caller and callee to include code from callees without
being over-represented by them.

Edge Coverage. Random edges on the ICFG are sampled and their as-
sembly instructions of each basic block are added to the sequence. This
method may include control flow paths that are never taken under a real
execution.

Random Walk. Random walks from a function’s entry point are calcu-
lated to simulate real execution paths through each function. Sequences of
assembly instructions from the executed basic block are adjoined to form
a sequence.
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Figure 2.5: Depiction of the Asm2Vec neural network model for assembly
code. Sequences of assembly instructions are mapped to vec-
tors that are used to predict a target instruction from the sur-
rounding context instructions. The diagram is directly taken
from the original author’s publication [48].

Once a sequence of assembly instructions is generated for each function,
the model in Figure 2.5 is used to generate vectors for each assembly token
and function vector. A sliding window is used to predict a target assembly
instruction from the surrounding context instructions. Separate vectors to
represent assembly operations, assembly operands, and function vectors
are initially randomised and learnt as the model is trained. To support
assembly instructions with arbitrary operands the operand vectors are av-
eraged before being concatenated with the operation vector. The vectors
for the context instructions are then averaged with the vector of the current
function and used to predict the target instruction. By iterating over the
sequence of instructions, backpropagating the relative errors between the
predicted target instruction and the true vector for the target instruction,
function and instruction vectors are learned. Function vectors for previ-

24



2.3 Conditional Random Fields

ously unseen functions may then be generated by fixing the vectors for
assembly instructions and only propagating errors to the function vector.

Similar to the PV-DM model, Asm2Vec’s function vectors are used as
a distributed memory to help the model predict the target instruction from
its context. The embedding produced out-performed many existing tech-
niques for function identification and vulnerability detection.

2.2.4 Graph2Vec

Graph2Vec [112] is a contemporary approach to learning a fixed size dis-
tributed representation of arbitrarily sized graphs. The corresponding em-
beddings can be used for downstream tasks such as graph classification
and clustering. The intuition behind graph2vec is to view an entire graph
as a document with rooted subgraphs around every node in the graph
as words that the compose the document. A graph kernel is then chosen
to identify and compare rooted subgraphs; the authors use the labelled
Weisfeiler-Lehman (WL) [136] kernel. The WL kernel is used to compare
rooted subgraphs for every node on each graph in a corpus. A skip-gram
model is then used to learn neural embeddings for each graph as depicted
in Figure 2.6. Graph2Vec significantly out-performed other graph-based
embeddings [156] and substructure representations such as node2vec [65]
and sub2vec [2].

2.3 Conditional Random Fields

Structured prediction tasks deal with inferring large numbers of variables
that depend on observed inputs and at the same time are inter-dependent
on each other. These tasks combine multivariate classification methods
and graphical models to perform prediction on large sets of structured
input features. Conditional Random Fields (CRFs), first described in Laf-
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Figure 2.6: Overview of the Graph2Vec model. Graph IDs are used to
look up graph vectors for unique graphs. Subgraph vectors
are looked up by their associated rooted subgraph for the
nodes present in the graph corresponding toGraphID. Rooted
subgraphs are identified using the labelled Weisfeiler-Lehman
graph kernel.

ferty et al.[89], are a form of probabilistic graphical model widely used in
computer vision [86, 15], natural language processing [135, 134, 123], and
bioinformatics [131, 150] to learn the structure of random variables based
on observed data. We structure this section by briefly giving an overview
of probabilistic graphical models before focussing on Conditional Random
Fields and their inference algorithms.

2.3.1 Probabilistic Graphical Models

Probabilistic graphical models infer a set of unknown random variables y =

y0, y1, ..., yn from a set of observed variables x = x0, x1, ..., xm. The models
are graph-based representations of probability distributions. Figure 2.7
depicts a graphical model in which nodes correspond to random vari-
ables and the edges represent statistical dependencies. The structure of the
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graphical model represents the factorisation of the probability distribution
which can be defined as the product of fully connected node cliques. In
that way, any distribution can be described with a graphical model; a dis-
tribution with completely independent variables being represented by a
graph with no edges. Graphical models’ main advantage is in describing
complex distributions with many inter-dependencies as they provide in-
ference algorithms for computing marginals and conditional probabilities.

A

B C

(a) Graphical model depicting 3 vari-
ables with inter-dependencies.

A

Ψ1
B

Ψ2

C

Ψ3

(b) A valid factor graph for the graphi-
cal model described in (a).

Figure 2.7: An undirected graphical model with three variables. An edge
between two vertices represents a conditional dependence. The
corresponding probability distribution defined by this graph
factorises p(A,B,C) = 1

ZΨ1(A,B)Ψ2(A,C)Ψ3(B,C) where Z is
the normalisation constant and Ψ are functions over the vari-
ables.

Formally, a graphical model is a collection of vertices and edges G =

(V, E), where vertices are the variables X∪ Y. Given a set of cliques A ⊂ V ,
the distribution over the variables is written as:

p(Y, X) =
1

Z

∏
A

ΨA(XA, YA) (2.1)

where {ΨA} are factors mapping variables in a clique to R+, and Z is the
normalisation constant:
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Z =
∑
X,Y

∏
A

ΨA(XA, YA) (2.2)

The insight of graphical models is to represent a distribution over many
variables as a product of local functions that each depend on a smaller
subset of variables. They can be either undirected or directed, single variable,
sequence-based, or graph-based, discriminative or conditional, and dynamic or
relational. The simplest form of graphical model is Naive Bayes in the gen-
erative case or Logistic Regression in the conditional case. Linear-chain
CRFs can be intuitively thought of as conditional Hidden Markov Models
and are an application of Logistic Regression applied to sequential data.
In the same way General CRFs are an application of Linear Chain CRFs
to general graph-based data. Furthermore, Markov Models are a form of
probabilistic graphical model used to model graph-based data with un-
known variables only, rather than factors and variable nodes. All these
models follow the general equations as defined in Equation 2.1 and Equa-
tion 2.2.

Much of the existing work with graphical models has focused on gen-
erative models, such as Hidden Markov Models, that explicitly model the
joint probability distribution p(y, x). Whilst these approaches have their
advantages, they do not scale to large number of variables with complex
dependencies. CRFs on the other hand, are a discriminative approach and
model the conditional distribution p(y|x). The advantages of such ap-
proaches are that dependencies that involve only variables in x may be
ignored, thus an accurate conditional model may have a simpler structure
than a joint one. In practice, we find that parameter estimation and in-
ference on graphs with a large number of variables is only possible with
approximate methods. Therefore, the complexity required by generative
directed models over graphs may lead them to be intractable on large real-
world datasets.
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2.3.2 General Conditional Random Fields

A general Conditional Random Field can be represented by a bipartite
factor graph, G, with the factors ΨA. Each factor is defined in terms of a
set of feature functions fA, and parameters θA, that act as model weights
associated with each feature function such that:

ΨA(XA, YA) = e
θAfA(XA,YA) (2.3)

As with other probabilistic graphical models, the log-linear modelling
of feature functions allows for useful parameter estimation and inference
properties. The resultant condition probability distribution models un-
known variables given a set of observed variables as:

p(Y|X) =
1

Z(x)

∏
ΨA∈G

eθAfA(XA,YA) (2.4)

where the normalisation term is conditioned on the evidence defined
by:

Z(x) =
∑
Y

∏
A

ΨA(xA, YA) (2.5)

CRFs are useful for structure learning because they allow one to add ar-
bitrary feature functions that describe properties of data. There main use
has been in applications with sequences of data in a form called Linear-
chain CRFs. Such models are common for Natural Language Processing,
biometric, and gene classification tasks. The other, more complex, form is
a general graph-based CRF, which can model arbitrarily structured data
and relationships. Algorithms for exact parameter estimation and infer-
ence have been developed for sequential, tree-based, and certain graph
structured data, however these algorithms are not always applicable to
large, complex graphs. For example, the exact junction tree algorithm re-
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peatedly groups variables until the graph becomes a tree and then uses
exact inference algorithms specific to trees. For large graphs, the junc-
tion tree algorithm requires exponential time in the worst case [143, 85].
For this reason, inference on large and complex graphs with many loops
is typically done using approximate inference methods such as Markov
Chain Monte Carlo or Belief Propagation.

When implementing CRFs, one has many design decisions to incorpo-
rate into their final application. A pertinent design decision is how feature
functions are applied to training and testing data and how the structure
of the CRF is formed. In the most common application of image process-
ing, parameters are tied to repeating structures (e.g., a 3x3 grid) that have
global feature function weightings. This structure is then replicated across
the pixels of the 2D image to learn the optimal relationship weightings.
Where the structure is fixed for both training and testing datasets, the best
implementation uses feature functions that are unique to each maximal
clique over the graph. In cases where the structure is unknown ahead of
time, a templating or dynamic mechanism of assigning feature functions
is used.

2.3.3 Loop Belief Propagation

Loopy Belief Propagation (LBP) is a variant of Belief Propagation (BP) ap-
plied to graphs that may contain loops. In BP, messages are passed be-
tween nodes in a factor graph that update a node’s beliefs about another
node. There are two types of messages, variable to factor messagesm, and
factor to variable messages m̂. The general idea is that a node can send a
message to its neighbours only when it has received messages from all of
its other neighbours. In this way, node i may update its belief about node
j only when it has received all incoming messages that are not from j.

In sum-product belief propagation, messages from factors connected to
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a target variable are summed whereby messages from external variables
nodes have a multiplicative weighting. The recursion is defined for a vari-
able node xi in a factor graph, and the time period t as follows:

m̂
(t)
a→i (xi) ∝∑

xa\i

Ψa(xa)
∏

j∈N (a)\i

m
(t)
j→a(xj) (2.6)

m
(t+1)
i→a (xi) ∝

∏
b∈N (i)\a

m̂
(t)
b→i(xi) (2.7)

Where ∝ is shorthand for normalisation and N (a) is the set of indices
for all variables of factor a. Similarly, N (i) contains the set of all indices
for all factors connected to variable i. The marginals µ(t)(xi) are then given
by:

µ(t)(xi) ∝
∏

a∈N (a)

m̂
(t)
a→i(xi) (2.8)

2.4 eXtreme Multi-Label Learning

We now introduce the problem of multi-label classification with eXtreme
Multi-Label learning (XML) and review the metrics for information gain
used in the XML community. Finally, we provide the necessary back-
ground and motivation for PfastreXML, a state-of-the-art XML approach
used in Chapter 5.

2.4.1 XML Problem

Multi-label classification is the problem of training a model to predict the
assignment of one or more labels to each input instance. Typically, this is
more difficult than multi-class classification in which each data point be-
longs to exactly one class. In the multi-label setting, a data point can have
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any number of associated labels, and some labels may be more strongly
representative of the data point than others.

A common solution when dealing with a small label space is to use the
1-vs-all technique to learn an independent classifier per label. This tech-
nique quickly becomes intractable due to the large training and prediction
costs for a modestly sized set of labels. The problem is exacerbated by the
quality of labels associated with the data. Given a large set of labels to tag
an input with, multiple authors may choose different labels and may tag
an image of an orange, for example, with fruit, the colour orange, spherical,
citrus, food, etc.

Due to the large number of possible labels, it is comparatively easy to
identify irrelevant labels, but much more difficult to identify the relevant
ones. In multi-label classification, this imbalance must be taken into ac-
count during training and in our evaluation metrics.

XML addresses the problem of learning a classifier that can tag a data
point with the most relevant subset of labels from a very large label set.
Common real-world datasets such as the Wikipedia dataset contain mil-
lions of distinct labels that each article may be tagged with. With the pos-
sibility for millions of labels with unknown inter-dependencies, it is very
difficult to obtain the amount of training data required for modern deep
learning approaches.

Many approaches circumvent the large label space problem by assum-
ing that the training label matrix has low rank and build a label space
embedding to project the high dimensional label space into a low dimen-
sional subspace. Techniques such as SVD [144] and Bloom filters [37] have
been applied to compress the number of labels and then decompress a con-
densed output vector back to the original label space. While methods such
as label partitioning by sub-linear ranking (LPSR) [152] and LEML [157]
help to make the XML problem tractable they provide low prediction ac-
curacies compared to recent XML approaches. XML solutions must be
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able to handle large class imbalances with many label instances occurring
only a handful of times; for example, the WikiLSHTC1 data set contains
hundreds of thousands of “tail” labels which are present in fewer than
five documents.

2.4.2 XML Metrics

Problems inherent with XML learning lead to errors in the ground truth,
a large class imbalance in the dataset, and sparsity in the label space. Tra-
ditional metrics such as Hamming distance or Binary Cross Entropy are
poor indicators of performance for multi-labelled problems. The perfor-
mance metrics used in the XML community transform the problem of
identifying the subset of relevant labels into ranking the complete set of
labels and measuring information gain for each data point; with the high-
est ranked label being the most relevant and the lowest ranked the least
relevant label. These metrics are typically used for evaluating search en-
gine responses to queries and allow different labels to take on different
weightings of importance, with rare tail labels being more important than
common ones. Finally, these metrics consider the ordering of predicted
labels and allows us to evaluate performance within the top n predictions.

In almost all multi-label classification settings that exhibit a large num-
ber of labels, the number of relevant positive labels for a data point is
orders of magnitude smaller than the number of irrelevant negative ones.
Therefore, it does not make sense to use traditional metrics such as F1 score
or the Hamming loss [13], which give equal weighting to all positive and
negative labels. To provide a better understanding of the relevance of as-
signed labels, we draw metrics from information retrieval theory and fo-
cus on the problem of measuring each label’s rank. For each data point we
wish to attribute labels with, we assign an ordered rank over all possible

1https://www.kaggle.com/c/lshtc
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labels that is indicative of each label’s relevance to the data point depend-
ing on its position in the ordered set. With an ordered set of labels for each
data point, we can define the following metrics:

Definition 1 (Cumulative Gain). The cumulative gain CGp or CG@pmea-
sures the information gain in the top p labels and is defined as:

CGp =
p∑
i=1

reli

where reli is the relevance of the label at position i.

The cumulative gain ignores the ordering of labels within the top p el-
ements. Traditionally, the relevance of each label takes a value in {0, 1}

depending on if the label is contained in the set of true labels for each data
point; other schemes may be used in which the relevance of each label is
not binary.

The discounted cumulative gain introduces a term that applies a weight-
ing to the order of relevant labels within the top p results. If a relevant
label appears lower in rank, the discounted cumulative gain is weaker.

Definition 2 (Discounted Cumulative Gain).

DCGp =
p∑
i=1

reli
log2(i+ 1)

Both prior metrics fail to account for a variance in the total number
of true labels for each data point. To overcome this, the normalised dis-
counted cumulative gain normalises the predicted label set to the size of
the true set of relevant labels. This metric provides an intuitive indica-
tion of how many labels were predicted correctly out of the total labels
assigned per data point.
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Definition 3 (Normalised Discounted Cumulative Gain).

nDCGp =
DCGp
IDCGp

where the IDCGp is the ideal DCG defined by:

IDCGp =
|RELp|∑
i=1

reli
log2(i+ 1)

where in turn RELp is the true set of relevant labels in the corpus up to
position p. The nDCG produces a metric for evaluating multi-label clas-
sification in the range [0, 1] whereby a perfect ranking algorithm would
achieve a score of 1.0.

2.4.3 PfastreXML

PfastreXML [77] is an XML approach based on FastXML [127] that im-
proves prediction accuracy by using a propensity-scored loss function.
FastXML is a tree-based machine learning algorithm similar to Multi-Label
Random Forests (MLRFs) that ranks labels depending on their relevance
to an associated data point. The approach aims to learn a hierarchy by
using a collection of trees to subdivide the feature space until a multi-label
classifier can be used to predict the associated labels in this smaller sub-
space. For each data point, PfastreXML and FastXML output a ranked list
containing every label from a fixed size label space and their associated
probabilities.

Consider an extremely large set of labels L in an extreme multi-label
problem. When determining the ground truth labels for each data point,
it is often not possible to determine the exact subset of relevant labels
through either manual or automated annotation. In the context of func-
tion labelling, as explored in this thesis, this would correspond to each
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function name containing all words that are relevant to its behaviour. We
denote with y∗ ∈ {0, 1}|L| the complete ground truth label vector, which
cannot be obtained in practice. With y ∈ {0, 1}|L| we denote the actually
observed ground truth label vector, where certain labels are missing. We
then have that y∗i = yi = 1 for observed relevant labels, y∗i = 1 and yi = 0
for unobserved relevant labels; and y∗i = yi = 0 for irrelevant labels. This
assumes that truly irrelevant labels are never labelled as relevant, but that
relevant labels may be missing.

In the design of FastXML it was assumed the marginal propensities of
labels were known; however, in the XML setting ground truth labels may
be incomplete or missing. PfastreXML aims to mitigate this problem by
using a propensity-scored loss function that weights the loss characteris-
tics for each label l ∈ L that matches a predetermined distribution. The
propensity pil ≡ P (yil = 1|y∗il = 1) corresponds to the marginal probabil-
ity of observing a relevant label l for the data point i. Unfortunately, the
propensities are unknown as the complete ground truth is unobservable.
Therefore, propensities are modelled as a sigmoid function of logNl as
given in Equation 2.9:

pl ≡ P (yl = 1|y∗l = 1) =
1

1+ Ce−A log(Nl+B)
(2.9)

Here, Nl is the number of data points annotated with label l in the ob-
served ground truth dataset of sizeN. A and B are problem specific hyper-
parameters and C = (logN− 1)(B+ 1)A. These hyper-parameters should
be tuned for each dataset such that log of the number of instances of each
label fit a sigmoidal function.
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2.5 Function Boundary Detection

In this section we briefly review state of the art research methods for func-
tion detection that underpin several assumptions made in this thesis. Func-
tion detection in stripped binaries is a problem facing all major reverse
engineering and binary analysis tools. HexRays, Binary Ninja, Radare2,
Ghidra, DynInst, and BAP [26], for example, all implement their own
heuristic-based methods for detecting function boundaries. In academic
research, function detection in stripped binaries consists of two different
problems: function start detection and function boundary detection. In func-
tion start detection, the aim is to determine a set of start addresses in a
stripped binary that correspond to the first line (entry point) of functions
in the source code. In function boundary detection, the goal is to deter-
mine the set of virtual address pairs (start, end) in a stripped binary that
correspond to the function entry point in the source code and the last ad-
dress of code that constitutes to the source function. The research literature
usually splits these distinct problems into two oracles in which function
boundary detection is dependent on function start detection.

Jima [10] is the current state of the art research tool for function bound-
ary detection and uses static analysis and limited behavioural analysis to
detect function starts and bounds. It uses a combination of jump pointer
analysis, exception handler analysis, and terminal function detection to
overcome the problem of identifying jump tables, exception handlers, and
terminal functions. In the authors evaluation of Jima, they report their
tools F1 scores in binary function detection over three datasets; Jima achieves
an F1 score of 0.9959 on UNIX utilities, 0.9927 for the SPEC CPU 2017
dataset, and 0.9904 for the Chrome web browser. The impact of these re-
sults is enhanced when one considers problems with finding the ground
truth for binaries function boundaries. When function boundary detec-
tion tools extract ground truth information they must take into considera-
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tion zero-length functions, multiple function aliases, compiler added new
functions with multiple entry points, and inconsistent function boundaries
(junk suffixes).

Byteweight [14] is a function boundary detection technique that builds a
prefix tree of assembly instructions from known function start sequences.
The authors learn a weighted tree of normalised assembly instructions
to perform binary classification. Using their tool, the authors are able to
achieve an average F1 score of 0.97 for function boundary detection.

Nucleus [11] is another state-of-the-art method for function boundary
detection that uses recurrent neural networks and connected component
analysis of inter-procedural control flow graphs to cluster a binary’s basic
blocks into functional boundaries. The approach achieves a drastic reduc-
tion in computation time whilst still maintaining high accuracy (approx.
98%).

These methods prove that function boundary detection in stripped bina-
ries can be done to high accuracy and underpin our assumptions of known
function boundaries in the remainder of this thesis. Higher accuracy may
be achieved when limiting the set of inferred functions to those that are
"well defined", e.g., non-alias functions that have a global binding in ELF
binaries.

2.6 Universal Serial Bus

USB devices are ubiquitous in the modern world with most hardware
manufacturers choosing it as their inter-connect of choice. The flexibil-
ity in electronic requirements from the USB specification allows for high
power delivery to end-user devices, very high transfer speeds, and re-
versible master-slave setups. The prevalent nature of USB devices impels
operating system developers into supporting as many USB device drivers
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as possible in an effort to meet market demands. Unfortunately, writing
error free kernel device drivers is a complicated task; the author must an-
ticipate the context of execution, potential race conditions, hardware de-
lays and user space interactions.

In this section we provide an overview of the USB protocol (Section 2.6.1)
and then focus on its implementation in the Linux kernel (Section 2.6.2).

2.6.1 USB Specification

The USB specification supports a vast number of features, such as hot-
plugging, generic class drivers, multi-master USB On-The-Go, and data
and power transfer modes. The protocol follows a master-slave design
in which a Host Controller Interface (HCI) communicates with USB client
devices—‘gadgets’ in the USB specification terminology. USB HCIs imple-
ment the low-level protocols of timings, packet scheduling, and signalling
for each version of the specification. This is abstracted to Universal Re-
quest Blocks (URBs), which form the logical basis of communication with
gadgets. URBs contain a device address to signify the device connected on
the bus and an endpoint to specify a channel to a device. They can be one
of four types:

• Control Transfers: device configuration and signal control informa-
tion;

• Bulk Transfers: large quantities of time-insensitive data;

• Interrupt Transfers: small quantities of time-sensitive data;

• Isochronous Transfers: real-time data at predictable bit-rates.

An endpoint provides an address and direction for URB transfers from
the perspective of the host. Control transfers to endpoint 0 are special; all
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Figure 2.8: Design of the Linux USB stack (diagram taken from Linux De-
vice Drivers 3rd Edition [39] and released under the Creative
Commons license). Layers are separated between user space,
kernel space, and hardware. Arrows represent a direction of
communication between different modules in the stack.

USB devices must implement bi-directional (IN and OUT) communication
to this endpoint as it is used during device initialisation.

All USB devices present descriptions of their identify and functionality
through the use of descriptors. The USB specification contains five types of
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descriptors: Device descriptors, Configuration descriptors, Interface de-
scriptors, Endpoint descriptors, and String descriptors. Each descriptor
type presents data in a pre-determined structure that identifies fields rel-
evant to communication such as: vendor ID, product ID, manufacturer,
USB protocol version, transfer speeds, etc. Typically, the vendor and prod-
uct ID received from the USB device are used to select a relevant driver,
however, USB devices can also present generic device classes and sub-
classes that trigger generic USB drivers to be selected, e.g., mass storage
device.

2.6.2 Linux USB Stack

The Linux kernel’s USB subsystem has a modular design allowing new
client device drivers to easily interface with hardware [39]. The Linux ker-
nel maintains a kernel daemon thread called khubd, which is responsible
for monitoring any USB hubs by communicating with the on-board HCI
and configuring USB devices. When a USB device is plugged into a ma-
chine, the kernel enumerates the device’s capabilities and configurations
in a process called USB enumeration. In this process, khubd is awoken by
the main kernel thread upon a new USB event being triggered via a Host
Controller’s hardware interrupts. The purpose of USB enumeration is to
iterate over its configuration descriptors to determine power output, as-
sociated endpoint addresses, transfer types, speed, device class, etc. and
follows the following procedure:

1. The root hub detects a current change due to device being attached
and invokes khubd.

2. khubd deciphers the identity of the USB port that caused the change.

3. khubd chooses a device address between 1-127 and assigns it to the

41



2 Background

USB gadget via standard USB device requests. It associates the gad-
gets endpoint using a control URB to endpoint 0.

4. khubd uses the endpoint address 0 to obtain the device descriptor
from the gadget, requests the devices configuration descriptors and
selects a suitable descriptor.

5. khubd requests usbcore to bind a matching device client driver to the
inserted device. The new kernel driver is then initialised by call-
ing its probe function with initialised USB device structures as argu-
ments.

The usbcore Linux subsystem matches USB devices with the correspond-
ing client driver by matching USB descriptors exported by client drivers
when the Linux kernel was compiled. A client USB Linux driver must de-
clare these by creating a usb_device_id struct array corresponding to all of
the vendor and product IDs it wishes to be associated with or the relevant
device driver class, e.g., USB Mass Storage. The driver then registers the
usb_device_ids with the MODULE_DEVICE_TABLE macro as seen in Listing 1;
with the usb variable corresponding to a usb_driver driver struct listing
core function callbacks, e.g., probe, disconnect and suspend. The macro is
used by the kernel to generate global map files, which are then used to
reference the relevant driver that should be loaded upon a new USB de-
vice being plugged in and is used by usbcore.

Once enumeration is complete, the associated client driver’s probe func-
tion is invoked with a reference to the USB device and a USB client device
driver can then communicate with the device through library functions in
usbcore such as usb_submit_urb. Such communication requests are sent as
URBs to a HCI (typically encapsulated over the PCI bus) and forwarded
on to the gadget.

Most Linux device drivers allow user space processes to access hard-
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1 struct usb_device_id {
2 /* ... */
3 __u16 idVendor; /* Vendor ID */
4 __u16 idProduct; /* Product ID */
5 /* ... */
6 __u8 bDeviceClass; /* Device class */
7 __u8 bDeviceSubClass; /* Device subclass */
8 __u8 bDeviceProtocol; /* Device protocol */
9 /* ... */

10 }
11 ...
12 static struct usb_device_id ids[] = {
13 { USB_DEVICE( VENDOR_ID , PRODUCT_ID) },
14 {} /* Terminate */
15 }
16 ...
17 MODULE_DEVICE_TABLE( usb , ids)

Listing 1: USB device driver association under Linux.

ware through special files, e.g., a character device, block device, socket,
or named pipe. Typically, this involves system calls on files located in de-
vfs or sysfs, which in turn call functions in kernel drivers. For example,
the driver for USB Mass Storage Devices wraps a SCSI device around a
USB device; file operations to its node under /dev/sd[a-zA-Z]{1-3} trig-
ger URB transfers to the corresponding USB device.

2.7 Linux Kernel Security

In this section we discuss contemporary software defences employed in
the Linux kernel necessary to understand potential exploitation mecha-
nisms. We describe kernel protection mechanisms, advanced kernel de-
bugging systems, and run-time memory integrity protections that may be
compiled into the kernel.
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2.7.1 Linux Kernel Defences

Modern GNU/Linux operating systems come with a variety of software
defence mechanisms compiled into the kernel. Here, we briefly explain
the most prevalent security techniques that are commonly applied to a
hardened Linux kernel.

Kernel Address Space Layout Randomisation (KASLR)

KASLR is an inexpensive probabilistic defence mechanism that applies the
user space concept of Address Space Layout Randomisation (ALSR) to the
Linux kernel. It does this by randomising the base address of the kernel
code section at boot. This technique prevents common attacks that insert
malicious code into the kernel address space, or jumping to known offsets,
and is easy to implement. The simplest privilege escalation attack in the
Linux kernel executes the following code:

commit_creds(prepare_creds ());

which prepares an empty set of credentials that corresponds to the root
user in prepare_creds and applies them to the current process with commit_creds.
If an attacker has the capacity to execute arbitrary kernel code the only
unknown is the address of these two functions. With KASLR employed,
successful exploitation now depends on an initial information leakage to
calculate the relative offset from the randomised base address of the code
section to these function addresses.

Return Address Protection (RAP)

RAP is a kernel defence mechanism developed by GrSecurity [66] that
adds forward and return edge CFI into the Linux kernel. It is developed
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as a plugin to the GCC2 compiler and aims to stop Return Orientated
Programming (ROP) attacks. ROP attacks are a leading method of over-
coming protections provided by No eXecute (NX) (Data Execution Pre-
vention (DEP) in Windows) in which existing executable code in a binary
is reused to craft an unintended or malicious execution.

To defend against these attacks, RAP implements forward edge and re-
turn edge Control Flow Integrity (CFI) in two parts. First, the GCC plu-
gin performs a deterministic analysis limiting the set of functions that
may be called from each code location, and what locations may be re-
turned from each function. Latest research proves that weak CFI is still
exploitable [44] thus secondly, RAP implements a probabilistic defence to
ensure that within each determined set of functions, the correct location is
always returned.

Supervisor Mode Access Prevention (SMAP)

SMAP is a hardware feature on some CPU implementations that allows
access to user space memory to be restricted when executing supervisor
mode programs. This security feature is designed to stop arbitrary data
from being read from user space, a method commonly used by kernel ex-
ploits to deliver payloads. The feature may be disabled on x86 based CPUs
by setting bit 21 to 0 in the CR4 control register. This operation, and all
modifications to the CR4 register, may only be performed when the CPU
is executing in supervisor mode.

Supervisor Mode Execution Prevention (SMEP)

SMEP is a hardware feature on some CPU implementations that restricts
executing code residing in user space memory while the CPU is operat-

2https://gcc.gnu.org
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ing in supervisor mode. This security feature is designed to stop exploits
jumping to arbitrary code residing in user space and makes vulnerabilities
where a user can influence a function pointer more difficult to exploit. It
is enabled on x86 CPUs by setting bit 20 to 1 in the CR4 control register.

Kernel Address Sanitiser (KASAN)

KASAN is an implementation of the user space dynamic error detector
Address Sanitizer (ASAN) [133] for the Linux kernel. It uses compile-time
instrumentation to add run time checks for detecting out-of-bounds ac-
cesses to both stack and global variables. It can be enabled by compiling
the Linux kernel with CONFIG_KASAN=1 and provides memory reports to
the standard logging facility in the event of an out-of-bounds write or use-
after-free is detected. It maintains a shadow memory section separated
from main memory that tracks objects and their references. Gaps between
objects in main memory are inserted to create poisoned red zones which
cause a trap to be executed on access. When a kernel module is compiled
with KASAN, every memory access is instrumented to perform a safety
check on a modified pointer value. The pointer is used to check meta-data
in the shadow memory region to detect out-of-bounds accesses.

2.7.2 System Tap

System Tap [128] is a tool to support system-wide instrumentation in Linux-
based operating systems. It allows developers to analyse a live system
without modifying an original program’s source code by executing ar-
bitrary routines with associated hook points. Developers create handlers
written in the stap language which are assigned to probe points in existing
software. The stap routines have the capacity to run arbitrary C code and
modify internal programs memory. This makes them an incredibly pow-
erful and versatile tool for analysing kernel modules as well as user space

46



2.7 Linux Kernel Security

1 probe begin{
2 printf("init systemtap kernel module\n")
3 }
4

5 function gtod() {
6 return gettimeofday ()
7 }
8

9 probe syscall .*. return {
10 errno = $return #return value
11 if (errno < 0) {
12 elapsed = gtod() - @entry(gtod())
13 printf("errno %d %s after %d\n", errno ,

errno_str(errno), elapsed)
14 }
15 }

Listing 2: An example SystemTap program that prints out the elapsed time
and error message from all system calls that return error values.

programs.

Stap modules must be compiled into a Linux kernel module (PIE ELF
.ko file) and inserted into the running kernel ahead of time using staprun.
When compiled using Return probes instead of Kprobes, return addresses
are replaced with trampoline addresses which mitigates the need for using
break points. This allows stap modules to be used for debugging multi-
process applications at near full speed. The code snippet in Listing 2
shows an example of a stap program. It first declares an entry point to be
run when the kernel module is inserted defined by the begin syntax after
a probe statement. It then defines a function called gtod which returns the
in-built gettimeofday stap function. Finally, probes are inserted on the re-
turn of all syscalls as expressed by syscall.*.return and the elapsed time
between the syscall being called and returning is calculated if the return
value is less than 0.
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2 Background

When specifying stap probe locations, debug information such as sym-
bols are required when specifying named locations, however, limited stap
functionality can be implemented using statements that specify absolute
virtual addresses.
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Probabilistic Naming of Binary
Functions 3
In this chapter, we discuss our approach to naming functions in stripped
binaries and describe the theoretical foundations of our tool, Punstrip, that
is used as a binary analysis platform through the remainder of this dis-
sertation. Punstrip builds a probabilistic model that learns how develop-
ers use and name functions across a set of existing open-source projects;
using this model, we infer meaningful symbol information based on simi-
larities in program structure and semantics in previously unseen, stripped
binaries. It is not necessary to discover exactly the same identifiers that
the developers used in the original program: for reverse engineering, we
are interested in discovering symbol names that are helpful to an analyst.
With Punstrip, reverse engineers can pre-process an unknown binary to
automatically annotate it with symbol information, saving them time and
preventing mistakes in doing further manual analysis. We make Punstrip
available as open source1 software.

This chapter describes the following:

• We present a novel approach to function identification and signature
recognition for stripped binaries that uses features in a higher-level
intermediate representation. This approach can scale to real world
software and seeks to be agnostic to both compiler architectures, bi-

1https://github.com/punstrip/punstrip
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nary formats, and optimisations.

• We introduce a probabilistic graphical model for inferring function
names in stripped binaries that compares the joint probability of all
unknown symbols simultaneously rather than treating each function
in isolation. The model builds on our probabilistic fingerprint and
analysis between symbols in binaries.

We evaluate Punstrip against the current state of the art in function name
detection against all C binaries found in open-source Debian repositories
with a 10-fold cross validated evaluation. Furthermore, we evaluate our
probabilistic fingerprint against leading tools using binaries with a large
common code base that were compiled in different environments. In the
remainder of this chapter, we give an overview of Punstrip’s pipeline (Sec-
tion 3.1), introduce our technical approach to the problem of function fin-
gerprinting (Section 3.2), and describe the abstract graphical structure for
learning (Section 3.3). We then present our method for relating function
names (Section 3.4) before evaluating Punstrip against previous work (Sec-
tion 3.5). Finally, we discuss limitations of our approach (Section 3.6) and
contrast with related work (Section 3.7).

3.1 Overview

Figure 3.1 shows an architectural overview of the Punstrip pipeline. Pun-
strip takes as input a set of ELF binaries, which for training should be un-
stripped. In the initial analysis stage, Punstrip extracts function symbols
and their boundaries as defined in the symbol table, disassembles them,
and lifts the instructions to the VEX intermediate representation. From this
representation and the inter-procedural control flow information among
functions, Punstrip extracts a set of features that are stored in a database.
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ELF Binaries

Analysis

Function 
Boundaries

Disassembly

VEX IR

Feature 
Extraction

Features

Probabilistic Fingerprint

Factor Graph
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Evaluation

Exact

NLP

ELF Exporter

Figure 3.1: A block diagram overview of the components in Punstrip.

These features are used to build a per-function fingerprint, as well as a
factor graph representing the relationships between functions and fea-
ture values for each executable. Our probabilistic fingerprint and factor
graph are used to construct a General Conditional Random Field (CRF)
that learns how individual functions interact with other code and data.

After training a model on a large corpus of programs that include sym-
bol information, we are able to use the learned parameters to infer the
most likely function names in stripped binaries. The inferred function sym-
bol names can then be added to the stripped binary and used for debugging
and reverse engineering purposes. In this chapter, we focus exclusively
on the problem of naming functions; for detecting function boundaries in
stripped binaries, we refer to recent approaches from the literature [11, 14].

We evaluate the accuracy of function name prediction using two met-
rics: (1) exact matches of function names, and (2) normalised matches of
function names. In the remainder of this section, we detail the individ-
ual stages of the pipeline referring to examples in Figure 3.2, in which we
separate known from unknown functions, that we aim to label.

3.1.1 Probabilistic Fingerprint

Figure 3.2a shows the disassembly of a function from a stripped binary.
Static analysis is able to detect that the unknown function is called from
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(fcn) 0x01fb0

;CALL XREF from 0x0162d 0x0162d
0x01fb0 test rdi , rdi
0x01fb4 je 0x2027
0x01fb6 mov esi , 0x2f
0x01fbb mov rbx , rdi

0x01fbe call imp.errno_location

0x01fc3 test rax , rax
0x01fc6 je 0x2017
0x01fc8 lea rdx , [rax + 1]
0x01fcc mov rcx , rdx
0x01fcf sub rcx , rbx
0x01fd2 cmp rcx , 6
0x01fd6 jle 0x2017
0x01fdf mov ecx , 7
0x01fe6 jne 0x2017

0x01fed call 0x022b4

(a) Disassembly of a function in a
stripped executable.

IRSB {
t1:Ity_I64 t2:Ity_I64

t3:Ity_I64 t6:Ity_I64
t7:Ity_I1

00| --IMark( 0x1fb0 , 3, 0)--
01| t2 = GET:I64(rdi)
02| PUT(cc_op) = 0x00000014
03| PUT(cc_dep1) = t2
04| PUT(pc) = 0x01fb3
05| t15 = CmpEQ64(t2 ,0x00)
06| t14 = 1Uto64(t15)
...
19| if (t7)

{ PUT(pc)=0x2027;
Ijk_Boring }

NEXT:
PUT(rip)=0 x01fb6; Ijk_Boring

}

(b) VEX IR of the function’s first basic
block.

errno_location

0x01fb0

0x022b4

(c) Graph-based CRF based on re-
lationships between features,
knowns, and unknowns.

(fcn) set_program_name

; CALL XREF from 0x0162d main
0x01fb0 test rdi , rdi
0x01fb4 je 0x2027
0x01fb6 mov esi , 0x2f
0x01fbb mov rbx , rdi

0x01fbe call imp.errno_location

0x01fc3 test rax , rax
0x01fc6 je 0x2017
...

0x01fe6 jne 0x2017

0x01fed call strchr

(d) Disassembly of the same function
with inferred function names added
to the binary’s symbol table.

Figure 3.2: Stages in Punstrip’s pipeline for learning and evaluating func-
tion name inference on stripped binaries.
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the unnamed function at address 0x0162d and calls the dynamically linked
function errno_location (which gets the error identifier from the last exe-
cuted system call) before calling the function at 0x022b4 .

As the binary sequence of machine code can differ even for the same
source code depending on compilation settings, we opt for using an inter-
mediate representation that abstracts some implementation detail. We lift
machine code to the VEX intermediate representation, as shown in Fig-
ure 3.2b, which offers an appropriate level of detail and abstraction for
our analysis. From this representation, we extract a collection of features
that help identify names of functions designed to be agnostic to changes
in compilers and optimisations. While the binary code of a function may
change due to compiler differences, and hence values of our features, our
intuition is that even if a compiler modifies the order, number of, and type
of instructions, changes in feature values based on optimised VEX IR will
still be similar.

After extracting a set of features we first convert each into a vectorised
form before stacking them and using it as the input to a multiclass classi-
fier. The output of multiclass classification gives a probability mass func-
tion over the set of all unknown functions in our training data. Thus, for
each function we learn a probability distribution over all function names
given input features derived from VEX.

3.1.2 Probabilistic Structural Inference

After extracting high-level features and relationships between functions,
we build a probabilistic graphical model in the form of a Conditional Ran-
dom Field (CRF) [85, 143] as depicted in Figure 3.2c. The CRF operates on
a factor graph which factorises inter-dependencies between functions and
separates unknown and known information. Figure 3.2c shows that the
unknown function 0x01fb0 has a factor-based on calling the known func-
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tion errno_location , factors based on statically derived known features
such as its probabilistic fingerprint, and a factor-based on its relationship
with 0x022b4 .

Our CRF models pairwise and generic factor-based relationships among
code and data for all functions in an executable. We first train the graphi-
cal model and learn the weightings of relationships on a large set of prior
unstripped binaries before building a new CRF for each stripped binary
and applying the learned model parameters. Function names are then
inferred by maximising the conditional probability of unknown function
names, given the known information and our models parameters. This
enables Punstrip to take into consideration known information from the
whole binary simultaneously rather than considering each function in iso-
lation; this may help identify functions that are weakly identifiable in and
of themselves, but have strong connections to other more easily recognis-
able functions.

3.1.3 Function Name Matching

Finally, after we have inferred function names for the set of unknown sym-
bols, we modify the ELF executable’s symbol table and insert entries into
the strtab and symtab sections. As a result, subsequent disassembly will
yield the newly predicted function names (Figure 3.2d).

The names developers give to functions can vary wildly based on per-
sonal preferences and project styles. Therefore, relying on exact lexical
matching only to evaluate the accuracy of name predictions would miss
cases where predicted names are semantically correct but syntactically dif-
ferent. We therefore implement an additional metric for evaluating name
similarity. We propose a method based on natural language processing,
which uses lexical techniques to determine the similarity of two names.
The metric tries to mitigate grammatical differences in language used, ex-
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pands common naming conventions used by programmers, and takes into
account similar words, such as start and begin, within each name.

3.2 Probabilistic Fingerprint

We now explain how Punstrip creates a probabilistic fingerprint for each
function in a (potentially stripped) binary. We start by giving an overview
of the VEX IR (Section 3.2.1) before describing how we extract features
from it using static (Section 3.2.2) and symbolic (Section 3.2.3) analysis.
Finally, we detail how extracted features are combined into a probabilistic
identifier (Section 3.2.4).

3.2.1 VEX Intermediate Representation

Whilst binary sequences of machine code are subject to vast differences
across small compilation changes, in the design of Punstrip we aim to build
a set of feature functions that expose abstract relationships between seg-
ments of binary code that survive multiple compilations in different ISAs
and compiler technologies. Therefore, we first lift the raw machine code
into a higher level Intermediate Representation (IR) that enables us to ab-
stract away differences in register names, memory accesses, memory seg-
mentation and instruction side effects across ISAs.

There are many IR languages available with the most common being
LLVM IR [90], REIL [51], GCC’s GENERIC [145] and GIMPLE [146], how-
ever, Punstrip’s analysis is built using the VEX Intermediate Representa-
tion (IR) that was designed by the Valgrind project [114] [149]. VEX aims
to be an architecture agnostic representation and supports lifting from x86,
AMD64, ARM, ARM64, PowerPC32, PowerPC64, MIPS32, MIPS64, TI-
LEGX and S390X ISAs. It therefore matches our needs better than other
intermediate languages. The representation itself abstracts machine code
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in a unified way which explicitly models all instruction side-effects and
abstracts away differences in register names, memory accesses, memory
segmentation, and machine state such as the EFLAGS register [84] in x86.
We choose to use python bindings for libVEX as it has strong community
support and development first being used in firmalice [139] before being
adopted by angr [149] and Driller [141].

The VEX IR only supports lifting machine code per basic block. There-
fore, Punstrip first needs to disassemble a function’s machine code and
recover the Intra-procedural Control Flow Graph (ICFG) of basic blocks.
Starting with the Function Entry Point (FEP), Punstrip uses the capstone [116]
disassembly framework and the leaders algorithm to sequentially separate
assembly code into straight line execution sequences. We use capstone as
it supports multiple ISAs, multiple language implementations, has an ar-
chitecture neutral API and has vast community development and support.
Capstone can determine constant jump targets of disassembled code. We
use this information to sequentially set the addresses of jump targets as
well as the address immediately following the jump instruction as lead-
ers. At this stage, Punstrip, is unable to fully recover the ICFG if jump
targets are non-constant; however, through a more detailed static analysis
at a later stage, a more accurate ICFG may be recovered.

Once the basic block boundaries for each function are known, each is
then lifted into the VEX IR language that consists of five main classes of
objects:

• Expressions represent a constant or calculated value including the
results of arithmetic operations, memory loads and register reads.

• Operations describe a modification of Expressions including bit op-
erations, integer arithmetic, floating point arithmetic, etc. An Oper-
ation applied to an Expression yields an Expression as a result.
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• Statements model changes in the state of the current machine in-
cluding memory stores and register writes.

• Temporary Variables model internal registers and are used to store
Expressions in a strongly typed manner.

• Blocks describes a collection of Statements representing an extended
basic block. A Block may have multiple exits but only a single entry
point.

An example of the first basic block of the function used in Figure 3.2a
lifted to VEX IR can be seen in Figure 3.2b which shows the number and
type of temporary variables used and instructions in the block. The first
basic block only consists of the first two decoded assembly instructions
before a potential control flow change; however it describes all modifica-
tions to the state such as updating the program counter if the 64 bit integer
comparison of the temporary variable t2 is 0. Finally, the basic block is ter-
minated with a labelled intraprocedural jump (indicated by Ijk_Boring).
The VEX IR basic block jump may be labelled as: call, return, fall-through,
termination, or a boring jump.

3.2.2 Static Analysis

All features extracted from each function are listed in Table 3.1. We in-
clude two low-level features that help to find exact matches: a hash of the
machine code and a hash of the opcodes in the disassembly. The opcode
hash is included to recognise exact patterns of generated machine code
with different parameters or relative offsets, which would not be matched
by an exact binary hash. All other features are extracted from VEX IR.

Symbols contained in an ELF binary’s symbol table detail a component’s
address, size, and string description in the target executable. This infor-
mation is first extracted along with the raw bytes corresponding to the
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Table 3.1: Features extracted from functions and their representation in the
probabilistic fingerprint.

Feature Type Description

Static features

Size Scalar Size of the symbol in bytes.
Hash Binary SHA-256 hash of the binary data.
Opcode Hash Binary SHA-256 hash of the opcodes.
VEX instructions Scalar Number of VEX IR instructions.
VEX jumpkinds Vector(8) VEX IR jumps inside a function e.g.,

fall-through, call, ret and jump
VEX temporary variables Scalar Number of temporary variables used

in the VEX IR.
VEX IR Statements, Ex-
pressions and Operations

Vector(54) Categorised VEX IR Statements, Ex-
pressions and Operations.

Callers Vector(N) Vector one-hot encoding representa-
tion of symbol callers.

Callees Vector(N) Vector one-hot encoding representa-
tion of symbol callees.

Transitive Closure Vector(N) Symbols reachable under this func-
tion.

Basic Block ICFG Vector(300) Graph2Vec vector representation of
labelled ICFG.

VEX IR constants types
and values

Dict Number of type of VEX IR constants
used.

Symbolic features

Continued on the next page
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Table 3.1: Features extracted from functions and their representation in the
probabilistic fingerprint (cont.).

Feature Type Description

Stack bytes Scalar Number of bytes referenced on the
stack.

Heap bytes Scalar Number of bytes referenced on the
heap.

Arguments Scalar Total number of function arguments.
Stack locals Scalar Number of bytes used for local vari-

ables on the stack.
Thread Local Stor-
age (TLS) bytes

Scalar Number of bytes referenced from
TLS.

Tainted register classes Vector(5) One-hot encoded vector of tainted
register types, e.g., stack pointer,
floating point.

Tainted heap Scalar Number of tainted bytes of the heap.
Tainted stack Scalar Number of tainted bytes of the stack.
Tainted stack arguments Scalar Number of tainted bytes that are

function arguments to other functions
Tainted jumps Scalar Number of conditional jumps that de-

pend on a tainted variable.
Tainted flows Vector(N) Vector of tainted flows to known

functions.

function. Using pyvex and each function’s boundaries as specified in the
binary’s symbol table [17], we lift each basic block into its optimised VEX
IR and build a labelled Intraprocedural Control Flow Graph (ICFG) for
each function. We then resolve dynamically linked objects and build a call
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graph for each statically linked function in the binary.

Table 3.2: Rules for VEX IR categorisation.

Regex Description

VEX IR Operations

Iop_Add(.*) Addition
Iop_Sub(.*) Subtraction
Iop_Mul(.*) Multiplication
Iop_Div(.*) Division

Iop_S(h|a)(.*) Arithmetic and logical shifts
Iop_Neg(.*) Negation
Iop_Not(.*) Logical NOT
Iop_And(.*) Logical AND
Iop_Or(.*) Logical OR
Iop_Xor(.*) Logical XOR
Iop_Perm(.*) Permute bytes

Iop_(.*)to(.*) Type conversion
Iop_Reinterp(.*)as(.*) Reinterpretation
Iop_(Cmp|CasCmp)(.*) String comparison
Iop_Get(M|L)SB(.*) Get significant bit
Iop_Interleave(.*) Bit interleaving
Iop_(Min|Max)(.*) Min/max operations

Statements

Ist_Exit Exit
Ist_IMark Instruction marker
Ist_MBE Exit

Ist_Put_(.*) Put
Ist_(Store|WrTmp) Write

We track all features given in Table 3.1 and convert this structure of fea-
tures into a form that can be represented by a single stacked vector to be
used as a fingerprint for each function. When labelling the ICFG, VEX
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basic blocks are distinguished by their terminators (jumps, calls, returns,
and fall-throughs). We only store numeric integer constants, greater than
28, that are not operands of jump instructions to focus on infrequent and
distinctive values.

After machine code is lifted into the VEX IR we categorise each instruc-
tion into a one-hot encoded vector according to the regular expressions
defined in Table 3.2. The one-hot encoded vectors are then summed to
produce an impression of functions operations.

To convert generic graphical structures to a vector representation we
utilise the feature embedding technique graph2vec [122]. We compare the
similarity of all ICFGs by using an implementation of the Weisfeiler-Lehman
graph kernel [136]. By training a graph2vec model, each ICFG is converted
into a vector space in which similar graphical structures are numerically
similar. We store each vector in an Annoy Database2 that allows us to
quickly find the nearest vectors for each graph-based on the Euclidean dis-
tance from our model’s embeddings (and hence the most similar graphs).
Training the graph2vec model is computationally expensive; however, it al-
lows us to avoid comparing pairs of graphs with a graph kernel over the
testing set for every element in the training set. Using graph2vec we can
efficiently compare the similarity of abstract graphical structures without
a quadratic query time after training the model.

3.2.3 Symbolic Analysis

We extract additional semantic features using our own symbolic analy-
sis built on top of the VEX IR. We write our own execution engine over
the existing angr [140] implementation to provide a lightweight and more
consistent analysis across multiple platforms. Upon loading the binary, we

2Annoy: Approximate Nearest Neighbours Oh Yeah: https://github.com/spotify/
annoy
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fill a virtual memory space with concrete data from the ELF binaries’ data
(.data and .bss), strings (.rodata), and code (.text) sections. After the
boundaries of each basic block are known from the initial static analysis,
we are able to lift each block into VEX in Single Static Assignment (SSA)
form. Within our model, reads from registers and memory locations with
undefined contents return symbolic values for the size of data requested.

Function Argument Extraction. To identify the number of function ar-
guments we carry out live variable analysis on argument registers and
memory references to pointers above the current stack pointer. Our im-
plementation of live variable analysis determines the set of function argu-
ments that are live at the start of each function. According to the System
V AMD64 ABI [101] followed by GNU/Linux for x86_64, arguments may
be passed to each function using rdi, rsi, rdx, rcx, r8, r9, xmm{0-7}, and then
additional arguments are passed on the stack. As we need to track the
value of the stack pointer, we perform a fixed-point iteration algorithm to
determine the base and stack pointer values on each use. Finally, we build
a model to track memory references between basic blocks as the VEX IR’s
SSA form is only consistent per basic block.

Heap and Stack Analysis.
We implement a stack of 2048 bytes starting at 0x7FFFFFFFFFF0000 and

model the stack registers, segment registers, and heap accordingly. For
each function, we track the total number of bytes referenced on both the
heap and stack, local variables and function arguments placed on the stack,
thread local storage accesses, and perform taint analysis to calculate data
flows from each input argument to arguments of other functions. Finally,
we compute the transitive closure for each function under the binary’s call
graph.

Symbolic Execution. After identifying the number of input arguments to
a function we symbolically execute the function using our own execution
engine that uses Claripy [140, 38] to formulate symbolic values and ex-
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pressions. This allows us to create symbolic expressions for return values
from each function, e.g., ret |= SymbVec(ARG1)+BitVec(0x2). Where our
symbolic execution engine cannot easily determine the result of an oper-
ation, e.g., the x86_64 instruction AESENC, we inject symbolic values. This
may lead to incorrect analyses, however, this optimisation is infrequently
used and allows our lightweight approach to scale to analyse functions on
big code.

After identifying symbolic variables we are able to extract call sites to
other functions that are control-dependent on a symbolic variable. We
then track the number of call sites that are control-dependent on each in-
put argument and use it as a feature in our fingerprint. We run our analy-
sis for every recovered function argument to extract per input-dependent
taints. Finally, we also include an analysis pass that taints all input ar-
guments to mitigate against reordering of function arguments producing
different results.

Register Classification.

We classify registers referenced during execution into five generic classes:
general purpose, floating point, stack and base pointer, segment register,
and control register. For each input argument we produce a vector of
tainted register classes from the set of tainted registers after taint prop-
agation. This allows Punstrip to capture the types of behaviour performed
by functions for individual arguments. Finally, we produce a final vector
of tainted register classes irrespective of taint.

3.2.4 Probabilistic Classification

We aim to convert features extracted in Table 3.1 to a probability distribu-
tion over a corpus of symbol names s ∈ S whereby S is the set of all func-
tion names seen in our training dataset. For binary and dictionary typed
features we emit a normalised vector of size |S| that counts if the feature
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has been seen during training for each function name. To clarify, if we find
a binary hash collision or match VEX IR constants, we output a vector in
which we sum the number of times the feature has been seen for each func-
tion name s ∈ S. We stack the resultant scalars and vectors into a single
feature vector to be used as the input to a machine learning classifier. As
the feature vector is sparse, we reduce its dimensionality by performing
Principal Component Analysis (PCA) and scale the transformed principal
components such that each column has 0mean and a unit variance.

Finally, we train a Gaussian Naive Bayes3 model to predict the probabil-
ity of each input function belonging to s ∈ S. Our model is implemented
using ScikitLearn [122].

3.3 Probabilistic Structural Inference

In this section we explain how we combine our probabilistic fingerprint
with a third order general graph-based CRF for symbol inference. First,
we explain how we generate the CRF (Section 3.3.1) using relationships
between multiple symbols and features of individual functions. We then
explain how Punstrip performs parameter estimation (Section 3.3.2) and
model inference (Section 3.3.3).

3.3.1 CRF Generation

We refer to the process of symbol inference as predicting the most likely
symbol names using a probabilistic graphical model that utilises unary
potentials from our probabilistic fingerprint and known nodes, pairwise
potentials between unknown functions, and generic factor potentials be-
tween sets of unknowns and knowns.

3We found Gaussian Naive Bayes out-performed Random Forests, Logistic Regression,
and Neural Networks.

64



3.3 Probabilistic Structural Inference

Table 3.3: Feature functions used in the CRF. label-node relationships relate
known features x ∈ x to the current node yu. label-label relation-
ships relate unknown nodes yu → yv ∈ y.

Relationship Description

label-node relationships

Probab. fingerprint The probability of function yu given its ex-
tracted features in Table 3.1.

label-label relationships

dth pairwise callers The probability of function yu calling yv
through d− 1 other nodes.

dth pairwise callees The probability of function yu being called by
yv through d− 1 other nodes.

Pairwise data xrefs The probability of function yu referencing ob-
ject xv.

Generic factor callers The probability of function yu calling the set of
known functions x.

Generic factor callees The probability of function yu being called by
the set of known functions x.

In general, CRFs are used to predict an output vector y = {y0, y1, . . . , yN}

of random variables that may have dependencies on each other given an
observed input vector x. Our goal is that of structured prediction or learn-
ing high-level relationships between symbols. Modelling the dependen-
cies between all symbols in binary executables would most likely lead to a
computationally intractable graphical model, therefore we use a discrim-
inative approach and model the conditional distribution p (y | x) directly
without needing to model p (x | y).

As depicted in Figure 3.3, the CRF built is of the general graph form
with relationships between known functions, known features (known fea-
tures of unknown functions), and unknown functions. In our model,
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known vertices represent feature values or known function names, e.g.,
Size = 5,name = read; unknown vertices represent unknown symbol
names. Edges between nodes represent relationships between feature
values of which we define two types: label-observation and label-label.
Label-observation edges represent relationships connecting known nodes
in x to unknown nodes in y and label-label edges represent relationships
between unknown nodes in y. Each feature function is replicated for each
symbol name s ∈ S. This is implemented as a vector N of size |S| with
each element n ∈ N → [0, 1]. Our implementation exploits the sparsity
between connected functions across millions of unique function names by
storing each vector in a sparse matrix.

The feature functions used in building the CRF are listed in Table 3.3.
For pairwise feature functions, we track dependencies to the dth degree for
d ∈ {1, 2, 3}. To clarify, under the calleed feature function, each edge poten-
tial is a probability distribution (probability mass function) over all known
symbol names S which describes the probability of the symbol name tran-
sition sdu → sdv . This represents the probability of a symbol su being d calls
away from sv.

The CRF aims to predict the conditional probability over all unknown
nodes y simultaneously given the set of known nodes x. Let G be a factor
graph of relationships over all known symbols x and all unknown sym-
bols y, then (x,y) is a conditional random field if for any value x ∈ x, the
distribution p (y | x) factorises according to G. If we partition the graph G
into maximal cliques C = {C1, C2, ..., CP} and into a set of factors F = {Ψc},
then the conditional distribution for the CRF is given by:

p (y | x) =
1

Z(x)
∏
Cp∈C

∏
Ψc∈Cp

Ψc (yc, xc; θp) (3.1)

where Z(x) is a normalising constant.
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All of our label-label feature functions are discrete and return 0 or 1 for
each function name depending on if the relationship exists in the training
set. The weightings for pairwise feature functions are repeated for each
clique and can be thought of as a global matrix between all function names
N × N. Then there exist |N| pairwise feature functions between a known
and unknown node per relationship, e.g., for the first callee relationship,
the probability of a known function being called by every other function
in S. We set Ψc to be log linear for efficient inference and define it in the
usual way as follows:

Ψc(yc, xc; θp) = exp

K(p)∑
k=1

θpkfpk(yc, xc)

 (3.2)

whereby K(p) returns the feature functions connected to vertex p. Both
weightings θpk and feature functions fpk are indexed by vertex k and fac-
tor p implying that each factor has its own set of weights. As the graphical
structure of binaries is not fixed, and hence the structure of our CRF, our
implementation replicates the weightings of each feature function glob-
ally. The normalisation constant Z (x) is defined as:

Z (x) =
∑

y

∏
cp∈C

∏
Ψc∈Cp

Ψc (yc, xc; θp) (3.3)

3.3.2 Parameter Estimation

To estimate the weightings associated with the CRF we use a maximum
likelihood approach, i.e., θ is chosen such that the training data has the
highest probability under the model. We achieve this by maximising
the pseudo log-likelihood given by Equation 3.4 over all our training set
graphs g ∈ G.
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Unknown Functions Known Functions Known Features

Figure 3.3: A visualisation of a snapshot of the general graph-based Con-
dition Random Field showing known and unknown nodes and
the relationships between them. Different types of relation-
ships are represented by separate colours. Pairwise and generic
factor-based feature functions are represented by rectangles
and polygons.

` (θ) =

G∑
g

C∑
p

K(p)∑
k=1

θpkfpk(yc, xc) −
θ2pk

2σ2
(3.4)

As we aim to expect changes in structure and features, we regularise
the log likelihood with Tikhonov regularisation [147] so that we do not
overfit our model to the training dataset. We combine L-BFGS-B [29] on
subgraphs in the training set with Stochastic Gradient Descent (SGD) to
iteratively learn the optimal weightings for θ. L-BFGS-B4 is used to op-

4Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) is an optimisation algo-
rithm that minimises a target function f (x) over a real-valued vector x. The function is
assumed to be differentiable.
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timise Equation 3.4 per-subgraph and SGD is used to update our global
weights from the local maxima.

As we assume a large collection of independent and identically dis-
tributed samples in the training data, using a numerical approach to max-
imising the likelihood in a batch setting is unwarranted and needlessly
slow. We suspect that different items in the training data from discon-
nected graphs provide similar information about relationship parameters;
therefore, we opt to using a stochastic method for optimising the likeli-
hood. While such an approach is sub-optimal, we believe the trade-off for
training the CRF on big code is acceptable.

3.3.3 CRF Inference

Whilst exact inference algorithms exist for linear-chain and tree-based
models, in the general case the problem has been shown to be NP-hard.
For inferring symbol names from the CRF we employ Maximum a Pos-
teriori (MAP) estimation using the approximate inference method Loopy
Belief Propagation [108] combined with an optimised greedy algorithm
based on stochastic gradient descent. We use an approximate inference
method to model large and complex graphical structures with the pos-
sibility for many loops whilst still being a tractable model for conver-
gence. Loopy Belief Propagation allows for an efficient approximation of
marginal distributions for individual unknown node assignments. Our
greedy algorithm then optimises global beliefs by making small changes
to a subset of the most confident nodes in the model. This reduces the label
space of possible assignments over y to a tractable amount that we can ex-
plicitly compute. Finally, we pick assignments that maximise Equation 3.1.
In each run of Loopy Belief Propagation, we use a random permutation of
message updates in an attempt to avoid remaining in local minima. By
combining the two approaches it is hoped the model falls into a global
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3 Probabilistic Naming of Binary Functions

minimum rather than a weak local minimum. The use of the CRF gives
the possibility of inferring functions that have large machine code differ-
ences to previous instances based on the interactions with other known
and unknown functions that are more easily recognisable.

3.4 Lexical Analysis of Function Names

When inferring symbol names based on heuristics of the underlying code,
it is difficult to know if the inferred name is correct. As previously men-
tioned in Section 3.2.4, multiple symbol names have exactly the same ma-
chine code, e.g., xstrtol, strtol and __strtol have the same byte se-
quence for the same compiler settings and come from different software
packages. For this reason, we perform a series of measures adopted from
NLP to compare the differences between the inferred symbol name and
the ground truth.

We first pre-process all function names to remove common charac-
ter sequences such as capital letters surrounded by underscores used
to signify library versions, CPU extension named functions such as
function.avx512, added compiler notation such as function.constprop

and function.part, and ISA-specific naming of functions. This sig-
nificantly reduces the number of unique symbol names stored in our
database. Upon comparing the names of functions for a possible match,
we first calculate the Levenshtein [93] distance between the symbol names
to detect small changes similar to appending a suffix or prepending
a prefix. Secondly, we perform canonicalisation and tokenization on
both the inferred and ground truth before lemmatising and word stem-
ming [62] each token in order to match words of different tenses and
cases. Our implementation uses the Porter Stemming algorithm [153]
and the WordNet lemmatiser provided by the Python Natural Language
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3.4 Lexical Analysis of Function Names

Toolkit5 library. This enables us to match the symbol wd_compare and
wd_comparator based on the stemmed word compar. In name canonical-
isation we maintain a list of common programming abbreviations such
as fd for ‘file descriptor’ or dir for ‘directory’ and then use the dy-
namic programming rod cutting algorithm6 to match sub-sequences with
a scoring function that prefers longer word lengths to produce a set of
word descriptions for each function name. For example, the real func-
tion name hexCharToInt after symbol canonicalisation is represented by
the set {hexadecimal, character, to, integer}. We then use synonym sets
from the Wordnet [106] lexical database for the English language to com-
pare the synonyms of individual descriptions. Using synonym sets allows
us to match the function name float_stream with watercourse_drift as
watercourse and stream, and drift and float match in the Wordnet database.
A naming similarity score is produced based on the Jaccard distance be-
tween the matching canonicalisation sets xc and sc as given by:

dj(xc, sc) =
|xc ∪ sc|− |xc ∩ sc|

|xc ∪ sc|
(3.5)

The Jaccard distance gives a measure of the overlapping similarity in the
synonyms of the canonical names for each function name. When the dis-
tance falls below a given threshold, we deem the function descriptions to
be similar.

This method aims to implement a subjective match on the similarity be-
tween function names but may introduce false positives into our results.
However, our thresholds and techniques were derived from manual anal-
ysis to align function name similarity close to the decisions of a human
analyst.

5https://www.nltk.org
6The rod cutting algorithm is more precisely defined in Algorithm 1.
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3.5 Evaluation

We evaluate Punstrip in two ways. First, we evaluate our probabilistic
fingerprint (Section 3.5.1); for this we require a dataset that has source
code compiled under different optimisation levels from different compil-
ers. Second, we evaluate the combination of our probabilistic fingerprint
with Punstrip’s probabilistic structural inference (Section 3.5.2) on a large
scale.

3.5.1 Probabilistic Fingerprint

To evaluate our approach to inferring function names in previously un-
seen binaries we constructed a dataset of programs that have moderate
code reuse between them. We built a corpus of binaries from coreutils,
moreutils, findutils, x11-utils and x11-xserver-utils. This resulted in 149
unique binaries and 1,362,379 symbols. Our criteria for choosing these bi-
naries were open-source software packages containing a large number of
ELF executables. All of the binaries were then compiled under all combi-
nations of {og, o1, o2}×{static, dynamic} for both clang and gcc resulting in
2132 distinct binaries7. We randomly split the 149 programs into 134 in the
training set and 15 in the test set. All binaries with debugging information
included were replicated to a stripped set of binaries before running the
strip utility on them; this removed all symbols where possible (dynamic
binaries still have dynamic symbols for linking purposes). By having two
copies of the binaries, one stripped, the other with debugging informa-
tion, we can obtain the ground truth for the results of our experiments.
Previous work [11, 14] has shown that function boundaries can be identi-
fied in stripped binaries with an average F1 score of 0.95 across compiler

7We felt the difference in optimisation levels was sufficient for our experiment. At the
time of experimentation, o3 provided little difference over o2 when using clang. Clang
og is equivalent to clang o1.
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optimisations O0-O3.
Throughout all our experiments, the same program name, and hence ex-

actly the same source code was never in both the training and testing set.
Thus 100% accuracy may be impossible as there are many functions only
contained within the testing dataset; however, common pieces of source
code may exist between binaries from the same package. We perform
this experiment to evaluate how our probabilistic fingerprint recognises
functions compiled into binaries under different compilation settings. By
training a model on binary names for a given configuration of compila-
tion options we then inferred function names for a different configura-
tion of compilation options in the testing set. Our results can be seen in
Table 3.4 for which we compare our fingerprint against leading industry
tools IDA FLIRT and Radare 2 Zignatures. A comparison against BinDiff8

proved impossible since it aims to perform differential comparisons be-
tween similar binaries rather than inferring function names in completely
new binaries. We were unable draw a comparison against existing state-
of-the-art research projects that build searchable code fingerprints such as
BinGold [9] and Genius [58] because they were not fully available. We
provide a larger evaluation of the entirety of Punstrip against the leading
state-of-the-art research tool Debin [70] in Section 3.5.2 that combines pro-
gram features and structural inference.

All our experiments were run under Debian Sid with dual Intel Xeon
CPU E5-2640 and 128GB of RAM. On average the computation of feature
functions after training was carried out in the order of seconds. We make
our full dataset available online9.

Explanation of Results.
In evaluating all schemes, we calculate Precision (P), Recall (R) and F1

score for as per Equation 3.6, 3.7, and 3.8. The number of true positives

8https://zydnamics.com/software/bindiff.html
9https://github.com/punstrip/cross-compile-dataset
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3 Probabilistic Naming of Binary Functions

TP, is given by the number of correctly named functions10. The number
of false positives FP, is given by the number of functions that were named
incorrectly. The number of false negatives FN, is given by the number of
functions in which we did not predict a name (lack of prediction confi-
dence), but valid names existed. We define the correctness of an inferred
function name to be result of our NLP matching scheme (Section 3.4) be-
tween the inferred function and the ground truth.

P =
TP

TP + FP
(3.6) R =

TP

TP + FN
(3.7)

F1 =
2× P × R
P + R

(3.8)

All approaches performed worst in cross compiler, cross optimisation
inference on dynamic binaries. From manual analysis, there are large dif-
ferences in both the structure and interactions between functions and also
in the number and name of functions. For example, clang always produces
the symbol c_isalnum which is never present in binaries compiled by gcc.
It’s also worth noting that in general, the number of symbols in a binary
decreased with higher levels of optimisation, with the coreutils binary who
ranging between 80–130 functions for the dynamically linked case across
optimisations og–o3 for x86_64. The same program compiled under clang
with og produced 129 symbols in its .text section whereas under gcc with
og produced 106 symbols with 35 symbols that were not shared between
the two binaries.

In the cases of very low recall, Zignatures’s and FLIRT’s precision rises.
We attribute this to domain knowledge of ELF binaries with Radare2 al-
ways finding the symbol __libc_csu_init, a function with a size of 0
which without structure prediction, our fingerprint does not.

10For structural inference, Punstrip makes the assumption that libc initialisation (e.g.,
libc_csu_init) and deinitialisation (e.g., fini) functions can be found based on static
analysis and the ELF header. This assumption was also applied when evaluating De-
bin.
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Table 3.4: Evaluation on the accuracy of symbol inference of different corpora and the different com-
pilation settings used.

Experiment
IDA FLIRT R2 Zignatures Punstrip

P R F1 P R F1 P R F1

gcc,og,dynamic -> gcc,og,dynamic 0.94 0.38 0.47 0.51 0.72 0.60 0.99 0.85 0.91

gcc,og,dynamic -> gcc,o1,dynamic 0.95 0.14 0.24 0.36 0.37 0.37 0.84 0.61 0.70

gcc,og,dynamic -> gcc,o2,dynamic 0.30 < 0.01 < 0.01 0.29 0.04 0.07 0.52 0.37 0.44

clang,o1,dynamic -> clang,o1,dynamic 0.78 0.38 0.51 0.40 0.49 0.43 0.97 0.87 0.92

clang,og,static -> clang,og,static 0.61 0.18 0.29 0.13 0.16 0.14 0.997 0.90 0.94

clang,og,static -> clang,o2,static 0.60 0.17 0.27 0.12 0.14 0.13 0.98 0.87 0.92

clang,og,static -> gcc,og,static 0.61 0.16 0.26 0.11 0.12 0.11 0.96 0.82 0.82

clang,og,static -> gcc,o2,static 0.61 0.16 0.26 0.11 0.12 0.11 0.98 0.83 0.84



3 Probabilistic Naming of Binary Functions

Table 3.5: 10-fold cross validation against Debin and Punstrip.

Metric
Debin Punstrip

P R F1 P R F1

Exact 0.63 0.66 0.51 0.65 0.92 0.73

NLP 0.66 0.67 0.55 0.68 0.92 0.75

3.5.2 Probabilistic Structural Inference

To test if we can learn abstract relationships between arbitrary functions
in the general sense it is necessary to build a large corpus of binaries with
debugging information from different software packages. We construct
this dataset from thousands of open-source software packages from the
Debian repositories.

This produced 188, 253 binaries with debugging information from
14,000 different software packages resulting in 82GB of executables; we
make the tools used to build this comprehensive dataset available11. Of
the 188, 253 ELF binaries, 17, 549 binaries were compiled from the C lan-
guage. We limit ourselves to C binaries only as we expect different re-
lationships between functions across different languages. We are able to
infer the source code language of an executable by looking at the .comment,
.debug, and .gnu.version ELF header sections. Using the 17, 549 C bina-
ries, we randomly split the list of executables into 10 equally sized groups
and perform 10-fold cross validation to evaluate our approach.

Explanation of Results.
In evaluating the performance of our probabilistic graphical model, we

used the same metrics as in (Section 3.5.1), however we use two differ-
ent measures of correctness. The first being an exact match between the
canonicalised ground truth and our inferred function name, the second

11https://github.com/punstrip/debian-unstripped
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being our NLP matching scheme. The reason for doing so is that the spar-
sity of function names across our corpus gives many names that are used
in similar ways whilst still not evaluating as similar in our NLP matching
scheme.

Table 3.5 displays the results of our large-scale inference experiment us-
ing 10-fold cross validation12 From a detailed analysis of the results our
NLP matching schemes correctly pick up meaningful inferred function
names where the exact correct name is not present in the training set. Both
tools perform worst on small dynamically linked binaries with little recog-
nisable relationships. Furthermore, it is evident that Punstrip may infer
symbol names that are structurally close on a micro-level to the correct
names, however, they lie in a different or rotated graphical orientation.
Symbol names with strong relationships between each other are often pre-
dicted locally correct as a group but not necessarily in the correct structural
order which reduces our accuracy. For example, the functions vfprintf,
__vfprintf_internal, and buffered_vfprintf are found close together in
the call graph and jointly implement the functionality of vfprintf.

We build pairwise relationships up to the third degree and store fac-
tors involving up to three functions. To improve our tool’s accuracy, we
could trivially increase the dimensions of relationships stored between.
We choose to use pairwise relationships up to the third degree as we were
limited in our computational and storage resources for our large-scale ex-
periments.

12Our results achieve significantly lower F1 scores than our prior experiment due to the
lack of common source code between binaries in the dataset.
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3.6 Limitations

Throughout our approach, we rely on previous work [11] on function
boundary detection to justify the conditions for function boundaries to
be known. In real world environments, further errors may be introduced
in the function boundary extraction stage which could have undesired ef-
fects in probabilistic inference due to the incorrectness of the recovered
graphical structure. In the event of an erroneous recovered structure, we
believe that sufficient randomisation of belief updates and our greedy al-
gorithm’s objective of maximising the joint likelihood across all unknown
nodes simultaneously would mitigate incorrect inference.

Our probabilistic fingerprint may succeed when faced with small
changes to machine code; however, there are often large unknown func-
tions in previously unseen or obfuscated binaries. It is highly likely that
Punstrip would perform poorly on executables that are highly obfuscated
or contain handwritten assembly code. Punstrip is limited by the correct-
ness of binary analysis; we make use of program analysis to recover fea-
tures and relationships between data and code. Techniques which aim
to mislead or impede program analysis are out of scope, however trivial
obfuscation techniques such as junk code insertion should be overcome
by the VEX IR optimisation step. Punstrip may be combined with exist-
ing reverse engineering software suites or debuggers to analyse regions of
memory containing unlabelled code; the prime example being recognising
functions during software unpacking at runtime.

3.7 Related Work

We examine related work across function identification (Section 3.7.1) and
function fingerprinting (Section 3.7.2). Finally, we look at probabilistic
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models for computer programs (Section 3.7.3).

3.7.1 Function Identification

The problem of matching sequences of binary code while allowing for
variation presents itself in several domains. Code clone detection [83, 34,
124, 74, 57], vulnerable code identification [40], code searching [53], and soft-
ware plagiarism detection [95] address the problem of finding exact source
code matches between software components. They focus on finding a
fixed set of previously seen functions with the main contributions drawn
from methods of identifying semantically equivalent code that have un-
dergone various software transformations; these transformations are typ-
ical of source code compiled with different compilers or compilation opti-
misations. Techniques typically adopt static or dynamic approaches that
build features of a functions interpreted execution or rely on fixed prop-
erties of compiler generated machine code. Patch code analysis [74, 162]
borrows the same techniques from the problem domain for feature collec-
tion, however, it requires an existing executable with prior information to
perform analysis on differential updates.

State of the art reverse engineering tools, such as the IDA Pro disas-
sembler, use databases of function signatures to reliably identify standard
functions such as those included by a statically linked C run-time. This
works well for systems where libraries are standardised and rarely recom-
piled. IDA Pro for example, maintains a directory of FLIRT signature files
for the most common Windows libraries replicated across the most com-
mon compilers and instruction set architectures (ISAs). Reverse engineers
also manually create custom databases of such signatures because they
can immediately identify many functions which otherwise would have
to be rediscovered in new binaries through costly manual analysis. Such
signature-based mechanisms can allow for some variation in the exact byte
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sequence matched, but they do not go further than relatively simple wild-
card mechanisms.

3.7.2 Function Fingerprinting

Work in binary function identification predominantly focuses on the prob-
lems of clone or exact function detection. Code clone detection focuses on
the recognition of previously seen functions [83]. Punstrip infers seman-
tically similar names for previously unseen functions based on modified
known examples.

Unstrip [75] aims to identify functions in stripped binaries and focuses
on labelling wrapper functions around dynamic imports. BinSlayer [24],
BinGold [9] and BinShape [138] identify and label functions in stripped
binaries. They collect large numbers of features such as system calls, con-
trol flow graphs and statistical properties to fingerprint functions. Static
approaches such as Genius [58] and discovRE [55] extract features from
a binary’s Control Flow Graph (CFG) and rank the similarity of func-
tions based on the graph isomorphism problem. In contrast, Punstrip
utilises a probabilistic graphical model that uses higher-level features to
infer structure in stripped binaries; combined with our NLP analysis
we suggest semantically similar function names. Structural Comparison
of Executable Objects [60] finds vulnerabilities through analysing secu-
rity patches. Gemini [155] creates a feature embedding based on Struc-
ture2vec [43] for code clone detection.

Dynamic approaches such as BLEX [53] and Exposé [115] use symbolic
execution and a theorem prover to rank the similarity between pairs of in-
dividual functions. Egele et al. [53] employ symbolic execution and com-
pare dynamic traces from functions to detect similar components. Oth-
ers such as BinGo [34] and Multi-MH [124, 74] try to describe a func-
tions behaviour by sampling each function with random inputs to match

80



3.7 Related Work

known vulnerabilities across architectures and operating systems. Gupta
et al. [109] use a dynamic matching algorithm for comparing control flow
and call graphs.

3.7.3 Probabilistic Models

The seminal work of Bichsel et al. [22] in building probabilistic models
is closely related to this work. They describe the process of building
linear chain condition random fields for sections of Java bytecode based
on a program dependency graph and utilise high-level information such
as types, method operations and class inheritance to build relationships
for inference. When applying a similar technique to machine code, the
problem is exacerbated by the lack of access to concrete information on
which to build features or known relationships to describe the semantics
of code. The work was built on the JavaScript deobfuscation framework,
JSNice [129], which infers local variable names for JavaScript programs
using CRFs. Other works utilise probabilistic graphical models to infer
properties of programs, e.g., specification [19] [96], verification [67] and
bug finding [67]. The closest work to ours that labels functions in stripped
binaries is Debin [70] which infers names of DWARF debugging informa-
tion and function names simultaneously.

Recent advances in function boundary detection in stripped binary exe-
cutables form a foundation of this work. We utilise Nucleus [11] when in-
ferring function names without known function boundaries; a tool which
uses spectral clustering to group basic blocks into function boundaries and
results are an improvement over work by Rosenblum et al. [130] and Shin
et al. [137], the former uses a CRF and the later use neural networks to
detect function boundaries in binaries; however, neither performs the task
of function naming.
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Distributed Representations of Binary
Functions 4
This chapter introduces distributed representations of binary functions for
use in machine learning applications. We present two different distributed
representations: the first, Symbol2Vec, is a condensed representation over
the label space of function names found in our experiments from Chap-
ter 3; the second, DEXTER, is an embedding over the feature space of bi-
nary functions that improves on the sparse nature of Punstrip’s fingerprint
using a deep learning approach.

Symbol2Vec aims to produce vector representations of function names
found in binaries such that similarly used names are grouped together.
It is useful for calculating the numerical similarity of inferred function
names in the label space for traditional multi-class classifiers where no lex-
ical similarity between the inferred and correct names exists. This over-
comes one of the major limitations to the correctness of the approach pre-
viously described in Chapter 3. DEXTER, on the other hand, provides
a new deep learning approach to Punstrip’s fingerprint that produces a
dense vector representation of functions in which functions that have sim-
ilar features have similar real values in the resultant embedded vector
space. This may be used for a variety of applications including building a
semantic similarity search engine for binary functions.

This chapter is based on papers originally published at ACSAC
2020 [119] and work submitted to S&P 2022 [120], both of which, the
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author of this thesis was first author. We provide extended descriptions
of Symbol2Vec (Section 4.1), DEXTER (Section 4.2), and evaluate both ap-
proaches (Section 4.3) in their respective settings. Finally, we review the
related work (Section 4.4).

4.1 Symbol2Vec

Choosing an appropriate name for a function is a subjective goal in which
different entities may choose different names for the same function. The
majority of the time we would hope that these names are similar for func-
tionally equivalent code and exhibit a subset of natural language features
so that they can be compared by Punstrip’s NLP matching stage (Sec-
tion 3.4). Unfortunately, one programmer may choose a different name
to that of another that does not match in the NLP comparison whilst still
being functionally relevant. For example, consider the two real-world
functions that start a network connection to a remote server and return a
file handler named init_connection and get_resource_handler. The two
functions share no lexical similarities and would be matched as different
function names under normal conditions.

In the design of Symbol2Vec we create a numerical method to serve as a
metric for name similarity which can alleviate this problem. We do this by
projecting symbol names into a high dimensional vector space such that
functions which are semantically similar appear close in the vector space
and functions that differ are far apart.

4.1.1 Approach

With inspiration from Word2Vec [102], we modify the Continuous Bag Of
Words (CBOW) and Skip-Gram model in order to create Symbol2Vec; a vec-
tor representation of function names. We replace the CBOW model with
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our own Continuous Bag Of Functions (CBOF) that uses the call graph
of binaries to generate sequences of function names that are related to
each other through the caller-callee relationship. These sequences are then
used in order to predict a target function name given the surrounding
context function names. By using the dataset from our Punstrip experi-
ments (Chapter 3) we were able to utilise a large collection of analysed
binaries with ground truth symbol information. Sampling valid paths
through a binary’s call graph allows us to generate sequential data needed
by contemporary sequence models.

In our CBOF model, as depicted in Figure 4.1, we use a context win-
dow of 2 and randomly sample a target function name with the associated
context function names that are either a callee or caller of the target func-
tion. Due to the categorical nature of function names, we represent unique
names in the input and output layers of our CBOF as one-hot-encoded vec-
tors.

ft+2

ft+1

ft−1

ft−2

ft

Input Projection Output

Sum

Figure 4.1: The CBOF model architecture predicts the current function
name based on the context functions. The diagram shows how
a sliding window of 2 is used to sum the context words in the
projection layer.
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Table 4.1: Examples of five target words and their closest vector represen-
tations in Symbol2Vec using the cosine distance.

Target Sym-
bol

Closest Vectors in Symbol2Vec

grub_error grub_video_capture_set_active_render_target, grub_crypto_gcry_error,
grub_font_draw_glyph, grub_disk_filter_write

opendir readdir, closedir, dirfw, rewinddir, readdir_r, fdopendir
tls_init tls_context_new, mutt_ssl_starttls, tls_deinit, eap_peer_sm_init,

initialize_ctx
tor_x509_cert_get
_cert_digests

tor_tls_get_my_certs, should_make_new_ed_keys,
router_get_consensus_status, we_want_to_fetch_unknown_auth_certs

clock_start clock_stop, lindex_update_first, lindex_update, index_fsub, index_denial

After training the CBOF model, Symbol2Vec vectors may then be ob-
tained by calculating the weights at the projection layer for individual one-
hot-encoded vectors. In this way, we map unique function names in our
corpus from one-hot-encoded vectors to condensed, distributed vectors.

4.1.2 Implementation

Our approach is implemented in Python 3 and TensorFlow [56] to cre-
ate a autoencoder using 150 hidden nodes and 800,000 input and output
nodes; one to represent each function name using one-hot encoding after
a sub-sampling stage. We then train our neural network using Stochas-
tic Gradient Descent (SGD) and Noise Contrastive Estimation (NCE) with
negative sampling on a server with 256 GiB RAM and a Intel(R) Xeon(R)
Gold 6142 CPU for three days to minimise the loss between predicting the
pivot words from its context. The resulting weights of the hidden layer
when activated by the input function name form the vector representa-
tion for each function name. We display function names and their nearest
neighbours in our Symbol2Vec vector space for selected functions in Ta-
ble 4.1, which demonstrates how semantically similar function names are
grouped close together.
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For a large corpus of function names, very common functions pro-
vide less information than rare function names. Therefore, we use a sub-
sampling approach as per Mikolov et al. [104] to discard function names
based on the probability defined by the following formula:

p (wi) = 1−

√
t

f(wi)
(4.1)

where f(wi) is the frequency of the function namewi in our corpus and t is
an arbitrary threshold that we took to be 10−5. This step reduced our set of
unique function names removing the likes of malloc, free, and csu_init.

4.2 DEXTER

Learning to classify abstract objects that are subject to many different fea-
tures suffer from the curse of dimensionality. It is often easy to concretely
describe features of objects but difficult to ascertain core features that
strongly determine the class of an object. Traditional machine-learning
techniques such as Principal Component Analysis (PCA) try to reduce the
feature space by projecting along its eigenvectors in order to generate a
condensed and informative feature vector that can be used in large-scale
and real-world applications of machine learning. In this section, we use
a deep learning approach that produces a condensed representation of bi-
nary functions, their calling context, and binaries themselves. We con-
dense millions of sparsely populated features from our binary analysis
into a single, 192-element, distributed vector representation for each func-
tion.

We start by giving an overview of our new DEXTER embedding (Sec-
tion 4.2.1) before detailing its feature engineering (Section 4.2.2), the repre-
sentation of context (Section 4.2.3), and the training process (Section 4.2.4).
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4 Distributed Representations of Binary Functions

4.2.1 DEXTER Overview

To create a distributed representation of functions we start by analysing bi-
nary code and creating a large collection of features for each function in a
dataset. We separate the collected features into two sets; a dense set of nu-
merical hand-crafted features such as the number of function arguments,
and a large collection of sparse features representing categorical data auto-
matically generated from our analysis (Table 4.2). We first design a feature
set that captures as much information about a function and its context as
possible. Our features are selected with the intuition that they are likely
to remain similar through different compiler optimisations and compila-
tion environments. We then build a deep autoencoder that embeds each
function’s features, the features of each function’s context, and features
from the binary into a compact distributed representation. The autoen-
coder learns the importance of individual features from our very large set
and creates a distributed and condensed representation that can be used in
machine-learning models and scales to perform on real-world problems1.

4.2.2 Feature Engineering

To prepare the dataset for processing, we parse the ELF file headers of each
binary and extract the boundaries of functions to obtain their binary code
for training DEXTER embeddings. Where symbol information is avail-
able, function boundaries can be read directly from the binaries’ program
header. When extracting features from closed-source binaries, we are able
to recover function boundaries and extend our analysis tool, desyl, to in-
clude stripped function extraction using Ghidra2, IDA Pro, and Radare 2.
However, to factor out the performance of function boundary prediction

1In particular we use the DEXTER embedding with a modified version of Punstrip to
perform multi-label classification for function names in Chapter 5.

2https://www.ghidra-sre.org
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from the overall task performance, we remove this step throughout our
evaluation. For all tools, we take boundary data from the symbol table
also for the binaries in the testing set. We limit the set of functions to func-
tion symbols that have a GLOBAL symbol binding in the ELF symbol table.
This mitigates function definitions in the symbol table that are used as ref-
erence pointers to internal objects or have abnormal functional properties,
e.g., a function with a size of 0 is impossible to detect and recover from a
stripped binary.

We include in our feature set those derived by the analysis framework
in Chapter 3, which lifts each function to an intermediate representation
(VEX) and performs a symbolic analysis of each function in isolation. We
analyse live memory addresses and register values used in each function
to determine the number of input arguments. Finally, we extend our pre-
vious analysis to taint each input argument recovered and calculate flows
to the individual arguments of callee functions. The full list of features we
extract is shown in Table 4.2.

The feature vector for a function is built from concatenating two dis-
tinct vectors. The first, fq, represents dense, quantitative information that
richly describe features of functions in executables. The second, fc, rep-
resents sparse, categorical data that is indicative of realised features that
have no numerical basis, typically represented in a one-hot-encoded form.
The two feature vectors are created by stacking the corresponding numer-
ical and categorical features as depicted in Table 4.2. Each quantitative
feature vector contains 512 elements such that |fq| = 512, and each cate-
gorical feature vector contains 3 million elements such that |fc| = 3 × 106.
After we have extracted fq and fc for each function in a binary, we use
each function’s feature vectors alongside the extracted binary call graph
to build the DEXTER embedding.
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4 Distributed Representations of Binary Functions

Table 4.2: Features extracted from binary code that are used in the creation
of DEXTER embeddings.

Feature Description

Numerical Features

Size Size of the symbol in bytes.
VEX instructions Number of VEX IR instructions.
VEX jumpkinds Sum of one-hot-encoded vector representing VEX IR

jumps inside a function, e.g., fall-through, call, ret and
jump

VEX temporary
variables

Number of temporary variables used in the VEX IR.

VEX IR Sum of one-hot-encoded vectors representing VEX IR
Statements, Expressions and Operations.

Callers The number of functions that call this function.
Callees The number of functions this function calls.
Transitive Closure The number of symbols reachable under this function.
Basic Block ICFG Graph2Vec vector representation of the ICFG labelling

with jumpkinds.
Stack bytes Number of bytes referenced on the stack.
Heap bytes Number of bytes referenced on the heap.
Arguments Number of function arguments.
Stack locals Number of bytes used for local variables on the stack.
Thread Local Stor-
age (TLS)

Number of bytes referenced from TLS.

Tainted register
classes

One-hot encoded vector of tainted register types, e.g.,
stack pointer, floating point.

Tainted heap Number of tainted bytes of the heap.

Continued on the next page
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4.2 DEXTER

Table 4.2: Features extracted from binary code that are used in the creation
of DEXTER embeddings (cont.).

Feature Description

Tainted stack Number of tainted bytes of the stack.
Tainted stack ar-
guments

Number of tainted bytes that are function arguments to
other functions

Tainted jumps Number of conditional jumps that depend on a tainted
variable.

Tainted flows Number of tainted flows to other functions.

Categorical Features

Hash Common SHA-256 hashes of binary code.
Opcode Hash Common SHA-256 hashes of assembly opcodes.
Constants Common constants referenced.
Dynamic Callees The names of dynamically linked callee functions.
Transitive closure Known function names reachable under this function in

the binary call graph.
Data XREFS References to known data objects in dynamically linked

libraries.
Tainted flows The names of dynamic functions and argument regis-

ters tainted when all input arguments are tainted.

4.2.3 Function Context

DEXTER captures information of a function’s local and global context; we
pre-compute averaged vectors for a function’s local context and binary
context and concatenate them with our input feature vector.

First, we append the summation of feature vectors from each function’s
callers and callees in the binary’s call graph. This allows DEXTER to cap-
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4 Distributed Representations of Binary Functions

ture complex information from surrounding functions to help identify it
where the body of the target function does not contain enough unique
information to correctly predict its name. For example, overloaded func-
tions, which can be called with a different number of parameters, will typ-
ically have small stub functions that initialise parameters and then jump
to the larger procedure implementing the actual functionality.

Second, we concatenate the summation of every function in the binary
to attend to information recovered from our analysis of the whole binary.
We build a modified feature vector, fmod, for each function in our dataset:

fmod = fq ⊕ fc ⊕
1

|C|

C∑
c

(cq ⊕ cc)⊕
1

|B|

B∑
b

(bq ⊕ bc)

Here, C and B represent the set of functions in the target function’s context
(callees and callers) and all functions in the binary respectively. The vec-
tors cq,bq represent the quantitative function feature vectors of the corre-
sponding function in each set, and cc,bc represent the categorical function
feature vectors.

4.2.4 Autoencoder Training

An unsupervised, deep autoencoder is then trained on our modified fea-
ture vectors for each function to create a dense, distributed embedding
of functions. Our model’s architecture is depicted in Figure 4.2. The
model first creates dense representations for the function, the function’s
context, and the binary before combining them into a single embedding.
Our methodology captures structural information not present when us-
ing features from each function in isolation. To enforce generalisation,
we first connect the input layer into three dense sub-layers, each with
768 nodes, before performing batch normalisation and creating a dropout
layer. These layers along with L1 and L2 regularisation on each dense sub-
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Function

Function
Con-
text

Binary
Con-
text

Dense
Layer

Normal-
ization
Layer

Dropout
Layer

DEXTER
Embedding

Dropout
Layer

Normal-
ization
Layer

Dense
Layer

Function

Function
Con-
text

Binary
Con-
text

Figure 4.2: Overview of the autoencoder design used to generate DEX-
TER embeddings. The function context averages feature vec-
tors from a target functions immediate callers and callees. The
binary context averages feature vectors for every function from
the target binary. The resultant middle layer forms our DEX-
TER embeddings once the network has been trained.

layer aim to prevent our model from over-fitting and force our model to
learn an embedding that generalises well. Finally, we connect the output
from all three dropout layers into a 192 node dense layer that we use as
our embedded representation. The model architecture is reversed for pre-
dicting the output feature vector.

Training neural networks using standard loss metrics such as the Bi-
nary Cross Entropy or Hamming Loss is ineffective when there are an ex-
tremely large number of classes or we have sparse output data. To this
end, we experimented optimising our model using the Adam optimisa-
tion algorithm with max-margin contrastive loss [68] and triplet loss [71].
We use these losses to produce an embedding in which functions with
similar features appear close together in the embedded space.

Our model is created using Tensorflow [56] and aims to minimise the
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4 Distributed Representations of Binary Functions

contrastive loss between an input feature vector and a corresponding out-
put feature vector. The contrastive loss is similar to the SoftMax function
with the addition that the distance to positive samples is minimised and
the distance to negative samples are maximised. When feeding our model
pairs of input and output vectors, we randomly sample modified feature
vectors from a dataset of analysed binaries. We experimented with sub-
sampling feature vectors to achieve an equal number of vectors per func-
tion name and limited the number of data samples for the most common
function names, however, no significant improvement in generalisation or
performance was found.

4.3 Evaluation

In this section we evaluate our distributed representations for both the
names of functions and functions themselves. We first present our evaluation
approach for Symbol2Vec (Section 4.3.1) before evaluating DEXTER (Sec-
tion 4.3.2).

4.3.1 Namespace Embedding

To evaluate Symbol2Vec we use a dataset that uses all function names
found in or referenced by the code section of ELF binaries for C executa-
bles in Debian which resulted in 17,549 binaries, 5 million unique symbol
names, and 1.1 million function names after our naming pre-processing
step. Analogous to the classic Word2Vec analogy King − Man + Woman =

Queen, we can reveal analogical relationships between function names.
One such analogy is that between hash functions used in the Nginx soft-
ware package, where the closest vector resulting from ngx_md5_update −

ngx_md5_init + ngx_sha1_init is the function name ngx_sha1_update as
shown in Figure 4.3.
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ngx_md5_init

ngx_md5_update

ngx_sha1_update
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Figure 4.3: t-SNE plot of the closest vectors for the SHA-1 and MD5 hash
algorithm relationship existing in Symbol2Vec.

The distributed representation of function names by Symbol2Vec allows
us to numerically express the similarity of function names by calculating
the distance between vectors in this vector space. We evaluate the effec-
tiveness of our distributed representation by comparing the correlation
between the generated representation and a manually created list of lexi-
cal relationships. Our analogies are in the form a − b + c ≈ d. The full list
of analogies can be seen in Table 4.4.

We measure the distance between function name vectors in the ordinal
sense as we are unable to produce an exact continuous measure for our
manual analogies. For each of our analogies we evaluate the preceding
formula on the vector representations of each word and then rank each
word vector based on its cosine distance to the new point with the closest
vector having rank, and hence distance, 0.
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rs = 1−
6
∑
d2i

n(n2 − 1)
(4.2)

The Spearman’s rank correlation is then calculated as per Equation 4.2
with n being the number of observations and di is the ordinal distance d
is away from a − b + c when compared to all function name vectors for
analogy i.

We show that Symbol2Vec is a meaningful representation and the dis-
tance between vectors in this space strongly correlates to their semantic
similarity. We achieve a Spearman’s rank correlation coefficient of 0.97
between Symbol2Vec and our manually crafted analogies. Thus, proving
a strong correlation between our semantic analogies created by a human
analyst and Symbol2Vec. In order for its use in the community and other
similar applications, we release Symbol2Vec [78] open source.

Punstrip Evaluation. We use our Symbol2Vec function name representa-
tions to re-evaluate the results from Chapter 3. We use the cosine distance
to calculate the five nearest neighbours from an inferred function name’s
Symbol2Vec representation. If the ground truth function name is contained
within the closest five vectors, then we consider our inferred name correct.
The re-evaluation of Punstrip with our Symbol2Vec metric can be seen in
Table 4.3 and slightly improves our results. Metrics denoted with † are
directly taken from our evaluation in Chapter 3.

When evaluating Debin and Punstrip using five nearest neighbours in
Symbol2Vec, the resultant precision and F1 score for each tool increased.
We hypothesise that function names matched in Symbol2Vec shared se-
mantic meaning that could not be matched by the other metrics. We con-
sider this metric useful to a reverse engineer who is presented with a list of
5 semantically similar function names whereby the correct function name
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Table 4.3: 10-fold cross validation against Debin and Punstrip.

Metric
Debin Punstrip

P R F1 P R F1

Exact† 0.63 0.66 0.51 0.65 0.92 0.73

NLP† 0.66 0.67 0.55 0.68 0.92 0.75

Symbol2Vec 0.68 0.69 0.57 0.70 0.93 0.77

will be contained.

4.3.2 Featurespace Embedding

We evaluate DEXTER against the two state-of-the-art binary code embed-
ding techniques Asm2Vec [49] and SAFE [100]. Both Asm2Vec and SAFE
build binary code embeddings by modelling the language of assembly
code and do not take into account complex features such as a function’s
ICFG. We show that our approach provides a distributed representation
that captures more information and is more effective when used to predict
labels of function names.

Using our dataset described in Section 3.5.1 we generate embeddings
for all functions and randomly split them into a training, validation, and
test set using a 90:5:5 ratio. Each function’s embedded representation is
then used to train a multi-label classifier. The multi-label classifier, Pfastre-
XML, is used to predict string tokens that exist in function names rather
than using Punstrip to predict whole function names3. Our evaluation
compares DEXTER’s impact when used to train a classifier in comparison
to state-of-the-art function embeddings. We cannot prove that a particular
embedding technique is inherently better for all tasks, however, we show

3Predicting labels such as “str”, “network”, or “initialise”, is explored in more detail in
Chapter 5.

97



4 Distributed Representations of Binary Functions

the relative performance difference for predicting textual name informa-
tion when each embedding is used to train a classifier. The same training,
validation, and test dataset are used for DEXTER, Asm2Vec, and SAFE. We
run multiple experiments with varying sizes of label spaces to determine
how increasing the size of the label space affects information gain4.

Our results show the corresponding mean nDCG@5, DCG@5, CG@5
and Precision@5 for all embeddings as depicted in Figure 4.4. We can
see that DEXTER outperforms both Asm2Vec and SAFE embeddings in
a measure of rank scenario when inferring textual labels in the names of
functions. We vary the size of the predicted label space between 512 and
4096 elements to understand how a larger label set affects performance.
All embeddings exhibit a similar trend with a reduction in the nDCG as
more information is needed to be learnt for the larger label spaces. With
the increasing number of labels, the total amount of information needed to
be learned and inferred increases, thus, information gain increases. At the
same time, the proportionate amount of information gain recovered from
the total information decreases due to the increased difficulty of the pre-
diction task. We conclude that the semantic information gained from static
analysis by DEXTER cannot be inferred from techniques such as Asm2Vec
and SAFE. Thus, training a multi-label classifier to predict labels exhibited
in function names performed better with DEXTER than the other methods.

4.4 Related Work

We structure this section to discuss the related work pertinent to both Sym-
bol2Vec (Section 4.4.1) and DEXTER (Section 4.4.2).

4For details on how we generate label spaces and a detailed explaination of nDCG, DCG,
and CG, see Chapter 5.
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Figure 4.4: A comparison of information gain between different function
embeddings across different sizes of label spaces. The Pfastre-
XML algorithm was trained on DEXTER, Asm2Vec, and SAFE
and used to rank every label for each data point. We record
the Normalised Discounted Cumulative Gain, Discounted Cu-
mulative Gain, Cumulative Gain and Precision of the ranked
results.

4.4.1 Symbol2Vec

Independently of us, Daniel De Freez et. al. [47] implemented path-based
function embeddings in a similar manner to Symbol2Vec. Prior distributed
representations of binary functions exist, however, we believe we were the
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first to build distributed representations for the names of binary functions.

4.4.2 DEXTER

Function embeddings represent binary code with a real-valued vector,
capturing similarities and arranging the vector space such that (syntac-
tically or semantically) similar functions have a smaller distance between
them relative to other dissimilar functions. The two major competing em-
beddings for binary code are SAFE [100] and Asm2Vec [49], which we use
to compare against DEXTER.

SAFE uses a self-attentive neural network derived from recent develop-
ments in natural language processing. First, SAFE models assembly in-
structions using an adapted skip-gram method to retrieve vectors for each
assembly instruction. It then models these sequences as a vector which
is used to train a neural network and captures the inter-dependencies of
specific instructions using an attention mechanism. This has the purpose
of clustering similar functions in the resulting embedding space.

Asm2Vec follows a Paragraph2Vec-like approach [104], adapting it for
assembly language. For every assembly function, the model generates ex-
ecution traces and applies a Paragraph Vector Distributed Memory (PV-
DM) model on it, generating a distributed representation for opcodes and
operands of assembly instructions. Along the way, a vector representation
for assembly functions is learned, similar to paragraph vectors [91]. Both
Asm2Vec and SAFE are syntactic in nature, although they use static anal-
ysis for constructing the CFG and retrieving feasible traces of assembly
instructions.
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4.5 Summary

This chapter presented the design, implementation, and evaluation of two
distributed representations: Symbol2Vec and DEXTER. Both embeddings
are tangential to one another. We designed Symbol2Vec to overcome the
limitation of matching the names of functions in binaries that shared no
lexical properties. It uses the caller and callee relationship of a binary’s call
graph to match similarly named functions based on their contexts. Our re-
sults show that Symbol2Vec is useful for measuring the relative similarity
between different names of functions and it provides us with an absolute
numerical similarity metric to the subjective name similarity task by com-
puting the distance between vectors.

DEXTER, on the other hand, was designed to provide a condensed
representation of functions that captured information from a targets call-
ing and binary contexts and is useful for identifying functions, and their
names. It condenses sparsely populated categorical features, such as
unique constants used in cryptographic functions, into a 192-element dis-
tributed vector representation. Our evaluation in this chapter compared
DEXTER against two state-of-the-art binary function embedding tech-
niques by using their associated vectors to train a multi-label classifier to
predict tokens in the names of functions. The results show that the multi-
label classifier was able to recover more tokens from function names using
DEXTER than the other two approaches. We hypothesise that our em-
beddings are better suited for identifying and naming functions than the
current state-of-the-art methods.
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Table 4.4: Lexical analogies in Symbol2Vec, where a − b + c ≈ d.

a b c d

sha1_init_ctx md5_init_ctx md5_update sha1_update
realloc malloc xmalloc xrealloc
fopen open close fclose

icmp_open open close icmp_close
hci_connect connect disconnect hci_disconnect

close_log_file fclose fopen open_log_file
sendmsg write recv recvmsg
closepipe close open openpipe

nxt_recv_file recv send nxt_send_file
gethostent get set sethostent

sha2_hmac_update sha2_update md5_update md5_hmac_update
http_server_init init close http_server_close
usb_bulk_write write read usb_bulk_read
OPENSSL_CTX_init init free OPENSSL_CTX_free

ssh_connect connect disconnect ssh_disconnect
dhcpcd_config_get dhcpcd_config_set fopen fclose

socket_accept accept close socket_close
SQLConnect connect disconnect SQLDisconnect
gethostname get set sethostname
csu_fini fini csu_init init

usb_bulk_send send recv usb_bulk_recv
SHA384File SH384_Init SHA512_Init SHA512File

Hread read write Hwrite
SHA1File SHA1_Init MD5_Init MD5File
btconnect connect disconnect btdisconnected
EndDocFile fclose fopen BeginDocFile
nxt_send_buf send recv nxt_recv_buf
SHA256File SH256_Init SHA1_Init SHA1File
cprng_deinit free malloc cprng_init
unix_sock_open open close unix_sock_close
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Labelling Functions in Stripped
Binaries 5
Chapter 3 addressed the problem of identifying function names in
stripped binaries and Chapter 4 gave new foundations to matching sim-
ilar names when performing multi-class classification of whole function
names. In this chapter, we discuss the fundamental limitations to learning
whole function names and introduce eXtreme Function Labelling (XFL),
an eXtreme Multi-Label (XML) learning approach to selecting appropriate
labels for binary functions. XFL splits function names into tokens, treat-
ing each as an informative label akin to the problem of tagging texts in
natural language. We demonstrate that XFL outperforms state-of-the-art
approaches to function labelling on a dataset of over 10,000 binaries from
the Debian project, achieving a precision of 82.5%. We also apply our la-
belling procedure to state-of-the-art function name prediction tools that
perform multi-class classification to compare against relevant approaches
in a multi-label setup. As a result, we are able to show that recovering tex-
tual information from functions names is best phrased in terms of multi-
label learning, and that binary function embeddings benefit from moving
beyond just learning from syntax.

This chapter comprises extended work of a paper written in collabo-
ration with Moritz Dannehl and Johannes Kinder, for which the author
of this thesis was the first author. My contributions to this work include
the approach, implementation, and evaluation of XFL against other tools
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and embeddings. We structure the following sections by first discussing
the problem with multi-class classification for function name identifica-
tion (Section 5.1) that is inherent with work presented in previous chap-
ters. Then we describe our approach to multi-label learning (Section 5.2),
evaluate our overall approach (Section 5.3) against the state of the art and
discuss potential threats to validity (Section 5.4). Finally, we compare to
related work (Section 5.5).

5.1 The Multiclass Classification Problem

Machine learning promises to enable a new generation of more powerful
tools for function identification, and initial academic work appears to con-
firm that it is possible to classify binary code into function names [70, 119]
as done in previous chapters. The resulting systems learn models of the
contents and structure of binary functions and their most likely name.
However, much of the success of these systems can be attributed to the
identification of highly similar, repeated functions across multiple bina-
ries (e.g., static library functions).

This type of approach faces two fundamental problems that limit its ap-
plicability: it can only generate function names that have been seen in the
training set; and each such function name represents a separate output
class, with the number of possible function names being essentially un-
limited. Even worse, the classes are heavily imbalanced, with most classes
having a single sample and a minority of classes being over-represented
(e.g., main). Normalising function names to remove differences in coding
style such as CamelCase vs. snake_case can alleviate the problem to some
extent [119], but still no such approaches can accurately predict function
names that remain unseen after normalisation.

The drastic class imbalance is visible in Figure 5.1, which plots the fre-
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quencies of function names observed in a dataset of functions derived
from 10,047 binaries in Debian packages. Six function names occur in at
least 95% of binaries (standardised names like main, libc_csu_init, etc.).
Over 98% of function names occur fewer than 10 times, and 73% of func-
tion names occur only once. This long tail of single-sample classes demon-
strates that any model for whole function names is doomed to mis-predict
the vast majority of functions.

Our solution to this problem is to split function names into meaning-
ful tokens. For instance, the xscreensaver function make_smooth_colormap

would correspond to the set of labels {make, smooth, color, map}. Figure 5.1
shows that when this labelling approach is applied to function names in
our dataset, the imbalance in the label distribution is less pronounced. The
total number of labels can be controlled such that each function has at least
one descriptive label but there are also sufficiently many samples available
per label. We therefore arrive at the problem of assigning a set of labels to
each function.

An equivalent problem exists when trying to automatically tag text with
the most relevant subset of labels from a large label set, which has mo-
tivated the research area of eXtreme Multi-label Learning (XML). Based
on this insight, we show how to leverage state-of-the-art algorithms from
XML for labelling functions in stripped binaries with XFL (eXtreme Func-
tion Labelling). XFL scales to millions of data points, features, and labels.
It takes into account the power law distribution over labels and recognises
infrequently occurring tail labels with little training data.

The architecture of XFL is shown in Figure 5.2. XFL is parameterised
by a given function embedding, a distributed representation of each binary
function. Intuitively, functions that a reverse engineer would consider
similar should be mapped to vectors that lie closely together within the
embedded space, and further away from vectors of dissimilar functions.
XFL is compatible with state-of-the-art binary function embeddings such

105



5 Labelling Functions in Stripped Binaries

0 50000 100000 150000 200000 250000 300000
Function Name

100

101

102

103

104

105
# 

Sa
m

pl
es

0 1000 2000 3000 4000
Label Name

# 
Sa

m
pl

es

Frequency of class samples

Figure 5.1: Semi-log plot showing the number of samples in each class
when using function names and labels respectively (y-axis is
shared). When predicting function names, the majority of func-
tion names have only a single sample.

as DEXTER, SAFE [100] and Asm2Vec [49].

With XFL, we introduce extreme multi-label learning as a solution to the
problem of labelling binary functions (Section 5.2). XFL naturally solves
the fundamental problems of sparsity and class imbalance in binary func-
tion labelling and provides information-theoretic metrics for a meaning-
ful evaluation. In an extensive evaluation on a dataset with over 741,724
functions from 10,047 binaries, we demonstrate that our implementation
significantly outperforms the state of the art in recovering textual infor-
mation from the names of functions.

5.2 XML for Function Binaries

XFL uses PfastreXML and DEXTER (Section 4.2) to efficiently perform
multi-label classification for tokenised labels of function names. We first
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Figure 5.2: Overview of the XFL training and inference process. Function
names in the training dataset are preprocessed to create the la-
bel space 1 . Function binaries are used to train the embed-
dings 2 . Function embeddings and the label space serve as in-
put for training an XFL model 3 . To infer labels for functions
in a binary, an embedding vti is calculated for each unknown
function ti 4 and fed into the XFL model 5 , which then pro-
duces a ranked list of labels per function 6 .

detail how XFL splits function names into tokens (Section 5.2.1) and gener-
ates a label space (Section 5.2.2), before describing how XFL uses Pfastre-
XML to rank associated labels (Section 5.2.3) for functions.

5.2.1 Tokenising Function Names

For XFL to predict labels in function names we first need a well-defined
label space consisting of string tokens found in the names of functions. La-
bels should be informative, consider programming styles and be mutually
exclusive where possible; for example, the tokens str, string, String, and
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__xStr__ should all have the common denominator token string. XFL
generates a canonical token set for each function name, a set of string to-
kens that canonically describe it. We generate a well-defined label space
of a fixed size by analysing the union of the resulting canonical token sets
from the corpus of function names in a training set.

To generate the canonical token set Lc from a function name, XFL uses
the following procedure:

1. Strip Library Decorations. Regular expressions remove common
symbol annotations added by compilers, e.g., '.*\.constp$',
'.^\.avx\d+'. Regular expressions for Radare2, IDA Pro, and
Ghidra annotations are also applied depending on the analysis plat-
form.

2. Split Alphanumerical. The function name is split into character se-
quences along non-alphanumeric characters. Numeric and alpha
characters are further split into separate groups. For example,
__libxyz_init 7→ {libxyz, init}.

3. Split Camel Case. We recognise common naming conventions in
C binaries and split a continuous character sequence into sets if
we detect the use of camel case. For example, IsWindowOpen 7→
{is, window, open}.

4. Abbreviation Expansion. We expand a predefined list of common pro-
gramming abbreviations such as fd for file descriptor and init for
initialisation. For example, mkdirs 7→ {make, directories}.

5. Best Split of the Rod. We use a dynamic programming algo-
rithm to split character sequences into the largest possible non-
overlapping sequences. We check all permutations of character
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sub-sequences to find the largest collection of British and Amer-
ican English words. Our algorithm scores longer length English
words higher over two or more same-length sub-sequences, e.g.,
{background} > {back, ground}. However, a longer length of total
characters scores higher, e.g., foreach 7→ {for, each} and not {reach}.

The rod cutting algorithm is used to find the optimal method of cut-
ting a single rod of length n into multiple pieces where each length of rod
has a price pi ∈ p. The goal is to maximise the revenue achieved by cut-
ting the rod into smaller, integer length sections. To make longer scoring
words score higher, our scoring metric, and hence rod price, is based on
the square of the length of characters. The solution to this problem may be
solved with a recursive pseudo code algorithm as detailed in Algorithm 1.

Algorithm 1 Best Cut of The Rod

Require: Price Array p
Require: Rod length n

function CUT-ROD(p, n)
if n == 0 then

return 0
q := MinLen
for i = 1, . . . , n do
q := max(q,p(i) + CUT-ROD(p, n− i))

return q

We have confirmed that in practice this algorithm achieves splits of
function names that correspond to common developer intuitions. How-
ever, we are unable to provide a quantitative measure for the accuracy of
splitting textual strings into informative labels relevant for a reverse en-
gineer. Providing this metric is an open question which one may wish to
solve in future work.
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5.2.2 Label Space

After generating all canonical token sets for the training set, we take the
union of all string tokens found and count the occurrences of each label.
The union over all canonical token sets defines our complete label space L.
However, we define label spaces of varying size to explore the impact of
an increasing number of labels or to restrict labels to a subset of the most
informative and relevant string tokens. To this end, XFL generates a new
label space Ln of sizen, by taking the topnmost frequently used labels used
from our complete canonical token set such that Ln ⊆ L. While we cannot
guarantee that the most informative labels are used most frequently and
are thus retained in each label sub-space, we found that this method works
well in practice.

5.2.3 Training an XML Model

After training all embeddings and generating a fixed size label space, we
use the PfastreXML algorithm to train a model to learn labels from each
function’s canonicalised set. To obtain the ground truth of labels expressed
for each function name, XFL first projects each name’s canonical set Lc
onto those labels that exist in the generated label space Ln as the intersec-
tion Lc

⋂
Ln.

To remove popularity bias (from our model) and recommend rare and
novel labels we need to weight each label inversely to its popularity.
Following the design and theory of PfastreXML, XFL optimises Equa-
tion 2.9 such that the log distribution of label occurrences in our train-
ing set matches the sigmoid function. Through the recommendation of
the PfastreXML authors, we perform a grid search close to known good
parameter values that optimises the nDCG calculated on our model’s val-
idation dataset when trained on a training dataset as discussed in Sec-
tion 5.3.3.
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The PfastreXML model predicts the probability distribution of labels in
a label space being assigned to each function embedding. To produce a
finite set of predicted labels for multi-label classification we optimise a
threshold pt, which selects a variably sized set of labels with a probabil-
ity greater than pt. The PfastreXML model acts independently and may
be trained using arbitrary embeddings for binary code, such as DEXTER,
Asm2Vec, or SAFE.

5.3 Evaluation

We now present our evaluation of XFL. We first explain the makeup of our
dataset (Section 5.3.1) and discuss the metrics used in the evaluation (Sec-
tion 5.3.2). Then, we evaluate XFL against comparable state-of-the-art ap-
proaches in function name prediction (Section 5.3.3).

XFL is implemented in Python and TensorFlow, and makes use of the
PfastreXML classifier. We make our code available as open source to fos-
ter further research and enable like-for-like comparisons. All our exper-
iments were carried out on a machine with dual AMD EPYC 2 64-Core
CPUs and 1TB of RAM. The XFL project requires access to both Redis and
PostgreSQL databases that store the results from our pre-processed binary
analysis stage. Throughout our evaluation we used dedicated machines
for each database server that contained at least 32 hyper-threaded cores
and 256 GB of RAM.

5.3.1 Dataset

Training and testing require a set of ELF binaries with ground truth
symbol information that is sufficiently large for generalising semantics
of binary functions for each label. We use the Debian-based Punstrip
dataset (Chapter 3), which contains over 1 million functions from 20,000
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C binaries, compiled with a mixture of compilers and compiler versions
from individual package maintainers. As we would expect a large amount
of duplicated functions across statically linked executables, our dataset is
formed from dynamically linked binaries only. This allows us to focus on
learning a general model of functions from different source code rather
than exact copies of replicated functions.

When using the ELF symbol table as the ground truth for obtaining
function boundaries and their corresponding names, it became apparent
that using all function definitions is unhelpful and misleading; with many
entries corresponding to overlapping functions, zero-sized non-existent
functions, or functions that are used as virtual address definitions with
relative jump offsets. Therefore, we limit the set of function definitions
used in our evaluation to those with a global symbol binding. Furthermore,
locally bound function symbols allow compilers to modify procedures be-
yond standard definitions for optimisation, potentially violating the appli-
cation binary interface. In practice, this limited our target set of functions
to those that were well-defined and whose boundaries were much more
likely to be correctly recovered by external function boundary prediction
tools when applied to stripped binaries1.

When training an XFL model, for each embedding we first trained a
model on our training set. Next, we performed a grid search to fine-
tune the models’ hyper-parameters over our validation dataset. Using
values close to known good parameters, we optimise the α and γ hyper-
parameters2 of PfastreXML to minimise our nDCG loss as shown in Fig-
ure 5.3. The application-specific values that optimised our loss for the
DEXTER were α = 1.025 and γ = 28.75.

1We do not implement any mechanism to ensure that exact function duplicates are re-
moved from our dataset.

2α and γ are PfastreXML hyper-parameters that affect the final re-ranking of labels and
the hyper-spherical decision boundary of the tail label classifiers. The full details of
how these parameters effect the prediction results can be found in Jain et al.[77].
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Table 5.1: Analysis of the embedding datasets. Average labels per point
and points per label were calculated for a label space of size
4096.

Property DEXTER Asm2Vec SAFE

Train Samples 400,357 396,796 342,610
Embed. Dimensions 512 50 100
Test Samples 22,422 22,224 19,035
Average Labels per Point 2.9271 2.9254 2.9295
Average Points per Label 320.45 317.43 255.24

5.3.2 Metrics

We evaluate XFL using metrics widely adopted for XML and ranking
tasks [21, 3, 72, 127, 151, 152, 157]. One such metric is multi-label preci-
sion at k (P@k), which is used to count the fraction of correct predictions
in the top k scoring labels. We include the precision@k for comparison
against other tools and datasets; however, it has notable problems as an
evaluation metric. The principal issue with precision@k is that it ignores
the order of predicted labels for a given k. Therefore, we include the more
intuitive metrics previously described in Section 2.4.2: cumulative gain at
k, discounted cumulative gain at k, and normalised discounted cumula-
tive gain at k. Based on our analysis of the dataset as shown in Table 5.1,
we find each sample contains an average of 2.9 labels, and each label con-
tains an average of 297 training samples. Few function names consist of
more than five meaningful sub-tokens, and five labels with their associ-
ated probabilities would be easily processed by an analyst in real-world
applications. Therefore, we set k = 5 for all of our evaluation metrics. We
feed each tool the same dataset to learn and generate binary code embed-
dings from; the difference in training sample sizes were due to errors in
processing the dataset and different approaches to handling or recovering
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function boundaries3.

In Section 5.3.3 we evaluate XFL in the traditional multi-label classifi-
cation setup and use it to predict the relevant subset of correct labels as-
signed to each function name as opposed to ranking all labels. In this case
we report the micro-average precision, recall, and F1 for multi-label classi-
fication as defined below:

Pµ =

∑L
l TPl∑L

l TPl +
∑L
l FPl

(5.1) Rµ =

∑L
l TPl∑L

l TPl +
∑L
l FNl

(5.2)

F1µ =
2 · Pµ · Rµ
Pµ + Rµ

(5.3)

Here, L is the set of labels in the corresponding label space. TPl, FPl,
FNl, correspond to the number of true positives, false positives, and false
negatives for each label defined in the standard way (for our specific ex-
periment definitions, see Section 5.3.3). In choosing micro-averaged over
macro-averaged, we mitigate problems with label bias from the heavily
imbalanced dataset4. The equations given sum over all labels for each
metric rather than calculating metrics per label and then averaging. With
heavily imbalanced datasets, division by zero errors may occur if there are
no true positives and no false positives for a single label in the test set.

3A more precise comparison would entail training on the intersection of functions that
embeddings were generated for across all tools.

4Note that macro-averaging is very sensitive to labels with few occurrences. Macro-
averaged scores compute the metric independently for each label and then compute
the average, which treats all labels equally. Micro-averaged scores aggregate the con-
tributions of all labels to compute a single metric. In choosing micro-averaged over
macro-averaged, we therefore mitigate problems with label bias from the heavily im-
balanced dataset.
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Figure 5.3: Grid search of hyper-parameters on the validation dataset for
α and γwhen calculating the nDCG@5 loss.

5.3.3 Function Labelling

We evaluate XFL against four state-of-the-art function name prediction
tools: Dire, Debin, Nero, and Punstrip. On the recommendation from the
Dire authors, we did not use their tool for function name prediction; how-
ever, we include the Dire results reported in the Nero paper [45], which are
based off a customised version. Nero [45] combines heavy static analysis
to obtain an Augmented Control-Flow Graph (A-CFG) and feeds this rep-
resentation into state-of-the-art neural networks. In their work, the vari-
ant based on a Graph Neural Network (GNN) performs best, so we use
this variant to compare against. Debin [70] and Punstrip [119] both make
predictions for function names based on Conditional Random Fields to
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Figure 5.4: An information theoretic comparison between Debin, XFL,
Nero, and Punstrip across multiple sized label spaces. All met-
rics were taken @5 and a default order was added where tools
unable to rank all classes predicted less than five labels.

compute a maximal joint probability of function name assignments in a
binary. For Debin and Nero, we compare against both a pretrained model
released by the authors and a custom model trained on our dataset.

We first randomly split our dataset obtained in Section 5.3.1 into train-
ing, validation, and testing sets with a respective 90:5:5 ratio. For each
of the tools, we train a model on binaries in the training set, tune model
hyper-parameters on the validation set, and show our results against the
model’s predictions on the test dataset. The list of binaries in all three sets
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are kept consistent when evaluating all the tools. We generate label spaces
for Ln with n ∈ {512, 1024, 2048, 4096}.

We evaluate all tools in two parts, exploring different discrete problems.
In both problems we use each tool to predict relevant labels contained in
function names. The first problem evaluates the measure of rank whereby
we produce a ranked list of labels in the label space for each data point. We
assign each correct/relevant label an equal weight. The second problem
evaluates each tool in a multi-label classification setting predicting a finite
set of relevant labels.

Measure of Rank

In evaluating against the measure of rank, we require each tool to rank
each label in the correct order for all data points. We evaluate this exper-
iment using the information gain metrics nDCG@5, DCG@5, CG@5, and
P@5 as depicted in Figure 5.4. Intuitively, an nDCG@5 of 1.0 is achieved
by perfectly ranking the top five labels for each sample. An nDCG@5 of
0.0 is achieved by ranking labels such that no relevant labels are in the top
five for each data point. For tools that do not predict labels, we apply the
inferred function name to our canonical set generation and project it over
the given label space to carry out a like-for-like comparison between all
tools. If there are no valid labels for a sample in the label space, as may
happen in smaller label space sizes, we skip the calculation.

Every tool evaluated performed weaker in terms of nDCG as the size
of the label space increased. This is explained by the fact that by increas-
ing the size of the label space, we increase the total information that each
model has to learn. Precision and other cumulative gain metrics increased
with an increase in the size of the label space as more tokens were available
to be predicted and thus increased the overall information.

Where tools that predicted whole function names inferred the correct
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name, they also correctly predicted the entire set of labels for the data
point. We suspect this influences Punstrip’s high performance in multi-
label classification and that its label predictions were more skewed to polar
predictions in having all labels correct or incorrect. The other tools results
were much less binary showing the ability to pick out individual relevant
labels on more test samples.

Our results show that XFL consistently outperforms other state-of-the-
art tools in terms of information gain irrespective of label space size; this
provides evidence for our hypothesis that predicting labels outperforms
predicting whole function names. Surprisingly, while Nero outperforms
Debin on the Nero dataset for function name prediction (Section 5.3.3), it
performs worse than Debin on the Debian dataset. We investigated this
anomaly to rule out mistakes in our experimental setup, but we were able
to reproduce the published values on the Nero dataset, and correspon-
dence with the Nero authors confirmed our results. We believe this to un-
derline the risks of dataset bias in contemporary publications to machine
learning on binary code, which we attempt to counter with an increased
dataset size and using an embedding-based approach that learns relative
distances between functions.

Multi-label Classification

To evaluate XFL’s performance in a multi-label classification task on stan-
dard metrics, we modify the experiment used in the measure of rank setup
to include a linear threshold pt to decide if the label is relevant. This re-
sults in a variably sized subset of predicted relevant labels for each data
point. We can then define true positives as the number of correct labels
predicted with a threshold greater than pt. False positives are defined by
labels which are predicted but not present in the ground truth, and false
negatives are correct labels that are missed by our prediction. During val-
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Table 5.2: Multi-label classification evaluation against state-of-the-art tools
for the Debian and Nero datasets. Results marked with † are
taken directly from David et al.[45] without re-running the ex-
periment.

Debian Dataset Nero Dataset

Tool Prec. Recall F1 Prec. Recall F1

XFL 0.8248 0.5650 0.6706 0.8561 0.4293 0.5718
Nero 0.1600 0.0622 0.0896 0.4861 0.4282 0.4553

Debin 0.1564 0.1081 0.1279 0.3486† 0.3254† 0.3366†

Punstrip 0.6336 0.6350 0.6343 - - -
Dire - - - 0.3802† 0.3333† 0.3552†

idation, we set pt to a value that maximises the F1 score on the validation
dataset.

Our results as shown in Table 5.2 display the micro-averaged multi-label
precision, recall, and F1 score on both our Debian dataset and the Nero
dataset using a label space with 1024 elements. XFL outperforms other
state-of-the-art tools in precision and F1, with Punstrip coming closest and
winning on recall with the current pt. By varying the threshold parameter
pt, one would be able to adjust the precision and recall trade off.

We also include an evaluation on the Nero dataset, given the relative
difference in performance of Debin on Nero on those binaries. While XFL
achieves comparable, if slightly worse results on this smaller dataset, De-
bin and Nero both perform significantly better. This shows that XFL is
able to benefit from a larger dataset to achieve more generalised results,
whereas Debin and Nero both significantly drop in performance when
scaling up. Apart from the dataset size, another factor may be that in
Nero’s test set of 13 binaries, many are from the same source repository
and are all compiled with the same settings. In contrast, our Debian
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dataset contains 503 binaries in the test set, which are compiled by indi-
vidual package maintainers where the compiler, version, and optimisation
levels are not fixed.

By ranking relevant labels by their confidence and joining them by
an underscore or in camel case, we can reconstruct and predict whole
function names. Table 5.3 shows complete examples of such predic-
tions, including typical errors that can be introduced through the func-
tion name generation process. Some strings may be split along bound-
aries that a reverse engineer would not, e.g., due to spelling mistakes (see
the GAME_IsMissionAccomplied example). Finally, labels in the generated
name are ordered by their confidence, which may seem unnatural or even
change the meaning of the associated function name. We leave the clean-
up of ground truth data and the generation of more palatable whole func-
tion names to future work.

5.4 Threats to Validity

We now discuss potential threats to validity of our findings, based on lim-
itations in tooling and dataset composition.

5.4.1 Differences in Ground Truth

XFL’s symbolic analysis is based on Punstrip and angr’s Claripy [140]. It
depends on the Radare2 API for reading symbol information and extract-
ing raw data from binaries. Our choice to use the ELF symbol table as our
ground truth is a decision that may differ between other tool implemen-
tations. Nero, for example, extracts ground truth information from IDA
Pro’s own analysis which renames common routines; e.g., the entry func-
tion is renamed to .init_proc. In evaluating against Nero, we took care of
mapping function’s original names as defined in the ELF symbol table to
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Table 5.3: Example data points of the function name generation process. Ground truth names are first
split into known labels which we aim to predict. The predicted labels are then used to
generate a function name. Labels from the canonicalisation process that did not make it into
the label space are crossed out.

Original Name Ground Truth Tokens Predicted Labels Output Name

__libc_csu_init {libc, csu, init} {libc, csu, init} libc_csu_init

grub_crypto_cbc_decrypt {decrypt, grub, crypt,
cb, c}

{decrypt, grub, crypt,
cb, odisk}

grub_decrypt_crypt_cb_odisk

make_smooth_colormap {make, color, map,
smooth}

{make, color, map, ran-
dom}

color_make_map_parse_random

mcxRealloc {realloc, mcx} {realloc, mcx} mcx_realloc

check_audio_range {range, audio, check} {audio, range, check} check_range_audio

HIDSetItemValue {set, item, hid, value} {set, item, hid, value, is} set_item_value_hid_is

mcxTingRelease {release, mcx, ting} {release, mcx} mcx_release_free

chirp_recursive_put {put, recursive, chirp} {put, recursive, chirp,
ticket}

recursive_chirp_ticket_put

lkfopendata {lkf, data, open} {lkf, open, switches,
data}

lkf_open_switches_data

SECU_PrintCertNickname {nickname, print, cert,
sec, u}

{nickname, cert, sec,
print, collision}

nickname_cert_sec_print_collision

cmdline_parser_init {line, init, cmd, parser} {parser, init, cmd, line,
csu}

parser_init_cmd_line_csu

GAME_IsMissionAccomplied{complied, ac, is, mis-
sion, game}

{complied, game, mis-
sion, msrs, is}

complied_game_mission_msrs_is
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those retrieved by different analysis platforms, such as IDA Pro, and used
the tool’s ground truth data in order to give a fair comparison.

5.4.2 Quality of Training Data

This work is based upon the hypothesis that programmers usually pro-
vide useful function names that contain reasonable information. Even
though this approach is not fault-proof because the splitting of names
into labels when generating the ground truth can go wrong, we are trust-
ing the programmer’s intuition and assume this to be a robust method
compared to, say, using a doc2vec summation of man page descriptions
of the functions or comments in the source code. Table 5.3 specifically
shows an error in our unsupervised label space generation algorithm with
grub_crypto_cbc_decrypt function. The acronym for Cipher Block Chain-
ing (CBC) is unknown to our tokenisation process and thus is split into cb

which is commonly used for callback routines.

5.4.3 Label Spaces

As Debin and Punstrip only predict whole function names, we can impose
predicted labels in our generated label space by projecting string tokens in
our canonicalisation step. Nero, however, is capable of predicting labels
from the names of functions using their own method. While our results
impose our own label space from their predictions, the values of F1, pre-
cision, and recall differ only slightly from those reported by their tool on
their own label space.

5.4.4 Dataset Biases

The results of an evaluation may be biased towards the dataset used and
models may over-fit learning parameters. The problem of learning whole
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function names is that any predicted name must be seen in the training
set. Likewise, we must be careful when separating training, validation,
and testing datasets to ensure a sufficient separation of common code from
the same software packages and statically linked libraries. Our results for
multi-label classification show that Nero is outperformed by Debin; a sur-
prising outcome given Nero’s own evaluation against Debin purported
much better results. After contacting the Nero authors about this discrep-
ancy, they suggested that it may occur for the following reasons:

1. Nero’s dataset limited the maximum size of binaries to 1MB. This
may influence the inference of common function names available in
most libc binaries.

2. The vocabulary size in our dataset is significantly bigger and as a
result Nero predicts empty labels 43% of the time.

3. Nero’s configuration and implementation had not been fine-tuned
to our dataset.

To give a similar comparison we evaluated XFL against Nero’s dataset
as reported in Section 5.3.3. Furthermore, for fair comparison to our own
work we make our own dataset and tool publicly available.

5.4.5 Obfuscation and Multiple ISAs

We suspect XFL would not perform well on labelling functions in obfus-
cated malware. However, it may provide a base for identifying common
unpacking routines such as those provided in a UPX packed binary and
could be used to analyse memory dumps once malware has been un-
packed. While we only evaluated XFL applied to non-obfuscated x86_64

Linux ELF files, the same techniques also apply to Windows PE and Mach-
O files with basic support for PE files already included. Our evaluation
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did not cover these executable formats due to a variety of reasons: firstly,
we were unable to obtain a large collection of prebuilt executables with
symbol information that covered various compilers and optimisation lev-
els sufficient to learn a generalised model of binary code. Secondly, APIs
and programming styles change between Operating Systems and ISAs; we
suspect an XFL model trained per executable format and ISA to give best
results.

5.4.6 Pretraining

Presently, DEXTER utilises high level features extracted from binary func-
tions. During the feature extraction and vectorisation process, Graph2Vec
is used to generate a vector representation of each function’s intra-
procedural control flow graph (ICFG). This unsupervised pre-processing
step requires all possible ICFGs to be known before a model can be trained,
such that the stripped target binaries have to be available during training.
Currently, this prevents full pretraining of the DEXTER embeddings, but
could be mitigated by choosing to use a generative graph embedding in
place of Graph2Vec.

5.5 Related Work

We now review related work on the problem of binary function la-
belling (Section 5.5.1), followed by the related research areas of binary
code similarity (Section 5.5.2) and of learning source-level code represen-
tations (Section 5.5.3). Finally, we discuss related work in the area of ex-
treme multi-label learning (Section 5.5.4).
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5.5.1 Binary Function Labelling

The only work to predict textual tokens of function names as labels is
Nero [45]. In their work, they build an augmented control flow graph (A-
CFG) which extends a CFG with call sites, specifically engineered for pro-
cedure name prediction. The representation is fed into GNNs, LSTMs and
Transformer architectures. Dire [88] only supports variable name predic-
tion; however, the authors of Nero modified the project to support the
prediction of procedure names. Dire uses an encoder-decoder neural net-
work, taking as input both tokenised code and the AST from a decompiler
and generates embeddings for each identifier which are used by the de-
coder to predict names.

5.5.2 Binary Code Similarity

Much recent work focuses on producing vector embeddings for basic
blocks, functions, or binaries that aim to serve the task of binary code sim-
ilarity. DeepBinDiff [50] defines the task as trying to find the best match
between similar basic blocks based upon their control flow dependency.
A different approach is to use the same source policy which defines two bi-
naries or functions to be similar if they are compiled from the same source
code but for different target architectures [155], different source code ver-
sions [94] or different compilers and compiler settings [49].

Natural Language Processing is often used as an analogy to compare as-
sembly code to natural language. One example is SAFE [100], which
utilises a recurrent neural network with Gated Recurrent Units (GRU)
to model assembly instructions as sequences. An attention mecha-
nism is added to put emphasis on the most relevant parts of the code.
Asm2Vec [49] adapts the Word2Vec [104] model to assembly syntax to
generate embeddings for tokens such as assembly opcodes, operands
and functions. It does so using the distributed memory model similar
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to the Paragraph Vector Distributed Memory (PV-DM) model of Para-
graph2Vec [91].

Zuo et. al [161] rely on Word2Vec, but adapt Neural Machine Translation
to handle single instructions as words and basic blocks as sentences. Sun
et al. [142] use approaches found in bioinformatics such as longest com-
mon sub-sequence algorithms in conjunction with Word2Vec embeddings
to measure binary semantic similarity.

5.5.3 Source Code-based Approaches

While XFL uses debug information from the compilation process as
ground truth, our model relies only on information found in stripped bi-
naries, i.e., without access to the source code. Nevertheless, we review
source code-based approaches to function similarity.

Source code function similarity has been used in program compre-
hension, function name suggestion, and source code completion. Mod-
els for source code utilise syntax information from Abstract Syntax
Trees [23] [8]. Program representations may be constructed using genera-
tive models [25], graph neural networks [5], graph models enriched with
sequence encoders [59], or attention-based models [7]. A convolutional
network is used to summarise source code to tokens [6].

A different family of problems are those dealing with the authorship
of code. Those approaches focus on identifying, verifying, or clustering
authors as well as analysing the evolution of programmer skill [82].

5.5.4 eXtreme Multi-label Learning (XML)

Two main approaches exist to solve the XML problem: embedding-based
and tree-based methods.
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Embedding-based methods

Bhatia et. al. [21] present a state-of-the-art embedding method that aims to
address the challenges of XML. Traditional embedding based approaches
project a label space L into a linear lower-dimensional subspace L̂. The
linear constraint is required for post-processing in the prediction stage
in which a decompression matrix is used to lift embedded label vectors
back to the original label space. SLEEC [21] disregards the global linear
low-rank subspace used by embedding methods and learns an ensemble
of non-linear embeddings which preserve pairwise distances between la-
bel and embedding spaces for only the nearest neighbours of individual
data points. During prediction, rather than using a decompression matrix,
SLEEC uses a k-nearest neighbour classifier in the embedding space. Re-
cent advancements by DeepXML [42], Slice [76], and DECAF [107] bring
deep learning approaches to the XML field and report the highest embed-
ding based prediction accuracies.

Tree-based methods

Tree-based XML methods such as PfastreXML and Parabel [126] aim to
learn a hierarchy of labels using a node partition function. The tree’s root
node is initialised to contain the entire label set and child nodes partition
the parent’s labels until leaf nodes contain only a few labels. A multi-
label classifier of choice is then trained with the subset of labels present in
each leaf node. Traditional tree-based XML classifiers use task indepen-
dent measures to learn this hierarchy such as Multi-Label Random For-
est’s (MLRF’s) [3] Gini index and Label Partitioning by Sublinear Rank-
ing’s (LPSR’s) [152] clustering error. However, FastXML [127], a direct
precursor of PfastreXML, optimises a nDCG based ranking loss function
to partition the feature space which leads to more accurate predictions.
The intuition behind forming a hierarchy over the feature space rather
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than the label space is from the observation that only a small number of
labels are present in each region of feature space. Label prediction can
then be efficiently computed by carrying out multi-label classification on
a small subset of labels active in the region of feature space learnt in the
hierarchy. PfastreXML, along with SwiftXML [125], provide significant
improvements in prediction accuracies over embedding based methods
and are state-of-the-art approaches to solving the XML ranking problem.

5.6 Summary

This chapter explored the problem of recovering tokens of function names
in stripped binaries. It built on our binary analysis framework presented
in Chapter 3 and binary code embeddings presented in Chapter 4. We
have shown that XFL can be used to learn a general model of informative
labels contained in function names and are able to infer tokens in previ-
ously unseen stripped software. Whilst we show that learning an XML
model to infer naming components out-performs the state-of-the art in
terms of information-theoretic metrics, we believe the real benefit of XFL
over Punstrip is in its generalisation of inferred tokens. In our evaluation,
tools that did not perform multi-label classification were modified to do
so by applying our tokenisation procedure on the inferred symbol name.
This allowed those tools to correctly predict every label if they matched
the inferred function name correctly. We believe that this made Punstrip
very precise but at the lack of generality. Therefore, we suggest that Pun-
strip would be better suited to code clone search as it is able to uniquely
identify whole function names. On the other hand, XFL provides a more
general approach to labelling functions that is useful for reverse engineers
to quickly understand the semantics of binary code.
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Probing USB Drivers Through
Symbolic Fault Injection of Known
Functions 6
In this chapter we explore a theoretical use case of symbol recovery pre-
sented in previous chapters, and apply it to software fuzz testing to de-
velop a new approach to finding software bugs in kernel drivers. We
present the design and implementation of POTUS (probing off-the-shelf
USB drivers with symbolic fault injection), a system for automatically
finding vulnerabilities in USB device drivers for Linux, which is based on
fault injection, concurrency fuzzing, and symbolic execution. We target
Linux USB drivers due to the popularity of USB hardware and the ease of
development for our testing framework in the GNU/Linux environment;
however, with techniques described in previous chapters, one could ap-
ply the approaches presented in this chapter to closed source drivers from
other operating systems, simply by adding recovered symbol information.

6.1 Introduction

Device drivers are a critical part of any modern operating system (OS) due
to their privileged access to hardware and the OS kernel. At the same time,
drivers are challenging to maintain and keep bug free due to the number
of devices requiring support. As a result, device drivers commonly con-
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tain many more bugs than other parts of the kernel: in a classic study, 70%
of Linux device drivers were reported to have an error rate three to seven
times higher than that of the core kernel [36].

Several mechanisms have been introduced to protect against kernel-
level exploits, but as long as bugs persist in drivers, they pose a Denial
of Service (DoS) vulnerability at best and a stepping stone for a multi-
step exploit at worst. A wide range of defence techniques are available
today, including Kernel Address Space Layout Randomization (KASLR),
Data Execution Prevention (DEP), Return Address Protection (RAP) [121],
System Mode Execution Prevention (SMEP), System Mode Access Preven-
tion (SMAP), and Control Flow Integrity [41]. All of these helps raise the
bar for developing a working exploit but do not prevent attacks entirely.

Drivers for devices on the Universal Serial Bus (USB) have recently re-
ceived particular attention in the vulnerability research community [148,
64, 132, 99, 46]. The plethora of USB devices and the widespread adoption
of the USB standard makes them a high value target; in particular, a work-
ing exploit against a USB device driver can permit malware to spread to
air-gapped devices.

The main avenues for eliminating bugs from device drivers are device
testing and static analysis. This is due in part to the difficulty in mod-
elling the operating system and the hardware it interacts with. Dynamic
approaches for testing kernel drivers mainly focus on injecting errors via
bit-flips in the communications channel with the hardware. In the case
of Linux’s USB stack this typical results in code coverage of the core USB
module (usbcore) instead of exercising paths corresponding to high-level
logic of individual drivers. Many testing approaches for the Linux USB
stack exist including the USB test suite of the Linux Test Project [97] and
hardware-based approaches such as FaceDancer [64], Teensy [28], and
FrisbeeLite [12]. However, all these approaches struggle to model the
large number of possible interactions between device and driver. Static
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approaches such as Coverity [20] regularly scan the Linux kernel for soft-
ware faults. However, like other generic static analysis tools, it will miss
bugs that require knowledge about the runtime environment and hard-
ware, or that are based on complex and concurrent interactions between
different components.

We describe the concepts behind our tool POTUS that focuses on find-
ing deep bugs requiring complex interactions with a matching hardware
device. We base the design of our tool on an attacker model of a user with
physical access to a USB port and guest user privileges; a typical real-
world scenario would be an attacker plugging in a custom USB device
while a user is logged in (necessary commands can be typed by sending
keystrokes from the device masquerading as a keyboard). For the pur-
poses of our analysis we assume that symbol information is present in the
target client drivers. When analysing proprietary drivers that are stripped,
this information could be recovered using work presented in previous
chapters.

Given knowledge of the Linux USB stack (Section 2.6.1) and Selective
Symbolic Execution (Section 2.1), we focus our analysis to the myriad
of USB client device drivers by creating a tool capable of generalising
USB interactions. Many of the approaches before us focus on mutation-
based fuzzing at this stage; something which is common to all USB device
drivers and is well tested, and cannot expose bugs which require contex-
tual interactions between userspace and hardware. In the remainder of the
chapter, we introduce the design of POTUS (Section 6.2), its implementa-
tion (Section 6.3), and present our findings about zero-day vulnerabilities
we discovered in Linux USB drivers (Section 6.4). Finally, we discuss lim-
itations (Section 6.5), and contrast with related work (Section 6.6).
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6.2 Design

We now introduce the design of POTUS. We start by explaining the under-
lying attacker model (Section 6.2.1) and then give a high-level overview of
its components (Section 6.2.2).

6.2.1 Attacker Model

Our approach implements an attacker model where the adversary has a
user account and physical access to USB ports. A typical scenario would
be a workplace environment in which an employee has access to a ma-
chine and wants to achieve privilege escalation; or a visitor using a brief
moment to plug in a USB device that implements both a human interface
device to send keystrokes and a device targeting an exploitable driver.

Following this intuition, our attacker model has several degrees of free-
dom: first, it incorporates any possible interaction between devices and
the operating system, which allows to trigger the driver loading, device
enumeration, and driver-device setup stages. This dimension has been the
focus of related work in the area [87, 35, 132]. Second, our attacker model
includes system calls from user mode, i.e., the capability to interact with
files created by device drivers. In particular, our attacker, as implemented
in the driver exerciser, has the capability of (concurrently) performing sys-
tem calls on file descriptors that trigger execution paths within the device
driver. Third, our attacker model includes the ability to influence schedul-
ing and cause memory allocation failures, which an attacker can achieve
in practice by placing the CPU under load or exhausting memory.

6.2.2 System Overview

An overview of POTUS’s architecture is shown in Figure 6.1. POTUS
builds on S2E (which in turn builds on QEMU) to run a full guest OS in
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Figure 6.1: System overview of POTUS.

a virtual machine. It allows us to symbolically execute the specific client
USB device driver module under analysis. This Linux USB software stack
is shown in Figure 2.8, which explains the boundaries of interactions be-
tween hardware, kernel space and user space for the USB stack under
Linux. As we can analyse Linux client USB device drivers dynamically
and inside the environment of execution, it allows for the detection of soft-
ware bugs arising from the complexities of interactions embodied in the
entire kernel and hardware configurations.

The USB driver under test resides in the VM and receives inputs from the
driver exerciser and one or several USB devices. The USB devices connect
through QEMU’s Universal Host Controller Interface (UHCI) and may be
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either virtual usb-generic devices or real devices passed through QEMU’s
USB redirector (USB redir). For our case studies we relied on virtual de-
vices only, but real devices may help to explore deep paths in involved
protocols without modelling overhead. The driver exerciser runs inside
the guest and enumerates—in a form of fuzz testing—possible interac-
tions of a user process with the USB device.

We mark data sent from the device as symbolic to allow exploring all
possible responses in S2E, and we inject faults in the form of symbolic
error codes. We use SystemTap scripts to interface between guest code
and S2E and inject data at function call or return sites. We implemented
S2E plugins for state tagging and path pruning to limit path explosion and
prioritise states exploring different types of and locations of faults.

We rely on existing instrumentation tools to detect kernel-level bugs,
namely Kernel Address Sanitizer (KASAN) for memory errors, Kmem-
leak for memory leaks, and Kernel Thread Sanitizer for data races. While
the combination of these tools adds significant performance overhead, it
allows us to have high confidence that we can detect any security-relevant
errors as they occur. We also built a bug detector plugin for S2E that in-
tercepts kernel bug functions such as BUG_ON() and panic() calls and re-
trieves the kernel log file, the driver exerciser log, and various other sys-
tem log files to help debug and interpret the results.

6.3 Implementation

We now describe the implementation of POTUS, the generic virtual USB
device (Section 6.3.1), the mechanism for fault injection (Section 6.3.2), the
driver exerciser (Section 6.3.3), and its search strategy (Section 6.3.4).
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6.3.1 The usb-generic Device

To exercise a USB device driver under all possible configurations, we cre-
ated the virtual usb-generic device. It implements a generic USB device
with configurable device descriptors and a symbolic model for data trans-
fer.

The USB specification contains five descriptors: string descriptors, de-
vice descriptors, interface descriptors, configuration descriptors, and end-
point descriptors. usb-generic can be configured to impersonate any pos-
sible USB device by configuring its descriptors in a set of configuration
files. In principle, this data could also be extracted from the target driver
automatically. Once the descriptors are configured, the usb-generic de-
vice is ready to be used for testing any driver; further customisation is not
required, but possible.

There are four URB types used for communication between a USB gad-
get and the host controller interface (see Section 2.6.1). By default, usb-
generic ignores the content of OUT URBs (packets sent to the virtual de-
vice) and responds to IN URBs by writing the requested amount of data
and marking it as symbolic for S2E. We found that in practice the combi-
nation of symbolic data and a host-specified content length is sufficient to
thoroughly exercise our target drivers, given enough time. However, usb-
generic also provides the option for further (compile-time) customisation
by installing driver-specific callbacks to respond differently to each URB
type. We can further separate functionality by device, interface, class, and
endpoint request codes within per Device ID and Vendor ID segments. Fi-
nally, the usb-generic device can also be instructed to respond negatively
to individual URBs to influence packet scheduling, inject delays, or inten-
tionally violate the USB specification.

Our usb-generic device is implemented as a QEMU hardware device
that may be added to any virtual machine run by QEMU. Thus, it may be
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1 {
2 ’idVendor ’ : 7504,
3 ’idProduct ’ : 24737,
4 ’bcdDevice ’ : 0,
5 ’iManufacturer ’: 1,
6 ’iProduct ’: 2,
7 ’iSerialNumber ’: 3
8 }

Listing 3: Content of id.json for an AirSpy USB device.

used across many different architectures and platforms for both the host
and guest environments. During virtual device creation, four configura-
tion files may be passed to specify descriptor values as JSON files. By
default, id.json, device.json, iface.json, and strings.json are used to
specify configuration optioned pertinent to ID descriptors, Device descrip-
tors, Interface descriptors, and String descriptors. This runtime initialisa-
tion allows different USB configurations to be used without the recompi-
lation of QEMU. An example of id.json for an AirSpy USB device can be
seen in Listing 3.

Further control over the behaviour and data of virtual USB devices may
be achieved by modifying the virtual device’s C source code. Outside of
vulnerability discovery, we believe that usb-generic can also be used by
developers to aid writing device drivers in absence of a physical device,
using fine-granularity callbacks.

6.3.2 Fault Injection

POTUS injects faults into the running kernel using SystemTap [128]. Sys-
temTap allows to place probes at known or recovered kernel symbol locations to
gather information or inject compiled C code to modify kernel data struc-
tures. POTUS contains SystemTap modules for automatically injecting
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faults into core kernel submodules used by USB client device drivers such
as usbcore and memory allocation mechanisms, an example of which can
be seen in Listing 4. In particular, this example shows how fault injection
interacts with symbolic execution: the function will fork the current state
(as long as the per-path fault limit is not exceeded (see Section 6.3.4) and
return success in one state and a symbolic fault code in the other. The sym-
bolic fault code allows to explore all possible error codes at once, which
would be impossible with purely concrete fault injection. The Linux ker-
nel uses negative errno return codes to indicate errors; we therefore con-
strain the symbolic expressions for the return value on error paths to be
negative. In addition to returning symbolic error codes, our fault model
also injects the maximum admissible delay. While this is by no means a
complete approach to verifying concurrent code, it is often just enough
“fuzz” to expose concurrency bugs.

Some device drivers register asynchronous callbacks from the resulting
URB inline; in that case we must manually write a short SystemTap probe
for each. Our library of fault injectors works on a per module basis, i.e., it
only injects faults into kernel threads that have a call stack associated with
the target module under test. New SystemTap files can easily be created
for testing new client drivers by including our library files and setting
configuration values for fine-tuning fault injection, symbolic data injection
and path pruning. Our full library for injecting faults can be found on
Github1.

6.3.3 Driver Exerciser

The driver exerciser in POTUS initiates operations on the device from user
space. It randomly invokes file operations on the target device driver’s file
descriptors; to expose concurrency bugs, it can initiate multiple concurrent

1https://github.com/p0tus/s2e
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Table 6.1: File descriptor operations implemented in the driver exerciser.

Function Description

open() Open a new file descriptor corresponding to one of
the exposed device files. Upon being called, the guest
driver exerciser forks into two processes, with both ac-
cessing the device concurrently to try and trigger con-
currency bugs.

close() Close the active file descriptor.
connect() Simulate a physical hardware connection.
disconnect() Simulate a physical hardware disconnection.
read() Perform a sys_read on the currently active file descrip-

tor of random length. Discard the data read.
write() Perform sys_write on the currently active file descrip-

tor of random length. Data written is made symbolic.
poll() Perform sys_poll on the currently active file descriptor.

Request all events for a randomised timeout.
lseek() Perform sys_lseek on the currently active file descrip-

tor. Seek to a random offset for the current active file
descriptor.

ioctl() Perform sys_ioctl on the currently active file descrip-
tor. Currently implemented for driver specific ioctl calls
and arguments however may be made for generic by
providing a symbolic call code and argument.

send() Perform sys_send on the currently active socket. Send
a buffer of symbolic data with a random length and
symbolic or concrete flags. Allows for sending data
on sockets of domain AF_INET and type SOCK_STREAM or
SOCK_DGRAM.

recv() Perform sys_recv on the currently active socket. Re-
ceive a random sized buffer with symbolic or con-
crete flags and discard any data read. Allows for re-
ceiving data on sockets of domain AF_INET and type
SOCK_STREAM or SOCK_DGRAM.
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1 probe module("usbcore")
2 .function("usb_bulk_msg").return {
3 nfaults = potus_get_annotation(@FAULT_KEY)
4 if (nfaults < @FAULT_LIMIT) {
5 child = s2e_fork_state(__FUNC_NAME__ . " fork")
6 if(child) {
7 potus_annotate(@FAULT_KEY , nfaults +1)
8 if (@SYMBOLIC_FAULTS)
9 $return = potus_get_symb_fault (32)

10 else
11 $return = -1
12 next
13 }
14 }
15 ...
16 }

Listing 4: SystemTap probe for injecting faults into all usb_bulk_msg
functions.

operations on the same or different file descriptors. We implemented this
by using symbolic execution to search depth first through a weighted tree
of operations (see Table 6.1), initially instantiating an active file descriptor
with open(). Currently we support device drivers exposing a socket, char-
acter device or block device file, which covers the vast majority of USB
device drivers.

Figure 6.2 shows an example execution path for a guest user opening
a character device file owned by the legousbtower driver. The user initi-
ates the interaction by calling sys_open on a file whose file operations for
open() map to a callback within the legousbtower driver. Should the driver
attempt to allocate memory or call other kernel subsystems for which fault
injection is currently active, POTUS forks the system state and returns a
symbolic fault in one state, indicated by the red path. In the fault-free
path, the driver callback calls usb_submit_urb with a device request of
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USB Hardware usbcore Client Driver Driver Exerciser

t+ 0
6

t+ 1
6

t+ 2
6

t+ 3
6

t+ 4
6

t+ 5
6

t+ 6
6

sys_open()

/dev/legousbtower0

Return file descriptor.

Driver Exerciser forks.

usb_hcd_submit_urb()

Return usb_hcd_subit_urb

usb_submit_urb()

TOWER_RESET

Return usb_submit_urb()

Inject symbolic data.

Return USB_RET_NAK

Error in kzalloc()

Return symbolic fault.

USB_RET_STALL

Figure 6.2: Example of flows for viable code paths from the driver exer-
ciser through the Linux USB stack. The diagram shows fault
injection and fork points for the legousbtower client driver.

a custom TOWER_RESET device reset code, which is passed to the HCI via
usb_hcd_submit_urb. At this point, the system state is forked again, with
the fault-free path returning successfully, and the other path failing the
URB transfer after the maximum delay.

6.3.4 Path Prioritisation

Since we see POTUS as complementary to existing testing and bug find-
ing approaches, we particularly focus our vulnerability search on deep
bugs arising from concurrency errors, faults, and their interplay. Our in-
tuition is that those bugs that are detectable by light-weight static analysis
will have already been found in the Linux kernel. Still, the multitude of
low-level concurrency primitives in a Linux kernel running on modern
hardware harbour great potential for lingering concurrency bugs.

The combination of symbolic faults, concurrency fuzzing with delays,
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Table 6.2: List of device drivers tested.

Driver Tested LOC Driver-
specific
Probes

Functions
in
Driver

Exposed Interface

AirSpy 1,108 1 32 v4l2 device
Apple USB Display 369 1 8 Backlight device
Chaos Key 579 0 11 Character file
Cytherm 407 0 13 Sysfs files
IO Warrior 919 2 15 Character file
Lego USB Tower 982 2 15 Character file

and symbolic data aggravates the state explosion problem in symbolic ex-
ecution. Since we are interested in exploring deep paths, we prioritise a
primary path without faults or delays, and use it to spawn new states at
potential fault and delay injection points. POTUS attaches a map of an-
notations to each state, which is cloned upon forking; we use this map to
track the number of faults already injected into the state (see Listing 4, line
3) and the number of children created. We use this to limit the number of
fork points by preventing further fault injection when the limit of faults is
reached. This balances general code coverage with the exploration of fault
routines. The intuition behind this optimisation is that paths with a high
number of faults will likely lead to exploring the same code numerous
times without exploring new error handlers. We thus prioritise complex
driver-device exchanges over exploring the entire, potentially infinite, set
of possible interactions.
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6.4 Evaluation

We now present a preliminary evaluation of our approach; we were inter-
ested in evaluating POTUS’s ability to effectively find bugs and its poten-
tial for generalising to different types of USB drivers. We first discuss our
setup and methodology (Section 6.4.1), explain how POTUS applies to six
target USB device drivers (Section 6.4.2), and then provide details and an
assessment of exploitability for the two previously unknown vulnerabili-
ties we discovered: CVE-2016-54002 resulted in a denial-of-service attack
on Linux kernels 3.17–4.6 (Section 6.4.3); CVE-2017-15102 allows an arbi-
trary write/read primitive affecting Linux kernels pre-2.6–4.6 since 2003
(Section 6.4.4).

6.4.1 Experimental Setup

All of our experiments were run on a Ubuntu 12.04 LTS with dual Intel(R)
Xeon(R) CPU E5-2640. We used our own fork of S2E based on the latest
version as of 2016-11-01 and Debian Sid as the guest OS running a custom
vanilla Linux 4.6 kernel, which only enables the required modules and
keeps a minimal guest OS. We dynamically loaded usb-generic devices
through QEMU’s monitor interface and executed S2E on all the available
CPU threads of the host platform.

We developed an automation framework to control experiments, in-
cluding booting the OS, inserting SystemTap probes, and loading client
device drivers. The guest OS was executed with a QEMU emulated Core
2 Duo CPU and 1 GB of RAM. Overall, we ran each driver for up to one
hour, exploring in the order of hundreds of states per experiment. We used
S2E in concolic mode, exploring a state until termination before switching
to a new state, to explore deeper code paths.

2https://nvd.nist.gov/vuln/detail/CVE-2016-5400
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POTUS’s memory requirements are kept manageable (considering it is
based on full-VM symbolic execution) by our path pruning strategy. For
instance, in testing the Lego USB Tower driver for one hour with 32 S2E
processes, POTUS forked 488 different VM states and used 6.6 GB of RAM.
As POTUS runs S2E in concolic mode, it executes the driver exerciser to a
fixed number of operations before terminating the state, which improves
POTUS overall memory footprint as all the states resources do not have to
be saved simultaneously.

6.4.2 Adapting to Target Device Drivers

To evaluate our claim of a generic testing tool suite for USB device drivers,
we consider the effort it takes to test new drivers. We selected six open-
source USB device drivers that are included in the mainline Linux kernel,
touch on several of its different subsystems, and have a significant number
of lines of code. Table 6.2 lists the device drivers that we tested along with
their lines of code, number of functions, the exposed interface, and the
number of driver-specific probes we had to write.

We could test Chaos key and Cytherm entirely with POTUS’s default li-
braries for injecting faults, because these drivers rely only on synchronous
usbcore library functions such as usb_bulk_msg to transfer data. Although
the driver exerciser must be instructed to point to the corresponding de-
vice files, there was no need for additional SystemTap probes. Conversely,
drivers that also rely on asynchronous usbcore library functions expose
specific callbacks that have to be instrumented and required one to two
driver-specific probes (see Table 6.2). It is feasible to automatically address
such contexts (e.g., we can modify our SystemTap libraries with inline C
code to dereference forward referencing functions), but the currently nec-
essary manual effort is minimal.
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6.4.3 Airspy (CVE-2016-5400)

CVE-2016-5400 represents a memory leak vulnerability in a USB device
driver for communicating with an Airspy Software Defined Radio (SDR),
located under drivers/media/usb/airspy/airspy.c in the Linux kernel
source tree. The memory leak can be triggered purely from hardware
to perform a Denial of Service (DoS) attack, crashing the host by plug-
ging in a specially crafted USB device. The USB device driver interacts
with the Video For Linux 2 (V4L2) subsystem and, as a result, requires
the allocation of v4l2 device structures and registration with the subsys-
tem. The programming error that led to the memory leak was situated
in the drivers probe function; a function that is called when a new device
associated with the driver is plugged into the host. The relevant code snip-
pet can be seen in Listing 5 and shows that if the video_register_device

function fails, the driver fails to free any of the control variables registered
with the v4l2 subsystem. POTUS’s automatic fault injection identified this
memory leak.

Exploitability.

The Airspy kernel module was installed by default in most Linux dis-
tributions, including, but not limited to Ubuntu, Debian, Arch Linux, and
Trisquel; it loads whenever a USB device with the Airspy device descrip-
tor is plugged in.

An attacker can make video_register_device fail with a specially
crafted hardware as the Linux kernel only supports a maximum of 64
minor numbers for VFL_TYPE_SDR type devices attached to a host at any
given time. By creating a USB device that acts as a hub and attaches 65
of the same devices, we can trigger the memory leak vulnerability. The
sequence of connection and disconnection operations on the 65th device
consumes all the available RAM and effectively triggers a DoS attack. We
successfully verified the feasibility of this attack under the POTUS testing
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1 static int airspy_probe(struct usb_interface *intf ,
2 const struct usb_device_id *id)
3 {
4 ...
5 v4l2_ctrl_handler_init (&s->hdl , 5);
6 ...
7 ret = video_register_device (&s->vdev ,
8 VFL_TYPE_SDR , -1);
9 if (ret) {

10 dev_err(s->dev , "Failed to...");
11 goto err_unregister_v4l2_dev;
12 }
13 dev_info(s->dev , "Registered as ...");
14 return 0;
15 err_free_controls:
16 v4l2_ctrl_handler_free (&s->hdl);
17 err_unregister_v4l2_dev:
18 v4l2_device_unregister (&s->v4l2_dev);
19 err_free_mem:
20 kfree(s); return ret;
21 }

Listing 5: Airspy probe function.

framework.

6.4.4 Lego USB Tower (CVE-2017-15102)

CVE-2017-15102 is a Use-After-Free vulnerability that has ex-
isted in the Linux kernel’s Lego USB Tower driver since 2003
(drivers/usb/misc/legousbtower.c). The driver is quite pervasive:
it is compiled and available with the majority of Linux distributions,
including the latest server editions of Ubuntu 16.04 LTS and Fedora
25. The vulnerability is a race condition that leads to a NULL pointer
dereference; if remapped to a user-controlled memory location, it can be
abused to escalate privileges or execute arbitrary code.
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1 static int
2 tower_probe(struct usb_interface ...)
3 {
4 ...
5 /* register the device now , as it is ready */
6 usb_set_intfdata (interface , dev);
7 retval = usb_register_dev (interface , ...);
8 ...
9 /* get the firmware version and log it */

10 result = usb_control_msg (udev ,
11 usb_rcvctrlpipe(udev , 0),
12 LEGO_USB_TOWER_REQUEST_GET_VERSION ,
13 USB_TYPE_VENDOR | USB_DIR_IN | USB_RECIP_DEVICE ,
14 0, 0, &get_version_reply ,
15 sizeof(get_version_reply), 1000);
16 if (result < 0) {
17 dev_err(idev , "LEGO USB Tower get\
18 version control\
19 request failed\n");
20 retval = result;
21 goto error;
22 }
23 ...
24 error:
25 tower_delete(dev); return retval;
26 }

Listing 6: Lego USB Tower probe function.

Listing 6 shows the driver probe function and entry point
into the program. The function registers a character device file
/dev/usb/legousbtower[0-9]+ and proceeds to submit a request for
the device firmware version. If this URB request fails, the driver then calls
tower_delete, which deletes the device structures associated with the
driver without checking for any active connection. Registering the device
file grants file operations from user space, an action which could happen
before the probe function terminates. Listing 7 details the tower_write
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1 static int write_buffer_size = 480;
2 ...
3 static ssize_t
4 tower_write (struct file *file ,
5 const char __user *buffer , size_t count , ...)
6 {
7 struct lego_usb_tower *dev;
8 size_t bytes_to_write;
9 ...

10 /* verify that the device wasn’t unplugged */
11 if (dev ->udev == NULL) {
12 retval = -ENODEV;
13 pr_err("No device or device\
14 unplugged %d\n", retval);
15 goto unlock_exit;
16 }
17 /* wait until previous transfer is finished */
18 while (dev ->interrupt_out_busy) {
19 if (file ->f_flags & O_NONBLOCK) {
20 retval = -EAGAIN;
21 goto unlock_exit;
22 }
23 }
24 /* write the data into interrupt_out_buffer
25 from userspace */
26 bytes_to_write = min_t(int , count ,
27 write_buffer_size);
28 if (copy_from_user (dev ->interrupt_out_buffer ,
29 buffer , bytes_to_write))
30 ...
31 }

Listing 7: Lego USB Tower tower_write function.
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function, which maps to the sys_write system call and checks that the
device is still connected before copying data from user space into a local
kernel buffer pointed to by dev->interrupt_out_buffer. If tower_delete
is called after the write function checks that the device is connected, it will
delete the dev structure, setting its value to NULL and causing a NULL
pointer dereference in tower_write.

Exploitability.

An attacker can create a USB device that will hold open or drop the
control message for the board’s firmware version, providing with the time
necessary to exploit the race condition. As the kernel executes in the same
address space as user space, an unprivileged user may map the NULL
page (or use alternative techniques to work around limitations) to con-
trol the location of the data being written to. As an attacker also controls
the data, it is possible to write an arbitrary payload to arbitrary memory
locations, thus overwriting the local user id for the process to gain root
privileges.

If the NULL page is mappable through the sysctl setting
mmap_min_addr or by using a user account with the Linux personal-
ity of MAP_PAGE_ZERO, an adversary can easily force the location and data
on a buffer written inside the kernel. Other methods, such as those
that execute a setuid binary to remap existing memory have previously
been shown to circumvent this protection3. Linux kernels before 2009
have no protection against mapping the NULL page and are thus easily
exploitable using a specially crafted USB device and a low-privileged
guest user account to trigger the race condition. Upon further inspection,
the device file exposed by this driver is made globally readable and
writable on most systems by udev; something which happens after the
probe function finishes and closes the race condition. This significantly

3http://blog.cr0.org/2009/06/bypassing-linux-null-pointer.html
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lowers the impact of the vulnerability, but it may be used in a multi-stage
exploit or to escape containers where the user already has an fsuid of 0.

Bypassing SMEP, SMAP and RAP.
To assess the exploitability of CVE-2017-15102 on a modern, security-

hardened kernel, we decided to build a proof of concept of a local privi-
lege escalation exploit that would work on the latest kernel at the time of
development: Linux 4.6 with PaX’s GrSecurity patches applied. The un-
derlying idea is to reallocate the same memory used by the struct deletion
described above to control the location of the output buffer.

To be able to remap the same memory location as the kernel space dev

struct, we abused the Linux kernel’s SLUB memory allocator that re-
provisions previous allocations of the same size. Invoking sys_sendmsg

allowed us to force the kernel to allocate arbitrarily sized memory in the
general kernel cache. Once we identified the size of the message to send,
we created a USB device to insert a one second delay for the tower_probe’s
device firmware URB request, which enabled us to consistently remap the
same memory freed from tower_delete. Unfortunately, sys_sendmsg does
not allow us to control the first 40 bytes of memory allocated, due to it be-
ing reserved for the messages metadata. In our case, while the main data
structures were outside this region, it overlapped with a device mutex,
which would block execution of the exploit indefinitely.

We relaxed the condition for exploitation and created a kernel mod-
ule that would first leak memory addresses to bypass KASLR and dis-
cover the running process’ task struct to overwrite its credentials and
increase privileges and, secondly, allow us to allocate memory of arbi-
trary size in the kernel. Under such assumptions, we were able to deref-
erence a pointer to the current processes credentials struct and over-
write {u,g}id, e{u,g}id, s{u,g}id, fs{u,g}id and capabilities. Our final
exploit bypasses SMAP through the kernels own use of copy_from_user,
temporarily disabling it without performing any buffer overflow or con-
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trol flow hijacking, thus remaining unaffected by both SMEP and RAP. We
believe that our relaxed exploitation conditions are realistic [79] and do
not affect the feasibility of a successful attack. For instance, the second
condition can be addressed by adjusting the bMaxPacketSize of the device
descriptor to load data into that memory location to read and write data
to the device.

6.5 Limitations

QEMU’s current UHCI implementation supports USB devices up to USB
1.1. Although many devices are backwards compatible and simply trans-
fer data at lower speeds, they may use some features of newer USB speci-
fications that we therefore cannot test. For instance, usb-generic currently
does not support a multi-master device setup and hence does not support
the USB On-The-Go extension.

The implementation of usb_submit_urb in usbcore contains an interval

parameter which specifies a time period for periodically polling the de-
vice, indefinitely. If we are masking data input from the device as com-
pletely symbolic data, and if each URB will result in at least one state being
created from injected faults, then this presents an infinite set of possible
paths to explore and further increases path explosion.

Furthermore, the high runtime overhead of symbolic execution in S2E
increases the frequency of timer interrupts relative to the execution of
other instructions. As a result, we had to slow down QEMU’s internal
clock by a factor of five to avoid exploring only device polling in drivers
using short intervals.
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6.6 Related Work

Our approach draws on a range of previous work, which we compare and
contrast to in this section.

Symbolic execution has been widely used for vulnerability discovery
(e.g., [32, 61, 33]). Most closely related are S2E itself [35] and in particular
its predecessor project DDT [87]. Both have been used to find bugs in user
space applications and device drivers. POTUS builds on S2E and expands
it with features specific to the problem domain of Linux USB drivers. In a
way, POTUS is a sister project to DDT in that it allows testing USB drivers
on the latest Linux versions similarly to how DDT tested PCI drivers for
Windows XP. However, DDT used fully symbolic PCI devices that would
be too generic to allow meaningful exploration of devices communicating
via a USB host controller.

Tonder and Engelbrecht [148] describe a hardware-based mutation
fuzzing scheme for USB. Their approach builds on the Facedancer
project [64] to mutate the interactions of existing USB devices with the
host. A pure software approach is inherently easier to deploy (e.g.,
where no related device is available) and more flexible, e.g., the re-
ported 300ms delay in control transfers would make it difficult to discover
timing-sensitive race conditions such as CVE-2017-15102. Furthermore, a
hardware-only approach that uses random bit flips ignores driver logic
and is likely to only exercise a very limited portion of the USB subsystem,
in particular the USB device enumeration in usbcore.

Jodeit et al.’s [81] combined a physical USB device with a mutational
based fuzzer to test an Apple iPod on Windows and found multiple soft-
ware bugs in Windows XP drivers. Schumilo et al. [132] presented the
software USB fuzzer vUSBf, which relies on QEMU’s usbredir server to
redirect URB packets from host emulated devices into the guest operat-
ing system. vUSBf mainly focuses on fuzzing values in USB descriptors
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and USB HID drivers and provides no systematic way of exercising de-
vice drivers.

NCC’s umap24 allows to fuzz USB device drivers by recording traces
from emulated devices and then fuzzing replays of the traces. The project
relies on gadgetfs or Facedancer and a Python program to describe each
device. The project is currently able to emulate 13 device classes, each
specified in hundreds of lines of Python code. In contrast, POTUS pro-
vides significantly more automation, requiring typically to only adapt a
few SystemTap scripts and configure the virtual device.

Software-implemented fault injection (SWIFI) is a widely used tech-
nique for testing the robustness of software. Natella et al. [113] provide
a recent survey of the area. A flexible framework for fault injection at the
level of libraries was presented in LFI [98]. LFI automatically generates
error models for libraries, which we aim to also achieve at kernel level for
POTUS in future work. A comparative study of fault injection techniques
by Jarboui et al. [80] showed that internal software faults or faults caused
by device drivers could not be easily emulated by injecting faults at the
system call level only. This validates our design choice in POTUS to al-
low fault injection at any point in the kernel, and most importantly at the
level of the kernel subsystem APIs. The impact of device drivers on the
Linux kernel is a known cause for concern. For example, Albinet et al. [4]
characterised the kernel’s robustness based on the impact of faulty device
drivers.

4https://github.com/nccgroup/umap2
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Conclusions 7
Our goal in this thesis has been to explore information recovery in com-
piled computer programs and use it to aid software analysis. Through-
out our work, we built on top of previous state-of-the-art techniques and
tools in program analysis and machine learning. Where possible we have
contributed back to open-source projects and to the research community.
For the most part, software created to form this research was added to
the binary analysis toolkit, desyl, which provides the implementation of
techniques covered in this thesis and is released open-source. A divergent
software project forked from S2E and QEMU is also released open-source
under usbdt.

We started in Chapter 3 which presented Punstrip, a novel approach for
naming functions in stripped executables that combines program analy-
sis and machine learning to infer symbol information. We demonstrated
that Punstrip is a viable approach to learn a function fingerprint that is ca-
pable of inferring symbols between multiple compilers and optimisation
levels. Secondly, we combined our fingerprint with structured prediction
using 3rd order general graph-based conditional random fields to predict
symbol information in binaries using all known relationships simultane-
ously rather than considering each function in isolation. We carried out an
extensive 10–fold cross-validated evaluation against C ELF binaries built
from different environments and compilers in the Debian Sid repositories
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and released the dataset to the research community. We have shown that
it is possible to learn intrinsic relationships between functions and trans-
pose that information to other previously unseen stripped binaries. Where
the original function name has never been seen before, we suggest mean-
ingful names in order to aid the reverse engineering process.

Our work on Punstrip highlighted fundamental problems with building
machine learning models to name components of binary code. In light of
this, we built deep learning models that captured the semantics of binary
functions and their names. Our label space function name model, Sym-
bol2Vec, mitigates the subjective nature of naming functional components
by human beings and expresses abstract relationships through its vector
space. We were able to prove that our Symbol2Vec vector space is mean-
ingful by computing the nearest neighbours in this space. This enabled us
to have an absolute numerical metric to compare the similarity of function
names by computing the distance between vectors.

The development of our DEXTER embeddings proves as a useful vector
representation of binary functions that can be used in machine learning
models or binary code search engines. Our technique creates a distributed
representation of binary code that concisely captures the semantics of
functions. In doing so, DEXTER condenses millions of features drawn
from the whole binary, the function’s calling context, and the function it-
self. We show that it outperforms state-of-the-art binary code embeddings
when used for predicting labels in function names. This provides evidence
that using many features from static analysis for learning embeddings im-
proves performance over relying on more syntactic features, as done in
previous approaches.

Chapter 5 presented XFL to solve the function naming problem in a way
that addresses limitations inherent in previous methods. XFL uses DEX-
TER to perform multi-label classification and learn an XML model to pre-
dict common tokens found in the names of functions from C binaries in
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Debian. Our model can predict infrequently occurring “tail labels” and
we showed that our approach outperforms existing approaches to func-
tion name prediction by evaluating our embeddings using information-
theoretic metrics from the XML field and traditional metrics for multi-label
classification. As XFL predicts labels instead of whole function names, it is
able to predict names for functions even when no function of that name is
contained in the training set; an intrinsic weakness of all other approaches
from their lack of generalisation.

Finally, we investigated how information recovery could be useful
when analysing kernel drivers. Chapter 6 presented POTUS, a new ap-
proach for testing USB device drivers capable of finding long-existing
bugs that previous state-of-the-art tools failed to find. Our approach is
built on top of free and libre open-source software, is easily extendable,
and can work together with existing open-source projects to provide fur-
ther functionality. As a result, we found two critical vulnerabilities in the
latest version of the Linux kernel at the time of completion and built proof
of concept exploits to explore their severity.

We release all our tools to the community to improve the area of soft-
ware analysis, reverse engineering, bug finding, and USB driver develop-
ment.

Future Work. Techniques developed in this thesis aid the reverse engi-
neering process and develop new tools to analyse kernel USB drivers. The
drivers targeted in Chapter 6 were open-source drivers from the Linux
kernel which enabled us to focus on our approach to finding deep bugs in
the logic of each driver. Naturally, one would hope to extend this work by
recovering symbol information in proprietary Linux, Windows or Mac OS
kernel drivers, before analysing them using POTUS. This would enable a
new insight into targeted software analysis of closed source software that
has not been seen before. Another extension to the work presented in this
thesis could lie in the use of recent natural language text embeddings (e.g,
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GPT-3). One could try to use semantic knowledge inherent in large pre-
trained language models to generate higher quality function names from
a finite set of string tokens predicted by XFL.
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